WO2018163584A1 - 電磁波吸収シート - Google Patents

電磁波吸収シート Download PDF

Info

Publication number
WO2018163584A1
WO2018163584A1 PCT/JP2018/000125 JP2018000125W WO2018163584A1 WO 2018163584 A1 WO2018163584 A1 WO 2018163584A1 JP 2018000125 W JP2018000125 W JP 2018000125W WO 2018163584 A1 WO2018163584 A1 WO 2018163584A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
absorbing sheet
wave absorbing
sheet
film
Prior art date
Application number
PCT/JP2018/000125
Other languages
English (en)
French (fr)
Inventor
豊田将之
藤田真男
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to CN201880006452.7A priority Critical patent/CN110169218B/zh
Priority to US16/476,842 priority patent/US11477925B2/en
Priority to JP2018519507A priority patent/JP6523563B2/ja
Priority to EP18763338.3A priority patent/EP3595422A4/en
Publication of WO2018163584A1 publication Critical patent/WO2018163584A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Definitions

  • the present disclosure relates to an electromagnetic wave absorbing sheet that has flexibility and translucency and absorbs electromagnetic waves in a so-called millimeter wave band of several tens of gigahertz (GHz) to several hundred gigahertz (GHz).
  • GHz gigahertz
  • GHz gigahertz
  • An electromagnetic wave absorbing sheet that absorbs electromagnetic waves is used in order to avoid the influence of leaked electromagnetic waves emitted from the electric circuit or the like to the outside or electromagnetic waves that are undesirably reflected.
  • electromagnetic wave absorbers that absorb unnecessary electromagnetic waves and electromagnetic wave absorbing sheets that are sheet-like electromagnetic wave absorbers that improve user convenience are also used in millimeters. It is conceivable that the demand for an electromagnetic wave that can absorb electromagnetic waves in the wave band and beyond is higher.
  • an electromagnetic wave absorbing sheet As such an electromagnetic wave absorbing sheet, a resistive film is formed on one surface of the dielectric layer, and an electromagnetic wave shielding layer that reflects electromagnetic waves is formed on the other surface, and the phase of the reflected wave is 1 ⁇ 2 wavelength relative to the incident wave.
  • a so-called electromagnetic wave interference type ( ⁇ / 4 type) electromagnetic wave absorbing sheet is known in which the incident wave and the reflected wave on the electromagnetic wave absorbing sheet cancel each other out to absorb the electromagnetic wave.
  • the electromagnetic wave interference type electromagnetic wave absorbing sheet is lighter than an electromagnetic wave absorbing sheet that magnetically absorbs electromagnetic waves with magnetic particles having a large specific gravity, and can be easily manufactured, so that the cost can be reduced. Have.
  • electromagnetic interference type electromagnetic wave absorbing sheets electrostatic wave absorbers
  • metal oxides such as indium tin oxide (ITO), indium oxide, tin oxide, and zinc oxide are used as resistance films formed on the surface of the dielectric layer.
  • ITO indium tin oxide
  • tin oxide indium oxide
  • zinc oxide zinc oxide
  • Patent Document 1 and Patent Document 2 a metal nitride or a mixture thereof formed by ion plating, vapor deposition, sputtering, or the like is known (see Patent Document 1 and Patent Document 2).
  • an electromagnetic wave interference type electromagnetic wave absorber a resistive layer of a transparent conductor such as indium tin oxide (ITO) film, a transparent dielectric layer such as glass and acrylic resin, and formed in this dielectric layer,
  • ITO indium tin oxide
  • An electromagnetic wave absorber having flame retardancy and translucency, which includes a reflective film made of a metal such as silver, gold, copper, or aluminum has been proposed (see Patent Document 3).
  • the resistance film formed on the surface of the dielectric layer performs impedance matching that matches the impedance of the electromagnetic wave absorbing sheet surface with the impedance in the air, and the electromagnetic wave absorbs the electromagnetic wave. It fulfills the function of making it easier to enter the interior of the sheet. For this reason, the value of the surface resistance of the resistance film is required to be maintained at a value in the vicinity of 377 ⁇ / sq (surface resistance value) which is a dielectric constant in vacuum.
  • the electromagnetic wave interference-type electromagnetic wave absorbing sheet has higher flexibility because the thickness of the dielectric layer becomes thinner as the electromagnetic wave to be absorbed becomes higher in frequency.
  • the electromagnetic wave absorbing sheet that is thinner and can be easily bent increases the place where it can be applied and improves the convenience for the user, but increases the chance that the user is strongly bent.
  • a resistance film made of a metal oxide film or the like formed by a sputtering method or the like is easily cracked by being strongly bent, and when the resistance film is cracked, its surface resistance value is increased and impedance is increased. There is a problem that the matching is lost and the electromagnetic wave absorption characteristics are deteriorated.
  • the present disclosure solves the above-described conventional problems, and is a so-called electromagnetic interference type electromagnetic wave absorbing sheet that can absorb electromagnetic waves in a desired frequency band satisfactorily and has high flexibility and translucency. Another object is to realize an electromagnetic wave absorbing sheet that is easy to handle.
  • an electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic wave absorbing sheet having flexibility and translucency, both of which have translucency, a resistive film, a dielectric layer, and an electromagnetic wave
  • the resistive coating is formed of a conductive organic polymer, and the aperture ratio of the electromagnetic shielding layer is 35% to 85%.
  • the resistive film is formed of a conductive organic polymer, even when the sheet is strongly bent, the resistive film is not cracked, and the impedance matching is maintained and high electromagnetic wave absorption is achieved. You can continue to keep the properties. Moreover, since all of the resistance film, the dielectric layer, and the electromagnetic wave shielding layer have translucency, they have translucency as an electromagnetic wave absorbing sheet. For this reason, it is possible to realize an electromagnetic wave absorbing sheet having high flexibility and translucency and having good electromagnetic wave absorption characteristics while being low in cost.
  • the electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic wave absorbing sheet having flexibility and translucency, each of which has a translucent resistance film, a dielectric layer, and an electromagnetic wave shielding layer.
  • the resistance film is formed of a conductive organic polymer, and the aperture ratio of the electromagnetic wave shielding layer is not less than 35% and not more than 85%.
  • the electromagnetic wave absorbing sheet disclosed in the present application is an electromagnetic wave interference type electromagnetic wave absorbing sheet formed by laminating a resistance film, a dielectric layer, and an electromagnetic wave shielding layer.
  • the film is less likely to crack, and can maintain high impedance matching and exhibit high electromagnetic wave absorption characteristics.
  • the resistance film, the dielectric layer, and the electromagnetic wave shielding layer all have translucency, and the electromagnetic wave shielding layer has a sufficient surface resistance value as an electromagnetic wave reflection layer, the entire electromagnetic wave absorbing sheet has translucency. It is possible to realize an electromagnetic wave absorbing sheet that has a field of view and is not obstructed.
  • the electromagnetic wave shielding layer is preferably made of a conductive mesh.
  • the surface resistance value of the electromagnetic wave shielding layer is preferably 0.3 ⁇ / sq or less.
  • the resistance film contains poly (3,4-ethylenedioxythiophene) (PEDOT).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the resistance film further includes polystyrene sulfonic acid (PSS) and polyvinylidene fluoride (PVDF).
  • PSS polystyrene sulfonic acid
  • PVDF polyvinylidene fluoride
  • Polystyrene sulfonic acid acts as a counter anion of poly (3,4-ethylenedioxythiophene) to increase the stability of the electric resistance value of the resistance film, and the surface resistance value of the resistance film can be adjusted more easily.
  • the specific resistance film contains a water-soluble polyester.
  • the surface resistance value of the resistive film is preferably in the range of ⁇ 15% to + 20% with respect to the vacuum impedance value (377 ⁇ ).
  • the dielectric layer is set to a layer thickness capable of absorbing electromagnetic waves in a high frequency band equal to or higher than a millimeter wave band.
  • electromagnetic waves can be understood as a kind of electromagnetic waves in a broader sense, in this specification, the term “electromagnetic waves” is used in a unified manner, for example, an electromagnetic wave absorber is referred to as an electromagnetic wave absorber. .
  • FIG. 1 is a cross-sectional view showing a configuration of an electromagnetic wave absorbing sheet according to the present embodiment.
  • FIG. 1 is a figure described in order to make it easy to understand the configuration of the electromagnetic wave absorbing sheet according to the present embodiment, and the size and thickness of the members shown in the figure are represented in actuality. It is not a thing.
  • the electromagnetic wave absorbing sheet exemplified in this embodiment is formed by laminating a resistance film 1, a dielectric layer 2, and an electromagnetic wave shielding layer 3.
  • the adhesive layer 4 is laminated on the back side of the electromagnetic wave shielding layer 3, that is, on the surface opposite to the side where the dielectric layer 2 is disposed in the electromagnetic wave shielding layer 3. Is formed.
  • a protective layer 5 is laminated on the front side of the resistance film 1, that is, on the surface opposite to the side where the dielectric layer 2 is disposed in the resistance film 1.
  • the electromagnetic wave 11 incident on the dielectric layer 2 is reflected at the interface between the electromagnetic wave shielding layer 3 and the dielectric layer 2 disposed on the back side of the dielectric layer 2,
  • the reflected wave 12 is emitted to the outside again.
  • the phase 11a of the incident wave 11 and the phase 12a of the reflected wave 12 cancel each other. Accordingly, the electromagnetic wave incident on the electromagnetic wave absorbing sheet is absorbed.
  • the electromagnetic wave shielding layer 3 formed by laminating on the back side of the dielectric layer 2 is a layer that reflects incident electromagnetic waves on the surface of the dielectric layer 2 that is a boundary surface with the dielectric layer 2.
  • the electromagnetic wave shielding layer 3 needs to function as a reflective layer that reflects electromagnetic waves. Moreover, it is necessary to provide flexibility and translucency as an electromagnetic wave shielding layer.
  • a conductive mesh formed of conductive fibers or a conductive lattice formed of conductive wires such as ultrafine metal can be used.
  • the resistive film 1 is formed on the front side of the dielectric layer 2, that is, on the side where the absorbed electromagnetic wave is incident on the side opposite to the side where the electromagnetic wave shielding layer 3 of the dielectric layer 2 is laminated. Impedance matching between air and air.
  • the input impedance value of the electromagnetic wave absorbing sheet is brought close to 377 ⁇ , which is an impedance value in the air (actually, an impedance value of vacuum), to the electromagnetic wave absorbing sheet. It is important to prevent the electromagnetic wave reflection and scattering from occurring when the electromagnetic wave is incident, thereby reducing the electromagnetic wave absorption characteristics.
  • the resistance film 1 is formed as a conductive organic polymer film, thereby ensuring flexibility as the electromagnetic wave absorbing sheet and resistance even when the electromagnetic wave absorbing sheet is strongly bent. The film 1 is not cracked and the like, and good impedance matching can be maintained without changing the surface resistance value.
  • the adhesive layer 4 is a layer formed on the back side of the electromagnetic wave shielding layer 3 so that the electromagnetic wave absorbing sheet can be easily attached to a predetermined place.
  • the adhesive layer 4 can be easily formed by applying an adhesive resin paste.
  • the adhesive layer 4 is not an essential member in the electromagnetic wave absorbing sheet according to the present embodiment.
  • a member for adhesion may be disposed on the member side to which the electromagnetic wave absorbing sheet is attached, and when the electromagnetic wave absorbing sheet is disposed at the predetermined location.
  • Adhesive methods such as supplying an adhesive between the electromagnetic wave absorbing sheet and the arrangement location or using a double-sided tape can be employed.
  • the protective layer 5 is a member that is formed on the surface of the resistance film 1, that is, the outermost surface on the electromagnetic wave absorbing sheet side where the electromagnetic wave is incident, and protects the resistance film 1.
  • the surface resistance value of the conductive organic polymer forming the resistance film 1 of the electromagnetic wave absorbing sheet of the present embodiment may change due to the influence of humidity in the air.
  • it since it is a resin film, there is a risk of scratching when a sharp member comes into contact with the surface or when it is rubbed with a hard material. For this reason, it is preferable to protect the resistive film 1 by covering the surface of the resistive film 1 with the protective layer 5.
  • the protective layer 5 is not an essential constituent element in the electromagnetic wave absorbing sheet according to the present embodiment, and changes in the surface resistance value due to the adhesion of moisture to the surface or the resistance film 1 due to the material of the conductive organic polymer. When there is little concern about the surface being damaged, a configuration of an electromagnetic wave absorbing sheet without the protective layer 5 can be selected.
  • the protective layer 5 a resin material such as polyethylene terephthalate can be used as will be described later. Although the resin material used as the protective layer 5 has a certain resistance value, the influence of the presence or absence of the protective layer 5 on the surface resistance value of the electromagnetic wave absorbing sheet is a practical problem by setting the protective layer 5 thin. There can be no level.
