WO2023162831A1 - 電磁波吸収体及びセンシングシステム - Google Patents

電磁波吸収体及びセンシングシステム Download PDF

Info

Publication number
WO2023162831A1
WO2023162831A1 PCT/JP2023/005325 JP2023005325W WO2023162831A1 WO 2023162831 A1 WO2023162831 A1 WO 2023162831A1 JP 2023005325 W JP2023005325 W JP 2023005325W WO 2023162831 A1 WO2023162831 A1 WO 2023162831A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
layer
wave absorber
absorption
ghz
Prior art date
Application number
PCT/JP2023/005325
Other languages
English (en)
French (fr)
Inventor
碩芳 西山
亮 正田
美穂 今井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023162831A1 publication Critical patent/WO2023162831A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to electromagnetic wave absorbers and sensing systems.
  • wireless communication such as wireless LAN (Local Area Network)
  • wireless LAN Local Area Network
  • radio disturbances such as radio jamming and interference due to radio waves from the outside, interaction between multiple communication devices, or interaction between communication devices and parts of the building such as walls and floors. occurs.
  • electromagnetic wave absorbers are sometimes installed on walls, ceilings, or floors in offices and the like.
  • Electromagnetic wave absorbers are roughly classified into interference type and transmission type.
  • An interference type electromagnetic wave absorber reduces electromagnetic waves by weakening the incident electromagnetic waves and the reflected electromagnetic waves by interference.
  • a transmission-type electromagnetic wave absorber uses a magnetic material or a dielectric material having electromagnetic wave absorbing ability, and reduces electromagnetic waves by allowing electromagnetic waves to pass through a layer containing these materials. Above all, it is an interference-type electromagnetic wave absorber that does not require a dielectric material design that absorbs electromagnetic waves of a specific frequency, and can reflect and attenuate electromagnetic waves of any frequency by adjusting the thickness according to the dielectric constant. is often used.
  • Patent Literature 1 discloses an interference type electromagnetic wave absorber having a resistive layer, a dielectric layer and a reflective layer in this order.
  • Such an interference type electromagnetic wave absorber secures a high absorption amount at a specific frequency by optimizing the surface resistance value of the material used for the resistance layer.
  • the electromagnetic wave absorber described in Patent Document 1 has the following problems. That is, the electromagnetic wave absorber described in Patent Document 1 secures a high absorption amount at a specific frequency by optimizing the surface resistance value of the material used for the resistance layer. The amount of absorption decreases sharply as it deviates. For this reason, when electromagnetic waves of multiple frequency bands that make up the frequency band transmitted from a radar are incident on an electromagnetic wave absorber, the electromagnetic waves of a specific frequency are greatly absorbed by the electromagnetic wave absorber installed on the wall, etc. Electromagnetic waves other than frequencies are not sufficiently absorbed.
  • the present disclosure has been made in view of the above problems, and provides an electromagnetic wave absorber and a sensing system that can appropriately perform sensing without introducing a program that requires complicated programming in the sensing system. for the purpose.
  • the cause of the above problems is that in a specific frequency band transmitted from the radar of the sensing system, electromagnetic waves of a specific frequency are largely absorbed, and the amount of absorption of electromagnetic waves of frequencies deviating from the specific frequency is small.
  • the present inventors considered that the difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in the specific frequency band becomes large. Therefore, the present inventors have made intensive studies to reduce the difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in a specific frequency band. As a result, the following disclosure has found that the above problems can be solved. .
  • the present disclosure is an interference-type electromagnetic wave absorber that includes a resistive layer, a dielectric layer, and a reflective layer in this order and absorbs electromagnetic waves in a specific frequency band, wherein the maximum absorption amount A of 15 dB or less in the frequency band 0 and satisfies at least one of the following formulas (1) and (2).
  • this electromagnetic wave absorber in a sensing system comprising an electromagnetic wave transmitter/receiver capable of transmitting and receiving electromagnetic waves in a frequency band absorbed by the electromagnetic wave absorber and processing the received electromagnetic waves,
  • an electromagnetic wave of a specific frequency band to be transmitted is incident from the resistive layer side
  • the electromagnetic wave passes through the resistive layer and the dielectric layer and is reflected by the reflective layer.
  • the incident electromagnetic wave and the reflected reflected wave weaken each other in the dielectric layer, thereby absorbing the electromagnetic wave.
  • the electromagnetic wave absorber exhibits a maximum absorption amount of 15 dB or less and satisfies at least one of the above formulas (1) and (2), so that the maximum absorption amount and the minimum absorption amount in the above frequency band can reduce the difference between Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving device is constant, the electromagnetic wave received by the electromagnetic wave transmitting/receiving device has a specific frequency while increasing the strength of the electromagnetic wave other than the specific frequency. A decrease in the intensity of electromagnetic waves is sufficiently suppressed. Therefore, in the sensing system, the reduction in the S/N ratio of the electromagnetic wave of a specific frequency is suppressed, and it becomes easy to recognize it as a signal. can be performed properly.
  • the absolute value of the reflection coefficient ⁇ calculated by the following formulas (3) to (5) is preferably 3.12 to 5.62 at the peak frequency f 0 (GHz).
  • is the reflection coefficient
  • Z L is the input impedance ( ⁇ / ⁇ ) seen from the surface of the resistance layer opposite to the reflection layer
  • Z 0 is the vacuum.
  • ⁇ / ⁇ is the impedance ( ⁇ / ⁇ ) of the resistance layer
  • Z'L is the input impedance ( ⁇ / ⁇ ) of the resistance layer looking into the reflection layer from the reflection layer side
  • R is the surface resistance value ( ⁇ / ⁇ ) of the resistance layer
  • ⁇ r is the complex dielectric constant of the dielectric layer
  • d is the thickness ( ⁇ m) of the dielectric layer
  • is the wavelength ( ⁇ m) of the incident electromagnetic wave.
  • the absolute value of the reflection coefficient ⁇ is 5.62 or less at the peak frequency f 0 (GHz)
  • electromagnetic waves of a specific frequency in a specific frequency band are more sufficiently absorbed, so that radio interference is prevented. can be suppressed more.
  • the absolute value of the reflection coefficient ⁇ is 3.12 or more at the peak frequency f 0 (GHz)
  • the difference between the maximum absorption amount and the minimum absorption amount can be made smaller in the above frequency band. Therefore, when the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving device is constant, the electromagnetic wave received by the electromagnetic wave transmitting/receiving device has a specific frequency while increasing the strength of the electromagnetic wave other than the specific frequency.
  • a decrease in the intensity of electromagnetic waves is further suppressed. Therefore, in the sensing system, the deterioration of the S/N ratio of the electromagnetic wave of a specific frequency is further suppressed, and it becomes easier to recognize it as a signal, so there is no need to introduce a program requiring complicated programming in the sensing system , it is possible to perform sensing more appropriately.
  • the electromagnetic wave absorber preferably satisfies at least one of the following formulas (6) and (7).
  • a 0 ⁇ B 2 ⁇ 0.5 (dB) (7) (In the above formula (6) or (7), B 1 represents the amount of absorption (dB) at f 0 ⁇ 2 (GHz), and B 2 represents the amount of absorption (dB) at f 0 +2 (GHz). .)
  • the electromagnetic wave absorber preferably satisfies both the formulas (6) and (7). In this case, the electromagnetic wave absorber reduces the difference between the maximum absorption amount and the minimum absorption amount of electromagnetic waves in a specific frequency band (hereinafter sometimes referred to as "absorption amount difference") at the frequency used in the sensing system. can do.
  • the real part of the complex dielectric constant of the dielectric layer is preferably 10 or more.
  • the dielectric constant of the dielectric layer can be increased and the thickness of the dielectric layer can be reduced, so that the electromagnetic wave absorber can be made thinner.
  • the electromagnetic wave absorber may exhibit a maximum absorption A0 of 3 dB or more in the frequency band.
  • the electromagnetic wave absorber preferably satisfies both the formulas (1) and (2). In this case, the electromagnetic wave absorber can perform sensing easily and accurately.
  • the present disclosure includes the electromagnetic wave absorber described above, and an electromagnetic wave transmitting/receiving device capable of transmitting and receiving electromagnetic waves in the frequency band absorbed by the electromagnetic wave absorber and processing the received electromagnetic waves. It is a sensing system equipped with
  • the electromagnetic wave transmitting/receiving device when an electromagnetic wave in a specific frequency band transmitted from the electromagnetic wave transmitting/receiving device is incident from the resistance layer side, the electromagnetic wave passes through the resistance layer and the dielectric layer and is reflected by the reflection layer. At this time, the incident electromagnetic wave and the reflected reflected wave weaken each other in the dielectric layer, thereby absorbing the electromagnetic wave.
  • the maximum absorption is 15 dB or less, and at least one of the above formulas (1) and (2) is satisfied, so that the difference between the maximum absorption and the minimum absorption in the above frequency band is reduced. can do.
  • the electromagnetic wave transmitting/receiving device may be a radar device.
  • the radar device is a frequency modulated continuous wave radar device. In this case, a high S/N ratio can be achieved without high transmission power from the radar device.
  • an electromagnetic wave absorber and a sensing system are provided that can appropriately perform sensing without introducing a program that requires complicated programming in the sensing system.
  • FIG. 1 is a cross-sectional view showing an embodiment of an electromagnetic wave absorber of the present disclosure
  • FIG. 4 is a graph obtained by simulation of the relationship between frequency and return loss (absorption) in the frequency band of 50 to 70 GHz using the electromagnetic wave absorber of the present disclosure.
  • 4 is a graph obtained by simulation of the relationship between frequency and return loss (absorption) in the frequency band of 50 to 70 GHz using the electromagnetic wave absorber of the present disclosure.
  • 4 is a graph obtained by simulation of the relationship between frequency and return loss (absorption) in the frequency band of 50 to 70 GHz using the electromagnetic wave absorber of the present disclosure.
