WO2019054378A1 - 電磁波吸収シート - Google Patents

電磁波吸収シート Download PDF

Info

Publication number
WO2019054378A1
WO2019054378A1 PCT/JP2018/033662 JP2018033662W WO2019054378A1 WO 2019054378 A1 WO2019054378 A1 WO 2019054378A1 JP 2018033662 W JP2018033662 W JP 2018033662W WO 2019054378 A1 WO2019054378 A1 WO 2019054378A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
absorbing sheet
wave absorbing
sheet
film
Prior art date
Application number
PCT/JP2018/033662
Other languages
English (en)
French (fr)
Inventor
豊田将之
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to US16/620,778 priority Critical patent/US20210144890A1/en
Priority to JP2019542069A priority patent/JPWO2019054378A1/ja
Priority to EP18856761.4A priority patent/EP3684155B1/en
Publication of WO2019054378A1 publication Critical patent/WO2019054378A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/067Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/043Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present disclosure relates to an electromagnetic wave absorbing sheet having flexibility, in particular, an electromagnetic wave absorbing sheet capable of absorbing electromagnetic waves in the so-called millimeter wave band of several tens of gigahertz (GHz) to several hundreds of gigahertz (GHz).
  • GHz gigahertz
  • GHz gigahertz
  • an electromagnetic wave absorbing sheet that absorbs the electromagnetic wave is used.
  • an electromagnetic wave absorbing sheet As such an electromagnetic wave absorbing sheet, a resistive film is formed on one surface of the dielectric layer, and an electromagnetic wave shielding layer that reflects the electromagnetic wave is formed on the other surface, and the phase of the reflected wave is half the wavelength of the incident wave.
  • an electromagnetic wave interference type ( ⁇ / 4 type) electromagnetic wave absorbing sheet in which the incident wave and the reflected wave on the electromagnetic wave absorbing sheet cancel each other to absorb the electromagnetic wave.
  • the electromagnetic wave interference type electromagnetic wave absorbing sheet is lighter than an electromagnetic wave absorbing sheet or the like which magnetically absorbs electromagnetic waves by magnetic particles having a large specific gravity, and can be easily manufactured, so that the cost can be reduced. Have.
  • an electromagnetic wave interference type electromagnetic wave absorber a resistance layer of a transparent conductor such as an indium tin oxide (ITO) film, a transparent dielectric layer such as glass and an acrylic resin, and the dielectric layer are formed.
  • ITO indium tin oxide
  • a transparent dielectric layer such as glass and an acrylic resin
  • the dielectric layer are formed.
  • an electromagnetic wave absorber having flame retardancy and translucency which is provided with a reflective film made of a metal such as silver, gold, copper, or aluminum (see Patent Document 3).
  • the electromagnetic wave interference type electromagnetic wave absorbing sheet In order to obtain good electromagnetic wave absorption characteristics in the electromagnetic wave interference type electromagnetic wave absorbing sheet, it is important to perform impedance matching to match the input impedance of the dielectric layer with the impedance in air (vacuum). Since the resistance value of a layer varies depending on its thickness, strict thickness control is required to achieve accurate impedance matching. Further, the effective thickness of the resistance layer changes depending on the angle of the electromagnetic wave incident on the electromagnetic wave absorbing sheet.
  • the dielectric layers have different dielectric constants 2 It has been proposed to form a laminated structure of dielectric layers as a layer, and to provide a dome-shaped unevenness on the interface between two dielectric layers (see Patent Document 4).
  • the thickness of the dielectric layer becomes thinner as the electromagnetic wave to be absorbed becomes a high frequency, so that the sheet has higher flexibility.
  • the electromagnetic wave absorbing sheet which is thinner and can be easily bent is expanded in the place where it can be attached and the convenience of the user is improved, but the user is more likely to be bent strongly.
  • a resistance film made of a metal oxide film or the like formed by a sputtering method or the like is likely to be cracked by being strongly bent, and when the resistance film is cracked, the surface resistance value becomes large and the impedance There is a problem that the matching is broken and the electromagnetic wave absorption characteristics are degraded.
  • making the dielectric layer to be a two-layer structure or making the surface of the dielectric layer uneven has an increase in cost of the electromagnetic wave absorbing sheet. It leads to
  • the present disclosure solves the above-described conventional problems, and is a so-called electromagnetic wave interference type electromagnetic wave absorbing sheet, and is not limited to one in which electromagnetic waves in a desired frequency band are incident perpendicularly to the sheet surface, and a wide incident angle width It is an object of the present invention to realize a low-cost electromagnetic wave absorbing sheet capable of favorably absorbing electromagnetic waves incident thereon.
  • the electromagnetic wave absorbing sheet disclosed in the present application is formed by laminating a resistance film, a dielectric layer, and an electromagnetic wave shielding layer, and the resistance film is formed of a conductive organic polymer.
  • the surface resistance value thereof is 303 ⁇ / ⁇ or more and 350 ⁇ / ⁇ or less, or 415 ⁇ / ⁇ or more and 502 ⁇ / ⁇ or less.
  • the resistive film is formed of the conductive organic polymer, the resistive film does not crack even when the sheet is strongly bent, and the impedance matching is maintained to achieve high electromagnetic wave absorption. You can keep the characteristics. Further, by setting the surface resistance value of the resistance film in a predetermined range, it is possible to exhibit high electromagnetic wave absorption characteristics of 20 dB or more with respect to electromagnetic waves incident on the sheet surface with a wide incident angle width.
  • the electromagnetic wave absorbing sheet disclosed in the present application is formed by laminating a resistance film, a dielectric layer, and an electromagnetic wave shielding layer, the resistance film is formed of a conductive organic polymer, and the surface resistance value thereof is 303 ⁇ / ⁇ or more and 350 ⁇ / ⁇ or less, or 415 ⁇ / ⁇ or more and 502 ⁇ / ⁇ or less.
  • the electromagnetic wave absorbing sheet disclosed in the present application is resistant even when it is strongly curved as an electromagnetic wave absorbing sheet of the electromagnetic interference type formed by laminating the resistance film, the dielectric layer and the electromagnetic wave shielding layer. It is hard to produce a crack etc. in a film, can maintain impedance matching and can exhibit a high electromagnetic wave absorption characteristic.
  • the electromagnetic wave absorption characteristic with a return loss of 20 dB or more and the incident angle width up to 40 degrees can be achieved without complicating the configuration of the electromagnetic wave absorption sheet. It is possible to realize the electromagnetic wave absorbing sheet which exhibits in the range at low cost.
  • the surface resistance value of the resistance film is 310 ⁇ / sq or more and 345 ⁇ / sq or less, or 420 ⁇ / sq or more and 500 ⁇ / sq or less.
  • the surface resistance value of the resistance film it is possible to obtain an electromagnetic wave absorbing sheet that achieves high electromagnetic wave absorption characteristics with a reflection attenuation of 20 dB or more in a range where the incident angle width is up to 50 degrees.
  • the said resistance film, the said dielectric material layer, and the said electromagnetic wave shielding layer all have translucency, and have translucency as the whole sheet
  • the resistance film contains poly (3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonic acid (PSS), polyvinylidene fluoride (PVDF).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • PVDF polyvinylidene fluoride
  • the resistance film preferably further contains a water-soluble polyester.
  • the dielectric layer is set to a layer thickness capable of absorbing an electromagnetic wave in a high frequency band of a millimeter wave band or more. In this way, it is possible to realize an electromagnetic wave absorbing sheet which has high flexibility and can absorb electromagnetic waves in the millimeter wave band or more with a large incident angle of absorbable electromagnetic waves.
  • the entire configuration of the electromagnetic wave absorbing sheet according to the present embodiment will be described.
  • all of the resistive film constituting the electromagnetic wave absorbing sheet, the dielectric layer, and the electromagnetic wave shielding layer are formed of light transmitting members, so that the entire electromagnetic wave absorbing sheet can be made transparent.
  • An example is provided.
  • the light transmittance is set to a total light transmittance of 30% or more and a haze value of 40 or less.
  • FIG. 1 is a cross-sectional view showing the configuration of the electromagnetic wave absorbing sheet according to the present embodiment.
  • FIG. 1 is a view described to facilitate understanding of the configuration of the electromagnetic wave absorbing sheet according to the present embodiment, and represented in reality with respect to the size and thickness of the members shown in the figure. It is not a thing.
  • the electromagnetic wave absorption sheet illustrated in the present embodiment is formed by laminating the resistance film 1, the dielectric layer 2, and the electromagnetic wave shielding layer 3.
  • an adhesive layer 4 is laminated on the back side of the electromagnetic wave shielding layer 3, ie, the surface of the electromagnetic wave shielding layer 3 opposite to the side on which the dielectric layer 2 is disposed. It is formed.
  • a protective layer 5 is laminated on the front surface side of the resistance film 1, that is, on the surface of the resistance film 1 opposite to the side on which the dielectric layer 2 is disposed.
  • the electromagnetic wave 11 incident on the dielectric layer 2 is reflected at the interface between the electromagnetic wave shielding layer 3 disposed on the back side of the dielectric layer 2 and the dielectric layer 2, It is emitted again as the reflected wave 12.
  • the phase 11 a of the incident wave 11 and the phase 12 a of the reflected wave 12 cancel each other. It absorbs the electromagnetic wave incident on the electromagnetic wave absorbing sheet.
  • the electromagnetic wave shielding layer 3 formed by being laminated on the back side of the dielectric layer 2 is a layer that reflects the incident electromagnetic wave on the surface on the side of the dielectric layer 2 which is the interface with the dielectric layer 2.
  • the electromagnetic wave shielding layer 3 needs to function as a reflection layer that reflects the electromagnetic wave. Moreover, it is necessary to provide flexibility and translucency as an electromagnetic wave shielding layer.
  • a conductive mesh made of conductive fibers, or a conductive grid made of a conductive wire such as a metal of an extremely fine wire can be used.
  • the resistive film 1 is formed on the front side of the dielectric layer 2, that is, on the side of the dielectric layer 2 opposite to the side on which the electromagnetic wave shielding layer 3 is laminated, the electromagnetic wave to be absorbed is incident. Impedance matching between the and air.
  • the resistance film 1 is formed as a film of a conductive organic polymer to ensure flexibility as the electromagnetic wave absorbing sheet, and resistance is obtained even when the electromagnetic wave absorbing sheet is strongly bent. Cracks and the like of the film 1 do not occur, and good impedance matching can be maintained without changing the surface resistance value.
  • the adhesive layer 4 is a layer formed on the back side of the electromagnetic wave shielding layer 3 so that the electromagnetic wave absorbing sheet can be easily attached to a predetermined place.
  • the adhesive layer 4 can be easily formed by applying an adhesive resin paste.
  • Adhesive layer 4 is not an essential member in the electromagnetic wave absorption sheet concerning this embodiment.
  • a member for adhesion may be arranged on the side of the member to which the electromagnetic wave absorbing sheet is attached, and when arranging the electromagnetic wave absorbing sheet in a predetermined place
  • An adhesive method may be employed such as supplying an adhesive between the electromagnetic wave absorbing sheet and the placement location, or using a double-sided tape.
  • the protective layer 5 is a member that is formed on the surface of the resistive film 1, that is, the outermost surface of the electromagnetic wave absorbing sheet on the side where the electromagnetic wave is incident, and protects the resistive film 1.
  • the surface resistance value of the conductive organic polymer forming the resistance film 1 of the electromagnetic wave absorbing sheet of the present embodiment may change when water adheres to the surface. Moreover, since it is a film made of resin, there is a possibility that a scratch may occur when a sharp member comes in contact with the surface or when it is rubbed with a hard material. For this reason, it is preferable to cover the surface of the resistance film 1 with the protective layer 5 to protect the resistance film 1.
  • the protective layer 5 is not an essential constituent requirement in the electromagnetic wave absorbing sheet according to the present embodiment, but the material of the conductive organic polymer changes the surface resistance value or the resistance film 1 caused by the adhesion of water to the surface. If there is little concern that the surface may be damaged, the configuration of the electromagnetic wave absorbing sheet without the protective layer 5 can be selected.
  • the protective layer 5 as described later, a resin material such as polyethylene terephthalate can be used.