  • the resistance film 1 is made of a conductive organic polymer.
  • the conductive organic polymer a conjugated conductive organic polymer is used, and it is preferable to use polythiophene or a derivative thereof, polypyrrole or a derivative thereof.
  • polythiophene-based conductive polymer suitable for use in the resistive film 1 of the electromagnetic wave absorbing sheet according to the present embodiment include poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene) ), Poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), Poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly ( 3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthio) Phen), poly (3-
  • polypyrrole conductive polymer suitable for use in the resistance film 1 include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), Poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole) ), Poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl) -4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole) , Poly (3-Butokishipiroru), poly (3-hexyloxy-pyrrole), poly (3-butokish
  • an organic polymer whose main chain is composed of a ⁇ -conjugated system can be used as the resistance film 1, and a polyacetylene conductive polymer, a polyphenylene conductive polymer, a polyphenylene vinylene conductive
  • a conductive polymer, a polyaniline conductive polymer, a polyacene conductive polymer, a polythiophene vinylene conductive polymer, and a copolymer thereof can be used.
  • a polyanion can be used as a counter anion as a conductive organic polymer used for the resistance film.
  • a polyanion it does not specifically limit as a polyanion, What contains the anion group which can produce a chemical oxidation dope in the conjugated conductive organic polymer used for the resistive film mentioned above is preferable.
  • an anionic group include groups represented by the general formulas —O—SO 3 X, —O—PO (OX) 2 , —COOX, —SO 3 X (in each formula, X represents a hydrogen atom) Among them, the groups represented by —SO 3 X and —O—SO 3 X are particularly preferable because of the excellent doping effect on the conjugated conductive organic polymer. .
  • polyanions include polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyisoprene sulfone.
  • Polymers having a sulfonic acid group such as acid, polysulfoethyl methacrylate, poly (4-sulfobutyl methacrylate), polymethacryloxybenzenesulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid And polymers having a carboxylic acid group such as polymethacrylic carboxylic acid, poly (2-acrylamido-2-methylpropane carboxylic acid), polyisoprene carboxylic acid and polyacrylic acid. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • a polyanion may be used individually by 1 type, and may use 2 or more types together.
  • a polymer having a sulfonic acid group is preferable, and polystyrene sulfonic acid is more preferable.
  • the above conductive organic polymer may be used alone or in combination of two or more.
  • polypyrrole poly (3-methoxythiophene), poly (3,4-ethylenedioxythiophene), poly (2-anilinesulfonic acid)
  • polypyrrole poly (3-methoxythiophene)
  • poly (3,4-ethylenedioxythiophene) poly (2-anilinesulfonic acid)
  • a polymer composed of one or two selected from poly (3-anilinesulfonic acid) is preferable.
  • PEDOT poly(1,4-ethylenedioxythiophene: PEDOT) and polystyrenesulfonic acid (PSS) as a combination of a conjugated conductive organic polymer and a polyanion.
  • PEDOT poly(3,4-ethylenedioxythiophene: PEDOT) and polystyrenesulfonic acid (PSS) as a combination of a conjugated conductive organic polymer and a polyanion.
  • dopants include halogens such as iodine and chlorine, Lewis acids such as BF 3 and PF 5 , proton acids such as nitric acid and sulfuric acid, transition metals, alkali metals, amino acids, nucleic acids, surfactants, dyes, chloranil, tetra Cyanoethylene, TCNQ, etc. can be used.
  • the surface resistance value of the resistance film 1 is preferably set to a value of about plus / minus several percent with respect to 377 ⁇ .
  • the resistance film 1 As a material for forming the resistance film 1, it is preferable to include polyvinylidene fluoride in addition.
  • Polyvinylidene fluoride can be added to the composition for coating conductive organic polymer to serve as a binder in the conductive organic polymer film, improving film formability and adhering to the substrate. Can increase the sex.
  • the resistance coating 1 contains a water-soluble polyester. Since the water-soluble polyester is highly compatible with the conductive polymer, the conductive polymer is fixed in the resistive film 1 by adding the water-soluble polyester to the conductive organic polymer coating composition forming the resistive film 1. And a more uniform film can be formed. As a result, the use of water-soluble polyester reduces the change in surface resistance even when placed in a severer high-temperature and high-humidity environment, and maintains impedance matching with the impedance value in the air. Can do.
  • the weather resistance of the resistance film 1 is improved, so that the change in the surface resistance value of the resistance film 1 over time is suppressed, and stable electromagnetic wave absorption characteristics are achieved.
  • a highly reliable electromagnetic wave absorbing sheet that can be maintained can be realized.
  • the content of the conductive organic polymer in the resistance film 1 is preferably 10% by mass or more and 35% by mass or less with respect to the total mass of the solid content included in the resistance film 1 composition.
  • the content is less than 10% by mass, the conductivity of the resistance film 1 tends to be lowered.
  • the film thickness of the resistance film 1 is increased, so that the entire electromagnetic wave absorbing sheet is increased, and translucency and the like are increased. There is a tendency for optical properties to deteriorate.
  • the coating suitability when coating the resistive film 1 is reduced due to the structure of the conductive organic polymer, and it becomes difficult to form a good resistive film 1 and resistance.
  • the haze of the film 1 increases, and the optical characteristics tend to decrease.
  • the resistance film 1 can be formed by applying a coating composition as a resistance film-forming coating material onto a substrate and drying as described above.
  • Examples of the method for applying the resistance film-forming coating onto the substrate include a bar coating method, a reverse method, a gravure coating method, a micro gravure coating method, a die coating method, a dipping method, a spin coating method, a slit coating method, and a spray.
  • a coating method such as a coating method can be used.
  • the drying after the application may be performed under the condition that the solvent component of the resistance film-forming coating material evaporates, and is preferably performed at 100 to 150 ° C. for 5 to 60 minutes. If the solvent remains in the resistance film 1, the strength tends to be inferior.
  • a drying method for example, a hot air drying method, a heat drying method, a vacuum drying method, natural drying, or the like can be used.
  • the transparent base material which has translucency is preferable.
  • various materials such as resin, rubber, glass and ceramics can be used.
  • the electromagnetic wave incident on the electromagnetic wave absorbing sheet is in the air. Impedance can be matched, and electromagnetic wave reflection and scattering on the surface of the electromagnetic wave absorbing sheet can be reduced to obtain better electromagnetic wave absorption characteristics.
  • the dielectric layer 2 of the electromagnetic wave absorbing sheet according to the present embodiment can be formed of a dielectric such as polyvinylidene fluoride, polyester resin, glass, transparent silicone rubber, transparent OCA, or OCR.
  • the dielectric layer 2 can be formed as a single layer structure with one kind of material, and can also be configured such that two or more layers of the same kind and different kinds of materials are laminated.
  • a coating method, a press molding method, an extrusion molding method, or the like can be used for forming the dielectric layer 2.
  • the electromagnetic wave absorbing sheet according to the present embodiment shifts the phase between the electromagnetic wave incident on the electromagnetic wave absorbing sheet and the reflected wave reflected by the electromagnetic wave shielding layer by 1 ⁇ 2 wavelength, so that the incident wave and the reflected wave are Is an electromagnetic wave interference type ( ⁇ / 4 type) electromagnetic wave absorbing sheet that cancels each other and absorbs electromagnetic waves.
  • the thickness of the dielectric layer (d in FIG. 1) is determined in accordance with the wavelength of the electromagnetic wave to be absorbed.
  • the value of the thickness d of the dielectric layer 2 by rate is used large, 1 / ⁇ r can be reduced, we are possible to reduce the total thickness of the electromagnetic wave absorber sheet.
  • the electromagnetic wave absorbing sheet according to this embodiment has flexibility, it can be easily bent as the thickness of the dielectric layer 2 constituting the electromagnetic wave absorbing sheet or the electromagnetic wave absorbing sheet itself is small. More preferred. Further, considering that the electromagnetic wave absorbing sheet according to the present embodiment is often used by being attached to a member that is desired to prevent leakage of electromagnetic waves via an adhesive layer 4 or the like described later, the thickness of the electromagnetic wave absorbing sheet is thin. It is preferable that it easily conforms to the shape of the pasted portion and that the sheet is made lighter.
  • the dielectric layer 2 having a dielectric constant ⁇ r is used between the electromagnetic wave shielding layer 3 and the resistive film 1 as compared with the case where the resistive film 1 is disposed at a position ⁇ / 4 away from the electromagnetic wave shielding layer 3.
  • the wavelength of the electromagnetic wave absorbed by the electromagnetic wave absorbing sheet including the dielectric layer 2 can be controlled.
  • the electromagnetic wave shielding layer 3 of the electromagnetic wave absorbing sheet according to the present embodiment is a member that reflects an electromagnetic wave incident from the surface film 1 disposed on the opposite side of the electromagnetic wave absorbing sheet via the dielectric layer 2.
  • the electromagnetic wave shielding layer 3 needs to have flexibility and light-transmitting properties that follow and bend at least when the resistance film 1 and the dielectric layer 2 are curved.
  • a conductive mesh made of conductive fibers can be employed as the electromagnetic wave shielding layer 3 that can meet such requirements.
  • the conductive mesh can be formed by attaching a metal to a mesh woven with polyester monofilament to make it conductive.
  • the metal copper, silver, or the like having high conductivity can be used.
  • the black anti-reflective layer on the outer side of the metal film is also commercialized.
  • the electromagnetic wave shielding layer 3 a conductive grid in which metal wires such as thin copper wires having a diameter of several tens to several hundreds of ⁇ m are arranged vertically and horizontally can be used.
  • the electromagnetic wave shielding layer 3 made of the mesh or the conductive lattice described above has a minimum thickness as long as the surface resistance value required as the electromagnetic wave shielding layer can be realized in order to ensure flexibility and translucency. Will be configured.
  • a reinforcing layer and a protective layer made of a translucent resin are formed on the back side of the conductive lattice, and an electromagnetic wave generated by a laminate of an electromagnetic wave reflection portion made of a conductive material and a resin film constituent portion.
  • the shielding layer 3 can be used.
  • the electromagnetic wave absorbing sheet which is a laminate of the resistive film 1, the dielectric layer 2, and the electromagnetic wave shielding layer 3, can be used as a housing for housing an electric circuit. It can be attached to a desired position such as an inner surface or an inner surface or an outer surface of an electric device.
  • the electromagnetic wave absorbing sheet of the present embodiment has flexibility, it can be easily attached on a curved surface, and the electromagnetic wave absorbing sheet can be easily handled by providing the adhesive layer 4 on the back surface. Improves.
  • the adhesive layer 4 a known material used as an adhesive layer such as an adhesive tape, an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like can be used. Moreover, a tackifier and a crosslinking agent can also be used in order to adjust the adhesive force to the adherend and reduce adhesive residue.
  • the adhesive strength with respect to the adherend is preferably 5 N / 10 mm to 12 N / 10 mm. When the adhesive strength is less than 5 N / 10 mm, the electromagnetic wave absorbing sheet may be easily peeled off from the adherend or may be displaced. Moreover, when adhesive force is larger than 12 N / 10mm, it will become difficult to peel an electromagnetic wave absorption sheet from a to-be-adhered body.
  • the thickness of the adhesive layer 4 is preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness of the adhesive layer 4 is less than 20 ⁇ m, the adhesive strength is reduced, and the electromagnetic wave absorbing sheet may be easily peeled off or displaced from the adherend.
  • the thickness of the adhesive layer 4 is larger than 100 ⁇ m, it is difficult to peel the electromagnetic wave absorbing sheet from the adherend.
  • the cohesive force of the adhesive layer is small, adhesive residue may be generated on the adherend when the electromagnetic wave absorbing sheet is peeled off. Moreover, it becomes a factor which reduces the flexibility as the whole electromagnetic wave absorption sheet.
  • the adhesive layer 4 used for the electromagnetic wave absorption sheet concerning this embodiment, while being able to make the electromagnetic wave absorption sheet the adhesive layer 4 which cannot be peeled on an adherend, the peelable sticking is possible. It can also be set as the adhesive layer 4 to perform.
  • the adhesive layer 4 it is not an essential requirement that the adhesive layer 4 is provided. It can adhere
  • the protective layer 5 can be provided on the electromagnetic wave incident surface side which is the surface of the resistance film 1.