  • FIG. 4 is a graph obtained by simulation of the relationship between frequency and return loss (absorption) in the frequency band of 20 to 40 GHz using the electromagnetic wave absorber of the present disclosure. 4 is a graph obtained by simulation of the relationship between frequency and return loss (absorption) in the frequency band of 70 to 90 GHz using the electromagnetic wave absorber of the present disclosure.
  • 1 is a schematic diagram illustrating one embodiment of a sensing system of the present disclosure
  • FIG. 1 is a cross-sectional view showing one embodiment of the electromagnetic wave absorber of the present disclosure.
  • the electromagnetic wave absorber 100 is an interference type electromagnetic wave absorber that absorbs electromagnetic waves in a specific frequency band, and includes a resistance layer 10, a dielectric layer 20 and a reflective layer 30 in this order.
  • the resistance layer 10 and the dielectric layer 20 may be directly adhered to each other, or may be adhered to each other with an adhesive layer.
  • the dielectric layer 20 and the reflective layer 30 may be adhered directly or may be adhered with an adhesive layer.
  • the electromagnetic wave absorber 100 exhibits a maximum absorption amount A0 of 15 dB or less in the above frequency band, and satisfies at least one of the following formulas (1) and (2).
  • a 0 ⁇ A 2 ⁇ 8 (dB) (2) (In the above formula (1) or (2), when the peak frequency at which the absorption amount is maximum is f 0 (GHz), A 1 is the absorption amount (dB) at f 0 ⁇ 7 (GHz) and A 2 represents the amount of absorption (dB) at f 0 +7 (GHz).)
  • the electromagnetic wave absorber 100 in a sensing system having an electromagnetic wave transmitter/receiver capable of transmitting and receiving electromagnetic waves in a frequency band absorbed by the electromagnetic wave absorber 100 and processing the received electromagnetic waves, the electromagnetic wave transmitter/receiver is provided.
  • the electromagnetic wave passes through the resistance layer 10 and the dielectric layer 20 and is reflected by the reflective layer 30 .
  • the incident electromagnetic wave and the reflected reflected wave weaken each other, thereby absorbing the electromagnetic wave.
  • the intensity of the electromagnetic wave in the frequency band transmitted from the electromagnetic wave transmitting/receiving device is constant, the electromagnetic wave received by the electromagnetic wave transmitting/receiving device has a specific frequency while increasing the strength of the electromagnetic wave other than the specific frequency. A decrease in the intensity of electromagnetic waves is sufficiently suppressed. Therefore, in the sensing system, the reduction in the S/N ratio of the electromagnetic wave of a specific frequency is suppressed, and it becomes easy to recognize it as a signal. can be performed properly.
  • the resistive layer 10, the dielectric layer 20 and the reflective layer 30 will be described in detail below.
  • the resistance layer 10 is a layer for allowing electromagnetic waves incident from the outside to reach the dielectric layer 20 .
  • the resistive layer 10 is generally a layer for realizing impedance matching, but in the present disclosure functions as a layer for preventing impedance matching from being realized.
  • the resistance layer 10 includes a layer composed of at least one of a conductive inorganic material and a conductive organic material.
  • conductive inorganic materials include indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr, One or more selected from the group consisting of In, Ag--Cu, Cu--Au and Ni.
  • the shape of the conductive inorganic material is not particularly limited, and is, for example, particle-like or wire-like.
  • Conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives and polypyrrole derivatives.
  • the resistive layer 10 may comprise a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PPS) (PEDOT/PSS).
  • the resistance layer 10 may be composed only of a layer composed of at least one of the conductive inorganic material and the conductive organic material, but a layer composed of at least one of the conductive inorganic material and the conductive organic material is formed on the substrate. It may be provided in.
  • Base materials include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and the like.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • the resistance layer 10 is preferably composed of a PET film formed by forming a film of a conductive polymer containing PEDOT.
  • the surface resistance value of the resistance layer 10 can be appropriately set by, for example, selecting a conductive inorganic material or a conductive organic material and adjusting the thickness of the resistance layer 10.
  • the surface resistance value of the resistance layer 10 can be measured using, for example, Loresta GP MCP-T610 (trade name, manufactured by Mitsubishi Chemical Analytic Tech Co., Ltd.).
  • Resistive layer 10 may be a single layer or a laminate of multiple layers.
  • the thickness (film thickness) of the resistance layer 10 is appropriately determined according to the surface resistance value R1 . is preferred, and it is more preferred to be in the range of 1 nm to 50 nm.
  • the film thickness is 0.1 nm or more, the resistive layer 10 tends to be formed as a uniform film, and the function of the resistive layer 10 can be more sufficiently achieved.
  • the film thickness is 100 nm or less, the electromagnetic wave absorber 100 can maintain sufficient flexibility, and the resistance layer 10, which is a thin film, can be easily deformed by external factors such as bending and stretching after the formation of the resistance layer 10. It can more reliably prevent cracks from occurring in the base material, and tends to suppress thermal damage and shrinkage of the base material.
  • the thickness (film thickness) of the resistance layer 10 is preferably in the range of 0.1 to 2.0 ⁇ m, more preferably 0.1 to 0.4 ⁇ m. It is more preferable to be within the range.
  • the film thickness is 0.1 ⁇ m or more, the resistive layer 10 tends to be formed as a uniform film, and the function of the resistive layer 10 can be more sufficiently achieved.
  • the film thickness is 2.0 ⁇ m or less, the electromagnetic wave absorber 100 can retain sufficient flexibility. There is a tendency to more reliably prevent the layer 10 from cracking.
  • the dielectric layer 20 is a layer for attenuating the incident electromagnetic wave by weakening the incident wave and the reflected wave of the electromagnetic wave of a specific frequency by interference.
  • Dielectric layer 20 contains resin.
  • resins include (meth)acrylic resins, polyurethane resins, polyester resins, polyethylene resins, polycarbonate resins, polypropylene resins, polystyrene resins, polyamide resins, polyvinyl formal resins, polyvinyl chloride resins, polyacrylonitrile resins, and polymethyl methacrylate.
  • resins polyacetal resins, polyvinylidene fluoride resins, epoxy resins, phenol resins, urea resins (urea resins), and polychloroprene resins.
  • (meth)acrylic resins, polyurethanes, polyesters, polyethylenes, polycarbonates, polypropylenes, polystyrenes, polyamides, or mixed resins of two or more of these are preferable as resins because of their excellent moldability.
  • the dielectric constant of the resin is high, it is possible to reduce the amount of dielectric particles added, and (1) thin film, (2) formability, and (3) low cost can be realized.
  • a (meth)acrylic resin, a polyurethane resin, or a mixed resin thereof is preferable.
  • the dielectric layer 20 may further contain dielectric particles having a dielectric constant higher than that of the resin.
  • inorganic compounds are preferable from the viewpoint of dispersion stability and high dielectric constant of the dielectric layer 20 .
  • an inorganic oxide is preferred.
  • Inorganic oxides include barium titanate, titanium oxide, zinc oxide, aluminum oxide and zirconium oxide. Among them, barium titanate, titanium oxide, or aluminum oxide is preferable as the inorganic oxide from the viewpoint of space saving in use, roll-to-roll workability, and bending rigidity.
  • the dielectric constant of the dielectric layer 20 is not particularly limited, but from the viewpoint of thinning the dielectric layer 20, the higher the dielectric constant, the better.
  • the relative dielectric constant of the dielectric layer 20 is preferably 10.0 or higher, more preferably 15.0 or higher.
  • the real part of the complex dielectric constant of the dielectric layer 20 is not particularly limited, but is preferably 10 or more, more preferably 15.0 or more. Since the real part of the complex dielectric constant of the dielectric layer 20 is 10 or more, the dielectric constant of the dielectric layer 20 can be increased, and the thickness of the dielectric layer 20 can be reduced. 100 can be made thinner. However, the real part of the complex dielectric constant of the dielectric layer 20 is preferably 30.0 or less, more preferably 20.0 or less. When the real part of the complex dielectric constant of the dielectric layer 20 is 20.0 or less, the dielectric layer can have sufficient strength.
  • the thickness of the dielectric layer 20 is appropriately adjusted according to the maximum absorption value to be set in the electromagnetic wave absorber 100, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more. By setting the thickness of the dielectric layer 20 to 50 ⁇ m or more, the dielectric layer 20 becomes more difficult to tear.
  • the thickness of the dielectric layer 20 is preferably 1000 ⁇ m or less, more preferably 400 ⁇ m or less. In this case, when the dielectric layer 20 is laminated with the resistive layer 10 and the reflective layer 30, phenomena such as wrinkles, tunneling, and delamination are less likely to occur.
  • the reflective layer 30 is a layer for reflecting electromagnetic waves incident from the dielectric layer 20 to reach the dielectric layer 20 .
  • the reflective layer 30 includes, for example, a layer composed of at least one of a conductive inorganic material and a conductive organic material.
  • conductive inorganic materials include indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (AZO), carbon, graphene, Ag, Al, Au, Pt, Pd, Cu, Co, Cr, One or more selected from the group consisting of In, Ag--Cu, Cu--Au and Ni.
  • the shape of the conductive inorganic material is not particularly limited, and is, for example, particle-like or wire-like.
  • Conductive organic materials include polythiophene derivatives, polyacetylene derivatives, polyaniline derivatives and polypyrrole derivatives.
  • the reflective layer 30 may be composed only of a layer composed of at least one of a conductive inorganic material and a conductive organic material. It may be provided in. Base materials include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), and the like. In particular, from the viewpoint of flexibility, film formability, stability, and surface resistance, it is preferable that the reflective layer 30 be composed of a PET film formed by forming an aluminum deposition film. Although the surface resistance value of the reflective layer 30 is not particularly limited, it is preferably 100 ⁇ / ⁇ or less.
  • the reflective layer 30 may be a single layer or a laminate of multiple layers.
  • the thickness of the reflective layer 30 is not particularly limited, it is preferably 0.05 to 100 ⁇ m, more preferably 12 to 80 ⁇ m.
  • the film thickness is 0.05 ⁇ m or more, it tends to be easy to form a uniform film, and the function of the reflective layer 30 can be more sufficiently achieved.
  • the film thickness is 100 ⁇ m or less, sufficient flexibility can be imparted to the reflective layer 30, and the occurrence of cracks in the reflective layer 30 due to external factors such as bending or pulling of the electromagnetic wave absorber 100 can be prevented. tend to be more restrained.