  • the resin material used as the protective layer 5 has a certain resistance value, the effect of the presence or absence of the protective layer 5 on the surface resistance value of the electromagnetic wave absorbing sheet is a practical problem by setting the film thickness of the protective layer 5 thin. There can be no level.
  • the resistance film 1 is made of a conductive organic polymer.
  • a conjugated conductive organic polymer is used, and it is preferable to use polythiophene or its derivative, polypyrrole or its derivative.
  • polythiophene conductive polymers suitable for use in the resistance film 1 of the electromagnetic wave absorbing sheet according to the present embodiment include poly (thiophene), poly (3-methylthiophene) and poly (3-ethylthiophene).
  • polypyrrole-based conductive polymer preferably used for the resistance film 1 include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), Poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole ), Poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl) -4-Carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole) , Poly (3-Butokishipiroru), poly (3-hexyloxy-pyrrole),
  • an organic polymer whose main chain is composed of a ⁇ conjugated system can be used, and a polyacetylene based conductive polymer, a polyphenylene based conductive polymer, a polyphenylene vinylene based conductive can be used.
  • a polyacetylene based conductive polymer, a polyphenylene based conductive polymer, a polyphenylene vinylene based conductive can be used.
  • Polymers, polyaniline type conductive polymers, polyacene type conductive polymers, polythiophene vinylene type conductive polymers, copolymers of these, and the like can be used.
  • polyanion can be used as a counter anion as a conductive organic polymer used for a resistance film.
  • the polyanion is not particularly limited, but it is preferable that the conjugated conductive organic polymer used for the resistance film described above contains an anionic group capable of causing chemical oxidation doping.
  • anionic groups for example, the general formula -O-SO 3 X, -O- PO (OX) 2, -COOX, groups represented by -SO 3 X (in each formula, X represents a hydrogen atom Or an alkali metal atom, and among them, the group represented by —SO 3 X and —O—SO 3 X is particularly preferable since the doping effect to a conjugated conductive organic polymer is excellent. .
  • the conductive organic polymers may be used alone or in combination of two or more.
  • polypyrrole poly (3-methoxythiophene), poly (3,4-ethylenedioxythiophene), poly (2-anilinesulfonic acid), because transparency and conductivity become higher.
  • PEDOT poly(1,4-ethylenedioxythiophene: PEDOT) and polystyrene sulfonic acid (PSS) are preferably used as a combination of the conductive organic polymer of conjugated system and polyanion.
  • a dopant in order to control the electrical conductivity of the conductive organic polymer and match the input impedance of the electromagnetic wave absorbing sheet with the impedance value in air, a dopant is used in combination.
  • halogens such as iodine and chlorine
  • Lewis acids such as BF 3 and PF 5
  • proton acids such as nitric acid and sulfuric acid
  • transition metals such as BF 3 and PF 5
  • proton acids such as nitric acid and sulfuric acid
  • transition metals such as BF 3 and PF 5
  • proton acids such as nitric acid and sulfuric acid
  • transition metals such as BF 3 and PF 5
  • alkali metals such as alkali metals
  • amino acids such as nucleic acids, nucleic acids, surfactants, dyes, chloranil, tetra Cyanoethylene, TCNQ, etc.
  • dyes chloranil, tetra Cyanoethylene, TCNQ, etc.
  • the resistance film 1 As a material for forming the resistance film 1, it is preferable to additionally contain polyvinylidene fluoride and a water-soluble polyester. By including these, the weather resistance of the resistance film 1 is improved, so that the temporal change of the surface resistance value of the resistance film 1 is suppressed, and a highly reliable electromagnetic wave capable of maintaining a stable electromagnetic wave absorption characteristic. An absorbent sheet can be realized.
  • Polyvinylidene fluoride functions as a binder in the conductive organic polymer film by being added to the composition at the time of coating the conductive organic polymer, and improves film formability and adhesion with the substrate Can be enhanced.
  • the conductive polymer in the resistance film 1 can be obtained by adding the water-soluble polyester to the coating composition of the conductive organic polymer forming the resistance film 1. Can be immobilized to form a more homogeneous film. As a result, by using the water-soluble polyester, the change in the surface resistance value becomes small even in a harsher high temperature and high humidity environment, and the impedance matching with the impedance value in air is maintained. Can.
  • the content of the conductive organic polymer in the resistance film 1 is preferably 10% by mass or more and 35% by mass or less based on the total mass of the solid content contained in the resistance film 1 composition. If the content is less than 10% by mass, the conductivity of the resistance film 1 tends to decrease. For this reason, the surface electrical resistance value of the resistance film 1 is set to a predetermined range in order to obtain impedance matching, and the film thickness of the resistance film 1 becomes large, so that the whole electromagnetic wave absorbing sheet becomes thick or the optical characteristics deteriorate.
  • the resistance film 1 can be formed by apply
  • a coating method such as a coating method can be used. Drying after application may be performed under the conditions that the solvent component of the paint for resistance film formation evaporates, and is preferably performed at 100 to 150 ° C. for 5 to 60 minutes. If the solvent remains in the resistance film 1, the strength tends to be poor.
  • a drying method for example, a hot air drying method, a heating drying method, a vacuum drying method, natural drying and the like can be performed. Moreover, you may form the resistance film 1 by irradiating UV light (ultraviolet light) and EB (electron beam) to a coating film, and hardening a coating film as needed.
  • the transparent base material which has transparency is preferable.
  • gum, glass, ceramics, can be used, for example.
  • the electromagnetic wave incident on the electromagnetic wave absorbing sheet can be in the air.
  • the impedance can be matched, and the reflection and scattering of the electromagnetic wave on the surface of the electromagnetic wave absorbing sheet can be reduced to obtain better electromagnetic wave absorption characteristics.
  • the dielectric layer 2 of the electromagnetic wave absorbing sheet according to the present embodiment is made of polyvinylidene fluoride, polyester resin, glass, transparent silicone rubber, transparent fluorocarbon resin film, OCA (optically transparent adhesive), OCR (optically) Transparent resin) and the like, and can be formed.
  • the dielectric layer 2 can be formed of one kind of material as one layer, or can be formed by laminating two or more layers of the same kind or different kinds of materials.
  • a coating method, a press molding method, an extrusion molding method, or the like can be used to form the dielectric layer 2.
  • the incident wave and the reflected wave are obtained by shifting the phase of the electromagnetic wave incident on the electromagnetic wave absorbing sheet and the reflected wave reflected by the electromagnetic wave shielding layer by 1/2 wavelength.
  • An electromagnetic wave absorbing sheet of the electromagnetic wave interference type ( ⁇ / 4 type) which absorbs electromagnetic waves by canceling each other. For this reason, the thickness (d in FIG. 1) of the dielectric layer is determined corresponding to the wavelength of the electromagnetic wave to be absorbed.
  • the value of the thickness d of the dielectric layer 2 can be reduced by (.epsilon.r) .sup.1 / 2 by using a large value of .rho.
  • the electromagnetic wave absorbing sheet according to the present embodiment is flexible, it can be easily bent as the thickness of the dielectric layer 2 constituting the electromagnetic wave absorbing sheet and the electromagnetic wave absorbing sheet itself is smaller. More preferable.
  • the thickness of the electromagnetic wave absorbing sheet according to the present embodiment is thin. It is preferable to easily conform to the shape of the sticking part and to make the sheet lighter.
  • the thickness is obtained when the dielectric layer 2 having the dielectric constant ⁇ r is used between the electromagnetic wave shielding layer 3 and the resistive film 1.
  • the electromagnetic wave shielding layer 3 of the electromagnetic wave absorbing sheet according to the present embodiment is a member disposed on the opposite side of the electromagnetic wave absorbing sheet via the dielectric layer 2 to reflect the electromagnetic wave incident from the surface film 1.
  • the electromagnetic wave shielding layer 3 it is necessary for the electromagnetic wave shielding layer 3 to have flexibility and light transmission that follow and curve at least when the resistive film 1 and the dielectric layer 2 are curved.
  • a conductive mesh composed of conductive fibers can be employed as the electromagnetic wave shielding layer 3 capable of meeting such requirements.
  • the conductive mesh can be constructed by, for example, attaching a metal to a mesh woven with polyester monofilaments to make it conductive.
  • the metal highly conductive copper, silver or the like can be used.
  • the black antireflection layer is also commercialized.
  • the electromagnetic wave shielding layer 3 it is possible to use a conductive grid in which metal wires such as thin copper wires having a diameter of several tens to several hundreds of ⁇ m are arranged in the vertical and horizontal directions.
  • the electromagnetic wave shielding layer 3 by the above-mentioned mesh or a conductive grating has minimum thickness, as long as the surface resistance value calculated
  • a reinforcing layer and a protective layer made of light transmitting resin are formed on the back side of the conductive grating, and an electromagnetic wave is formed by a laminate of an electromagnetic wave reflecting portion made of a conductive material and a film component made of resin.
  • the shielding layer 3 can be used.
  • an electromagnetic wave absorbing sheet which is a laminate of the resistance film 1, the dielectric layer 2, and the electromagnetic wave shielding layer 3 is a case for housing an electric circuit. It can be attached to a desired position such as the inner surface or the inner surface or the outer surface of the electric device.
  • the electromagnetic wave absorbing sheet of the present embodiment has flexibility, it can be easily attached on a curved curved surface, and handling of the electromagnetic wave absorbing sheet is easy by providing the adhesive layer 4 on the back surface. Improves the quality.
  • the adhesive layer 4 a known material used as an adhesive layer such as an adhesive tape, an acrylic adhesive, a rubber adhesive, a silicone adhesive, or the like can be used. Further, a tackifier or a crosslinking agent can also be used to control adhesion to an adherend and to reduce adhesive residue.
  • the adhesive strength to the adherend is preferably 5 N / 10 mm to 12 N / 10 mm. If the adhesive strength is less than 5 N / 10 mm, the electromagnetic wave absorbing sheet may be easily peeled off or deviated from the adherend. In addition, when the adhesive strength is greater than 12 N / 10 mm, it becomes difficult to peel the electromagnetic wave absorbing sheet from the adherend.
  • the thickness of the adhesive layer 4 is preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness of the adhesive layer 4 is smaller than 20 ⁇ m, the adhesive force is reduced, and the electromagnetic wave absorbing sheet may be easily peeled or deviated from the adherend.
  • the thickness of the adhesive layer 4 is more than 100 ⁇ m, it becomes difficult to peel the electromagnetic wave absorbing sheet from the adherend.
  • the cohesive force of an adhesive layer is small, when an electromagnetic wave absorption sheet is peeled, adhesive residue may arise on a to-be-adhered body. Moreover, it becomes a factor to which the flexibility as the whole electromagnetic wave absorption sheet is reduced.
  • the electromagnetic wave absorbing sheet can be used as the adhesive layer 4 that is adhered to the adherend in an unpeelable manner, and the peelable adhesive can be used. It can also be an adhesive layer 4 to be performed. Further, as described above, in the electromagnetic wave absorbing sheet according to the present embodiment, it is not an essential requirement to have the configuration provided with the adhesive layer 4, and various conventional general members may be used for members for which the electromagnetic wave absorbing sheet is desired. It can be bonded using the bonding method of
  • the protective layer 5 can be provided on the side of the surface of the resistance film 1 on which the electromagnetic wave is incident.
  • the conductive organic polymer used as the resistance film 1 may change its surface resistance under the influence of the humidity in the air. Therefore, by providing the protective layer 5 on the surface of the resistance film 1, the influence of humidity can be reduced, and the deterioration of the absorption characteristics of the electromagnetic wave due to the impedance matching can be effectively suppressed.
  • polyethylene terephthalate having a thickness of 25 ⁇ m can be used as an example, and this is adhered to the surface of the resistance film 1 with an adhesive of a resin material. Can.
  • the protective layer 5 can prevent the permeation of moisture into the resistance film 1 by forming the film so as to cover the entire surface of the resistance film 1. It is considered that the component of the surface resistance value of the protective layer 5 formed as a film made of a resin affects the component of the surface resistance value of the resistance film 1 to be stacked in parallel. Therefore, it is considered that the influence on the input impedance of the electromagnetic wave absorbing sheet is extremely small if the thickness of the protective layer 5 is not too thick. Moreover, it is also possible to set the surface resistance value of the resistance film 1 to a more suitable numerical value in consideration of the influence of the surface resistance value of the protective layer 5 as the input impedance as the electromagnetic wave absorbing sheet.