  • the surface resistance value of the conductive organic polymer used as the resistance film 1 may change due to the influence of humidity in the air. For this reason, by providing the protective layer 5 on the surface of the resistance film 1, it is possible to reduce the influence of humidity and effectively suppress the deterioration of the electromagnetic wave absorption characteristics due to impedance matching.
  • the protective layer 5 for example, polyethylene terephthalate having a thickness of 25 ⁇ m can be used, and this is configured by being attached to the surface of the resistance film 1 with an adhesive of a resin material. Can do.
  • the protective layer 5 is a film that covers the entire surface of the resistance film 1, thereby preventing the resistance film 1 from being affected by humidity in the air.
  • the component of the surface resistance value of the protective layer 5 formed as a resin film is considered to affect the component of the surface resistance value of the laminated resistance film 1 as being connected in parallel. For this reason, if the thickness of the protective layer 5 does not become too thick, it is thought that the influence which it has on the input impedance of an electromagnetic wave absorption sheet is very small.
  • the thickness of the protective layer 5 is preferably thinner as long as the resistance film 1 can be protected.
  • the thickness of the protective layer 5 is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the thickness of the protective layer exceeds 150 ⁇ m, the electromagnetic wave absorption performance is lowered, and the electromagnetic wave absorption amount may be less than 20 dB.
  • the thickness of the whole electromagnetic wave absorption sheet becomes large, flexibility falls.
  • Conductive polymer dispersion 36.7 parts Conductive polymer (PEDOT-PSS) manufactured by Heraeus : PH-100 (product name), Solid content concentration 1.2% by mass
  • PVDF dispersion 5.6 parts manufactured by Arkema: LATEX32 (trade name), Solid content concentration 20% by mass, solvent water
  • water-soluble polyester aqueous solution 0.6 part manufactured by Kyoyo Chemical Industry Co., Ltd .: Plus Coat Z561 (trade name) Solid concentration 25% by mass
  • Organic solvent (dimethyl sulfoxide) 9.9 parts (5) Water-soluble solvent (ethanol) 30.0 parts (6) Water 17.2 parts.
  • Conductive polymer dispersion 33.7 parts Conductive polymer (PEDOT-PSS) manufactured by Heraeus : PH-1000 (product name), Solid content concentration 1.2% by mass
  • Solid content concentration 20% by mass solvent water
  • organic solvent dimethyl sulfoxide
  • water-soluble solvent normal propyl alcohol
  • the resistance film is applied on a polyethylene terephthalate sheet (25 ⁇ m thickness) as a base material by applying an amount of the resistance film liquid prepared by the above composition to a thickness of about 120 nm after drying by a bar coating method. Thereafter, the film was heated at 150 ° C. for 5 minutes to form a resistance film. In this case, the surface resistance of each resistance film was 377 ⁇ / sq.
  • a urethane rubber having a thickness of 400 ⁇ m was used as the dielectric layer and an aluminum foil having a thickness of 15 ⁇ m was used as the electromagnetic wave shielding layer, and the resistance coating, the dielectric layer, and the aluminum foil were laminated and adhered with an adhesive.
  • the numerical value 8% of the rate of change of the surface resistance value of the sheet 1 corresponds to about 30 ⁇ with respect to 377 ⁇ , and is a numerical value having high stability practically considering the severe weather resistance test conditions. It can be judged.
  • the numerical value 18% of the change rate of the surface resistance value of the sheet 2 corresponds to about 68 ⁇ with respect to 377 ⁇ , it can be determined that the numerical value has sufficient stability practically.
  • the resistance film solution used in the above-described sheet 1 was applied on a polyethylene terephthalate having a thickness of 300 ⁇ m as a base material by changing the coating thickness by the bar coating method, and then 5 ° C. at 150 ° C. A resistive film was formed by heating for a minute. Thereafter, a polyethylene terephthalate sheet having a thickness of 250 ⁇ m was bonded to the surface of the substrate opposite to the side coated with the polyethylene terephthalate resistance film layer with an adhesive. As a result, a polyethylene terephthalate dielectric layer 2 having a thickness of 550 ⁇ m was formed.
  • the electromagnetic wave shielding layer 3 was an aluminum foil having a thickness of 15 ⁇ m. The center frequency of the electromagnetic wave absorbed by each electromagnetic wave absorbing sheet produced in this manner was 76 GHz.
  • the thickness of the resistance film layer after drying each electromagnetic wave absorbing sheet and the surface resistance value were as follows. (Sheet 3) Resistance film layer thickness: 140 nm Surface resistance value: 320 ⁇ / sq (Sheet 4) Resistance film layer thickness: 92 nm Surface resistance value: 452 ⁇ / sq (Sheet 5) Resistance film layer thickness: 15 nm Surface resistance value: 302 ⁇ / sq (Sheet 6) Resistance film layer thickness: 88 nm Surface resistance value: 471 ⁇ / sq.
  • the above-described sheet 1 which is an electromagnetic wave absorbing sheet having a surface resistance value of 377 ⁇ / sq, which is the same as the impedance of air, is measured, and the electromagnetic wave absorption characteristics are measured by the free space method.
  • the free space method was measured. Specifically, incident waves and reflections when each electromagnetic wave absorbing sheet is irradiated with electromagnetic waves using a free space measuring device manufactured by Keycom Corporation and a vector network analyzer MS4647B (trade name) manufactured by Anritsu Corporation. The wave intensity ratios were grasped as voltage values.
  • the electromagnetic wave absorption characteristics of the respective electromagnetic wave absorbing sheets measured in this way are shown in FIG. In FIG. 2, the attenuation of the intensity of the reflected wave with respect to the intensity of the incident wave is expressed in dB.
  • reference numeral 21 denotes the electromagnetic wave absorption characteristic of the sheet 1
  • reference numeral 22 denotes the electromagnetic wave absorption characteristic of the sheet 3
  • reference numeral 23 denotes the electromagnetic wave absorption characteristic of the sheet 4
  • reference numeral 24 denotes the electromagnetic wave absorption characteristic of the sheet 5.
  • 25 represents the electromagnetic wave absorption characteristics of the sheet 6.
  • the attenuation amount against the electromagnetic wave of 76 GHz Is as high as about 42 dB.
  • the sheet 3 having a resistance film surface resistance of 320 ⁇ / sq that is deviated by ⁇ 15% with respect to the vacuum impedance value (377 ⁇ ) has an electromagnetic wave attenuation of about 22 dB at 76 GHz.
  • the electromagnetic wave attenuation at 76 GHz is about 21 dB, both exceeding 20 dB (attenuation rate 99%), It exhibits good electromagnetic wave absorption characteristics.
  • the sheet 5 whose surface resistance value is shifted by ⁇ 20% is 302 ⁇ / sq and the surface resistance value of the resistance film which is shifted + 25% is 471 ⁇ / sq.
  • the electromagnetic wave attenuation amount at 76 GHz is about 19 dB.
  • the attenuation is considered to be about 20 dB or more, and therefore the surface resistance value of the resistance film is set in the range of ⁇ 15% to + 20% with respect to the vacuum impedance value. It turns out that the electromagnetic wave absorption sheet provided with the favorable electromagnetic wave absorption characteristic can be obtained.
  • a resistance coating solution was applied by bar coating on polyethylene terephthalate having a thickness of 10 ⁇ m as a substrate, and then heated at 150 ° for 5 minutes to form a film. Thereafter, a dielectric layer was formed using a transparent silicone rubber having a thickness of 550 ⁇ m on the surface of the substrate opposite to the side coated with the polyethylene terephthalate resistive film layer.
  • the electromagnetic wave shielding layer was formed as the sheet 7 of the first example using a conductive mesh Su-4X-27035 (trade name) manufactured by Seiren Co., Ltd. Further, the sheet 8 of the second example was formed using conductive mesh Su-4G-9027 (trade name) manufactured by Seiren Co., Ltd.
  • a transparent conductive film PURE-OPT RN3000 (trade name) manufactured by Fujimori Industry Co., Ltd. was formed as an electromagnetic wave shielding layer.
  • the electrical and optical characteristics of the electromagnetic wave shielding layer in each electromagnetic wave absorbing sheet were as follows. (Sheet 7) Surface resistance value 0.04 ⁇ / sq Total light transmittance 30% Opening ratio 38% (Sheet 8) Surface resistance value 0.11 ⁇ / sq Total light transmittance 66% Opening ratio 82% (Sheet 9) Surface resistance value 0.40 ⁇ / sq Total light transmittance of 77% or more.
  • the total light transmittance, haze value, and electromagnetic wave absorption characteristics of each of the three electromagnetic wave absorbing sheets thus prepared were measured.
  • the total light transmittance and the haze value were measured according to JIS K7105 using HazeMeter NDH2000 (product name) manufactured by Nippon Denshoku Co., Ltd. LightC was used as the light source.
  • the electromagnetic wave absorption characteristics can be measured with respect to each electromagnetic wave absorbing sheet using the free space measuring device manufactured by Keycom Corporation and the vector network analyzer MS4647B (trade name) manufactured by Anritsu Corporation using the free space method as described above.
  • the intensity ratio between the incident wave and the reflected wave when the electromagnetic wave was irradiated was grasped as a voltage value.
  • the electromagnetic wave absorption characteristics of the respective electromagnetic wave absorbing sheets measured in this way are shown in FIG.
  • the attenuation of the intensity of the reflected wave with respect to the intensity of the incident wave is expressed in dB.
  • reference numeral 31 indicates the electromagnetic wave absorption characteristic of the sheet 7
  • reference numeral 32 indicates the electromagnetic wave absorption characteristic of the sheet 8
  • reference numeral 33 indicates the electromagnetic wave absorption characteristic of the sheet 9.
  • each electromagnetic wave absorbing sheet The optical characteristics of each electromagnetic wave absorbing sheet are as follows: the total light transmittance of the sheet 7 is 30%, the haze value is 40, the total light transmittance of the sheet 8 is 66%, the haze value is 7, and the total light transmittance of the sheet 9 is. The rate was 77% and the haze value was 8.
  • FIG. 4 is a model diagram showing the shape of the electromagnetic wave absorption layer used for the verification.
  • the attenuation amount of the electromagnetic wave incident on the plate-shaped electromagnetic wave absorption layer is expressed as dB as the cutoff SE
  • the input / output impedance of the metal plate is Z 0
  • the conductivity of the metal plate is ⁇ ( ⁇ ⁇ 1 ⁇ m ⁇ 1 ).
  • the thickness of the plate is expressed as the following formula (2), where d (m).
  • the electromagnetic wave shielding SE can be expressed by the following equation (4).
  • the cutoff SE is 99.9 when the electromagnetic wave frequency is 60 to 90 GHz.
  • Table 1 it was found that the upper limit of the distance between the metal lines is almost 170 ⁇ m.
  • the aperture ratio was 75%, and the total light transmittance considering the curvature of the wire was 60%.
  • the electromagnetic wave absorbing layer is considered to require a total light transmittance of 30% or more, and the pitch P of the wire for realizing this is 50 ⁇ m.
  • the aperture ratio was 35%, and the cutoff SE indicating the attenuation of electromagnetic waves was 45 dB.
  • the aperture ratio is 35% or more and 85% or less. It can be said that this is a favorable condition when a conductive mesh or a conductive lattice is used. Further, it is a better condition that the aperture ratio is 35% or more and 85% or less.
  • the surface resistance value is preferably 0.3 ⁇ / sq or less, More preferably, it is 0.11 ⁇ / sq or less.
  • the electromagnetic wave absorbing sheet As the electromagnetic wave absorbing sheet, the above-described sheet 1 was used, and a sheet 10 in which a 25 ⁇ m-thick polyethylene terephthalate sheet provided with an adhesive layer as a protective layer was bonded to the surface of the resistance film was prepared.
  • a sheet 11 was prepared in which a resistance film was formed by sputtering indium tin oxide (ITO) to have a surface resistance of 370 ⁇ / sq.
  • ITO indium tin oxide
  • the dielectric layer and the electromagnetic wave shielding layer were configured in the same manner as in the sheet 1.
  • each sheet was cut into a size of 5 ⁇ 10 cm, and the surface resistance as an initial value was measured.
  • the resistance film is placed face-up on a cylindrical rod (mandrel) made of aluminum having six types of diameters of 10 mm, 8 mm, 6 mm, 4 mm, 2 mm, and 0.5 mm arranged horizontally.
  • a 300 g weight was attached to both ends of the sheet and maintained for 30 seconds, and both ends were pulled downward with the central portion of the sheet bent. Thereafter, the surface resistance of each electromagnetic wave absorbing sheet was measured again.
  • the electromagnetic wave absorbing sheet according to the present embodiment when a conductive organic polymer is used for the resistance film, the flexibility of the sheet is improved, and a load that strongly bends the sheet with a small diameter is applied. However, it was confirmed that the electromagnetic wave absorption characteristics can be maintained.
  • the electromagnetic wave absorbing sheet according to the present embodiment is obtained by strongly bending the electromagnetic wave absorbing sheet by configuring the resistive film disposed on the surface on the side on which the absorbing electromagnetic wave is incident with the conductive organic polymer. Even in this case, the electromagnetic wave absorption characteristics can be maintained. For this reason, the electromagnetic wave absorption sheet which exhibits the stable high electromagnetic wave absorption characteristic, and was equipped with flexibility and translucency is realizable. For example, it can be suitably used in a situation where it is required to absorb and not transmit unwanted electromagnetic waves while making it possible to visually recognize the inside or outside, such as a curtain in a room placed in an electromagnetic wave shield state.
  • the electromagnetic wave absorbing sheet disclosed in the present application can stably absorb electromagnetic waves in a high frequency band of the millimeter wave band or higher, and is useful as an electromagnetic wave absorbing sheet having flexibility and translucency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