  • the adhesive layer is a layer that bonds the dielectric layer 20 and the resistive layer 10 or the dielectric layer 20 and the reflective layer 30 together.
  • the adhesive layer for example, adhesives such as urethane-based adhesives, rubber-based adhesives, acrylic-based adhesives, and silicone-based adhesives can be used.
  • the urethane adhesive is preferably used because it can effectively bond the dielectric layer 20 and the resistance layer 10, and the dielectric layer 20 and the reflective layer 30, and is inexpensive.
  • the maximum absorption A0 in a specific frequency band is 15 dB or less, preferably 13 dB or less. However, the maximum absorption A0 is preferably 3 dB or more, more preferably 5 dB or more.
  • the maximum absorption A 0 can be adjusted, for example, by appropriately adjusting the thickness and complex dielectric constant of the dielectric layer 20 .
  • the maximum absorption A 0 can also be adjusted by adjusting the surface resistance value of the resistance layer 10 .
  • the electromagnetic wave absorber 100 satisfies at least one of the above formulas (1) and (2). Therefore, the electromagnetic wave absorber 100 may satisfy both the above formulas (1) and (2), or may satisfy either one of the above formulas (1) or (2). However, the electromagnetic wave absorber 100 preferably satisfies both the above formulas (1) and (2) from the viewpoint of performing sensing easily and accurately.
  • a 0 ⁇ A 1 may be 8 dB or less, but is preferably 5 dB or less, more preferably 3 dB or less, from the viewpoint of reducing the difference in absorption at the frequency used in the sensing system.
  • a 0 ⁇ A 2 may be 8 dB or less, it is preferably 5 dB or less, more preferably 3 dB or less, from the viewpoint of reducing the difference in absorption at the frequency used in the sensing system.
  • a 0 -A 1 and A 0 -A 2 may be the same or different.
  • the absolute value of the reflection coefficient ⁇ calculated by the following formulas (3) to (5) is not particularly limited, but is 3.12 to 5.0 at the peak frequency f 0 (GHz). 62 is preferred.
  • is the reflection coefficient
  • Z L is the input impedance ( ⁇ / ⁇ ) seen from the surface of the resistance layer 10 opposite to the reflection layer 30, and Z 0 is the vacuum Impedance ( ⁇ / ⁇ )
  • Z′L is the input impedance ( ⁇ / ⁇ ) of the resistance layer 10 looking into the reflection layer 30 from the reflection layer 30 side
  • R is the surface resistance value ( ⁇ / ⁇ ) of the resistance layer 10
  • ⁇ r is the complex dielectric constant of the dielectric layer
  • d is the thickness ( ⁇ m) of the dielectric layer
  • is the wavelength ( ⁇ m) of the incident electromagnetic wave.
  • the reflection coefficient ⁇ can be obtained using the above equations (3) to (5) once Z 0 , R, d, ⁇ and ⁇ r are determined.
  • the absolute value of the reflection coefficient ⁇ is more preferably 3.2 to 5.62, particularly preferably 4.0 to 5.62.
  • the absolute value of the reflection coefficient ⁇ can be adjusted by adjusting the surface resistance value of the resistance layer 10. Also, the absolute value of the reflection coefficient ⁇ can be adjusted by appropriately adjusting the thickness and complex dielectric constant of the dielectric layer 20 .
  • the electromagnetic wave absorber 100 preferably satisfies at least one of the above formulas (6) and (7). Therefore, the electromagnetic wave absorber 100 may satisfy both the above formulas (6) and (7), or may satisfy either one of the above formulas (6) or (7). However, the electromagnetic wave absorber 100 preferably satisfies both the above formulas (6) and (7) from the viewpoint of reducing the difference in the amount of absorption at the frequencies used in the sensing system.
  • a 0 ⁇ B 1 may be 0.5 dB or less, it is preferably 0.4 dB or less, more preferably 0.3 dB or less from the viewpoint of simple and accurate sensing.
  • a 0 ⁇ B 2 may be 0.5 dB or less, it is preferably 0.4 dB or less, more preferably 0.3 dB or less from the viewpoint of simple and accurate sensing.
  • the electromagnetic wave absorber 100 can be obtained by attaching the resistive layer 10 and the reflective layer 30 to the dielectric layer 20 using a dry lamination method or a thermal lamination method.
  • a specific frequency band of electromagnetic waves absorbed by the electromagnetic wave absorber 100 is not particularly limited, and is usually 1 to 350 GHz.
  • a specific frequency band can be appropriately determined according to the application of the electromagnetic wave absorber 100 .
  • the specific frequency band is set so as to include the frequency at which the amount of absorption of electromagnetic waves is maximized.
  • the frequency at which the electromagnetic wave absorption is maximized can be adjusted by appropriately adjusting the thickness of the dielectric layer 20 and the value of the complex dielectric constant of the dielectric layer 20 .
  • the complex dielectric constant is measured according to JIS-C2138:2007. Specifically, the complex dielectric constant is measured using a cavity resonator method dielectric constant measurement device (manufactured by Agilent Technologies, Inc., product name “Agilent E4991A RF impedance/material analyzer”) at a frequency of 1 GHz and a temperature of 25 ° C. , are values measured under conditions of relative humidity of 50%.
  • Resistive layer A Toray PET (S-10, thickness 50 ⁇ m) coated with Heraeus PEDOT (Clevios PH1000).
  • Resistive layer B An ITO film is formed by sputtering PET (S-10, thickness 50 ⁇ m) manufactured by Toray using an ITO target.
  • Resistive layer C A molybdenum-containing film was formed by sputtering PET (S-10, thickness 50 ⁇ m) manufactured by Toray Industries, Ltd. using a molybdenum-containing target.
  • Dielectric layer Dielectric layer A: Coating film using Shin-Etsu Chemical Co., Ltd.
  • silicone adhesive KR-3700 real part of complex dielectric constant: 3.2, imaginary part: 0.0
  • ⁇ Dielectric layer B A coating film obtained by blending Saiden Chemical's Saibinol OC3405 with Sakai Chemical Industry's Perovskite BT-01 (barium titanate) so that the volume fraction is 35% (realization of complex dielectric constant) part: 10.6, imaginary part: 1.0) (reflective layer) ⁇ Tetraite SC (aluminum deposition PET) manufactured by Oike Industry Co., Ltd.
  • the surface resistance value R 1 ( ⁇ / ⁇ ) of the resistance layer the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , the absorption amount A 1 (dB) at f 0 ⁇ 7 (GHz), A 0 ⁇ A 1 , absorption A 2 (dB) at f 0 +7 (GHz), absolute value of reflection coefficient ⁇ at peak frequency f 0 , absorption B 1 (dB) at f 0 ⁇ 2 (GHz),
  • a Table 1 shows the absolute values of the absorption B 2 (dB), A 0 -B 2 at 0 ⁇ B 1 , f 0 +2 ( GHz), and the difference ⁇ A (dB) between the maximum and minimum absorption.
  • the electromagnetic wave absorber that exhibits the maximum absorption A 0 of 15 dB or less in the frequency band and satisfies at least one of the above formulas (1) and (2) is 15 dB It was found that ⁇ A is sufficiently small compared to an electromagnetic wave absorber that exhibits a large maximum absorption A0 or does not satisfy either of the above formulas (1) and (2).
  • the surface resistance value R 1 ( ⁇ / ⁇ ) of the resistance layer the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , the absorption amount A 1 (dB) at f 0 ⁇ 7 (GHz), A 0 ⁇ A 1 , absorption A 2 (dB) at f 0 +7 (GHz), absolute value of reflection coefficient ⁇ at peak frequency f 0 , absorption B 1 (dB) at f 0 ⁇ 2 (GHz),
  • a Table 2 shows the absolute values of the absorption B 2 (dB), A 0 -B 2 at 0 ⁇ B 1 , f 0 +2 (GHz), and the difference ⁇ A (dB) between the maximum and minimum absorption.
  • the electromagnetic wave absorber that exhibits a maximum absorption A0 of 15 dB or less in the frequency band and satisfies at least one of the above formulas (1) and (2) has a maximum absorption of greater than 15 dB. It was found that ⁇ A is sufficiently small compared to the electromagnetic wave absorber that exhibits the amount A of 0 or does not satisfy any of the above formulas (1) and (2).
  • the surface resistance value R 1 ( ⁇ / ⁇ ) of the resistance layer the absorption amount (maximum absorption amount) A 0 (dB) at the peak frequency f 0 , the absorption amount A 1 (dB) at f 0 ⁇ 7 (GHz), A 0 ⁇ A 1 , absorption A 2 (dB) at f 0 +7 (GHz), absolute value of reflection coefficient ⁇ at peak frequency f 0 , absorption B 1 (dB) at f 0 ⁇ 2 (GHz),
  • a Table 3 shows the absolute values of the absorption B 2 (dB) at 0 ⁇ B 1 , f 0 +2 (GHz), A 0 ⁇ B 2 , and the difference ⁇ A (dB) between the maximum and minimum absorption.
  • the electromagnetic wave absorber that exhibits a maximum absorption A0 of 15 dB or less in the frequency band and satisfies at least one of the above formulas (1) and (2) has a maximum absorption of greater than 15 dB. It was found that ⁇ A is sufficiently small compared to the electromagnetic wave absorber that exhibits the amount A of 0 or does not satisfy any of the above formulas (1) and (2).
  • FIG. 7 is a cross-sectional view illustrating one embodiment of the sensing system of the present disclosure.
  • the sensing system 200 includes an electromagnetic wave absorber 100, an electromagnetic wave transmitting/receiving device capable of transmitting and receiving electromagnetic waves in a frequency band absorbed by the electromagnetic wave absorber 100, and processing the received electromagnetic waves.
  • a device 201 is provided in the space S.
  • the sensing system 200 when an electromagnetic wave in a specific frequency band transmitted from the electromagnetic wave transmitting/receiving device 201 is incident from the resistive layer 10 side, the electromagnetic wave passes through the resistive layer 10 and the dielectric layer 20, and is reflected by the reflective layer 30. reflected. At this time, in the dielectric layer 20, the incident electromagnetic wave and the reflected reflected wave weaken each other, thereby absorbing the electromagnetic wave. However, even in this case, the maximum absorption is 15 dB or less, and at least one of the above formulas (1) and (2) is satisfied, so that the difference between the maximum absorption and the minimum absorption in the above frequency band is reduced. can do.
  • the intensity of the electromagnetic waves in the frequency band transmitted from the electromagnetic wave transmitting/receiving device 201 is constant, in the electromagnetic waves received by the electromagnetic wave transmitting/receiving device 201, the strength of the electromagnetic waves other than the specific frequency is increased, A decrease in the strength of the electromagnetic waves of the frequency is sufficiently suppressed. Therefore, in the sensing system 200, the S/N ratio of the electromagnetic wave of a specific frequency is suppressed, and it becomes easy to recognize it as a signal. It becomes possible to go to
  • the electromagnetic wave transmitting/receiving device 201 is, for example, a radar device.
  • Radar devices include pulse radar devices and Frequency Modulation-Continuous Wave (FM-CW) radar devices.
  • FM-CW radar system is preferable because a high S/N ratio can be achieved without high transmission power from the radar system.
  • a radar device has a transmitting antenna, a receiving antenna, a transmitting section, a receiving section, and a signal processing section. However, if the radar device has a duplexer that switches between transmission and reception, the transmitting antenna can also serve as the receiving antenna.
  • the sensing system 200 is, for example, a system that detects movements of elderly people.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