  • the thickness of the protective layer 5 is preferably thinner in the range in which the resistive film 1 can be protected. Specifically, the thickness of the protective layer 5 is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less. When the thickness of the protective layer exceeds 150 ⁇ m, the absorption performance of the electromagnetic wave may be reduced, and the electromagnetic wave absorption may be less than 20 dB. Moreover, since the thickness of the whole electromagnetic wave absorption sheet becomes large, flexibility falls.
  • the resistance film was produced from the resistance film liquid which added and mixed the component shown below.
  • Conductive polymer dispersion 36.7 parts Conductive polymer manufactured by Heraeus (PEDOT-PSS) : PH-100 (product name), Solid content concentration 1.2 mass% (2) PVDF dispersion 5.6 parts Arkema Co .: LATEX 32 (trade name), Solid content concentration: 20 mass%, solvent water (3) aqueous solution of water-soluble polyester 0.6 part, manufactured by HAKOKA CHEMICAL CO., LTD. Solid content concentration 25 mass% (4) Organic solvent (dimethyl sulfoxide) 9.9 parts (5) Water-soluble solvent (ethanol) 30.0 parts (6) Water 17.2 parts.
  • the resistance film is coated on a sheet (50 ⁇ m thick) made of polyethylene terephthalate as a base material so that the thickness after drying becomes a predetermined thickness by the bar coating method. Then, the film was formed by heating at 150 ° C. for 5 minutes.
  • a 500 ⁇ m-thick transparent silicone OCA was attached to the surface of the base opposite to the side on which the resistance film was formed.
  • a 550 ⁇ m thick dielectric layer is formed in combination with 50 ⁇ m of the base material.
  • an electromagnetic wave shielding layer was formed on silicone OCA using a conductive mesh Su-4x-13227 (product name) manufactured by Salen Co., Ltd. to produce an electromagnetic wave absorbing sheet.
  • the adhesive layer and the surface protective layer were not formed.
  • the surface resistance value was made different by changing the thickness of the resistance film, and the following six types of electromagnetic wave absorbing sheets were produced.
  • the electromagnetic wave absorption characteristics in the band of 60 to 90 GHz were measured by the free space method, using the sheets 1 to 6 thus prepared as measurement objects. Specifically, incident waves and reflections when each electromagnetic wave absorbing sheet is irradiated with an electromagnetic wave using a free space measurement apparatus made by Keycom Co., Ltd. and a vector network analyzer MS4647B (trade name) made by Anritsu Co., Ltd. The intensity ratio of the waves was grasped as a voltage value.
  • FIG. 2 shows a state in which the electromagnetic wave is incident on the electromagnetic wave absorbing sheet at a predetermined incident angle ⁇ .
  • the incident wave 13 passing through the resistive film 1 of the electromagnetic wave absorbing sheet and the dielectric layer 2 is reflected on the surface of the electromagnetic wave shielding layer 3 to be a reflected wave 14.
  • the angle formed by the incident wave 13 and the angle formed by the reflected wave 14 with respect to the perpendicular line 15 to the surface of the electromagnetic wave absorbing sheet are the same.
  • the angle formed by the incident wave 13 and the reflection 14 shown in FIG. 2 will be referred to as an incident angle ⁇ .
  • FIG. 3 is a view showing the relationship between the incident angle ⁇ (unit: degree) to the electromagnetic wave absorbing sheet and the reflected wave attenuation amount (unit: dB) in each electromagnetic wave absorbing sheet.
  • FIG. 3 (a) is sheet 1 (surface resistance value 310 ⁇ / ⁇ )
  • FIG. 3 (b) is sheet 2 (surface resistance value 345 ⁇ / ⁇ )
  • FIG. 3 (c) is sheet 3
  • surface 3 (d) is sheet 4 (surface resistance 420 ⁇ / sq)
  • FIG. 3 (e) is sheet 5 (surface resistance 465 ⁇ / sq)
  • FIG. 3 (f) is sheet 6 (s)
  • the surface resistance value 500 ⁇ / ⁇ ) indicates the attenuation characteristics of each reflected wave.
  • the amount of attenuation is about 18 dB, and as the incident angle increases, the amount of return attenuation increases, and the incident angle ⁇ reaches 20 dB at 5 degrees, and the incident angle ⁇ reaches about 45 dB of a peak at 34 degrees. Thereafter, as the incident angle ⁇ increases, the return loss decreases, and the incident angle ⁇ becomes 20 dB at 55 degrees.
  • the incident angle ⁇ is about 26 degrees
  • the return loss is 52 dB at the peak
  • 50 degrees
  • the return loss is 20 dB. Therefore, it can be understood that, even in the sheet 2, a high return loss of 20 dB or more can be maintained in the range where the incident angle width is 50 degrees.
  • the sheet 2 is impedance-matched such that the surface resistance value of the resistance film 1 is 345 ⁇ / ⁇ for an electromagnetic wave having an incident angle ⁇ of 26 degrees.
  • the incident angle ⁇ at which the return loss is at a peak is small compared to the sheet 1 shown in FIG. 3A because the surface resistance value of the sheet 2 is an incident angle It is considered that the surface resistance value is 377 ⁇ / ⁇ , which is impedance matching in the case of
  • the maximum reflection attenuation amount is about 45 dB when the incident angle ⁇ is 0 degrees, which is normal incidence.
  • the return loss decreases as the incident angle ⁇ increases. Then, when the incident angle ⁇ is around 35 degrees, the return loss falls below 20 dB.
  • impedance matching it is possible to obtain extremely high return loss when the incident angle ⁇ , which is normal incidence, is 0 degree, while when the incident angle ⁇ is increased from 0 degree, the comparison is performed. It can be seen that good return loss can be maintained only at very small incident angle widths.
  • the reflection attenuation amount is the largest when the incident angle ⁇ is 0 degrees, and the reflection attenuation characteristic in which the reflection attenuation amount gradually decreases as the value of the incident angle ⁇ increases.
  • the surface resistance value of the resistance film 1 was similarly observed in the electromagnetic wave absorbing sheet in the range of about 30 ⁇ / ⁇ on both the + side and the ⁇ side with respect to 377 ⁇ / ⁇ . That is, for the electromagnetic wave vertically incident on the electromagnetic wave absorbing sheet, the surface resistance value of the resistance film 1 is impedance matched at 377 ⁇ / ⁇ .
  • the sheet 3 is impedance-matched with the surface resistance value of the resistance film 1 at 420 ⁇ / ⁇ for the electromagnetic wave having the incident angle ⁇ of 28 degrees.
  • the sheet 5 even when the electromagnetic wave is incident at an incident angle having an incident angle width of 53 degrees between 3 degrees and 56 degrees, the reflection attenuation amount of 20 dB or more can be maintained. Recognize. Further, in the sheet 5, it is understood that the impedance matching is performed with the surface resistance value of the resistance film 1 being 465 ⁇ / ⁇ with respect to the electromagnetic wave having the incident angle ⁇ of 37.5 degrees.
  • the return loss increases, and the incident angle ⁇ is 20 dB at 3 degrees, and the incident angle ⁇ is about 51 dB at a peak value at about 43 degrees, and then decreases to a return attenuation of 20 dB at an incident angle ⁇ of 53 degrees .
  • the sheet 6 can maintain a reflection attenuation of 20 dB or more with respect to an electromagnetic wave having an incident angle width of 50 degrees from 3 degrees to 53 degrees. Moreover, in the sheet
  • the impedance-matched surface resistance value 377 ⁇ / which is generally regarded as preferable from the change in the return loss when the incident angle ⁇ is changed, as shown in FIG. 3A to FIG. 3F.
  • the electromagnetic wave absorbing sheet of ⁇ it can be seen that the electromagnetic wave absorbing characteristics rapidly decrease as the incident angle ⁇ increases, while the surface resistance value of the resistance coating which is impedance-matched differs depending on the incident angle of the electromagnetic wave.
  • an electromagnetic wave absorbing sheet capable of favorably absorbing an electromagnetic wave incident at an incident angle having a predetermined width
  • the incident angle of the electromagnetic wave entering the electromagnetic wave absorbing sheet is expected to be different.
  • the surface resistance value of the resistive film which is the input impedance in the space is It was found that there is a region where the return loss can maintain 20 dB or more.
  • a return loss of 20 dB means that 99% of the electromagnetic waves are absorbed, and it can be judged that the electromagnetic wave absorption characteristics are practically sufficient.
  • FIG. 4 is a diagram showing an incident angle width at which the return loss can be maintained at 20 dB when the surface resistance value of the resistance film is made different.
  • the incident angle is within the range where the surface resistance value of the resistance film 1 is in the range of 303 ⁇ / ⁇ to 350 ⁇ / ⁇ or in the range of the surface resistance value of 415 ⁇ / ⁇ to 502 ⁇ / ⁇ .
  • a return loss of ⁇ 20 dB can be secured when the width of ⁇ is up to 40 degrees.
  • the width of the incident angle ⁇ is up to 50 degrees
  • the reflection attenuation amount of -20 dB or more can be secured.
  • the surface resistance value of the resistance film is made different from 377 ⁇ / ⁇ , which is the impedance value in air, and 303 ⁇ / ⁇ or more and 350 ⁇ / ⁇ or less, or 415 ⁇ / ⁇ or more
  • the return loss amount considered as a practically sufficient level in the range of the incident angle width up to 40 degrees is 20 dB
  • the electromagnetic wave absorption sheet provided with the above electromagnetic wave absorption characteristics can be obtained.
  • an aluminum cylindrical rod manufacturedrel with a diameter of 6 mm, which is horizontally arranged and made according to the procedure described as the above example as the electromagnetic wave absorbing sheet according to the present embodiment and cut out in a size of 5 ⁇ 10 cm Even if the resistance film is coated on the top of the sheet with 300 g weight on both ends of the sheet and maintained for 30 seconds, the value of the surface resistance of the resistance film does not change. It could be confirmed that the electromagnetic wave absorbing sheet had high flexibility.
  • the optical characteristic of the electromagnetic wave absorption sheet concerning this embodiment exists in the preferable numerical range whose total light transmittance is 30% or more, and a haze value is 40 or less.
  • the electromagnetic wave absorbing sheet is strongly bent by forming the resistive film disposed on the surface on the side where the electromagnetic wave to be absorbed is incident with the conductive organic polymer. Even in this case, the electromagnetic wave absorption characteristics can be maintained. For this reason, a stable and high electromagnetic wave absorption characteristic can be exhibited, and the electromagnetic wave absorption sheet provided with flexibility and translucency can be realized. For example, it can be suitably used in a situation where it is required to absorb and not transmit unwanted electromagnetic waves while making the inside or the outside visible, such as a curtain of a living room placed in an electromagnetic shielding state.
  • the incident angle width of the electromagnetic wave to the electromagnetic wave absorbing sheet is in the range up to 40 degrees. Even when it changes, an electromagnetic wave absorption characteristic having a return loss of 20 dB or more, which is considered to be sufficient for practical use, can be obtained at low cost.
  • the incident angle ⁇ is in the range of up to 50 degrees by setting the surface resistance value of the resistance film in the range of 310 ⁇ / ⁇ to 345 ⁇ / ⁇ or in the range of 420 ⁇ / ⁇ to 500 ⁇ / ⁇ . It has been confirmed that the reflection attenuation amount of 20 dB or more can be secured even when it changes. For this reason, it is judged whether the incident angle width of the electromagnetic wave expected at the time of actual use is less than 40 degrees or about 50 degrees by forming a resistance film having a more appropriate surface resistance value. An electromagnetic wave absorbing sheet capable of realizing practically sufficient electromagnetic wave absorption characteristics for a wide incident angle width can be manufactured.
  • the electromagnetic wave absorbing sheet when the electromagnetic wave absorbing sheet is provided as a resistive film, a dielectric layer, an electromagnetic wave shielding layer, and further as an electromagnetic wave absorbing sheet, the protective layer and the adhesive layer are all translucent.
  • An electromagnetic wave absorbing sheet having a light transmitting property was described using the members.
  • the electromagnetic wave absorbing sheet disclosed in the present application and having electromagnetic wave absorption characteristics practically sufficient for electromagnetic waves incident at a wide angle width can be realized as a sheet not having translucency.
  • the constituent members of the layers constituting the radio wave absorption layer described above use a less expensive material which does not have translucency as a material constituting the resistance film and the dielectric layer.
  • a low cost member such as aluminum foil can be adopted as the electromagnetic wave shielding layer.
  • the electromagnetic wave absorbing sheet disclosed in the present application good electromagnetic wave absorbing characteristics with respect to electromagnetic waves having a high frequency of a so-called millimeter wave band or more, particularly even when the incident angle of the electromagnetic wave to the electromagnetic wave absorbing sheet fluctuates. Can be demonstrated.
  • the electromagnetic wave absorbing sheet disclosed in the present application can be stably absorbed even when electromagnetic waves in a high frequency band higher than the millimeter wave band are incident at a large incident angle width, and is useful as a flexible electromagnetic wave absorbing sheet .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