電磁波干渉型の電磁波吸収シートであって、所望する周波数帯域の電磁波を良好に吸収することができるとともに高い可撓性と透光性とを備えた、取り扱いの容易な電磁波吸収シートを実現する。可撓性と透光性とを有する電磁波吸収シートであって、いずれも透光性を有する、抵抗皮膜1と、誘電体層2と、電磁波遮蔽層3とが積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成され、前記電磁波遮蔽層の開口率が35%以上85%以下である。

Description

電磁波吸収シート
 本開示は、可撓性と透光性とを有し、数十ギガヘルツ(GHz)から数百ギガヘルツ(GHz)のいわゆるミリ波帯域以上の電磁波を吸収する電磁波吸収シートに関する。
 電気回路などから外部へと放出される漏洩電磁波や、不所望に反射した電磁波の影響を回避するために、電磁波を吸収する電磁波吸収シートが用いられている。
 近年は、携帯電話などの移動体通信や無線LAN、料金自動収受システム(ETC)などで、数ギガヘルツ(GHz)の周波数帯域を持つセンチメートル波、さらには、30ギガヘルツから300ギガヘルツの周波数を有するミリ波帯、ミリ波帯域を超えた高い周波数帯域の電磁波として、1テラヘルツ(THz)の周波数を有する電磁波を利用する技術の研究も進んでいる。
 このようなより高い周波数の電磁波を利用する技術トレンドに対応して、不要な電磁波を吸収する電磁波吸収体やユーザの利便性を向上したシート状の電磁波吸収体である電磁波吸収シートにおいても、ミリ波帯域からそれ以上の帯域の電磁波を吸収可能とするものへの要望は、より高くなることが考えられる。
 このような電磁波吸収シートとして、誘電体層の一方の表面に抵抗皮膜を、他方の表面に電磁波を反射する電磁波遮蔽層とが形成され、反射波の位相を入射波に対して1/2波長分ずらすことで電磁波吸収シートへの入射波と反射波とが打ち消し合って電磁波を吸収する、いわゆる電磁波干渉型(λ/4型)の電磁波吸収シートが知られている。電磁波干渉型の電磁波吸収シートは、比重の大きな磁性体粒子によって磁気的に電磁波を吸収する電磁波吸収シートなどと比べて軽量であり、容易に製造することができるため低コスト化が可能という利点を有している。
 従来、いわゆる電磁波干渉型の電磁波吸収シート(電磁波吸収体)では、誘電体層の表面に形成される抵抗皮膜として、酸化インジウムスズ(ITO)、酸化インジウム、酸化スズ、酸化亜鉛などの金属酸化物、金属窒化物ないしはこれらの混合体を、イオンプレーティング法、蒸着法、スパッタリング法などによって形成したものが知られている(特許文献1、特許文献2参照)。
 また、電磁波干渉型の電磁波吸収体として、酸化インジウム錫(ITO)膜などの透明導電体の抵抗層と、ガラス、アクリル樹脂などの透明な誘電体層と、この誘電体層に形成された、銀、金、銅、アルミなどの金属からなる反射膜とを備えた、難燃性と透光性とを有する電磁波吸収体が提案されている(特許文献3参照)。
特開平06-120689号公報 特開平09-232787号公報 特開2006- 86446号公報
 上記従来の電磁波吸収シート、および、電磁波吸収体において、誘電体層の表面に形成される抵抗皮膜は、電磁波吸収シート表面のインピーダンスを空気中のインピーダンスと合わせるインピーダンス整合を行って、電磁波が電磁波吸収シートの内部に入射し易くするという機能を果たす。このため、抵抗皮膜の表面抵抗の値は、真空中の誘電率である377Ω/sq(面抵抗値)近傍の値に保たれていることが要求される。
 一方、電磁波干渉型の電磁波吸収シートでは、吸収する電磁波が高周波となるにしたがって誘電体層の厚さが薄くなるため、より高い可撓性を有するようになる。より薄く、容易に湾曲させることができる電磁波吸収シートは、貼付可能な場所が広がって使用者の利便性が向上するが、使用者に強く曲げられてしまう機会が増える。このような電磁波吸収シートにおいて、スパッタリング法などによって形成された金属酸化膜などによる抵抗皮膜は、強く曲げられることでひびが入りやすく、抵抗皮膜にひびが入るとその表面抵抗値が大きくなってインピーダンス整合が崩れてしまい、電磁波吸収特性が低下するという問題があった。
 また、光を透過する透光性を備え、かつ、可撓性を備えた電磁波吸収シートは、従来は実現されていなかった。
 本開示は、上記従来の課題を解決し、いわゆる電磁波干渉型の電磁波吸収シートであって、所望する周波数帯域の電磁波を良好に吸収することができるとともに高い可撓性と透光性とを備えた、取り扱いの容易な電磁波吸収シートを実現することを目的とする。
 上記課題を解決するため本願で開示する電磁波吸収シートは、可撓性と透光性とを有する電磁波吸収シートであって、いずれも透光性を有する、抵抗皮膜と、誘電体層と、電磁波遮蔽層とが順次積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成され、前記電磁波遮蔽層の開口率が35%以上85%以下であることを特徴とする。
 本願で開示する電磁波吸収シートは、抵抗皮膜が導電性有機高分子によって形成されているため、シートが強く曲げられた場合でも抵抗皮膜にひび割れなどが生じず、インピーダンス整合を維持して高い電磁波吸収特性を保ち続けることができる。また、抵抗皮膜と、誘電体層と電磁波遮蔽層とがいずれも透光性を備えているため、電磁波吸収シートとして透光性を有する。このため、低コストでありながら、高い可撓性と透光性とを有し、かつ、良好な電磁波吸収特性を備えた電磁波吸収シートを実現することができる。
本実施形態にかかる電磁波吸収シートの構成を説明する断面図である。 抵抗皮膜の表面抵抗値を異ならせた電磁波吸収シートにおける、電磁波吸収特性を示す図である。 電磁波遮蔽層を異ならせた電磁波吸収シートにおける、電磁波吸収特性を示す図である。 開口率の検討に用いた電磁波吸収層の形状を説明するモデル図である。
 本願で開示する電磁波吸収シートは、可撓性と透光性とを有する電磁波吸収シートであって、いずれも透光性を有する、抵抗皮膜と、誘電体層と、電磁波遮蔽層とが積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成され、前記電磁波遮蔽層の開口率が35%以上85%以下である。
 このようにすることで、本願で開示する電磁波吸収シートは、抵抗皮膜と誘電体層と電磁波遮蔽層とが積層して形成された電磁波干渉型の電磁波吸収シートとして、強く湾曲された場合でも抵抗皮膜にひび割れなどが生じにくく、インピーダンス整合を維持して高い電磁波吸収特性を発揮することができる。また、抵抗皮膜、誘電体層、電磁波遮蔽層がいずれも透光性を有し、電磁波遮蔽層が電磁波の反射層としての十分な表面抵抗値を有するため、電磁波吸収シート全体として透光性を有し、視界が遮られることがない電磁波吸収シートを実現することができる。
 本願で開示する電磁波吸収シートにおいて、前記電磁波遮蔽層が、導電メッシュにより構成されていることが好ましい。このようにすることで、電磁波の反射層としての十分な表面抵抗値と、ヘイズが少ない透光性のある電磁波吸収シートを実現することができる。
 また、前記電磁波遮蔽層の表面抵抗値が、0.3Ω/sq以下であることが好ましい。
 さらに、本願で開示する電磁波吸収シートとしては、前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)(PEDOT)を含むことが好ましい。このようにすることで、所望の表面抵抗値を備えた表面被膜を容易に得ることができる。
 この場合において、前記抵抗皮膜に、ポリスチレンスルホン酸(PSS)、ポリフッ化ビニリデン(PVDF)をさらに含むことが好ましい。ポリスチレンスルホン酸はポリ(3、4-エチレンジオキシチオフェン)のカウンターアニオンの役割を果たして抵抗被膜の電気抵抗値の安定性を高め、抵抗皮膜の表面抵抗値をより容易に調整することができる。
 さらに、前記比抵抗膜に水溶性ポリエステルを含むことが好ましい。このようにすることで、抵抗皮膜自体の耐候性を高め、表面抵抗値が安定した信頼性の高い電磁波吸収シートを実現することができる。
 また、前記抵抗皮膜の表面抵抗値が、真空のインピーダンス値(377Ω)に対して-15%から+20%の範囲であることが好ましい。このようにすることで、実用上十分な電磁波吸収特性が得られるインピーダンス整合を実現した電磁波吸収シートを得ることができる。
 さらに、本願で開示する電磁波吸収シートにおいて、前記誘電体層がミリ波帯域以上の高周波数帯域の電磁波吸収可能な層厚に設定されていることが好ましい。このようにすることで、高い可撓性と透光性とを備えた、ミリ波帯域以上の電磁波を吸収できる電磁波吸収シートを実現することができる。
 以下、本願で開示する電磁波吸収シートについて、図面を参照して説明する。
 なお、「電波」は、より広義には電磁波の一種として把握することができるため、本明細書では、電波吸収体を電磁波吸収体と称するなど「電磁波」という用語を統一して用いることとする。
 (実施の形態)
 まず、本実施形態にかかる電磁波吸収シートの全体構成について説明する。
 図1は、本実施形態にかかる電磁波吸収シートの構成を示す断面図である。
 なお、図1は、本実施形態にかかる電磁波吸収シートの構成を理解しやすくするために記載された図であり、図中に示された部材の大きさや厚みについて現実に即して表されたものではない。
 本実施形態で例示する電磁波吸収シートは、抵抗皮膜1、誘電体層2、電磁波遮蔽層3が積層されて形成されている。なお、図1に示す電磁波吸収シートでは、電磁波遮蔽層3の背面側、すなわち、電磁波遮蔽層3において誘電体層2が配置されている側とは反対側の表面には、接着層4が積層形成されている。また、抵抗皮膜1の前面側、すなわち、抵抗皮膜1において誘電体層2が配置されている側とは反対側の表面には、保護層5が積層形成されている。
 本実施形態にかかる電磁波吸収シートは、誘電体層2に入射した電磁波11が、誘電体層2の背面側に配置されている電磁波遮蔽層3と誘電体層2との界面で反射されて、反射波12として再び外部へと放出される。このとき、誘電体層2の厚さdを、入射した電磁波の波長の1/4とする(d=λ/4)ことで、入射波11の位相11aと反射波12の位相12aとが打ち消し合って電磁波吸収シートに入射した電磁波を吸収する。
 なお、d=λ/4となるのは、誘電体層2として空気(誘電率ε=1)が用いられる場合であり、誘電体層2に用いられる誘電体の誘電率がεrである場合には、d=1/(4√εr)となって誘電体層2の厚さdを、1/(4√εr)だけ薄くすることができる。誘電体層2を薄く形成することで、電磁波吸収シート全体の薄型化を実現でき、より可撓性に優れた電磁波吸収シートを実現することができる。
 誘電体層2の背面側に積層して形成される電磁波遮蔽層3は、誘電体層2との境界面である誘電体層2側の表面で、入射してきた電磁波を反射する層である。
 本実施形態にかかる、電磁波干渉型の電磁波吸収シートにおける電磁波吸収の原理から、電磁波遮蔽層3は電磁波を反射する反射層として機能することが必要である。また、電磁波遮蔽層として可撓性と透光性とを備えることが必要である。このような要求に対応できる電磁波遮蔽層3としては、導電性の繊維により構成された導電性メッシュや、極細線の金属などの導電性ワイヤーにより構成された導電性格子を用いることができる。
 抵抗皮膜1は、誘電体層2の前面側、すなわち誘電体層2の電磁波遮蔽層3が積層されている側とは反対の側の吸収される電磁波が入射する側に形成され、電磁波吸収シートと空気との間のインピーダンス整合を行う。
 空気中を伝搬してきた電磁波が電磁波吸収シートに入射する際、電磁波吸収シートの入力インピーダンス値を空気中のインピーダンス値(実際には真空のインピーダンス値)である377Ωに近づけることで、電磁波吸収シートへの電磁波の入射時に電磁波の反射・散乱が生じて電磁波吸収特性が低下することを防ぐことが重要となる。本実施形態の電磁波吸収シートでは、抵抗皮膜1を導電性有機高分子の膜として形成することで、電磁波吸収シートとしての可撓性を確保するとともに、電磁波吸収シートが強く折り曲げられた場合でも抵抗皮膜1のひび割れなどが生じず、表面抵抗値が変化せずに良好なインピーダンス整合を維持することができる。