電磁波吸収体は、抵抗層、誘電体層及び反射層をこの順に備え、特定の周波数帯の電磁波を吸収する干渉型の電磁波吸収体である。この電磁波吸収体は、上記周波数帯において15dB以下の最大吸収量A0を示し、かつ、下記式(1)及び(2)の少なくとも一方を満たす。 A0-A1≦8(dB)・・・(1) A0-A2≦8(dB)・・・(2) (上記式(1)又は(2)中、吸収量が最大であるときのピーク周波数をf0(GHz)とした場合に、A1は、f0―7(GHz)における吸収量(dB)を表し、A2は、f0+7(GHz)における吸収量(dB)を表す。)

Description

電磁波吸収体及びセンシングシステム
 本開示は、電磁波吸収体及びセンシングシステムに関する。
 近年、無線LAN(Local AreaNetwork)等、無線通信による情報伝送技術がオフィス、工場、倉庫等において利用されている。このようなオフィス等においては、外部からの電波、複数の通信装置間の相互作用、又は通信装置と壁や床などの建物の一部との間の相互作用により電波妨害、干渉などの電波障害が発生する。こうした電波障害を防止するために、オフィス等においては、壁、天井又は床に電磁波吸収体が配設されることがある。
 電磁波吸収体は、干渉型と透過型に大別される。干渉型の電磁波吸収体は、入射する電磁波と反射する電磁波とを干渉により弱め合せて電磁波を低減するものである。透過型の電磁波吸収体は、電磁波吸収能を有する磁性体や誘電体を利用し、これらを含む層に電磁波を通過させることで電磁波を低減するものである。中でも、特定の周波数の電磁波を吸収する誘電体の材料設計が不要であり、誘電率に応じた厚さの調整で任意の周波数の電磁波を反射減衰させることができることから、干渉型の電磁波吸収体がよく用いられている。例えば下記特許文献1には、抵抗層、誘電体層及び反射層をこの順に備える干渉型の電磁波吸収体が開示されている。このような干渉型の電磁波吸収体は、抵抗層に用いる材料の表面抵抗値を最適化することで特定の周波数において、高い吸収量を確保している。
特開平10-13082号公報
 ところで、近年、社会課題である少子高齢化の進行や新型コロナウイルス感染症の拡大により、レーダー技術を用いた一人暮らし高齢者の安心見守りシステム、非接触・非対面でのセンシング技術の需要が急激に高まっている。中でも、ミリ波帯域のレーダーを応用した、転倒検知、在/不在モニタリング、人の呼吸や心拍の検知等のセンシング技術が今大きな注目を集めている。こうした用途での使用を想定したセンシングシステムは、レーダーから送信される特定の帯域(例えば60-66GHz)を複数の周波数帯に分け、複数の周波数帯を使い分けることで位置情報などのセンシングを行っている。
 しかし、上記特許文献1に記載の電磁波吸収体は、以下に示す課題を有していた。
 すなわち、上記特許文献1に記載の電磁波吸収体は、抵抗層に用いる材料の表面抵抗値を最適化することで特定の周波数において高い吸収量を確保しているが、その一方で、特定の周波数からずれるにつれて吸収量は急激に減少していく。このため、レーダーから送信される周波数帯を構成する複数の周波数帯の電磁波が電磁波吸収体に入射されると、壁等に設置された電磁波吸収体において特定の周波数の電磁波が大きく吸収され、その周波数以外の電磁波は十分に吸収されなくなる。その結果、例えばレーダーから送信される複数の周波数帯の電磁波の強度が一定である場合、レーダーで受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくなっても、特定の周波数の電磁波の強度はかなり小さくなる。このため、センシングシステムにおいて、特定の周波数の電磁波については、S/N比がかなり小さくなり、信号として認識しにくくなるため、センシングを適切に行うことが困難となる。ここで、センシングシステムにおいて、プログラムを導入することで、特定の周波数の電磁波の強度を補正することも考えられるが、そのようなプログラムは、複雑なプログラミングを必要とするため、プログラムの開発に多大な時間とコストがかかることになる。
 本開示は、上記課題に鑑みてなされたものであり、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングを適切に行わせることができる電磁波吸収体及びセンシングシステムを提供することを目的とする。
 本発明者らは上記課題が生じる原因について検討した。その結果、上記課題が生じる原因が、センシングシステムのレーダーから送信される特定の周波数帯において、特定の周波数の電磁波が大きく吸収され、その特定の周波数からずれた周波数の電磁波の吸収量が小さいため、その特定の周波数帯における電磁波の最大吸収量と最小吸収量との差が大きくなることにあるのではないかと本発明者らは考えた。そこで、本発明者らは、特定の周波数帯における電磁波の最大吸収量と最小吸収量との差を小さくするべく鋭意研究を重ねた結果、以下の開示により上記課題を解決し得ることを見出した。
 すなわち、本開示は、抵抗層、誘電体層及び反射層をこの順に備え、特定の周波数帯の電磁波を吸収する干渉型の電磁波吸収体であって、前記周波数帯において15dB以下の最大吸収量Aを示し、かつ、下記式(1)及び(2)の少なくとも一方を満たす、電磁波吸収体である。
-A≦8(dB)・・・(1)
-A≦8(dB)・・・(2)
(上記式(1)又は(2)中、吸収量が最大であるときのピーク周波数をf(GHz)とした場合に、Aは、f―7(GHz)における吸収量(dB)を表し、Aは、f+7(GHz)における吸収量(dB)を表す。)
 この電磁波吸収体によれば、電磁波吸収体で吸収される周波数帯の電磁波を送信しかつ受信し、受信される電磁波を処理することが可能な電磁波送受信装置を備えるセンシングシステムにおいて、電磁波送受信装置から送信される特定の周波数帯の電磁波が抵抗層側から入射されると、電磁波は抵抗層、誘電体層を通過し、反射層で反射される。このとき、誘電体層において、入射される電磁波と反射される反射波とが互いに弱め合うことで電磁波が吸収されるため、特定の周波数の電磁波の吸収量が最大となる。但し、この場合でも、電磁波吸収体が15dB以下の最大吸収量を示し、かつ、上記式(1)及び(2)の少なくとも一方を満たすことで、上記周波数帯において最大吸収量と最小吸収量との差を小さくすることができる。このため、電磁波送受信装置から送信される周波数帯の電磁波の強度が一定である場合、電磁波送受信装置で受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくしたまま、特定の周波数の電磁波の強度の低下が十分に抑制される。このため、センシングシステムにおいて、特定の周波数の電磁波について、S/N比の低下が抑制され、信号として認識しやすくなるため、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングを適切に行わせることが可能となる。
 本開示の電磁波吸収体においては、下記式(3)~(5)により算出される反射係数Γの絶対値が、ピーク周波数f(GHz)において3.12~5.62であることが好ましい。
Figure JPOXMLDOC01-appb-M000002
(上記式(3)~(5)において、Γは反射係数、Zは、前記抵抗層のうち前記反射層と反対側の面から見込んだ入力インピーダンス(Ω/□)、Zは、真空のインピーダンス(Ω/□)、Z´は、前記抵抗層の前記反射層側から前記反射層を見込んだ入力インピーダンス(Ω/□)、Rは前記抵抗層の表面抵抗値(Ω/□)、εは、前記誘電体層の複素比誘電率、dは前記誘電体層の厚さ(μm)、λは、入射される電磁波の波長(μm)を表す。)
 この場合、反射係数Γの絶対値が、ピーク周波数f(GHz)において5.62以下であることで、特定の周波数帯における特定の周波数の電磁波がより十分に吸収されるため、電波障害をより抑制することができる。また、反射係数Γの絶対値が、ピーク周波数f(GHz)において3.12以上であることで、上記周波数帯において最大吸収量と最小吸収量との差をより小さくすることができる。このため、電磁波送受信装置から送信される周波数帯の電磁波の強度が一定である場合、電磁波送受信装置で受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくしたまま、特定の周波数の電磁波の強度の低下がより抑制される。このため、センシングシステムにおいて、特定の周波数の電磁波について、S/N比の低下がより抑制され、信号としてより認識しやすくなるため、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングをより適切に行わせることが可能となる。
 上記電磁波吸収体は、下記式(6)及び(7)の少なくとも一方を満たすことが好ましい。
-B≦0.5(dB)・・・(6)
-B≦0.5(dB)・・・(7)
(上記式(6)又は(7)中、Bは、f―2(GHz)における吸収量(dB)を表し、Bは、f+2(GHz)における吸収量(dB)を表す。)
 この場合、センシングシステムにおいて、特定の周波数の電磁波について、S/N比の低下がより一層抑制され、信号としてより一層認識しやすくなるため、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングをより一層適切に行わせることが可能となる。