いわゆる電磁波干渉型の電磁波吸収シートであって、所望する周波数帯域の電磁波を、シート面に対して垂直方向に入射するものに限らず広い入射角度幅で入射した電磁波を良好に吸収することができる低コストの電磁波吸収シートを実現する。電磁波吸収シートであって、抵抗皮膜1と、誘電体層2と、電磁波遮蔽層3とが積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成されており、その表面抵抗値が303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下である。

Description

電磁波吸収シート
 本開示は、可撓性を有する電磁波吸収シート、特に、数十ギガヘルツ(GHz)から数百ギガヘルツ(GHz)のいわゆるミリ波帯域以上の電磁波を吸収可能な電磁波吸収シートに関する。
 電気回路などから外部へと放出される漏洩電磁波や、不所望に反射した電磁波の影響を回避するために、電磁波を吸収する電磁波吸収シートが用いられている。
 近年は、携帯電話などの移動体通信や無線LAN、料金自動収受システム(ETC)などで、数ギガヘルツ(GHz)の周波数帯域を持つセンチメートル波、さらには、30ギガヘルツから300ギガヘルツの周波数を有するミリ波帯、ミリ波帯域を超えた高い周波数帯域の電磁波として、1テラヘルツ(THz)の周波数を有する電磁波を利用する技術の研究も進んでいる。
 このようなより高い周波数の電磁波を利用する技術トレンドに対応して、不要な電磁波を吸収する電磁波吸収体や可撓性を有することからユーザの利便性が向上されるシート状の電磁波吸収体である電磁波吸収シートにおいても、ミリ波帯域からそれ以上の帯域の電磁波を吸収可能とするものへの要望は、より高くなることが考えられる。
 このような電磁波吸収シートとして、誘電体層の一方の表面に抵抗皮膜を、他方の表面に電磁波を反射する電磁波遮蔽層とが形成され、反射波の位相を入射波に対して1/2波長分ずらすことで電磁波吸収シートへの入射波と反射波とが打ち消し合って電磁波を吸収する、いわゆる電磁波干渉型(λ/4型)の電磁波吸収シートが知られている。電磁波干渉型の電磁波吸収シートは、比重の大きな磁性体粒子によって磁気的に電磁波を吸収する電磁波吸収シートなどと比べて軽量であり、容易に製造することができるため低コスト化が可能という利点を有している。
 従来、いわゆる電磁波干渉型の電磁波吸収シート(電磁波吸収体)では、誘電体層の表面に形成される抵抗皮膜として、酸化インジウムスズ(ITO)、酸化インジウム、酸化スズ、酸化亜鉛などの金属酸化物、金属窒化物ないしはこれらの混合体を、イオンプレーティング法、蒸着法、スパッタリング法などによって形成したものが知られている(特許文献1、特許文献2参照)。
 また、電磁波干渉型の電磁波吸収体として、酸化インジウム錫(ITO)膜などの透明導電体の抵抗層と、ガラス、アクリル樹脂などの透明な誘電体層と、この誘電体層に形成された、銀、金、銅、アルミなどの金属からなる反射膜とを備えた、難燃性と透光性とを有する電磁波吸収体が提案されている(特許文献3参照)。
 なお、電磁波干渉型の電磁波吸収シートにおいて、良好な電磁波吸収特性を得るためには誘電体層の入力インピーダンスを空気中(真空)のインピーダンスと一致させるインピーダンス整合を行うことが重要であるが、抵抗層の抵抗値はその厚みによって異なる値となるため、正確なインピーダンス整合を行うためには厳密な厚みの制御が必要となる。また、電磁波吸収シートに入射する電磁波の角度によって抵抗層の実効厚さが変化する。このような課題を解決し、誘電体層の厚みの精度や電磁波の入射角度に影響されずに目的とする周波数の電磁波に対する良好な吸収特性を得るために、誘電体層を誘電率が異なる2層の誘電体層の積層構成とし、2つの誘電体層の境界面にドーム形状の凹凸を設けた構成とすることが提案されている(特許文献4参照)。
特開平06-120689号公報 特開平09-232787号公報 特開2006-086446号公報 特開2008-135485号公報
 電磁波干渉型の電磁波吸収シートでは、吸収する電磁波が高周波となるにしたがって誘電体層の厚さが薄くなるため、より高い可撓性を有するようになる。より薄く、容易に湾曲させることができる電磁波吸収シートは、貼付可能な場所が広がって使用者の利便性が向上するが、使用者に強く曲げられてしまう機会が増える。このような電磁波吸収シートにおいて、スパッタリング法などによって形成された金属酸化膜などによる抵抗皮膜は、強く曲げられることでひびが入りやすく、抵抗皮膜にひびが入るとその表面抵抗値が大きくなってインピーダンス整合が崩れてしまい、電磁波吸収特性が低下するという問題があった。
また、電磁波吸収シートに入射する電磁波の入射角度による影響を低減するために、誘電体層を2層構成とすることや誘電体層の表面を凹凸形状とすることは、電磁波吸収シートのコスト高に繋がってしまう。
 本開示は、上記従来の課題を解決し、いわゆる電磁波干渉型の電磁波吸収シートであって、所望する周波数帯域の電磁波を、シート面に対して垂直方向に入射するものに限らず広い入射角度幅で入射した電磁波を良好に吸収することができる低コストの電磁波吸収シートを実現することを目的とする。
 上記課題を解決するため本願で開示する電磁波吸収シートは、抵抗皮膜と、誘電体層と、電磁波遮蔽層とが積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成されており、その表面抵抗値が303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下であることを特徴とする。
 本願で開示する電磁波吸収シートは、抵抗皮膜が導電性有機高分子によって形成されているため、シートが強く曲げられた場合でも抵抗皮膜にひび割れなどが生じず、インピーダンス整合を維持して高い電磁波吸収特性を保ち続けることができる。また、抵抗皮膜の表面抵抗値を所定の範囲とすることで、広い入射角度幅でシート面に入射する電磁波に対して、20dB以上の高い電磁波吸収特性を発揮することができる。
本実施形態にかかる電磁波吸収シートの構成を説明する断面図である。 本実施形態にかかる電磁波吸収シートに電磁波が入射角度αで入射した状態を説明する断面図である。 抵抗皮膜の表面抵抗値を異ならせた電磁波吸収シートにおける、電磁波吸収特性を示す図である。 反射減衰量を20dB以上とすることができる入射角度幅と抵抗皮膜の表面抵抗値との関係を示す図である。
 本願で開示する電磁波吸収シートは、抵抗皮膜と、誘電体層と、電磁波遮蔽層とが積層して形成され、前記抵抗皮膜が、導電性有機高分子により形成されており、その表面抵抗値が303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下である。
 このようにすることで、本願で開示する電磁波吸収シートは、抵抗皮膜と誘電体層と電磁波遮蔽層とが積層して形成された電磁波干渉型の電磁波吸収シートとして、強く湾曲された場合でも抵抗皮膜にひび割れなどが生じにくく、インピーダンス整合を維持して高い電磁波吸収特性を発揮することができる。また、抵抗皮膜の表面抵抗値を所定の範囲とすることで、電磁波吸収シートの構成を複雑化させることなく、反射減衰量が20dB以上の高い電磁波吸収特性を、入射角度幅が40度までの範囲で発揮する電磁波吸収シートを低コストで実現することができる。
 さらに、前記抵抗皮膜の表面抵抗値が、310Ω/□以上345Ω/□以下、または、420Ω/□以上500Ω/□以下であることが好ましい。抵抗被膜の表面抵抗値をより制限することで、反射減衰量が20dB以上の高い電磁波吸収特性を入射角度幅が50度までの範囲で実現する電磁波吸収シートとすることができる。
 また、前記抵抗皮膜と、前記誘電体層と、前記電磁波遮蔽層とがいずれも透光性を有し、シート全体として透光性を有することが好ましい。このようにすると、電磁波吸収シートの透光性を活かして、電磁波吸収シートをカーテンのように使用して、外部からの光を取り入れつつ不要な電磁波を遮蔽するというような新たな用途展開が期待できる。
 例えば、電磁波の強度を測定する機器やノイズを発生する機器を、透光性を有する電磁波吸収シートを貼り付けた透光性ケースの内部に入れることで、外部から観察できるようにすることができる。
 本願で開示する電磁波吸収シートにおいて、前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)(PEDOT)、ポリスチレンスルホン酸(PSS)、ポリフッ化ビニリデン(PVDF)を含むことが好ましい。このようにすることで、所望の表面抵抗値を備えた表面皮膜を容易に得ることができる。
 この場合において、前記抵抗皮膜に、さらに水溶性ポリエステルを含むことが好ましい。このようにすることで、抵抗皮膜自体の耐候性を高め、表面抵抗値が安定した信頼性の高い電磁波吸収シートを実現することができる。
 さらに、本願で開示する電磁波吸収シートにおいて、前記誘電体層がミリ波帯域以上の高周波数帯域の電磁波吸収可能な層厚に設定されていることが好ましい。このようにすることで、高い可撓性を備え、吸収可能な電磁波の入射角が大きい、ミリ波帯域以上の電磁波を吸収できる電磁波吸収シートを実現することができる。
 以下、本願で開示する電磁波吸収シートについて、図面を参照して説明する。
 (実施の形態)
 まず、本実施形態にかかる電磁波吸収シートの全体構成について説明する。なお、以下では、電磁波吸収シートを構成する抵抗被膜と、誘電体層と、電磁波遮蔽層とがいずれも透光性を有する部材で形成されていることで、電磁波吸収シート全体として透光性を備えたものを例示する。本実施形態で説明する電磁波吸収シートでは、透光性の目安を、全光線透過率が30%以上、ヘイズ値が40以下としている。
 図1は、本実施形態にかかる電磁波吸収シートの構成を示す断面図である。
 なお、図1は、本実施形態にかかる電磁波吸収シートの構成を理解しやすくするために記載された図であり、図中に示された部材の大きさや厚みについて現実に即して表されたものではない。
 本実施形態で例示する電磁波吸収シートは、抵抗皮膜1、誘電体層2、電磁波遮蔽層3が積層されて形成されている。なお、図1に示す電磁波吸収シートでは、電磁波遮蔽層3の背面側、すなわち、電磁波遮蔽層3において誘電体層2が配置されている側とは反対側の表面には、接着層4が積層形成されている。また、抵抗皮膜1の前面側、すなわち、抵抗皮膜1において誘電体層2が配置されている側とは反対側の表面には、保護層5が積層形成されている。
 本実施形態にかかる電磁波吸収シートは、誘電体層2に入射した電磁波11が、誘電体層2の背面側に配置されている電磁波遮蔽層3と誘電体層2との界面で反射されて、反射波12として再び外部へと放出される。このとき、誘電体層2の厚さdを、入射した電磁波の波長の1/4とする(d=λ/4)ことで、入射波11の位相11aと反射波12の位相12aとが打ち消し合って電磁波吸収シートに入射した電磁波を吸収する。
 なお、d=λ/4となるのは、誘電体層2として空気(誘電率ε=1)が用いられる場合であり、誘電体層2に用いられる誘電体の誘電率がεrである場合には、d=1/4(εr-1/2となって誘電体層2の厚さdを、(εr-1/2だけ薄くすることができる。誘電体層2を薄く形成することで、電磁波吸収シート全体の薄型化を実現でき、より可撓性に優れた電磁波吸収シートを実現することができる。