 接着層4は、電磁波吸収シートを所定の場所に容易に貼り付けることができるように、電磁波遮蔽層3の背面側に形成される層である。接着層4は、粘着性の樹脂ペーストを塗布することで容易に形成できる。
 なお、接着層4は、本実施形態にかかる電磁波吸収シートにおいて必須の部材ではない。電磁波吸収シートを所定の場所に配置するに当たっては、電磁波吸収シートが貼り付けられる部材側に接着のための部材が配置されていてもよく、また、電磁波吸収シートを所定の場所に配置する際に、電磁波吸収シートと配置場所との間に接着剤を供給する、または、両面テープを用いるなどの接着方法を採用することができる。
 保護層5は、抵抗皮膜1の表面、すなわち、電磁波吸収シートにおいて電磁波が入射する側の最表面に形成され、抵抗皮膜1を保護する部材である。
 本実施形態の電磁波吸収シートの抵抗皮膜1を形成する導電性有機高分子は、空気中の湿度の影響によりその表面抵抗値が変化する場合がある。また、樹脂製の膜であるために、表面に尖った部材が接触した場合や、硬い材質のもので擦られた場合には、傷が付く畏れがある。このため、抵抗皮膜1の表面を保護層5で覆って抵抗皮膜1を保護することが好ましい。
 なお、保護層5は、本実施形態にかかる電磁波吸収シートにおいて必須の構成要件ではなく、導電性有機高分子の材料によって、表面への水分の付着に伴う表面抵抗値の変化や抵抗皮膜1の表面が傷つくことへの懸念が小さい場合には、保護層5がない電磁波吸収シートの構成を選択可能である。
 また、保護層5としては、後述のようにポリエチレンテレフタレートなどの樹脂材料を用いることができる。保護層5として用いられる樹脂材料は一定の抵抗値を有するが、保護層5の膜厚を薄く設定することで、保護層5の有無による電磁波吸収シートの表面抵抗値への影響を実用上問題ないレベルとすることができる。
 次に、本実施形態にかかる電磁波吸収シートを構成する各部材について詳述する。
 [抵抗皮膜]
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1は、導電性有機高分子で構成される。
 導電性有機高分子としては、共役導電性有機高分子が用いられ、ポリチオフェンやその誘導体、ポリピロールやその誘導体を用いることが好ましい。
 本実施形態にかかる電磁波吸収シートの抵抗皮膜1に用いられることが好適なポリチオフェン系導電性高分子の具体例としては、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。
 また、抵抗皮膜1に用いられることが好適なポリピロール系導電性高分子の具体例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 この他にも、抵抗皮膜1としては、主鎖がπ共役系で構成されている有機高分子を使用することができ、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、および、これらの共重合体等を用いることができる。
 なお、抵抗皮膜に用いられる導電性有機高分子として、ポリアニオンをカウンターアニオンとして用いることができる。ポリアニオンとしては特に限定されないが、上述した抵抗皮膜に用いられる共役導電性有機高分子に、化学酸化ドープを生じさせることができるアニオン基を含有するものが好ましい。このようなアニオン基としては、例えば、一般式-O-SO3X、-O-PO(OX)2、-COOX、-SO3Xで表される基等(各式中、Xは水素原子またはアルカリ金属原子を示す。)が挙げられ、中でも、共役導電性有機高分子へのドープ効果に優れることから、-SO3X、および、-O-SO3Xで表される基が特に好ましい。
 このようなポリアニオンの具体例としては、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリスルホエチルメタクリレート、ポリ(4-スルホブチルメタクリレート)、ポリメタクリルオキシベンゼンスルホン酸等のスルホン酸基を有する高分子や、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2-アクリルアミド-2-メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等のカルボン酸基を有する高分子が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。ポリアニオンは1種を単独で使用してもよいし、2種以上を併用してもよい。 これらポリアニオンのなかでも、スルホン酸基を有する高分子が好ましく、ポリスチレンスルホン酸がより好ましい。
 上記導電性有機高分子は、1種を単独で使用してもよいし2種以上を併用してもよい。上記例示した材料の中でも、透光性と導電性とがより高くなることから、ポリピロール、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)から選ばれる1種または2種からなる重合体が好ましい。
 特に、共役系の導電性有機高分子とポリアニオンの組み合わせとしては、ポリ(3、4-エチレンジオキシチオフェン:PEDOT)と、ポリスチレンスルホン酸(PSS)を用いることが好ましい。
 また、本実施形態にかかる抵抗皮膜1においては、導電性有機高分子の電気伝導度を制御して、電磁波吸収シートの入力インピーダンスを空気中のインピーダンス値と整合させるために、ドーパントを併用することができる。ドーパントとしては、ヨウ素、塩素等のハロゲン類、BF3、PF5等のルイス酸類、硝酸、硫酸等のプロトン酸類や、遷移金属、アルカリ金属、アミノ酸、核酸、界面活性剤、色素、クロラニル、テトラシアノエチレン、TCNQ等が使用できる。より具体的には、抵抗皮膜1の表面抵抗値を377Ωに対してプラス/マイナス数%程度の値にすることが好ましく、このとき、導電性有機高分子とドーパントとの配合割合は、一例として質量比で導電性高分子:ドーパント=1:2~1:4とすることができる。
 さらに、抵抗皮膜1を形成する材料としては、他にポリフッ化ビニリデンを含むことが好ましい。
 ポリフッ化ビニリデンは、導電性有機高分子をコーティングする際の組成物に加えることで、導電性有機高分子膜の中でバインダーとしての機能を果たし、成膜性を向上させるとともに基材との密着性を高めることができる。
 また、さらに、抵抗被膜1に水溶性ポリエステルを含むことが好ましい。水溶性ポリエステルは導電性高分子との相溶性が高いため、抵抗皮膜1を形成する導電性有機高分子のコーティング組成物に水溶性ポリエステルを加えることで抵抗皮膜1内において導電性高分子を固定化させ、より均質な皮膜を形成することができる。この結果、水溶性ポリエステルを用いることで、より厳しい高温高湿環境下におかれた場合でも表面抵抗値の変化が小さくなり、空気中のインピーダンス値とのインピーダンス整合がなされた状態を維持することができる。
 抵抗皮膜1にポリフッ化ビニリデン、水溶性ポリエステルを含むことで、抵抗皮膜1の耐候性が向上するため、抵抗皮膜1の表面抵抗値の経時的な変化が抑えられて、安定した電磁波吸収特性を維持することができる信頼性の高い電磁波吸収シートを実現することができる。
 抵抗皮膜1における導電性有機高分子の含有量は、抵抗皮膜1組成物に含まれる固形分の全質量に対して、10質量%以上35質量%以下であることが好ましい。含有量が10質量%を下回ると、抵抗皮膜1の導電性が低下する傾向にある。このため、インピーダンス整合をとるために抵抗皮膜1の表面電気抵抗値を所定の範囲とした結果、抵抗皮膜1の膜厚が大きくなることによって、電磁波吸収シート全体が厚くなり、透光性などの光学特性が低下する傾向がある。一方、含有量が35質量%を超えると、導電性有機高分子の構造に起因して抵抗皮膜1をコーティングする際の塗布適性が低下して、良好な抵抗皮膜1を形成しづらくなり、抵抗皮膜1のヘイズが上昇して、やはり光学特性が低下する傾向にある。
 なお、抵抗皮膜1は、上述のように抵抗皮膜の形成用塗料としてのコーティング組成物を基材の上に塗布して乾燥することにより形成することができる。
 抵抗皮膜形成用塗料を基材の上に塗布する方法としては、例えば、バーコート法、リバース法、グラビアコート法、マイクログラビアコート法、ダイコート法、ディッピング法、スピンコート法、スリットコート法、スプレーコート法等の塗布方法を用いることができる。塗布後の乾燥は、抵抗皮膜形成用塗料の溶媒成分が蒸発する条件であればよく、100~150℃で5~60分間行うことが好ましい。溶媒が抵抗皮膜1に残っていると強度が劣る傾向にある。乾燥方法としては、例えば、熱風乾燥法、加熱乾燥法、真空乾燥法、自然乾燥等により行うことができる。また、必要に応じて、塗膜にUV光(紫外線)やEB(電子線)を照射して塗膜を硬化させることで抵抗皮膜1を形成してもよい。
 なお、抵抗皮膜1を形成するために用いられる基材としては特に限定されないが、透光性を有する透明基材が好ましい。このような透明基材の材質としては、例えば、樹脂、ゴム、ガラス、セラミックス等の種々のものが使用できる。
 本実施形態にかかる電磁波吸収シートでは、上述した導電性有機高分子を用いて表面抵抗値が377Ω/sqの抵抗皮膜1を構成することで、電磁波吸収シートに入射する電磁波に対して空気中のインピーダンスと整合させることができ、電磁波吸収シート表面での電磁波の反射や散乱を低下させてより良好な電磁波吸収特性を得ることができる。
 [誘電体層]
 本実施形態にかかる電磁波吸収シートの誘電体層2は、ポリフッ化ビニリデン、ポリエステル樹脂、ガラス、透明なシリコーンゴム、透明なOCA、OCRなどの誘電体で形成することができる。なお、誘電体層2は、1種の材料で1層の構成として形成することができ、また、同種、異種の材料を2層以上積層した構成とすることもできる。誘電体層2の形成には、塗布法やプレス成型法、押出成型法などを用いることができる。
 上述のように、本実施形態にかかる電磁波吸収シートは、電磁波吸収シートに入射した電磁波と電磁波遮蔽層で反射された反射波との位相を1/2波長ずらすことで、入射波と反射波とが打ち消し合って電磁波を吸収する電磁波干渉型(λ/4型)の電磁波吸収シートである。このため、誘電体層の厚さ(図1におけるd)は、吸収しようとする電磁波の波長に対応して定められる。
 なお、dの値は、抵抗皮膜1と電磁波遮蔽層3との間が空間となっている場合、すなわち、誘電体層2が空気で形成されている場合は、d=λ/4が成り立つが、誘電体層2を誘電率εrの材料で形成した場合には、d=λ/(4(√εr))となるため、誘電体層2を構成する材料として、材料自体が有する誘電率が大きなものを用いることで誘電体層2の厚さdの値を、1/√εr小さくすることができ、電磁波吸収シート全体の厚さを低減させることができる。本実施形態にかかる電磁波吸収シートは、可撓性を有するものであることから、電磁波吸収シートを構成する誘電体層2や電磁波吸収シート自体の厚さが小さいほど容易に湾曲させることができてより好ましい。また、本実施形態にかかる電磁波吸収シートが、後述する接着層4などを介して電磁波漏洩を防ぎたい部材に貼着して使用されることが多いことを考慮すると、電磁波吸収シートの厚みが薄く容易に貼着部分の形状に沿うこと、また、シートがより軽量化されていることが好ましい。
 なお、電磁波遮蔽層3から、λ/4離れた位置に抵抗皮膜1を配置する場合に比べ、電磁波遮蔽層3と抵抗皮膜1との間に誘電率εrを有する誘電体層2を用いると厚みdを、d=λ/(4(√εr))とすることができ、誘電体層2の厚さを薄くすることができる。このように、誘電率εrの値や、誘電体層2の厚みを調整することで、当該誘電体層2を備えた電磁波吸収シートで吸収する電磁波の波長を制御することができる。