 上記電磁波吸収体は、前記式(6)及び(7)の両方を満たすことが好ましい。
 この場合、電磁波吸収体が、センシングシステムに用いられる周波数において、特定の周波数帯における電磁波の最大吸収量と最小吸収量との差(以下、「吸収量の差」ともいうことがある)を少なくすることができる。
 上記電磁波吸収体においては、前記誘電体層の複素比誘電率の実部が10以上であることが好ましい。
 この場合、誘電体層の誘電率を大きくすることが可能となり、誘電体層の厚さを低減できるため、電磁波吸収体をより薄型化することができる。
 上記電磁波吸収体は、前記周波数帯において3dB以上の最大吸収量Aを示してもよい。
 上記電磁波吸収体は、前記式(1)及び(2)の両方を満たすことが好ましい。
 この場合、電磁波吸収体が、センシングを簡易に精度よく行うことができる。
 また、本開示は、上述した電磁波吸収体と、前記電磁波吸収体で吸収される前記周波数帯の電磁波を送信しかつ受信し、受信される電磁波を処理することが可能な電磁波送受信装置と、を備えるセンシングシステムである。
 このセンシングシステムによれば、電磁波送受信装置から送信される特定の周波数帯の電磁波が抵抗層側から入射されると、電磁波は抵抗層、誘電体層を通過し、反射層で反射される。このとき、誘電体層において、入射される電磁波と反射される反射波とが互いに弱め合うことで電磁波が吸収されるため、特定の周波数の電磁波の吸収量が最大となる。但し、この場合でも、最大吸収量が15dB以下であり、かつ、上記式(1)及び(2)の少なくとも一方を満たすことで、上記周波数帯において最大吸収量と最小吸収量との差を小さくすることができる。このため、電磁波送受信装置から送信される周波数帯の電磁波の強度が一定である場合、電磁波送受信装置で受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくしたまま、特定の周波数の電磁波の強度の低下が十分に抑制される。このため、センシングシステムにおいて、特定の周波数の電磁波について、S/N比の低下が抑制され、信号として認識しやすくなるため、複雑なプログラミングを必要とするプログラムを導入することなく、センシングを適切に行うことが可能となる。
 上記センシングシステムにおいては、前記電磁波送受信装置がレーダー装置であってもよい。
 上記センシングシステムにおいては、前記レーダー装置が周波数変調連続波レーダー装置であることが好ましい。
 この場合、レーダー装置からの高い送信電力がなくても、高いS/N比を実現できる。
 本開示によれば、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングを適切に行わせることができる電磁波吸収体及びセンシングシステムが提供される。
本開示の電磁波吸収体の一実施形態を示す断面図である。 本開示の電磁波吸収体を用い、50~70GHzの周波数帯における周波数と反射減衰量(吸収量)との関係をシミュレーションにより求めたグラフである。 本開示の電磁波吸収体を用い、50~70GHzの周波数帯における周波数と反射減衰量(吸収量)との関係をシミュレーションにより求めたグラフである。 本開示の電磁波吸収体を用い、50~70GHzの周波数帯における周波数と反射減衰量(吸収量)との関係をシミュレーションにより求めたグラフである。 本開示の電磁波吸収体を用い、20~40GHzの周波数帯における周波数と反射減衰量(吸収量)との関係をシミュレーションにより求めたグラフである。 本開示の電磁波吸収体を用い、70~90GHzの周波数帯における周波数と反射減衰量(吸収量)との関係をシミュレーションにより求めたグラフである。 本開示のセンシングシステムの一実施形態を示す概略図である。
 以下、本開示の実施形態について詳細に説明する。
<電磁波吸収体>
 まず、本開示の電磁波吸収体の実施形態について図1を参照しながら説明する。図1は、本開示の電磁波吸収体の一実施形態を示す断面図である。
 図1に示すように、電磁波吸収体100は、特定の周波数帯の電磁波を吸収する干渉型の電磁波吸収体であり、抵抗層10、誘電体層20及び反射層30をこの順に備えている。なお、抵抗層10と誘電体層20は直接接着されていてもよいが、粘着剤層で接着されていてもよい。同様に、誘電体層20と反射層30も直接接着されていてもよいが、粘着剤層で接着されていてもよい。
 電磁波吸収体100は、上記周波数帯において15dB以下の最大吸収量Aを示し、かつ、下記式(1)及び(2)の少なくとも一方を満たす。
-A≦8(dB)・・・(1)
-A≦8(dB)・・・(2)
(上記式(1)又は(2)中、吸収量が最大であるときのピーク周波数をf(GHz)とした場合に、Aは、f―7(GHz)における吸収量(dB)を表し、Aは、f+7(GHz)における吸収量(dB)を表す。)
 電磁波吸収体100によれば、電磁波吸収体100で吸収される周波数帯の電磁波を送信しかつ受信し、受信される電磁波を処理することが可能な電磁波送受信装置を備えるセンシングシステムにおいて、電磁波送受信装置から送信される特定の周波数帯の電磁波が抵抗層10側から入射されると、電磁波は抵抗層10、誘電体層20を通過し、反射層30で反射される。このとき、誘電体層20において、入射される電磁波と反射される反射波とが互いに弱め合うことで電磁波が吸収されるため、特定の周波数の電磁波の吸収量が最大となる。但し、この場合でも、15dB以下の最大吸収量を示し、かつ、上記式(1)及び(2)の少なくとも一方を満たすことで、上記周波数帯において最大吸収量と最小吸収量との差を小さくすることができる。このため、電磁波送受信装置から送信される周波数帯の電磁波の強度が一定である場合、電磁波送受信装置で受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくしたまま、特定の周波数の電磁波の強度の低下が十分に抑制される。このため、センシングシステムにおいて、特定の周波数の電磁波について、S/N比の低下が抑制され、信号として認識しやすくなるため、センシングシステムにおいて複雑なプログラミングを必要とするプログラムを導入させることなく、センシングを適切に行わせることが可能となる。
 以下、抵抗層10、誘電体層20及び反射層30について詳細に説明する。
 (抵抗層)
 抵抗層10は外側から入射してきた電磁波を誘電体層20へと至らしめるための層である。抵抗層10は一般的にはインピーダンスマッチングを実現させるための層であるが、本開示では、インピーダンスマッチングを実現させないようにするための層として機能する。
 抵抗層10は、導電性無機材料及び導電性有機材料の少なくとも一方で構成される層を含む。導電性無機材料としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(AZO)、カーボン、グラフェン、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-AuおよびNiからなる群から選択される1つ以上が挙げられる。導電性無機材料の形状は特に限定されず、例えば粒子状又はワイヤー状である。導電性有機材料としては、ポリチオフェン誘導体、ポリアセチレン誘導体、ポリアニリン誘導体及びポリピロール誘導体が挙げられる。特に、導電性有機材料としては、柔軟性、成膜性、安定性、表面抵抗の観点から、ポリエチレンジオキシチオフェン(PEDOT)を含む導電性ポリマーが好ましい。抵抗層10は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PPS)との混合物(PEDOT/PSS)を含むものであってもよい。抵抗層10は、導電性無機材料及び導電性有機材料の少なくとも一方で構成される層のみで構成されてもよいが、導電性無機材料及び導電性有機材料の少なくとも一方からなる層を基材上に設けてなるものであってもよい。基材としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)などが挙げられる。特に柔軟性、成膜性、安定性、表面抵抗の観点から、抵抗層10は、PEDOTを含む導電性ポリマーからなる膜を形成してなるPETフィルムで構成されることが好ましい。
 抵抗層10の表面抵抗値は、例えば、導電性無機材料又は導電性有機材料の選定、抵抗層10の厚さの調節によって適宜設定することができる。抵抗層10の表面抵抗値は例えばロレスターGP MCP-T610(商品名、株式会社三菱化学アナリテック製)を用いて測定することができる。抵抗層10は単一の層であってもよいし、複数層から成る積層体であってもよい。