 誘電体層2の背面側に積層して形成される電磁波遮蔽層3は、誘電体層2との境界面である誘電体層2側の表面で、入射してきた電磁波を反射する層である。
 本実施形態にかかる、電磁波干渉型の電磁波吸収シートにおける電磁波吸収の原理から、電磁波遮蔽層3は電磁波を反射する反射層として機能することが必要である。また、電磁波遮蔽層として可撓性と透光性とを備えることが必要である。このような要求に対応できる電磁波遮蔽層3としては、導電性の繊維により構成された導電性メッシュや、極細線の金属などの導電性ワイヤーにより構成された導電性格子を用いることができる。
 抵抗皮膜1は、誘電体層2の前面側、すなわち誘電体層2の電磁波遮蔽層3が積層されている側とは反対の側の吸収される電磁波が入射する側に形成され、電磁波吸収シートと空気との間のインピーダンス整合を行う。
 空気中を伝搬してきた電磁波が電磁波吸収シートに入射する際、電磁波吸収シートの入力インピーダンス値を空気中のインピーダンス値(実際には真空のインピーダンス値)である377Ω/□と異ならないようにすることで、電磁波吸収シートへの電磁波の入射時に電磁波の反射・散乱が生じて電磁波吸収特性が低下することを防ぐことが重要となる。本実施形態の電磁波吸収シートでは、抵抗皮膜1を導電性有機高分子の膜として形成することで、電磁波吸収シートとしての可撓性を確保するとともに、電磁波吸収シートが強く折り曲げられた場合でも抵抗皮膜1のひび割れなどが生じず、表面抵抗値が変化せずに良好なインピーダンス整合を維持することができる。
 接着層4は、電磁波吸収シートを所定の場所に容易に貼り付けることができるように、電磁波遮蔽層3の背面側に形成される層である。接着層4は、粘着性の樹脂ペーストを塗布することで容易に形成できる。
 なお、接着層4は、本実施形態にかかる電磁波吸収シートにおいて必須の部材ではない。電磁波吸収シートを所定の場所に配置するに当たっては、電磁波吸収シートが貼り付けられる部材側に接着のための部材が配置されていてもよく、また、電磁波吸収シートを所定の場所に配置する際に、電磁波吸収シートと配置場所との間に接着剤を供給する、または、両面テープを用いるなどの接着方法を採用することができる。
 保護層5は、抵抗皮膜1の表面、すなわち、電磁波吸収シートにおいて電磁波が入射する側の最表面に形成され、抵抗皮膜1を保護する部材である。
 本実施形態の電磁波吸収シートの抵抗皮膜1を形成する導電性有機高分子は、表面に水分が付着するとその表面抵抗値が変化する場合がある。また、樹脂製の膜であるために、表面に尖った部材が接触した場合や、硬い材質のもので擦られた場合には、傷が付く畏れがある。このため、抵抗皮膜1の表面を保護層5で覆って抵抗皮膜1を保護することが好ましい。
 なお、保護層5は、本実施形態にかかる電磁波吸収シートにおいて必須の構成要件ではなく、導電性有機高分子の材料によって、表面への水分の付着に伴う表面抵抗値の変化や抵抗皮膜1の表面が傷つくことへの懸念が小さい場合には、保護層5がない電磁波吸収シートの構成を選択可能である。
 また、保護層5としては、後述のようにポリエチレンテレフタレートなどの樹脂材料を用いることができる。保護層5として用いられる樹脂材料は一定の抵抗値を有するが、保護層5の膜厚を薄く設定することで、保護層5の有無による電磁波吸収シートの表面抵抗値への影響を実用上問題ないレベルとすることができる。
 次に、本実施形態にかかる電磁波吸収シートを構成する各部材について詳述する。
 [抵抗皮膜]
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1は、導電性有機高分子で構成される。
 導電性有機高分子としては、共役導電性有機高分子が用いられ、ポリチオフェンやその誘導体、ポリピロールやその誘導体を用いることが好ましい。
 本実施形態にかかる電磁波吸収シートの抵抗皮膜1に用いられることが好適なポリチオフェン系導電性高分子の具体例としては、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。
 また、抵抗皮膜1に用いられることが好適なポリピロール系導電性高分子の具体例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 この他にも、抵抗皮膜1としては、主鎖がπ共役系で構成されている有機高分子を使用することができ、ポリアセチレン系導電性高分子、ポリフェニレン系導電性高分子、ポリフェニレンビニレン系導電性高分子、ポリアニリン系導電性高分子、ポリアセン系導電性高分子、ポリチオフェンビニレン系導電性高分子、および、これらの共重合体等を用いることができる。
 なお、抵抗皮膜に用いられる導電性有機高分子として、ポリアニオンをカウンターアニオンとして用いることができる。ポリアニオンとしては特に限定されないが、上述した抵抗皮膜に用いられる共役導電性有機高分子に、化学酸化ドープを生じさせることができるアニオン基を含有するものが好ましい。このようなアニオン基としては、例えば、一般式-O-SO3X、-O-PO(OX)2、-COOX、-SO3Xで表される基等(各式中、Xは水素原子またはアルカリ金属原子を示す。)が挙げられ、中でも、共役導電性有機高分子へのドープ効果に優れることから、-SO3X、および、-O-SO3Xで表される基が特に好ましい。
 上記導電性有機高分子は、1種を単独で使用してもよいし2種以上を併用してもよい。上記例示した材料の中でも、透明性と導電性とがより高くなることから、ポリピロール、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)から選ばれる1種または2種からなる重合体が好ましい。
 特に、共役系の導電性有機高分子とポリアニオンの組み合わせとしては、ポリ(3、4-エチレンジオキシチオフェン:PEDOT)と、ポリスチレンスルホン酸(PSS)を用いることが好ましい。
 また、本実施形態にかかる抵抗皮膜1においては、導電性有機高分子の電気伝導度を制御して、電磁波吸収シートの入力インピーダンスを空気中のインピーダンス値と整合させるために、ドーパントを併用することができる。ドーパントとしては、ヨウ素、塩素等のハロゲン類、BF3、PF5等のルイス酸類、硝酸、硫酸等のプロトン酸類や、遷移金属、アルカリ金属、アミノ酸、核酸、界面活性剤、色素、クロラニル、テトラシアノエチレン、TCNQ等が使用できる。より具体的には、抵抗皮膜1の表面抵抗値を377Ω/□に対してプラス/マイナス数%程度の値にすることが好ましく、このとき、導電性有機高分子とドーパントとの配合割合は、一例として質量比で導電性高分子:ドーパント=1:2~1:4とすることができる。
 さらに、抵抗皮膜1を形成する材料としては、他にポリフッ化ビニリデン、水溶性ポリエステルを含むことが好ましい。これらを含むことで、抵抗皮膜1の耐候性が向上するため、抵抗皮膜1の表面抵抗値の経時的な変化が抑えられて、安定した電磁波吸収特性を維持することができる信頼性の高い電磁波吸収シートを実現することができる。
 ポリフッ化ビニリデンは、導電性有機高分子をコーティングする際の組成物に加えることで、導電性有機高分子膜の中でバインダーとしての機能を果たし、成膜性を向上させるとともに基材との密着性を高めることができる。
 また、水溶性ポリエステルは導電性高分子との相溶性が高いため、抵抗皮膜1を形成する導電性有機高分子のコーティング組成物に水溶性ポリエステルを加えることで抵抗皮膜1内において導電性高分子を固定化させ、より均質な皮膜を形成することができる。この結果、水溶性ポリエステルを用いることで、より厳しい高温高湿環境下におかれた場合でも表面抵抗値の変化が小さくなり、空気中のインピーダンス値とのインピーダンス整合がなされた状態を維持することができる。
 抵抗皮膜1における導電性有機高分子の含有量は、抵抗皮膜1組成物に含まれる固形分の全質量に対して、10質量%以上35質量%以下であることが好ましい。含有量が10質量%を下回ると、抵抗皮膜1の導電性が低下する傾向にある。このため、インピーダンス整合をとるために抵抗皮膜1の表面電気抵抗値を所定の範囲とした結果、抵抗皮膜1の膜厚が大きくなることによって、電磁波吸収シート全体が厚くなったり光学特性が低下したりする傾向がある。一方、含有量が35質量%を超えると、導電性有機高分子の構造に起因して抵抗皮膜1をコーティングする際の塗布適正が低下して、良好な抵抗皮膜1を形成しづらくなり、抵抗皮膜1のヘイズが上昇して、やはり光学特性が低下する傾向にある。
 なお、抵抗皮膜1は、上述のように抵抗皮膜の形成用塗料としてのコーティング組成物を基材の上に塗布して乾燥することにより形成することができる。
 抵抗皮膜形成用塗料を基材の上に塗布する方法としては、例えば、バーコート法、リバース法、グラビアコート法、マイクログラビアコート法、ダイコート法、ディッピング法、スピンコート法、スリットコート法、スプレーコート法等の塗布方法を用いることができる。塗布後の乾燥は、抵抗皮膜形成用塗料の溶媒成分が蒸発する条件であればよく、100~150℃で5~60分間行うことが好ましい。溶媒が抵抗皮膜1に残っていると強度が劣る傾向にある。乾燥方法としては、例えば、熱風乾燥法、加熱乾燥法、真空乾燥法、自然乾燥等により行うことができる。また、必要に応じて、塗膜にUV光(紫外線)やEB(電子線)を照射して塗膜を硬化させることで抵抗皮膜1を形成してもよい。
 なお、抵抗皮膜1を形成するために用いられる基材としては特に限定されないが、透明性を有する透明基材が好ましい。このような透明基材の材質としては、例えば、樹脂、ゴム、ガラス、セラミックス等の種々のものが使用できる。
 本実施形態にかかる電磁波吸収シートでは、上述した導電性有機高分子を用いて表面抵抗値が377Ω/□の抵抗皮膜1を構成することで、電磁波吸収シートに入射する電磁波に対して空気中のインピーダンスと整合させることができ、電磁波吸収シート表面での電磁波の反射や散乱を低下させてより良好な電磁波吸収特性を得ることができる。
 [誘電体層]
 本実施形態にかかる電磁波吸収シートの誘電体層2は、ポリフッ化ビニリデン、ポリエステル樹脂、ガラス、透明なシリコーンゴム、透明なフッ素樹脂フィルム、OCA(光学的に透明な粘着剤)、OCR(光学的に透明な樹脂)などの誘電体で形成することができる。なお、誘電体層2は、1種の材料で1層の構成として形成することができ、また、同種、異種の材料を2層以上積層した構成とすることもできる。誘電体層2の形成には、塗布法やプレス成型法、押出成型法などを用いることができる。
 上述のように、本実施形態にかかる電磁波吸収シートは、電磁波吸収シートに入射した電磁波と電磁波遮蔽層で反射された反射波との位相を1/2波長ずらすことで、入射波と反射波とが打ち消し合って電磁波を吸収する電磁波干渉型(λ/4型)の電磁波吸収シートである。このため、誘電体層の厚さ(図1におけるd)は、吸収しようとする電磁波の波長に対応して定められる。