 [電磁波遮蔽層]
 本実施形態にかかる電磁波吸収シートの電磁波遮蔽層3は、誘電体層2を介して電磁波吸収シートの反対側に配置された、表面皮膜1から入射した電磁波を反射させる部材である。
 同時に、電磁波遮蔽層3は、少なくとも抵抗皮膜1と誘電体層2が湾曲した際には追従して湾曲する可撓性と、透光性とを有していることが必要である。
 このような要求に対応できる電磁波遮蔽層3として、導電性の繊維により構成された導電性メッシュが採用できる。導電性メッシュは、一例としてポリエステルモノフィラメントで織ったメッシュに金属を付着させて導電性とすることで構成できる。金属としては、導電性の高い銅、銀などを用いることができる。また、メッシュの表面を覆う金属膜による反射を低減するために、金属膜のさらに外側に黒色の反射防止層を付与したものも製品化されている。
 また、電磁波遮蔽層3としては、他にも、直径が数十から数百μmの細い銅線などの金属線が、縦横に配置された導電性格子を用いることができる。
 なお、上述のメッシュや導電性格子による電磁波遮蔽層3は、可撓性と透光性とを確保するために、電磁波遮蔽層として求められる表面抵抗値を実現できる限りにおいて、最低限の厚さを有して構成されることとなる。また、導電性メッシュの繊維や導電性格子のワイヤーが傷ついたり、切断したりしてしまった場合には、所望する表面抵抗値を実現することが困難となる。このため、導電性格子のさらに背面側に、透光性を有する樹脂による補強層かつ保護層を形成して、導電性の材料による電磁波反射部分と樹脂製の膜構成部分との積層体による電磁波遮蔽層3を用いることができる。
 [接着層]
 本実施形態にかかる電磁波吸収シートにおいて、接着層4を設けることで、抵抗皮膜1、誘電体層2、電磁波遮蔽層3との積層体である電磁波吸収シートを、電気回路を収納する筐体の内面や、電気機器の内面または外面などの所望の位置に貼着することができる。特に、本実施形態の電磁波吸収シートは可撓性を有するものであるため、湾曲した曲面上にも容易に貼着することができ、背面に接着層4を設けることで電磁波吸収シートの取り扱い容易性が向上する。
 接着層4としては、粘着テープなどの粘着層として利用される公知の材料、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を用いることができる。また被着体に対する粘着力の調節、糊残りの低減のために、粘着付与剤や架橋剤を用いることもできる。被着体に対する粘着力は5N/10mm~12N/10mmが好ましい。粘着力が5N/10mmより小さいと、電磁波吸収シートが被着体から容易に剥がれてしまったり、ずれてしまったりすることがある。また、粘着力が12N/10mmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。
 また接着層4の厚さは、20μm~100μmが好ましい。接着層4の厚さが20μmより薄いと、粘着力が小さくなり、電磁波吸収シートが被着体から容易に剥がれたり、ずれたりすることがある。接着層4の厚さが100μmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。また接着層の凝集力が小さい場合は、電磁波吸収シートを剥離した場合、被着体に糊残りが生じる場合がある。また、電磁波吸収シート全体としての可撓性を低下させる要因となる。
 なお、本実施形態にかかる電磁波吸収シートに用いられる接着層4としては、電磁波吸収シートを被着物体に剥離不可能に貼着する接着層4とすることができるとともに、剥離可能な貼着を行う接着層4とすることもできる。また、前述のように、本実施形態にかかる電磁波吸収シートにおいて、接着層4を備えた構成とすることは必須の要件ではなく、電磁波吸収シートを所望する部材に対して、従来一般的な各種の接着方法を用いて接着することができる。
 [保護層]
 本実施形態にかかる電磁波吸収シートでは、抵抗皮膜1の表面である電磁波の入射面側に保護層5を設けることができる。
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1として用いられている導電性有機高分子は、空気中の湿度の影響を受けてその表面抵抗値が変化する場合がある。このため、抵抗皮膜1の表面に保護層5を設けることで湿度の影響を小さくして、インピーダンス整合による電磁波の吸収特性が低下することを効果的に抑制できる。
 本実施形態の電磁波吸収シートにおいて保護層5としては、一例として、厚さ25μmのポリエチレンテレフタレートを用いることができ、これを、樹脂材料の接着剤によって抵抗皮膜1の表面に貼り付けて構成することができる。
 なお、保護層5は、抵抗皮膜1の表面全体を覆う膜とすることで、抵抗皮膜1への空気中の湿度による影響を防ぐことができる。樹脂製の膜として形成される保護層5の表面抵抗値の成分は、積層される抵抗皮膜1の表面抵抗値の成分に対して並列接続されたものとして影響すると考えられる。このため、保護層5の厚みが厚くなりすぎなければ、電磁波吸収シートの入力インピーダンスに与える影響は極めて小さいと考えられる。また、電磁波吸収シートとしての入力インピーダンスとして、保護層5の表面抵抗値の影響を考慮した上で、抵抗皮膜1の表面抵抗値をより適した数値に設定することも可能である。
 保護層5の厚みとしては、抵抗皮膜1を保護できる範囲においてより薄いことが好ましい。具体的には、保護層5の厚みは、150μm以下が好ましく100μm以下であればより好ましい。保護層の厚みが150μmを超えると、電磁波の吸収性能が低下して電磁波吸収量が20dBを下回る場合がある。また、電磁波吸収シート全体の厚みが大きくなるので、可撓性が低下する。
 [実施例]
 以下、本実施形態にかかる電磁波吸収シートを実際に作製して、各種の特性を測定した結果について説明する。
 <抵抗皮膜の耐候性>
 抵抗皮膜を作成する抵抗皮膜液の成分を異ならせて、以下2種類の電磁波吸収シートをそれぞれ5枚ずつ作成した。
 (シート1)
 以下の成分を添加、混合して抵抗皮膜液を調整した
 (1)導電性高分子分散体               36.7部
    ヘレウス社製導電性高分子(PEDOT-PSS)
      :PH-100(製品名)、
    固形分濃度 1.2質量%
 (2)PVDF分散液                  5.6部
    アルケマ社製:LATEX32(商品名)、
    固形分濃度 20質量%、 溶媒 水
 (3)水溶性ポリエステル水溶液             0.6部
    互応化学工業社製:プラスコートZ561(商品名)
    固形分濃度 25質量%
 (4)有機溶媒(ジメチルスルホキシド)         9.9部
 (5)水溶性溶媒(エタノール)            30.0部
 (6)水                       17.2部。
 (シート2)
 以下の成分を添加、混合して抵抗皮膜液を調整した
 (1)導電性高分子分散体               33.7部
    ヘレウス社製導電性高分子(PEDOT-PSS)
      :PH-1000(製品名)、
    固形分濃度 1.2質量%
 (2)PVDF分散液                  5.1部
    アルケマ社製:LATEX32(商品名)、
    固形分濃度 20質量%、 溶媒 水
 (3)有機溶媒(ジメチルスルホキシド)         9.5部
 (4)水溶性溶媒(ノルマルプロピルアルコール)    36.0部
 (5)水                       15.7部。
 抵抗皮膜は、基材としてのポリエチレンテレフタレート製シート(25μm厚)上に、上記それぞれの組成で作製した抵抗皮膜液を、バーコート法によって乾燥後の厚さが約120nmとなる量を塗布し、その後150℃で5分加熱し抵抗皮膜を成膜した。この場合の抵抗皮膜の表面抵抗は、いずれも377Ω/sqとなった。
 誘電体層として厚さ400μmのウレタンゴムを、電磁波遮蔽層として厚さ15μmのアルミニウム箔を用い、抵抗被膜、誘電体層、アルミニウム箔を積層密着させて接着剤にて接着した。
 (試験条件)
 上記作製したシート1(n=5)とシート2(n=5)について、それぞれ初期の表面抵抗値を測定した。次に、全ての電磁波吸収シートを恒温高湿槽に入れて、60℃、相対湿度90%の条件で、500時間保存した。続いて、保存後の各電磁波吸収シートの抵抗皮膜の表面抵抗値を測定した。そして、表面抵抗値の変化率を、n=5の電磁波吸収シートにおける平均値として、表面抵抗値の変化率(%)=[(保存後の表面抵抗値―初期の表面抵抗値)/初期の表面抵抗値]×100との数式に基づいて算出した。
 上記測定の結果、それぞれn=5枚の電磁波吸収シートの表面抵抗値の変化率の平均は、シート1が8%、シート2が18%となった。シート1の表面抵抗値の変化率の数値8%は、377Ωに対して約30Ωに相当し、厳しい耐候性試験の条件を勘案すると、実用的には高い安定性を有している数値であると判断できる。また、シート2の表面抵抗値の変化率の数値18%は、377Ωに対して約68Ωに相当するため、実用的には十分な安定性を有している数値であると判断できる。
 上記したシート1とシート2とを用いた耐候性試験の結果から、抵抗皮膜に水溶性ポリエステル水溶液を加えることで、抵抗皮膜の吸湿性を低下させて、表面抵抗値の変化がより少ない安定した電磁波吸収特性を有する電磁波吸収シートを実現できることがわかった。
 <インピーダンス整合の効果>
 次に、本実施形態にかかる電磁波吸収シートにおける抵抗皮膜の表面抵抗値の違いによる電磁波吸収特性の変化について、実際に異なる表面抵抗値の抵抗皮膜を備えた電磁波吸収シート(シート3~シート6)を作製して検討した。
 (シートの作製)
 電磁波吸収シートは、いずれも、基材としての厚さ300μmのポリエチレンテレフタレート上に、上記したシート1で用いた抵抗皮膜液をバーコート法によって塗布厚さを変えて塗布し、その後150℃で5分間加熱して抵抗皮膜を製膜した。その後、基材のポリエチレンテレフタレートの抵抗皮膜層を塗布した側とは反対側の面に、厚さ250μmのポリエチレンテレフタレートシートを接着剤で貼り合わせた。結果として、厚さ550μmのポリエチレンテレフタレートの誘電体層2が形成されたこととなる。また、電磁波遮蔽層3は、厚さ15μmのアルミニウム箔を用いた。このようにして作製した各電磁波吸収シートが吸収する電磁波の中心周波数は、76GHzとなった。
 それぞれの電磁波吸収シートの乾燥後の抵抗皮膜層の厚さと、表面抵抗値は以下の通りとした。
(シート3)抵抗皮膜層厚さ:140nm 表面抵抗値:320Ω/sq
(シート4)抵抗皮膜層厚さ: 92nm 表面抵抗値:452Ω/sq
(シート5)抵抗皮膜層厚さ: 15nm 表面抵抗値:302Ω/sq
(シート6)抵抗皮膜層厚さ: 88nm 表面抵抗値:471Ω/sq。
 (電磁波吸収特性の測定)
 上記作製したシート3~シート6に加え、抵抗皮膜の表面抵抗値が空気のインピーダンスと同じの377Ω/sqの電磁波吸収シートである上述のシート1とを測定対象として、フリースペース法によって電磁波吸収特性を測定した。具体的には、キーコム株式会社製の自由空間測定装置と、アンリツ株式会社製のベクトルネットワークアナライザMS4647B(商品名)を用いて、各電磁波吸収シートに対して電磁波を照射した際の入射波と反射波の強度比をそれぞれ電圧値として把握した。
 このようにして測定された各電磁波吸収シートの電磁波吸収特性を、図2に示す。図2では、入射波の強度に対する反射波の強度の減衰量をdBで表している。
 図2において、符号21が、シート1の電磁波吸収特性を、符号22が、シート3の電磁波吸収特性を、符号23が、シート4の電磁波吸収特性を、符号24が、シート5の電磁波吸収特性を、符号25が、シート6の電磁波吸収特性を、それぞれ表している。