 抵抗層10の厚さ(膜厚)は、表面抵抗値Rに応じて適宜決定されるが、抵抗層10が無機材料で構成されるのであれば、0.1nm~100nmの範囲内とすることが好ましく、1nm~50nmの範囲内とすることがより好ましい。膜厚が0.1nm以上であると、抵抗層10が均一な膜として形成されやすく、抵抗層10としての機能をより十分に果たすことができる傾向がある。一方、膜厚が100nm以下であると、電磁波吸収体100が十分なフレキシビリティを保持することができ、抵抗層10の製膜後に折り曲げ、引張などの外的要因により、薄膜である抵抗層10に亀裂が生じることをより確実に防ぐことができ、かつ基材への熱による損傷や収縮を抑える傾向がある。抵抗層10が有機材料で構成されるのであれば、抵抗層10の厚さ(膜厚)は、0.1~2.0μmの範囲内とすることが好ましく、0.1~0.4μmの範囲内とすることがより好ましい。膜厚が0.1μm以上であると、抵抗層10が均一な膜として形成されやすく、抵抗層10としての機能をより十分に果たすことができる傾向がある。一方、膜厚が2.0μm以下であると、電磁波吸収体100に十分なフレキシビリティを保持させることができ、抵抗層10の成膜後に折り曲げ、引っ張りなどの外的要因により、薄膜である抵抗層10に亀裂を生じることをより確実に防ぐことができる傾向がある。
 (誘電体層)
 誘電体層20は、特定の周波数の電磁波の入射波と反射波とを干渉により弱め合わせ、入射された電磁波を減衰させるための層である。誘電体層20は樹脂を含む。樹脂としては、例えば、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリビニルホルマール樹脂、ポリ塩化ビニル樹脂、ポリアクリロニトリル樹脂、ポリメタクリル酸メチル樹脂、ポリアセタール樹脂、ポリフッ化ビニリデン樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂(尿素樹脂)、ポリクロロプレン樹脂が挙げられる。中でも、成形性に優れることから、樹脂としては、(メタ)アクリル樹脂、ポリウレタン、ポリエステル、ポリエチレン、ポリカーボネート、ポリプロピレン、ポリスチレン、ポリアミド又はこれらの2種以上の混合樹脂が好ましい。特に、樹脂の誘電率が高いと、誘電体粒子の添加量を低下させることが可能となり、(1)薄膜化、(2)成形性、(3)低コストの実現が可能になることから、樹脂としては、(メタ)アクリル樹脂、ポリウレタン樹脂又はこれらの混合樹脂が好ましい。
 誘電体層20は、樹脂の比誘電率よりも大きい比誘電率を有する誘電体粒子をさらに含んでいてもよい。誘電体粒子としては、分散の安定性、及び、誘電体層20の高誘電率化の観点から、無機化合物が好ましい。無機化合物としては、無機酸化物が好ましい。無機酸化物としては、チタン酸バリウム、酸化チタン、酸化亜鉛、酸化アルミニウム及び酸化ジルコニウムが挙げられる。中でも、無機酸化物としては、使用する際の省スペース化やロールtoロールの加工性、曲げ剛性の観点から、チタン酸バリウム、酸化チタン又は酸化アルミニウムが好ましい。
 誘電体層20の比誘電率は、特に制限されるものではないが、誘電体層20の薄型化の観点からは、大きいほど好ましい。具体的には、誘電体層20の比誘電率は、好ましくは10.0以上であり、より好ましくは15.0以上である。
 誘電体層20の複素比誘電率の実部は、特に制限されるものではないが、好ましくは10以上であり、より好ましくは15.0以上である。誘電体層20の複素比誘電率の実部が10以上であることで、誘電体層20の誘電率を大きくすることが可能となり、誘電体層20の厚さを低減できるため、電磁波吸収体100をより薄型化することができる。但し、誘電体層20の複素比誘電率の実部は、好ましくは30.0以下であり、より好ましくは20.0以下である。誘電体層20の複素比誘電率の実部が20.0以下であることで、誘電体層がより十分な強度を有することが可能となる。
 誘電体層20の厚さは、電磁波吸収体100において設定されるべき最大吸収量の値に応じて適宜調整されるが、好ましくは20μm以上であり、より好ましくは50μm以上である。誘電体層20の厚さを50μm以上とすることで、誘電体層20がより破れにくくなる。
 但し、誘電体層20の厚さは、好ましくは1000μm以下であり、より好ましくは400μm以下である。この場合、誘電体層20を抵抗層10や反射層30と積層した際に、シワ、トンネリング、デラミネーションなどの現象が起こりにくくなる。
 (反射層)
 反射層30は誘電体層20から入射してきた電磁波を反射させ、誘電体層20へと至らしめるための層である。反射層30は、例えば導電性無機材料及び導電性有機材料の少なくとも一方で構成される層を含む。導電性無機材料としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(AZO)、カーボン、グラフェン、Ag、Al、Au、Pt、Pd、Cu、Co、Cr、In、Ag-Cu、Cu-AuおよびNiからなる群から選択される1つ以上が挙げられる。導電性無機材料の形状は特に限定されず、例えば粒子状又はワイヤー状である。導電性有機材料としては、ポリチオフェン誘導体、ポリアセチレン誘導体、ポリアニリン誘導体及びポリピロール誘導体が挙げられる。反射層30は、導電性無機材料及び導電性有機材料の少なくとも一方で構成される層のみで構成されてもよいが、導電性無機材料及び導電性有機材料の少なくとも一方からなる層を基材上に設けてなるものであってもよい。基材としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)などが挙げられる。特に柔軟性、成膜性、安定性、表面抵抗の観点から、反射層30は、アルミニウム蒸着膜を形成してなるPETフィルムで構成されることが好ましい。反射層30の表面抵抗値は特に制限されるものではないが、100Ω/□以下であることが好ましい。反射層30は単一の層であってもよいし、複数層から成る積層体であってもよい。
 反射層30の厚さは特に制限されるものではないが、0.05~100μmであることが好ましく、12~80μmであることがより好ましい。膜厚が0.05μm以上であると、均一な膜を形成しやすく、反射層30としての機能をより十分に果たすことができる傾向がある。一方、膜厚が100μm以下であると、反射層30に十分なフレキシビリティを付与させることができ、電磁波吸収体100の折り曲げ、引っ張りなどの外的要因により、反射層30に亀裂が生じることをより抑制することができる傾向がある。
 (粘着層)
 粘着層は、誘電体層20と抵抗層10,又は、誘電体層20と反射層30とを接着する層である。粘着剤層としては、例えば、ウレタン系粘着剤、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等の粘着剤を用いることができる。中でも、誘電体層20と抵抗層10,及び、誘電体層20と反射層30とを効果的に接着することが可能でありかつ安価であることから、ウレタン系粘着剤が好ましく用いられる。
 (最大吸収量)
 特定の周波数帯において最大吸収量Aは15dB以下であるが、好ましくは13dB以下である。但し、最大吸収量Aは好ましくは3dB以上であり、より好ましくは5dB以上である。
 最大吸収量Aは、例えば誘電体層20の厚さ及び複素比誘電率を適宜調整することにより調整することができる。また、最大吸収量Aは、抵抗層10の表面抵抗値を調整することによっても調整することができる。
 (A-A及びA-A
 電磁波吸収体100は、上記式(1)及び(2)の少なくとも一方を満たす。したがって、電磁波吸収体100は、上記式(1)及び(2)の両方を満たしてもよく、上記式(1)又は(2)のいずれか一方を満たしてもよい。但し、電磁波吸収体100は、センシングを簡易に精度よく行う観点から、上記式(1)及び(2)の両方を満たすことが好ましい。
 A-Aは、8dB以下であればよいが、センシングシステムに用いられる周波数において、吸収量の差を少なくする観点から、好ましくは5dB以下であり、より好ましくは3dB以下である。
 A-Aは、8dB以下であればよいが、センシングシステムに用いられる周波数において、吸収量の差を少なくする観点から、好ましくは5dB以下であり、より好ましくは3dB以下である。
 A-A及びA-Aは互いに同一でもよく、異なっていてもよい。
 (反射係数Γの絶対値)
 電磁波吸収体100においては、下記式(3)~(5)により算出される反射係数Γの絶対値は特に制限されるものではないが、ピーク周波数f(GHz)において3.12~5.62であることが好ましい。
Figure JPOXMLDOC01-appb-M000003
 上記式(3)~(5)において、Γは反射係数、Zは、抵抗層10のうち反射層30と反対側の面から見込んだ入力インピーダンス(Ω/□)、Zは、真空のインピーダンス(Ω/□)、Z´は、抵抗層10の反射層30側から反射層30を見込んだ入力インピーダンス(Ω/□)、Rは抵抗層10の表面抵抗値(Ω/□)、εは、誘電体層20の複素比誘電率、dは誘電体層20の厚さ(μm)、λは、入射される電磁波の波長(μm)を表す。
 反射係数Γは、Z、R、d、λ及びεが決まれば、上記式(3)~(5)を用いて求めることができる。
 反射係数Γの絶対値はより好ましくは3.2~5.62であり、特に好ましくは4.0~5.62である。
 反射係数Γの絶対値は、抵抗層10の表面抵抗値を調整することによって調整することができる。また、反射係数Γの絶対値は、誘電体層20の厚さ及び複素比誘電率を適宜調整することにより調整することができる。
 (A-B及びA-B