 なお、dの値は、抵抗皮膜1と電磁波遮蔽層3との間が空間となっている場合、すなわち、誘電体層2が空気で形成されている場合は、d=λ/4が成り立つが、誘電体層2を誘電率εrの材料で形成した場合には、d=λ/4(εr)-1/2となるため、誘電体層2を構成する材料として、材料自体が有する誘電率が大きなものを用いることで誘電体層2の厚さdの値を、(εr)-1/2小さくすることができ、電磁波吸収シート全体の厚さも低減することができる。本実施形態にかかる電磁波吸収シートは、可撓性を有するものであることから、電磁波吸収シートを構成する誘電体層2や電磁波吸収シート自体の厚さが小さいほど容易に湾曲させることができてより好ましい。また、本実施形態にかかる電磁波吸収シートが、後述する接着層4などを介して電磁波漏洩を防ぎたい部材に貼着して使用されることが多いことを考慮すると、電磁波吸収シートの厚みが薄く容易に貼着部分の形状に沿うこと、また、シートがより軽量化されていることが好ましい。
 なお、電磁波遮蔽層3から、λ/4離れた位置に抵抗皮膜1を配置する場合に比べ、電磁波遮蔽層3と抵抗皮膜1との間に誘電率εrを有する誘電体層2を用いると厚みdを、d=λ/4(εr)-1/2とすることができ、誘電体層2の厚さを薄くすることができる。このように、誘電率εrの値や、誘電体層2の厚みを調整することで、当該誘電体層2を備えた電磁波吸収シートで吸収する電磁波の波長を制御することができる。
 [電磁波遮蔽層]
 本実施形態にかかる電磁波吸収シートの電磁波遮蔽層3は、誘電体層2を介して電磁波吸収シートの反対側に配置された、表面皮膜1から入射した電磁波を反射させる部材である。
 同時に、電磁波遮蔽層3は、少なくとも抵抗皮膜1と誘電体層2が湾曲した際には追従して湾曲する可撓性と、透光性とを有していることが必要である。
 このような要求に対応できる電磁波遮蔽層3として、導電性の繊維により構成された導電性メッシュが採用できる。導電性メッシュは、一例としてポリエステルモノフィラメントで織ったメッシュに金属を付着させて導電性とすることで構成できる。金属としては、導電性の高い銅、銀などを用いることができる。また、メッシュの表面を覆う金属膜による反射を低減するために、金属膜のさらに外側に黒色の反射防止層を付与したものも製品化されている。
 また、電磁波遮蔽層3としては、他にも、直径が数十から数百μmの細い銅線などの金属線が、縦横に配置された導電性格子を用いることができる。
 なお、上述のメッシュや導電性格子による電磁波遮蔽層3は、可撓性と透光性とを確保するために、電磁波遮蔽層として求められる表面抵抗値を実現できる限りにおいて、最低限の厚さを有して構成されることとなる。また、導電性メッシュの繊維や導電性格子のワイヤーが傷ついたり、切断したりしてしまった場合には、所望する表面抵抗値を実現することが困難となる。このため、導電性格子のさらに背面側に、透光性を有する樹脂による補強層かつ保護層を形成して、導電性の材料による電磁波反射部分と樹脂製の膜構成部分との積層体による電磁波遮蔽層3を用いることができる。
 [接着層]
 本実施形態にかかる電磁波吸収シートにおいて、接着層4を設けることで、抵抗皮膜1、誘電体層2、電磁波遮蔽層3との積層体である電磁波吸収シートを、電気回路を収納する筐体の内面や、電気機器の内面または外面などの所望の位置に貼着することができる。特に、本実施形態の電磁波吸収シートは可撓性を有するものであるため、湾曲した曲面上にも容易に貼着することができ、背面に接着層4を設けることで電磁波吸収シートの取り扱い容易性が向上する。
 接着層4としては、粘着テープなどの粘着層として利用される公知の材料、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を用いることができる。また被着体に対する粘着力の調節、糊残りの低減のために、粘着付与剤や架橋剤を用いることもできる。被着体に対する粘着力は5N/10mm~12N/10mmが好ましい。粘着力が5N/10mmより小さいと、電磁波吸収シートが被着体から容易に剥がれてしまったり、ずれてしまったりすることがある。また、粘着力が12N/10mmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。
 また接着層4の厚さは、20μm~100μmが好ましい。接着層4の厚さが20μmより薄いと、粘着力が小さくなり、電磁波吸収シートが被着体から容易に剥がれたり、ずれたりすることがある。接着層4の厚さが100μmより大きいと、電磁波吸収シートを被着体から剥離しにくくなる。また接着層の凝集力が小さい場合は、電磁波吸収シートを剥離した場合、被着体に糊残りが生じる場合がある。また、電磁波吸収シート全体としての可撓性を低下させる要因となる。
 なお、本実施形態にかかる電磁波吸収シートに用いられる接着層4としては、電磁波吸収シートを被着物体に剥離不可能に貼着する接着層4とすることができるとともに、剥離可能な貼着を行う接着層4とすることもできる。また、前述のように、本実施形態にかかる電磁波吸収シートにおいて、接着層4を備えた構成とすることは必須の要件ではなく、電磁波吸収シートを所望する部材に対して、従来一般的な各種の接着方法を用いて接着することができる。
 [保護層]
 本実施形態にかかる電磁波吸収シートでは、抵抗皮膜1の表面である電磁波の入射面側に保護層5を設けることができる。
 本実施形態にかかる電磁波吸収シートにおいて、抵抗皮膜1として用いられている導電性有機高分子は、空気中の湿度の影響を受けてその表面抵抗値が変化する場合がある。このため、抵抗皮膜1の表面に保護層5を設けることで湿度の影響を小さくして、インピーダンス整合による電磁波の吸収特性が低下することを効果的に抑制できる。
 本実施形態の電磁波吸収シートにおいて保護層5としては、一例として、厚さ25μmのポリエチレンテレフタレートを用いることができ、これを、樹脂材料の接着剤によって抵抗皮膜1の表面に貼り付けて構成することができる。
 なお、保護層5は、抵抗皮膜1の表面全体を覆う膜とすることで、抵抗皮膜1への水分の浸透を防ぐことができる。樹脂製の膜として形成される保護層5の表面抵抗値の成分は、積層される抵抗皮膜1の表面抵抗値の成分に対して並列接続されたものとして影響すると考えられる。このため、保護層5の厚みが厚くなりすぎなければ、電磁波吸収シートの入力インピーダンスに与える影響は極めて小さいと考えられる。また、電磁波吸収シートとしての入力インピーダンスとして、保護層5の表面抵抗値の影響を考慮した上で、抵抗皮膜1の表面抵抗値をより適した数値に設定することも可能である。
 保護層5の厚みとしては、抵抗皮膜1を保護できる範囲においてより薄いことが好ましい。具体的には、保護層5の厚みは、150μm以下が好ましく100μm以下であればより好ましい。保護層の厚みが150μmを超えると、電磁波の吸収性能が低下して電磁波吸収量が20dBを下回る場合がある。また、電磁波吸収シート全体の厚みが大きくなるので、可撓性が低下する。
 [実施例]
 以下、本実施形態にかかる電磁波吸収シートとして、抵抗皮膜の表面抵抗値を変化させた複数種類のシートを実際に作製し、電磁波の入射角度が変化した際の電磁波吸収特性の変化を測定した結果について説明する。
 <抵抗皮膜の耐候性>
 抵抗皮膜は、以下に示す成分を添加、混合した抵抗皮膜液から作製した。
 (1)導電性高分子分散体             36.7部
    ヘレウス社製導電性高分子(PEDOT-PSS)
                   :PH-100(製品名)、
    固形分濃度 1.2質量%
 (2)PVDF分散液                5.6部
    アルケマ社製:LATEX32(商品名)、
    固形分濃度 20質量%、 溶媒 水
 (3)水溶性ポリエステル水溶液           0.6部
    互応化学工業社製:プラスコートZ561(商品名)
    固形分濃度 25質量%
 (4)有機溶媒(ジメチルスルホキシド)       9.9部
 (5)水溶性溶媒(エタノール)          30.0部
 (6)水                     17.2部。
 抵抗皮膜は、基材としてのポリエチレンテレフタレート製シート(50μm厚)上に、上記の組成で作製した抵抗皮膜液を、バーコート法によって乾燥後の厚さが所定の厚さとなるようにして塗布し、その後150℃で5分加熱し成膜した。
 次に、基材の抵抗皮膜を形成した側とは反対側の面に、厚さ500μmの透明なシリコーンOCAを貼り合わせた。この結果、基材の50μmと併せて、厚さ550μmの誘電体層が形成されたこととなる。さらに、シリコーンOCA上に、セーレン株式会社製の導電メッシュSu-4x-13227(製品名)を用いて電磁波遮蔽層を形成して電磁波吸収シートを作製した。なお、今回測定で用いた電磁波吸収シートでは、接着剤層と表面保護層は形成しなかった。
 そして、抵抗皮膜の厚さを変化させることで表面抵抗値を異ならせて、以下の6種類の電磁波吸収シートを作製した。
 (シート1) 表面抵抗値310Ω/□(厚さ160nm)
        透過率66.2%、HAZE12%
 (シート2) 表面抵抗値345Ω/□(厚さ147nm)
        透過率66.2%、HAZE12%
 (シート3) 表面抵抗値377Ω/□(厚さ120nm)
        透過率66.2%、HAZE12%
 (シート4) 表面抵抗値420Ω/□(厚さ118nm)
        透過率66.2%、HAZE12%
 (シート5) 表面抵抗値465Ω/□(厚さ107nm)
        透過率66.2%、HAZE12%
 (シート6) 表面抵抗値500Ω/□(厚さ100nm)
        透過率66.2%、HAZE12%
 ここで、シート3は、抵抗皮膜の表面抵抗値を真空中のインピーダンス値(377Ω)と同じとしたもので、従来のインピーダンス整合を行った電磁波吸収シートに相当する。
 (電磁波吸収特性の測定)
 上記作成したシート1~シート6を測定対象として、フリースペース法によって60~90GHzの帯域の電磁波吸収特性を測定した。具体的には、キーコム株式会社製の自由空間測定装置と、アンリツ株式会社製のベクトルネットワークアナライザMS4647B(商品名)を用いて、各電磁波吸収シートに対して電磁波を照射した際の入射波と反射波の強度比をそれぞれ電圧値として把握した。
 図2に、電磁波吸収シートに電磁波が所定の入射角度αで入射した状態を示す。
 図2に示すように、電磁波吸収シートの抵抗皮膜1、誘電体層2を通った入射波13は、電磁波遮蔽層3の表面で反射されて反射波14となる。このとき、理想状態では、電磁波吸収シートの面に対する垂直線15に対して入射波13の成す角度と反射波14のなす角度とは、いずれも同じ角度となる。なお、本明細書では、便宜上、図2に示した入射波13と反射は14との成す角度を入射角度αと称することとする。入射角度αは、光学分野において用いられる用語としての入射波13の入射角α1と反射波14の反射角α2との和、すなわち、α=α1+α2(通常、α1=α2)である。
 そこで、図2における実線矢印13の根元方向に自由空間測定装置の送信アンテナ16を配置し、図2における点線矢印14の先端方向に受信アンテナ17を配置して、入射角度αがα=0度、すなわち垂直入射の状態から角度αを増加させていき、最大の入射角度α=65度となるまで、送信アンテナ16から発射され電磁波吸収層3の表面で反射された電磁波を受信アンテナ17で測定して、その強度を比較して反射減衰量をdB単位で求めた。