 図2から分かるように、抵抗皮膜の表面抵抗値が377Ω/sqと、空気中(真空)のインピーダンス値と一致して極めて良好なインピーダンス整合が取れているシート1では、76GHzの電磁波に対する減衰量が約42dBと極めて高くなっている。
 これに対し、真空のインピーダンス値(377Ω)に対して、-15%ずれている抵抗皮膜の表面抵抗値が320Ω/sqのシート3では、76GHzでの電磁波減衰量が約22dB、また、真空のインピーダンス値に対して、+20%ずれている抵抗皮膜の表面抵抗値が452Ω/sqのシート4では、76GHzでの電磁波減衰量が約21dBと、いずれも20dB(減衰率99%)を超えて、良好な電磁波吸収特性を発揮している。
 一方、真空のインピーダンス値(377Ω)に対して、-20%ずれている抵抗皮膜の表面抵抗値が302Ω/sqのシート5と、+25%ずれている抵抗皮膜の表面抵抗値が471Ω/sqのシート6では、76GHzでの電磁波減衰量がいずれも約19dBとなっている。電磁波吸収シートとして実用的な電磁波吸収特性としては、減衰量として20dB程度以上と考えられることから、抵抗皮膜の表面抵抗値を、真空のインピーダンス値に対して-15%から+20%の範囲とすることで、良好な電磁波吸収特性を備えた電磁波吸収シートを得ることができることが分かる。
 [電磁波遮蔽層]
 次に、可撓性と透光性を有する電磁波遮蔽層について検討した。
 上述のシート1の製法に基づいて、抵抗値が377Ω/sqの抵抗皮膜を作製した。
 いずれも、基材としての厚さ10μmのポリエチレンテレフタレート上に、抵抗皮膜液をバーコート法によって塗布し、その後150°で5分間加熱して製膜した。その後、基材のポリエチレンテレフタレートの抵抗皮膜層を塗布した側とは反対側の面に、誘電体層を、厚さ550μmの透明なシリコーンゴムを用いて形成した。
 電磁波遮蔽層を、第1の実施例であるシート7として、セーレン株式会社製の導電メッシュSu-4X-27035(商品名)を用いて形成した。また、第2の実施例であるシート8として、同じくセーレン株式会社製の導電性メッシュSu-4G-9027(商品名)を用いて形成した。
 一方、比較例であるシート9として、藤森工業株式会社製の透明導電フィルムPURE-OPT RN3000(商品名)を電磁波遮蔽層として形成した。
 各電磁波吸収シートにおける電磁波遮蔽層の電気的、光学的特性は以下の通りとなった。
(シート7) 表面抵抗値0.04Ω/sq 全光線透過率30%
       開口率38%
(シート8) 表面抵抗値0.11Ω/sq 全光線透過率66%
       開口率82%
(シート9) 表面抵抗値0.40Ω/sq 全光線透過率77% 以上。
 このようにして作製された、3つの電磁波吸収シートについて、全光線透過率、ヘイズ値、電磁波吸収特性をそれぞれ測定した。
 なお、全光線透過率とヘイズ値については、日本電色株式会社製のHazeMeterNDH2000(製品名)を用い、JIS K7105に準拠して測定した。光源は、LightCを用いた。
 また、電磁波吸収特性は、上記と同様フリースペース法により、キーコム株式会社製の自由区間測定装置と、アンリツ株式会社製のベクトルネットワークアナライザMS4647B(商品名)を用いて、各電磁波吸収シートに対して電磁波を照射した際の入射波と反射波の強度比をそれぞれ電圧値として把握した。
 このようにして測定された各電磁波吸収シートの電磁波吸収特性を、図3に示す。図3では、入射波の強度に対する反射波の強度の減衰量をdBで表している。
 図3において、符号31がシート7の電磁波吸収特性を、符号32がシート8の電磁波吸収特性を、符号33がシート9の電磁波吸収特性を、それぞれ示している。
 また、それぞれの電磁波吸収シートの光学特性は、シート7の全光線透過率が30%、ヘイズ値が40、シート8の全光線透過率が66%、ヘイズ値が7、シート9の全光線透過率が77%、ヘイズ値が8であった。
 ここで、電磁波遮蔽層の開口率と表面抵抗値との関係について検証してみた。
 図4は、検証に用いた電磁波吸収層の形状を示すモデル図である。
 図4に示すように、電磁波吸収層として、縦方向と横方向に金属ワイヤーが延在する格子状の金属メッシュを想定し、金属ワイヤーのピッチpを変化させたときの開口率と、導電部材としての金属ワイヤー形成する1つの格子をループとしてインダクタンス素子(コイル)として捉えて金属層としての導電率を計算した。
 より具体的には、金属ワイヤーとして直径27μmのものを用いたと想定した。このとき、電磁波吸収層の開口率は、ピッチP=ワイヤーの直径L+ワイヤー間の間隙Sから、下記の式(1)として表される。
Figure JPOXMLDOC01-appb-M000001
 また、板状の電磁波吸収層に入射した電磁波の減衰量を遮断SEとしてdBで表すと、金属板の入出力インピーダンスをZ0、金属板の導電率をσ(Ω-1・m-1)、板の厚みをd(m)として、以下の式(2)として表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、金属メッシュの一つ一つの升目をコイルとして考えて、金属板としての抵抗値R=1/(σ・d)をjωLに置き換えると、上記の式(2)は、以下の式(3)と変換できる。
Figure JPOXMLDOC01-appb-M000003
 ここで、ω=2πLであるから、電磁波の遮蔽SEは、以下の式(4)と表すことができる。
Figure JPOXMLDOC01-appb-M000004
 金属メッシュを構成するワイヤーのピッチPを30μmから500μmまで変化させて、開口率(式(1))と遮断SEとを求めると、電磁波の周波数60~90GHzの場合に、遮断SEとして99.9%の減衰量に相当する20dBを達成するためには、下記の表1として示すように、金属線間隔は170μmがほぼ上限となることがわかった。このとき、開口率は75%であり、ワイヤーの湾曲を考慮した全光線透過率は60%となった。
 一方、透光性を有する電磁波吸収シートを実現する上で、電磁波吸収層では30%以上の全光線透過率が必要であると考えられ、これを実現するためのワイヤーのピッチPは50μm、このときの開口率は35%、電磁波の減衰量を示す遮断SEは45dBであった。
Figure JPOXMLDOC01-appb-T000005
 以上の電磁波遮蔽層における電磁波遮蔽効果の検証結果と、上記作製したシート7の電磁波遮蔽層とシート8の電磁波遮蔽層の光学特性から、開口率が35%以上85%以下であることが、導電性メッシュや導電性格子を用いた場合の良好な条件であるということができる。また、開口率が35%以上85%以下であることが、より良好な条件である。
 また、シート9の結果も踏まえて、電磁波吸収層として良好な電磁波反射特性を得るためには、表面抵抗値が0.3Ω/sq以下であることが好ましい条件であると判断することができ、0.11Ω/sq以下であることがより好ましい。
 [保護層の効果]
 次に、抵抗皮膜の表面に保護層を積層することの効果について検証した。
 電磁波吸収シートとしては、上述のシート1を用い、抵抗皮膜の表面に保護層として、粘着層を付与した厚さ25μmポリエチレンテレフタレートシートを貼り合せた、シート10を作製した。
 シート1と、シート10とをそれぞれ2枚ずつ用意し、これら計4枚の電磁波吸収シートに対して乾拭き摺動試験を行って、表面のシート部材の剥離の有無と表面抵抗値の変化とを測定した。なお、乾拭き摺動試験は、白ネルの布をHEIDON社の摺動試験機にセットして、加重2000g、摺動速度4500mm/min、摺動幅25mm、摺動回数1000パス(約10分間)の条件で行った。
 試験後の電磁波吸収シートを確認すると、シート1とシート10ともに、2枚いずれのシートにも目視で確認できる剥離は認められなかった。一方、電磁波吸収シートの抵抗皮膜の表面抵抗値は、保護層を設けたシート10では2枚とも変化は認められなかったが、保護層を形成しなかったシート1では、それぞれ16%と10%の表面抵抗値の上昇が認められた。これは、保護層を形成していない電磁波吸収シートでは、摺動試験の結果、抵抗皮膜が削られてその厚さが薄くなり表面抵抗値が高くなったためと考えられる。
 上述のように、抵抗皮膜の表面抵抗値が変動するとインピーダンス整合が崩れて電磁波吸収特性が低下してしまうことから、保護層を設けることで、抵抗皮膜の機械的な要因による厚さの変動を押さえることができ、安定した電磁波吸収特性を備えた電磁波吸収シートを構成できることが確認できた。
 [可撓性の確認]
 次に、本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜として導電性有機高分子を用いることによって可撓性を確保できる点について確認した。
 比較例として、抵抗皮膜を、酸化インジウム錫(ITO)をスパッタリングすることで表面抵抗が370Ω/sqとなるようにして形成したシート11を作製した。なお、シート11において、誘電体層と電磁波遮蔽層は、シート1のものと同様に構成した。
 シート1とシート11とに対し、それぞれのシートを5×10cmの大きさに切り出し、初期値となる表面抵抗を測定した。次に、水平に配置された直径10mm、8mm、6mm、4mm、2mm、0.5mmの6種類の太さのアルミ製の円筒型棒(マンドレル)上に、抵抗皮膜が表向きになるようにして被せ、シートの両端に300gの錘を付けて30秒間維持して、シートの中央部分が曲がった状態で両端を下側に引っ張った。その後、再びそれぞれの電磁波吸収シートの表面抵抗を測定した。
 測定結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000006
 結果、アルミ製の円筒型棒の直径が10mmの場合は、シート1およびシート11のいずれも抵抗皮膜の表面抵抗の値に変化が生じなかったが、アルミ製の円筒型棒の直径が6mmの場合には、シート1の表面抵抗値には変化がなかったものの、シート11の表面抵抗値は、750Ω/sqと約2倍に増加した。さらに、アルミ製の円筒型棒の直径が2mm、0.5mmと小さい場合、シート1の表面抵抗値には変化がなかったものの、シート11の表面抵抗値は無限大となってしまい、抵抗皮膜として使用できないものとなった。
 また、直径6mmのアルミ製の円筒型棒に巻き付けた電磁波吸収シートの表面状態をマイクロスコープで観察したところ、シート1には変化は認められなかったが、シート11では、表面にクラックが入っていた。また、直径0.5mmのアルミ製の円筒型棒に巻き付けた電磁波吸収シートの表面状態をマイクロスコープで観察したところ、シート1には変化は認められなかったが、シート11では、直径6mmのアルミ製の円筒型棒に巻き付けたものよりも多くのクラックが入っていた。
 このことから、本実施形態にかかる電磁波吸収シートでは、抵抗皮膜に導電性有機高分子を用いることで、シートの可撓性が向上し、シートを小さい径で強く折り曲げるような負荷がかかった場合でも、電磁波吸収特性を維持できることが確認できた。
 以上説明したように、本実施形態にかかる電磁波吸収シートは、吸収する電磁波が入射する側の表面に配置される抵抗皮膜を導電性有機高分子で構成することで、電磁波吸収シートを強く折り曲げた場合でも電磁波吸収特性を維持することができる。このため、安定した高い電磁波吸収特性を発揮し、可撓性と透光性とを備えた電磁波吸収シートを実現することができる。例えば、電磁波シールド状態に置かれる居室のカーテンなど、内部、もしくは、外部の様子を視認可能としつつも不所望な電磁波を吸収して透過させないことが求められる状況下で好適に使用できる。
 本願で開示する電磁波吸収シートは、ミリ波帯域以上の高い周波数帯域の電磁波を安定して吸収することができ、可撓性と透光性とを有する電磁波吸収シートとして有用である。
    1   抵抗皮膜
    2   誘電体層
    3   電磁波遮蔽層
    4   接着層
    5   保護層