 電磁波吸収体100は、上記式(6)及び(7)の少なくとも一方を満たすことが好ましい。したがって、電磁波吸収体100は、上記式(6)及び(7)の両方を満たしてもよく、上記式(6)又は(7)のいずれか一方を満たしてもよい。但し、電磁波吸収体100は、センシングシステムに用いられる周波数において、吸収量の差を少なくする観点から、上記式(6)及び(7)の両方を満たすことが好ましい。
 A-Bは、0.5dB以下であればよいが、センシングを簡易に精度よく行う観点から、好ましくは0.4dB以下であり、より好ましくは0.3dB以下である。
 A-Bは、0.5dB以下であればよいが、センシングを簡易に精度よく行う観点から、好ましくは0.4dB以下であり、より好ましくは0.3dB以下である。
 電磁波吸収体100は、誘電体層20に対して、抵抗層10及び反射層30をそれぞれドライラミネーション法又は熱ラミネーション法を用いて貼り付けることにより得ることができる。
 電磁波吸収体100で吸収される電磁波の特定の周波数帯は特に制限されるものではなく、通常は1~350GHzである。特定の周波数帯は、電磁波吸収体100の用途に応じて適宜決定することができる。ここで、特定の周波数帯は、電磁波の吸収量が最大となる周波数が含まれるように設定される。電磁波の吸収量が最大となる周波数は、誘電体層20の厚さ及び誘電体層20の複素比誘電率の値を適宜調整することにより調整することができる。
 (検証)
 次に、本開示の電磁波吸収体により、特定の周波数帯において最大吸収量と最小吸収量との差を小さくすることができるかどうかについて、シミュレーションにより検証を行った。このとき、電磁波吸収体を構成する抵抗層、誘電体層及び反射層として以下の層を用いると仮定した。なお、複素比誘電率は、JIS-C2138:2007に準拠して測定されるものである。具体的には、複素比誘電率は、空洞共振器法誘電率測定装置(アジレントテクノロジー株式会社社製、製品名「Agilent E4991A RFインピーダンス/マテリアル・アナライザ」)を用いて、周波数1GHz、温度25℃、相対湿度50%の条件にて測定される値である。
(抵抗層)
・抵抗層A:東レ製PET(S-10、厚さ50μm)にHeraeus製PEDOT(Clevios PH1000)を塗工したもの。
・抵抗層B:東レ製PET(S-10、厚さ50μm)に、ITOターゲットを用いてスパッタリングを行い、ITO膜を形成したもの。
・抵抗層C:東レ製PET(S-10、厚さ50μm)に、モリブデン含有ターゲットを用いてスパッタリングを行い、モリブデン含有膜を形成したもの。
(誘電体層)
・誘電体層A:信越化学工業製シリコーン粘着剤KR-3700を用いてなる塗工膜(複素比誘電率の実部:3.2、虚部:0.0)
・誘電体層B:サイデン化学製サイビノールOC3405に、堺化学工業製ペロブスカイトBT-01(チタン酸バリウム)を体積分率35%となるように配合してなる塗工膜(複素比誘電率の実部:10.6、虚部:1.0)
(反射層)
・尾池工業製テトライトSC(アルミニウム蒸着PET)
(シミュレーションA1~A20)
 反射層としては上記反射層を用い、抵抗層及び誘電体層としては、上記抵抗層及び誘電体層のうち表1に示す抵抗層及び誘電体層を用いて電磁波吸収体を構成することとした。そして、この電磁波吸収体について、周波数帯を表1に示すとおり50~70GHzに設定したときの、周波数と吸収量との関係をシミュレーションにより求めた。結果を図2~図4に示す。なお、図2~図4において、反射減衰量は、吸収量に-1を乗じた値である。
 また、抵抗層の表面抵抗値R(Ω/□)、ピーク周波数fにおける吸収量(最大吸収量)A(dB)、f―7(GHz)における吸収量A(dB)、A-A、f+7(GHz)における吸収量A(dB)、ピーク周波数fにおける反射係数Γの絶対値、f―2(GHz)における吸収量B(dB)、A-B、f+2(GHz)における吸収量B(dB)、A-B、最大吸収量と最小吸収量との差ΔA(dB)の絶対値を表1に示す。図2~図4及び表1に示す結果より、周波数帯において15dB以下の最大吸収量Aを示し、かつ、上記式(1)及び(2)の少なくとも一方を満たす電磁波吸収体は、15dBより大きい最大吸収量Aを示すか、上記式(1)及び(2)のいずれも満たさない電磁波吸収体に比べて、ΔAが十分に小さくなることが分かった。
(シミュレーションB1~B4)
 反射層としては上記反射層を用い、抵抗層及び誘電体層としては、上記抵抗層及び誘電体層のうち表2に示す抵抗層及び誘電体層を用いて電磁波吸収体を構成することとした。そして、この電磁波吸収体について、周波数帯を表2に示すとおり20~40GHzに設定したときの、周波数と吸収量との関係をシミュレーションにより求めた。結果を図5に示す。なお、図5において、反射減衰量は、吸収量に-1を乗じた値である。
 また、抵抗層の表面抵抗値R(Ω/□)、ピーク周波数fにおける吸収量(最大吸収量)A(dB)、f―7(GHz)における吸収量A(dB)、A-A、f+7(GHz)における吸収量A(dB)、ピーク周波数fにおける反射係数Γの絶対値、f―2(GHz)における吸収量B(dB)、A-B、f+2(GHz)における吸収量B(dB)、A-B、最大吸収量と最小吸収量との差ΔA(dB)の絶対値を表2に示す。図5及び表2に示す結果より、周波数帯において15dB以下の最大吸収量Aを示し、かつ、上記式(1)及び(2)の少なくとも一方を満たす電磁波吸収体は、15dBより大きい最大吸収量Aを示すか、上記式(1)及び(2)のいずれも満たさない電磁波吸収体に比べて、ΔAが十分に小さくなることが分かった。
(シミュレーションC1~C4)
 反射層としては上記反射層を用い、抵抗層及び誘電体層としては、上記抵抗層及び誘電体層のうち表3に示す抵抗層及び誘電体層を用いて電磁波吸収体を構成することとした。そして、この電磁波吸収体について、周波数帯を表3に示すとおり70~90GHzに設定したときの、周波数と吸収量との関係をシミュレーションにより求めた。結果を図6に示す。なお、図6において、反射減衰量は、吸収量に-1を乗じた値である。
 また、抵抗層の表面抵抗値R(Ω/□)、ピーク周波数fにおける吸収量(最大吸収量)A(dB)、f―7(GHz)における吸収量A(dB)、A-A、f+7(GHz)における吸収量A(dB)、ピーク周波数fにおける反射係数Γの絶対値、f―2(GHz)における吸収量B(dB)、A-B、f+2(GHz)における吸収量B(dB)、A-B、最大吸収量と最小吸収量との差ΔA(dB)の絶対値を表3に示す。図6及び表3に示す結果より、周波数帯において15dB以下の最大吸収量Aを示し、かつ、上記式(1)及び(2)の少なくとも一方を満たす電磁波吸収体は、15dBより大きい最大吸収量Aを示すか、上記式(1)及び(2)のいずれも満たさない電磁波吸収体に比べて、ΔAが十分に小さくなることが分かった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<センシングシステム>
 次に、本開示のセンシングシステムの実施形態について説明する。図7は、本開示のセンシングシステムの一実施形態を示す断面図である。
 図7に示すように、センシングシステム200は、電磁波吸収体100と、電磁波吸収体100で吸収される周波数帯の電磁波を送信しかつ受信し、受信される電磁波を処理することが可能な電磁波送受信装置201とを空間S内に備える。
 センシングシステム200によれば、電磁波送受信装置201から送信される特定の周波数帯の電磁波が抵抗層10側から入射されると、電磁波は抵抗層10、誘電体層20を通過し、反射層30で反射される。このとき、誘電体層20において、入射される電磁波と反射される反射波とが互いに弱め合うことで電磁波が吸収されるため、特定の周波数の電磁波の吸収量が最大となる。但し、この場合でも、最大吸収量が15dB以下であり、かつ、上記式(1)及び(2)の少なくとも一方を満たすことで、上記周波数帯において最大吸収量と最小吸収量との差を小さくすることができる。このため、電磁波送受信装置201から送信される周波数帯の電磁波の強度が一定である場合、電磁波送受信装置201で受信される電磁波においては、特定の周波数以外の電磁波の強度は大きくしたまま、特定の周波数の電磁波の強度の低下が十分に抑制される。このため、センシングシステム200において、特定の周波数の電磁波について、S/N比の低下が抑制され、信号として認識しやすくなるため、複雑なプログラミングを必要とするプログラムを導入することなく、センシングを適切に行うことが可能となる。
 電磁波送受信装置201としては、例えばレーダー装置などが挙げられる。レーダー装置としては、パルスレーダー装置及び周波数変調連続波(FM-CW:Frequency Modulation-Continuous Wave)レーダー装置が挙げられる。中でも、レーダー装置からの高い送信電力がなくても高いS/N比を実現できることから、FM-CWレーダー装置が好ましい。
 レーダー装置は、送信用アンテナ、受信用アンテナ、送信部、受信部及び信号処理部を有する。但し、レーダー装置が、送信と受信とを切り替えるデュプレクサを有する場合には、送信用アンテナは受信用アンテナを兼ねることができる。
 センシングシステム200としては、例えば高齢者などの動きを検知するシステムが挙げられる。
 10…抵抗層、20…誘電体層、30…反射層、100…電磁波吸収体、200…センシングシステム、201…電磁波送受信装置。
 