 図3は、それぞれの電磁波吸収シートにおける、電磁波吸収シートへの入射角度α(単位:度)と反射波減衰量(単位:dB)との関係を示した図である。なお、図3において、図3(a)がシート1(表面抵抗値310Ω/□)、図3(b)がシート2(表面抵抗値345Ω/□)、図3(c)がシート3(表面抵抗値377Ω/□)、図3(d)がシート4(表面抵抗値420Ω/□)、図3(e)がシート5(表面抵抗値465Ω/□)、図3(f)がシート6(表面抵抗値500Ω/□)、それぞれの反射波における減衰特性を示している。
 図3(a)に示すように、抵抗皮膜1の表面抵抗値が310Ω/□のシート1の場合の反射減衰特性(符号31)は、垂直入射である入射角度α=0度の状態で反射減衰量が約18dBであり、入射角度が大きくなると反射減衰量が増加し、入射角度αが5度で20dB、入射角度αが34度でピークの約45dBとなる。その後、入射角度αが大きくなるにつれて反射減衰量が低下して、入射角度αが55度で20dBとなる。この結果より、シート1では、入射角度αが5度から55度までの間の50度の入射角度幅を持った入射角度で電磁波が入射した場合でも、20dB以上の高い反射減衰量を維持できることがわかる。また、シート1においては、入射角度αが34度の電磁波に対して、抵抗被膜1の表面抵抗値が310Ω/□でインピーダンス整合していることがわかる。
 図3(b)に示す、抵抗皮膜1の表面抵抗値が345Ω/□のシート2の場合の反射減衰特性(符号32)は、垂直入射のα=0度の状態で反射減衰量は約27dB、入射角度αが約26度で反射減衰量がピークの52dBとなり、α=50度で反射減衰量が20dBとなる。このため、シート2でも、入射角度幅が50度の範囲において、20dB以上の高い反射減衰量を維持できることがわかる。また、シート2では、入射角度αが26度の電磁波に対して、抵抗被膜1の表面抵抗値が345Ω/□でインピーダンス整合していることがわかる。
 シート2において、図3(a)に示したシート1と比較して反射減衰量がピークとなる入射角度αが小さいのは、シート2の表面抵抗値が、垂直入射である入射角度α=0度の場合にインピーダンス整合となる表面抵抗値377Ω/□により近いためと考えられる。
 図3(c)に示す、表面抵抗値が377Ω/□のシート3の反射減衰特性(符号33)では、垂直入射である入射角度α=0度の場合に最大の反射減衰量約45dBとなり、入射角度αが大きくなるにつれて反射減衰量が低下する。そして、入射角度αが35度前後で、反射減衰量が20dBを下回る。このように、インピーダンス整合を行った場合には、垂直入射である入射角度αが0度の場合に極めて高い反射減衰量を得ることができる一方で、入射角度αが0度から大きくなると、比較的小さな入射角度幅においてしか良好な反射減衰量を保つことができないことがわかる。
 なお、図3(c)に示したような、入射角度αが0度の場合の反射減衰量が一番大きく、入射角αの値が大きくなるにつれて反射減衰量が徐々に低下する反射減衰特性は、抵抗皮膜1の表面抵抗値が377Ω/□に対して+側、-側それぞれ30Ω/□程度の範囲の電磁波吸収シートで同様に観察された。つまり、電磁波吸収シートに垂直に入射する電磁波に対しては、抵抗被膜1の表面抵抗値が377Ω/□でインピーダンス整合していることになる。
 図3(d)に示す、表面抵抗値が420Ω/□のシート4の電磁波減衰特性(符号34)の場合、垂直入射であるα=0度で反射減衰量が約25dB、その後入射角度αが約28度でピーク値の約51dBとなり、その後反射減衰量が低下して入射角度αが50度で反射減衰量が20dBとなる。このように、シート3においては、入射角度幅が50度の範囲で高い反射減衰量を実現できる。また、この結果から、シート3では、入射角度αが28度の電磁波に対して、抵抗被膜1の表面抵抗値が420Ω/□でインピーダンス整合していることがわかる。
 図3(e)に示す、表面抵抗値が465Ω/□のシート5の電磁波減衰特性(符号35)では、垂直入射であるα=0度で反射減衰量が約19dBであり、入射角度が大きくなると反射減衰量が増加し、入射角度αが4度で20dB、入射角度αが37.5度でピークの約42dBとなる。その後、入射角度αが大きくなるにつれて反射減衰量が低下して、入射角度αが56度で20dBとなる。この結果より、シート5では、入射角度αが3度から56度までの間の53度の入射角度幅を持った入射角度で電磁波が入射した場合でも、20dB以上の反射減衰量を維持できることがわかる。また、シート5においては、入射角度αが37.5度の電磁波に対して、抵抗被膜1の表面抵抗値が465Ω/□でインピーダンス整合していることがわかる。
 図3(f)に示す、表面抵抗値が500Ω/□のシート6の電磁波減衰特性(符号36)では、垂直入射であるα=0度で反射減衰量が約19dBであり、入射角度が大きくなると反射減衰量が増加し、入射角度αが3度で20dB、入射角度αが約43度でピーク値の約51dBとなり、その後低下して入射角度αが53度で反射減衰量が20dBとなる。この結果より、シート6では、入射角度αが3度から53度までの50度の入射角度幅の電磁波に対して、20dB以上の反射減衰量を維持することができる。また、シート6では、抵抗被膜1の表面抵抗値が500Ω/□でインピーダンス整合していることを表している。
 このように、図3(a)から図3(f)として示した、入射角度αを変化させた場合の反射減衰量の変化から、一般に好ましいとされていたインピーダンス整合された表面抵抗値377Ω/□の電磁波吸収シートでは、入射角度αが大きくなると急速に電磁波吸収特性が低下する一方、電磁波の入射角度によってインピーダンス整合する抵抗被膜の表面抵抗値が異なることがわかる。
 また、電磁波吸収シートに入射する電磁波の入射角度が異なることが予想される場合など、所定の幅を持った入射角度で入射した電磁波を良好に吸収することができる電磁波吸収シートを実現するという観点からは、表面抵抗値を377Ω/□から少し異なる範囲に積極的に推移させることで、入射角度αの幅が50度と大きな値となった場合でも、良好に電磁波を吸収することができる傾向にあることがわかった。
 具体的には、空間中の入力インピーダンスとなる抵抗皮膜の表面抵抗値が377Ω/□よりも小さな範囲と大きな範囲とに、それぞれ入射角度αの幅が40度や50度になった場合でも、反射減衰量が20dB以上を維持できる領域があることがわかった。反射減衰量が20dBということは、99%の電磁波が吸収されることを意味することから実用上十分な電磁波吸収特性であると判断できる。
 図4は、抵抗皮膜の表面抵抗値を異ならせた場合の、反射減衰量が20dBを維持できる入射角度幅を示す図である。
 図4に符号41として示したように、抵抗皮膜1の表面抵抗値が303Ω/□以上350Ω/□以下の範囲、または、表面抵抗値が415Ω/□以上502Ω/□以下の範囲では、入射角度αの幅が40度までの間で反射減衰量-20dBを確保することができる。また、抵抗皮膜1の表面抵抗値が310Ω/□以上345Ω/□以下の範囲、または、表面抵抗値が420Ω/□以上500Ω/□以下の範囲では、入射角度αの幅が50度までの間で反射減衰量-20dB以上を確保することができる。
 この結果、本実施形態にかかる電磁波吸収シートとして、抵抗皮膜の表面抵抗値を空気中のインピーダンス値である377Ω/□とは異ならせ、303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下の範囲とすることで、電磁波吸収シートへの電磁波の入射角が大きくばらついた場合でも、入射角度幅が40度までの範囲で実用上十分なレベルとして考えられる反射減衰量が20dB以上の電磁波吸収特性を備えた電磁波吸収シートを得ることができる。
 [可撓性、透光性の確認]
 なお、本実施形態にかかる電磁波吸収シートとして上記実施例として説明した手順で作製し、5×10cmの大きさに切り出したものを、水平に配置された直径6mmのアルミ製の円筒型棒(マンドレル)上に、抵抗皮膜が表向きになるようにして被せ、シートの両端に300gの錘を付けて30秒間維持した場合でも、抵抗皮膜の表面抵抗の値に変化は生じず、本実施形態にかかる電磁波吸収性シートが高い可撓性を備えていることを確認できた。
 また、本実施形態にかかる電磁波吸収シートの光学特性は、全光線透過率が30%以上、ヘイズ値が40以下の好ましい数値範囲にあることが確認できた。
 以上説明したように、本実施形態にかかる電磁波吸収シートは、吸収する電磁波が入射する側の表面に配置される抵抗皮膜を導電性有機高分子で構成することで、電磁波吸収シートを強く折り曲げた場合でも電磁波吸収特性を維持することができる。このため、安定した高い電磁波吸収特性を発揮し、可撓性と透光性とを備えた電磁波吸収シートを実現することができる。例えば、電磁波シールド状態に置かれる居室のカーテンなど、内部、もしくは、外部の様子を視認可能としつつも不所望な電磁波を吸収して透過させないことが求められる状況下で好適に使用できる。さらに、抵抗皮膜の表面抵抗値を303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下とすることで、電磁波吸収シートへの電磁波の入射角幅が40度までの範囲で変化した場合でも、実用上十分であると考えられる反射減衰量が20dB以上の電磁波吸収特性を、低コストで得ることができる。
 なお、より好ましくは、抵抗皮膜の表面抵抗値を310Ω/□以上345Ω/□以下の範囲、または、420Ω/□以上500Ω/□の範囲とすることで、入射角度αが50度までの範囲で変化した場合でも反射減衰量20dB以上を確保きることが確認できた。このため、実際の使用時に見込まれる電磁波の入射角度幅が40度迄なのか、それとも、50度程度が見込まれるのかを判断して、より適切な表面抵抗値を有する抵抗皮膜を形成することで、実用上十分な電磁波吸収特性を広い入射角度幅に対して実現することができる電磁波吸収シートを作製することができる。
 なお、上記実施形態においては、電磁波吸収シートを構成する、抵抗被膜、誘電体層、電磁波遮蔽層、さらには、電磁波吸収シートとして備える場合には、保護層や接着層をすべて透光性のある部材を用いて、電磁波吸収シートとして透光性を備えたものについて説明した。
 しかし、本願で開示する、広い角度幅で入射する電磁波に対して実用上十分な電波吸収特性を有する電磁波吸収シートは、透光性を有しないものとしても実現可能である。この場合には、上述した電波吸収層を構成する各層の構成部材に代えて、抵抗被膜、および、誘電体層を構成する材料として、透光性は有しないもののより低コストの材料を用いることができるなど、本願で開示する電磁波吸収シートを実施する上でより幅広い材料選択が可能となる。また、電磁波遮蔽層としても、アルミ箔などの低コストの部材を採用することができる。
 このように、本願で開示する電磁波吸収シートによれば、いわゆるミリ波帯域以上の高い周波数の電磁波に対して、特に電磁波吸収シートへの電磁波の入射角が変動する場合でも、良好な電磁波吸収特性を発揮することができる。
 本願で開示する電磁波吸収シートは、ミリ波帯域以上の高い周波数帯域の電磁波が大きな入射角度幅で入射する場合でも安定して吸収することができ、可撓性を有する電磁波吸収シートとして有用である。
    1   抵抗皮膜
    2   誘電体層
    3   電磁波遮蔽層