Claims (8)

  1.  可撓性と透光性とを有する電磁波吸収シートであって、
     いずれも透光性を有する、抵抗皮膜と、誘電体層と、電磁波遮蔽層とが順次積層して形成され、
     前記抵抗皮膜が、導電性有機高分子により形成され、
     前記電磁波遮蔽層の開口率が35%以上85%以下であることを特徴とする、電磁波吸収シート。
  2.  前記電磁波遮蔽層が、導電メッシュにより構成されている、請求項1に記載の電磁波吸収シート。
  3.  前記電磁波遮蔽層の表面抵抗値が、0.3Ω/sq以下である、請求項1または2に記載の電磁波吸収シート。
  4.  前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)を含む、請求項1~3のいずれかに記載の電磁波吸収シート。
  5.  前記抵抗皮膜に、ポリスチレンスルホン酸、ポリフッ化ビニリデンをさらに含む、請求項4に記載の電磁波吸収シート。
  6.  前記抵抗皮膜に、さらに水溶性ポリエステルを含む、請求項4または5に記載の電磁波吸収シート。
  7.  前記抵抗皮膜の表面抵抗値が、真空のインピーダンスに対して-15%から+20%の範囲である、請求項1~6のいずれかに記載の電磁波吸収シート。
  8.  前記誘電体層がミリ波帯域以上の高周波数帯域の電磁波を吸収可能な層厚に設定されている、請求項1~7のいずれかに記載の電磁波吸収シート。
PCT/JP2018/000125 2017-03-10 2018-01-05 電磁波吸収シート WO2018163584A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880006452.7A CN110169218B (zh) 2017-03-10 2018-01-05 电磁波吸收片
US16/476,842 US11477925B2 (en) 2017-03-10 2018-01-05 Electromagnetic wave absorbing sheet
JP2018519507A JP6523563B2 (ja) 2017-03-10 2018-01-05 電磁波吸収シート
EP18763338.3A EP3595422A4 (en) 2017-03-10 2018-01-05 FILM FOR ABSORBING ELECTROMAGNETIC WAVES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046341 2017-03-10
JP2017046341 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163584A1 true WO2018163584A1 (ja) 2018-09-13

Family

ID=63447409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000125 WO2018163584A1 (ja) 2017-03-10 2018-01-05 電磁波吸収シート

Country Status (5)

Country Link
US (1) US11477925B2 (ja)
EP (1) EP3595422A4 (ja)
JP (2) JP6523563B2 (ja)
CN (1) CN110169218B (ja)
WO (1) WO2018163584A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021131420A1 (ja) * 2019-12-27 2021-07-01
WO2021255965A1 (ja) * 2020-06-19 2021-12-23 パナソニックIpマネジメント株式会社 撮影装置
WO2023162831A1 (ja) * 2022-02-25 2023-08-31 凸版印刷株式会社 電磁波吸収体及びセンシングシステム
US11978959B2 (en) 2018-09-25 2024-05-07 Sekisui Chemical Co., Ltd. λ/4 type radio wave absorber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144890A1 (en) * 2017-09-13 2021-05-13 Maxell Holdings, Ltd. Electromagnetic-wave absorbing sheet
JP7296955B2 (ja) * 2018-06-07 2023-06-23 マクセル株式会社 電磁波吸収シート
CN112086758B (zh) * 2020-09-14 2021-12-28 重庆大学 一种基于狄拉克半金属和水的双控、宽带太赫兹波吸收器
KR20230109618A (ko) * 2020-11-18 2023-07-20 도판 인사츠 가부시키가이샤 전자파 감쇠 필름
WO2023137359A1 (en) * 2022-01-12 2023-07-20 Auria Solutions UK I, Ltd. Electromagnetic shielding for electric vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149267A (ja) * 1990-10-12 1992-05-22 Bridgestone Corp 導電性高分子複合体の製造方法
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH08307088A (ja) * 1995-04-27 1996-11-22 C I Kasei Co Ltd 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2000216587A (ja) * 1999-01-20 2000-08-04 Fuji Elelctrochem Co Ltd 電波吸収建材
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2014185303A (ja) * 2013-03-25 2014-10-02 Nagoya Univ 導電性高分子組成物
JP2017043765A (ja) * 2015-08-26 2017-03-02 信越ポリマー株式会社 帯電防止性成形体の製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059066A (ja) 1998-08-10 2000-02-25 Mitsubishi Chemicals Corp 電波吸収体
JP2001332130A (ja) * 2000-05-19 2001-11-30 Tdk Corp 機能性膜
JP2003124011A (ja) 2001-10-09 2003-04-25 Hitachi Ltd 電磁波吸収材及びそれを用いた製品
JP2003198179A (ja) 2001-12-26 2003-07-11 Nitto Denko Corp 電磁波吸収体
JP4235010B2 (ja) 2003-02-26 2009-03-04 Tdk株式会社 不要電波抑制構造
WO2005101941A1 (ja) * 2004-03-30 2005-10-27 Geltec Co., Ltd. 電磁波吸収体
EP1758443B1 (en) * 2004-05-24 2012-08-15 Gunze Limited Electromagnetic wave shielding material and process for producing the same
JP2006120836A (ja) 2004-10-21 2006-05-11 Oji Tac Hanbai Kk 電波吸収体用積層体および電波吸収体
CN101263564B (zh) * 2005-09-12 2011-12-14 日东电工株式会社 透明导电性膜、触摸面板用电极板及触摸面板
WO2007058119A1 (ja) 2005-11-16 2007-05-24 Nagase Chemtex Corporation 導電性樹脂組成物、それを用いてなる導電性フィルム、及びそれを用いてなる抵抗膜式スイッチ
JP2007308697A (ja) * 2006-05-04 2007-11-29 Lg Electronics Inc 電磁波遮蔽膜製造用インク、これを用いたディスプレイ装置及びその製造方法と、ディスプレイ装置の前面フィルタ及びその製造方法
US7982380B2 (en) * 2006-08-18 2011-07-19 Dai Nippon Printing Co., Ltd. Front filter for plasma display and plasma display
SE530443C2 (sv) * 2006-10-19 2008-06-10 Totalfoersvarets Forskningsins Mikrovågsabsorbent, speciellt för högtemperaturtillämpning
JP2008135485A (ja) 2006-11-27 2008-06-12 Taika:Kk 電波吸収体およびその製造方法
JP5099893B2 (ja) * 2007-10-22 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
JP2009239211A (ja) 2008-03-28 2009-10-15 Mitsubishi Cable Ind Ltd 電波吸収シートおよびその設置方法
KR101091536B1 (ko) * 2008-09-26 2011-12-13 주식회사 엘지화학 오프셋 인쇄용 클리쉐 및 이를 이용해 제조된 제품
JP5554578B2 (ja) 2010-01-26 2014-07-23 帝人デュポンフィルム株式会社 導電性フィルム
KR20140009287A (ko) * 2011-01-18 2014-01-22 후지필름 가부시키가이샤 도전성 필름 및 그것을 구비한 표시 장치
JP5806620B2 (ja) * 2011-03-16 2015-11-10 日東電工株式会社 透明導電性フィルムおよびタッチパネル
JP2013016670A (ja) 2011-07-05 2013-01-24 Fujifilm Corp 透明導電フィルムおよびその製造方法並びに有機薄膜太陽電池
JP5872872B2 (ja) 2011-12-12 2016-03-01 Necトーキン株式会社 導電性高分子組成物の製造方法、導電性高分子材料の製造方法、導電性基材の製造方法、電極の製造方法および固体電解コンデンサの製造方法
JP6063631B2 (ja) 2012-03-26 2017-01-18 日東電工株式会社 電磁波吸収体及び電磁波吸収体の製造方法
KR101442681B1 (ko) * 2012-11-09 2014-09-24 엔젯 주식회사 전도성 나노 잉크 조성물, 이를 이용한 전극선 및 투명전극
US9763313B2 (en) * 2013-05-15 2017-09-12 Cam Holding Corporation Conductive nanostructure-based films with improved ESD performance
JP2015173010A (ja) 2014-03-11 2015-10-01 日立マクセル株式会社 透明導電パターンの製造方法及び透明導電性シート
JP6325364B2 (ja) 2014-06-18 2018-05-16 マクセルホールディングス株式会社 透明導電性コーティング組成物、透明導電性シート及びその製造方法、並びに透明導電パターン形成方法
JP6184579B2 (ja) 2015-12-14 2017-08-23 日東電工株式会社 電磁波吸収体およびそれを備えた電磁波吸収体付成形体
JP6375403B2 (ja) 2016-03-04 2018-08-15 日東電工株式会社 電磁波吸収体および電磁波吸収体付成形品
JP7296955B2 (ja) 2018-06-07 2023-06-23 マクセル株式会社 電磁波吸収シート
CN109754949A (zh) * 2018-12-04 2019-05-14 哈尔滨工业大学(深圳) 一种制备具有电磁屏蔽功能的柔性可拉伸导电薄膜的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149267A (ja) * 1990-10-12 1992-05-22 Bridgestone Corp 導電性高分子複合体の製造方法
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH08307088A (ja) * 1995-04-27 1996-11-22 C I Kasei Co Ltd 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2000216587A (ja) * 1999-01-20 2000-08-04 Fuji Elelctrochem Co Ltd 電波吸収建材
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2014185303A (ja) * 2013-03-25 2014-10-02 Nagoya Univ 導電性高分子組成物
JP2017043765A (ja) * 2015-08-26 2017-03-02 信越ポリマー株式会社 帯電防止性成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595422A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978959B2 (en) 2018-09-25 2024-05-07 Sekisui Chemical Co., Ltd. λ/4 type radio wave absorber
JPWO2021131420A1 (ja) * 2019-12-27 2021-07-01
WO2021131420A1 (ja) * 2019-12-27 2021-07-01 マクセルホールディングス株式会社 測定システム、および電波遮蔽部
JP7141546B2 (ja) 2019-12-27 2022-09-22 マクセル株式会社 測定システム、および電波遮蔽部
WO2021255965A1 (ja) * 2020-06-19 2021-12-23 パナソニックIpマネジメント株式会社 撮影装置
WO2023162831A1 (ja) * 2022-02-25 2023-08-31 凸版印刷株式会社 電磁波吸収体及びセンシングシステム

Also Published As

Publication number Publication date
US20200146191A1 (en) 2020-05-07
JPWO2018163584A1 (ja) 2019-03-14
US11477925B2 (en) 2022-10-18
JP2019176161A (ja) 2019-10-10
EP3595422A4 (en) 2021-01-13
CN110169218B (zh) 2022-05-03
JP6523563B2 (ja) 2019-06-05
EP3595422A1 (en) 2020-01-15
CN110169218A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018163584A1 (ja) 電磁波吸収シート
JP7311685B2 (ja) 電磁波吸収シート
EP3684155B1 (en) Electromagnetic-wave absorbing sheet
JP7296955B2 (ja) 電磁波吸収シート
KR20100036913A (ko) 터치 패널 입력 장치를 위한 투명 전도성 적층 구조체
KR101976760B1 (ko) 나노와이어 기반 투명 전도성 필름 및 그 제조 방법
JP7141546B2 (ja) 測定システム、および電波遮蔽部
WO2022158562A1 (ja) 電波吸収体、および電波吸収体の製造方法
JPWO2022158562A5 (ja)
JP2023025502A (ja) 電波吸収体、および電波吸収体の製造方法
JP2017037760A (ja) 透明導電性基板及びその製造方法、並びにその透明導電性基板を用いたタッチパネル
JP2023132076A (ja) 電波吸収体
WO2023171427A1 (ja) 電波反射体
JP2024021424A (ja) 電磁波吸収シート
JP5042084B2 (ja) 入力デバイス
KR20230062551A (ko) 유기 도전 필름의 제조 방법, 유기 도전 필름 및 적층체
TW201532998A (zh) 透明微波阻絕與吸收鍍膜視窗及其製作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519507

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018763338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018763338

Country of ref document: EP

Effective date: 20191010