 

Claims (10)

  1.  抵抗層、誘電体層及び反射層をこの順に備え、特定の周波数帯の電磁波を吸収する干渉型の電磁波吸収体であって、
     前記周波数帯において15dB以下の最大吸収量Aを示し、かつ、下記式(1)及び(2)の少なくとも一方を満たす、電磁波吸収体。
    -A≦8(dB)・・・(1)
    -A≦8(dB)・・・(2)
    (前記式(1)又は(2)中、吸収量が最大であるときのピーク周波数をf(GHz)とした場合に、Aは、f―7(GHz)における吸収量(dB)を表し、Aは、f+7(GHz)における吸収量(dB)を表す。)
  2.  下記式(3)~(5)により算出される反射係数Γの絶対値が、ピーク周波数f(GHz)において3.12~5.62である、請求項1に記載の電磁波吸収体。
    Figure JPOXMLDOC01-appb-M000001
    (前記式(3)~(5)において、Γは反射係数、Zは、前記抵抗層のうち前記反射層と反対側の面から見込んだ入力インピーダンス(Ω/□)、Zは、真空のインピーダンス(Ω/□)、Z´は、前記抵抗層の前記反射層側から前記反射層を見込んだ入力インピーダンス(Ω/□)、Rは前記抵抗層の表面抵抗値(Ω/□)、εは、前記誘電体層の複素比誘電率、dは前記誘電体層の厚さ(μm)、λは、入射される電磁波の波長(μm)を表す。)
  3.  下記式(6)及び(7)の少なくとも一方を満たす、請求項1又は2に記載の電磁波吸収体。
    -B≦0.5(dB)・・・(6)
    -B≦0.5(dB)・・・(7)
    (前記式(6)又は(7)中、Bは、f―2(GHz)における吸収量(dB)を表し、Bは、f+2(GHz)における吸収量(dB)を表す。)
  4.  前記式(6)及び(7)の両方を満たす、請求項3に記載の電磁波吸収体。
  5.  前記誘電体層の複素比誘電率の実部が10以上である、請求項1~4のいずれか一項に記載の電磁波吸収体。
  6.  前記周波数帯において3dB以上の最大吸収量Aを示す、請求項1~5のいずれか一項に記載の電磁波吸収体。
  7.  前記式(1)及び(2)の両方を満たす、請求項1~6のいずれか一項に記載の電磁波吸収体。
  8.  請求項1~7のいずれか一項に記載の電磁波吸収体と、
     前記電磁波吸収体で吸収される前記周波数帯の電磁波を送信しかつ受信し、受信される電磁波を処理することが可能な電磁波送受信装置と、
    を備えるセンシングシステム。
  9.  前記電磁波送受信装置がレーダー装置である、請求項8に記載のセンシングシステム。
  10.  前記レーダー装置が、周波数変調連続波レーダー装置である、請求項9に記載のセンシングシステム。

     
PCT/JP2023/005325 2022-02-25 2023-02-15 電磁波吸収体及びセンシングシステム WO2023162831A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022027728A JP2023124129A (ja) 2022-02-25 2022-02-25 電磁波吸収体及びセンシングシステム
JP2022-027728 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162831A1 true WO2023162831A1 (ja) 2023-08-31

Family

ID=87765688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005325 WO2023162831A1 (ja) 2022-02-25 2023-02-15 電磁波吸収体及びセンシングシステム

Country Status (3)

Country Link
JP (1) JP2023124129A (ja)
TW (1) TW202344183A (ja)
WO (1) WO2023162831A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534052A (ja) * 2012-09-07 2015-11-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー トリム部品とレーダセンサとを有する装置、自動車、および装置の製造方法
WO2018163584A1 (ja) * 2017-03-10 2018-09-13 マクセルホールディングス株式会社 電磁波吸収シート
WO2021199917A1 (ja) * 2020-03-30 2021-10-07 株式会社 ニフコ 電波吸収体の製造方法、電波吸収体およびレーダ機構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534052A (ja) * 2012-09-07 2015-11-26 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー トリム部品とレーダセンサとを有する装置、自動車、および装置の製造方法
WO2018163584A1 (ja) * 2017-03-10 2018-09-13 マクセルホールディングス株式会社 電磁波吸収シート
WO2021199917A1 (ja) * 2020-03-30 2021-10-07 株式会社 ニフコ 電波吸収体の製造方法、電波吸収体およびレーダ機構

Also Published As

Publication number Publication date
TW202344183A (zh) 2023-11-01
JP2023124129A (ja) 2023-09-06

Similar Documents

Publication Publication Date Title
JP6453295B2 (ja) 電磁波吸収体
CN110771274B (zh) 电磁波吸收体和带电磁波吸收体的成形品
EP1853103A1 (en) Radio wave shielding body
JP2011233642A (ja) 電磁波吸収体
JP7350048B2 (ja) 電磁波吸収体
CN110771273B (zh) 电磁波吸收体及带有电磁波吸收体的成形品
US11978959B2 (en) λ/4 type radio wave absorber
WO2023162831A1 (ja) 電磁波吸収体及びセンシングシステム
CN111837464B (zh) 电磁波吸收片
JP2023124127A (ja) 電磁波吸収体及びセンシングシステム
US6700525B2 (en) Radiation absorber
EP4250891A1 (en) Designed electromagnetic wave suppressor, construction material equipped with same, electromagnetic wave suppression chamber, and system
EP3912225A1 (en) Combined antenna and radome arrangement
WO2017104711A1 (ja) 電磁波吸収体
JP2021192426A (ja) λ/4型電波吸収体用抵抗膜部材
WO2020189350A1 (ja) 電波吸収体及び電波吸収体用キット
JP2023100090A (ja) 電磁波吸収体用誘電体シート及び電磁波吸収体
JP2021103785A (ja) 電波吸収体
US11362431B1 (en) Optically transparent radar absorbing material (RAM)
WO2023054028A1 (ja) 電磁波反射シート、ロール体、電磁波反射シートの製造方法および通信システム
JP7178825B2 (ja) 電波吸収用積層体、電波吸収体、及びミリ波レーダ
WO2023042799A1 (ja) 電磁波抑制体
WO2022138642A1 (ja) 電磁波抑制体
EP4266850A1 (en) Method for manufacturing dielectric layer, resin composition, and laminate including dielectric layer
WO2021060353A1 (ja) λ/4型電波吸収体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759832

Country of ref document: EP

Kind code of ref document: A1