Claims (6)

  1.  電磁波吸収シートであって、
     抵抗皮膜と、誘電体層と、電磁波遮蔽層とが積層して形成され、
     前記抵抗皮膜が、導電性有機高分子により形成されており、その表面抵抗値が303Ω/□以上350Ω/□以下、または、415Ω/□以上502Ω/□以下であることを特徴とする、電磁波吸収シート。
  2.  前記抵抗皮膜の表面抵抗値が、310Ω/□以上345Ω/□以下、または、420Ω/□以上500Ω/□以下である、請求項1に記載の電磁波吸収シート。
  3.  前記抵抗皮膜と、前記誘電体層と、前記電磁波遮蔽層とがいずれも透光性を有し、シート全体として透光性を有する、請求項1または2に記載の電磁波吸収シート。
  4.  前記抵抗皮膜に、ポリ(3、4-エチレンジオキシチオフェン)、ポリスチレンスルホン酸、ポリフッ化ビニリデンを含む、請求項1~3のいずれかに記載の電磁波吸収シート。
  5.  前記抵抗皮膜に、さらに水溶性ポリエステルを含む、請求項4に記載の電磁波吸収シート。
  6.  前記誘電体層がミリ波帯域以上の高周波数帯域の電磁波を吸収可能な層厚に設定されている、請求項1~5のいずれかに記載の電磁波吸収シート。
PCT/JP2018/033662 2017-09-13 2018-09-11 電磁波吸収シート WO2019054378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/620,778 US20210144890A1 (en) 2017-09-13 2018-09-11 Electromagnetic-wave absorbing sheet
JP2019542069A JPWO2019054378A1 (ja) 2017-09-13 2018-09-11 電磁波吸収シート
EP18856761.4A EP3684155B1 (en) 2017-09-13 2018-09-11 Electromagnetic-wave absorbing sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017176000 2017-09-13
JP2017-176000 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054378A1 true WO2019054378A1 (ja) 2019-03-21

Family

ID=65722640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033662 WO2019054378A1 (ja) 2017-09-13 2018-09-11 電磁波吸収シート

Country Status (5)

Country Link
US (1) US20210144890A1 (ja)
EP (1) EP3684155B1 (ja)
JP (1) JPWO2019054378A1 (ja)
TW (1) TWI771486B (ja)
WO (1) WO2019054378A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695217A (zh) * 2020-06-09 2020-09-22 西安交通大学 一种基于增材制造的宽角度吸波结构设计方法
WO2020203696A1 (ja) * 2019-03-29 2020-10-08 凸版印刷株式会社 電磁波抑制シート及びその製造方法
JP2021052102A (ja) * 2019-09-25 2021-04-01 積水化学工業株式会社 λ/4型電波吸収体
CN114236201A (zh) * 2021-12-02 2022-03-25 浙江大学 一种频率可重构全角度完美匹配吸波暗室

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3749077A4 (en) * 2018-06-07 2021-05-12 Maxell Holdings, Ltd. ABSORPTION LAYER FOR ELECTROMAGNETIC WAVES

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH08307088A (ja) * 1995-04-27 1996-11-22 C I Kasei Co Ltd 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2000059066A (ja) * 1998-08-10 2000-02-25 Mitsubishi Chemicals Corp 電波吸収体
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2008135485A (ja) 2006-11-27 2008-06-12 Taika:Kk 電波吸収体およびその製造方法
JP2011152667A (ja) * 2010-01-26 2011-08-11 Teijin Dupont Films Japan Ltd 導電性フィルム
JP2015173010A (ja) * 2014-03-11 2015-10-01 日立マクセル株式会社 透明導電パターンの製造方法及び透明導電性シート
JP2017112373A (ja) * 2015-12-14 2017-06-22 日東電工株式会社 電磁波吸収体およびそれを備えた電磁波吸収体付成形体
JP2017163141A (ja) * 2016-03-04 2017-09-14 日東電工株式会社 電磁波吸収体および電磁波吸収体付成形品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501866B (zh) * 2013-09-02 2015-10-01 Nat Inst Chung Shan Science & Technology Conductive polymer broadband microwave absorbing body
WO2018088492A1 (ja) * 2016-11-10 2018-05-17 マクセルホールディングス株式会社 電磁波吸収シート
US11477925B2 (en) * 2017-03-10 2022-10-18 Maxell, Ltd. Electromagnetic wave absorbing sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120689A (ja) 1991-12-24 1994-04-28 Tdk Corp 電波吸収体
JPH08307088A (ja) * 1995-04-27 1996-11-22 C I Kasei Co Ltd 電波吸収体
JPH09232787A (ja) 1996-02-27 1997-09-05 Tosoh Corp 電波吸収体
JP2000059066A (ja) * 1998-08-10 2000-02-25 Mitsubishi Chemicals Corp 電波吸収体
JP2006086446A (ja) 2004-09-17 2006-03-30 Mitsubishi Cable Ind Ltd 電波吸収体
JP2008135485A (ja) 2006-11-27 2008-06-12 Taika:Kk 電波吸収体およびその製造方法
JP2011152667A (ja) * 2010-01-26 2011-08-11 Teijin Dupont Films Japan Ltd 導電性フィルム
JP2015173010A (ja) * 2014-03-11 2015-10-01 日立マクセル株式会社 透明導電パターンの製造方法及び透明導電性シート
JP2017112373A (ja) * 2015-12-14 2017-06-22 日東電工株式会社 電磁波吸収体およびそれを備えた電磁波吸収体付成形体
JP2017163141A (ja) * 2016-03-04 2017-09-14 日東電工株式会社 電磁波吸収体および電磁波吸収体付成形品

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203696A1 (ja) * 2019-03-29 2020-10-08 凸版印刷株式会社 電磁波抑制シート及びその製造方法
JP2020167292A (ja) * 2019-03-29 2020-10-08 凸版印刷株式会社 電磁波抑制シート及びその製造方法
CN113632600A (zh) * 2019-03-29 2021-11-09 凸版印刷株式会社 电磁波抑制片及其制造方法
JP7479124B2 (ja) 2019-03-29 2024-05-08 Toppanホールディングス株式会社 電磁波抑制シート及びその製造方法
JP2021052102A (ja) * 2019-09-25 2021-04-01 積水化学工業株式会社 λ/4型電波吸収体
JP7479811B2 (ja) 2019-09-25 2024-05-09 積水化学工業株式会社 λ/4型電波吸収体
CN111695217A (zh) * 2020-06-09 2020-09-22 西安交通大学 一种基于增材制造的宽角度吸波结构设计方法
CN111695217B (zh) * 2020-06-09 2021-12-28 西安交通大学 一种基于增材制造的宽角度吸波结构设计方法
CN114236201A (zh) * 2021-12-02 2022-03-25 浙江大学 一种频率可重构全角度完美匹配吸波暗室
CN114236201B (zh) * 2021-12-02 2023-02-17 浙江大学 一种频率可重构全角度完美匹配吸波暗室

Also Published As

Publication number Publication date
EP3684155C0 (en) 2024-04-03
TW201919893A (zh) 2019-06-01
TWI771486B (zh) 2022-07-21
EP3684155B1 (en) 2024-04-03
US20210144890A1 (en) 2021-05-13
JPWO2019054378A1 (ja) 2020-08-27
EP3684155A1 (en) 2020-07-22
EP3684155A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6523563B2 (ja) 電磁波吸収シート
JP7311685B2 (ja) 電磁波吸収シート
WO2019054378A1 (ja) 電磁波吸収シート
CN111837464B (zh) 电磁波吸收片
US20150311443A1 (en) Method for producing transparent electrode and organic el element
JP7141546B2 (ja) 測定システム、および電波遮蔽部
WO2022158562A1 (ja) 電波吸収体、および電波吸収体の製造方法
JP2023025502A (ja) 電波吸収体、および電波吸収体の製造方法
JPWO2022158562A5 (ja)
JP2017037760A (ja) 透明導電性基板及びその製造方法、並びにその透明導電性基板を用いたタッチパネル
WO2023171427A1 (ja) 電波反射体
JP2023132076A (ja) 電波吸収体
CN115989141A (zh) 有机导电膜的制造方法、有机导电膜以及层叠体
JP2022135025A (ja) 電波吸収シート
TW201532998A (zh) 透明微波阻絕與吸收鍍膜視窗及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856761

Country of ref document: EP

Effective date: 20200414