WO2018163436A1 - 車載型建材加工システムおよび建材加工方法 - Google Patents

車載型建材加工システムおよび建材加工方法 Download PDF

Info

Publication number
WO2018163436A1
WO2018163436A1 PCT/JP2017/009852 JP2017009852W WO2018163436A1 WO 2018163436 A1 WO2018163436 A1 WO 2018163436A1 JP 2017009852 W JP2017009852 W JP 2017009852W WO 2018163436 A1 WO2018163436 A1 WO 2018163436A1
Authority
WO
WIPO (PCT)
Prior art keywords
building material
vehicle
cutting means
clamper
cutting
Prior art date
Application number
PCT/JP2017/009852
Other languages
English (en)
French (fr)
Inventor
森 和彦
洋一 西河
歩 渡部
雄介 皆川
Original Assignee
飯田グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飯田グループホールディングス株式会社 filed Critical 飯田グループホールディングス株式会社
Priority to CA3055409A priority Critical patent/CA3055409C/en
Priority to CN201780088259.8A priority patent/CN110430979B/zh
Priority to JP2019504293A priority patent/JP6721916B2/ja
Priority to US16/492,533 priority patent/US11318621B2/en
Priority to RU2019131680A priority patent/RU2725546C1/ru
Priority to PCT/JP2017/009852 priority patent/WO2018163436A1/ja
Publication of WO2018163436A1 publication Critical patent/WO2018163436A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0055Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0096Programme-controlled manipulators co-operating with a working support, e.g. work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/14Vehicles adapted to transport, to carry or to comprise special loads or objects the object being a workshop for servicing, for maintenance, or for carrying workmen during work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27CPLANING, DRILLING, MILLING, TURNING OR UNIVERSAL MACHINES FOR WOOD OR SIMILAR MATERIAL
    • B27C9/00Multi-purpose machines; Universal machines; Equipment therefor
    • B27C9/02Multi-purpose machines; Universal machines; Equipment therefor with a single working spindle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Definitions

  • the present invention relates to an in-vehicle building material processing system and a building material processing method capable of moving to a building site and cutting the building material used locally.
  • Patent Document 1 discloses a self-propelled various square member manufacturing machine that does not require any other power and can be freely moved by self-powered stool.
  • Patent Document 2 discloses an on-site sawing apparatus (mobile sawing machine) that can produce a square bar or a plate by processing a log cut out on site.
  • the self-propelled various timber making machines disclosed in Patent Document 1 are capable of local processing of small-diameter trees and thinned wood left in the forest, and are intended to reduce various expenses associated with wood production.
  • a lumber machine that can be loaded onto a light truck bed and transported to the forest, small-diameter trees and thinned wood are processed locally, and the processed wood is loaded onto the light truck bed together with the saw machine. And take it home.
  • the power of the lumber apparatus is obtained through a V-belt pulley that rotates coaxially with the rear wheel of the light truck.
  • the on-site sawing device (mobile sawing machine) of Patent Document 2 has the following characteristics.
  • a log placing table that has a pantograph-type lifting function on which logs are placed
  • a log holding movement unit that supports a log rotation holding part that has a rotation function to hold both ends of the log
  • a log placing table and a log holding moving unit
  • This movable sawing machine is a chuck plate that has chuck pins at the ends that hold both ends of the raw wood, uses the centering mechanism for centering, and moves the raw wood holding moving part on the rail to attach the chuck to the chuck plate. Fix the log by pressing the pins against both ends of the log. Furthermore, this mobile sawing machine uses a wheel having a plurality of rotation angle adjustment holes and a rotation angle adjustment mechanism having a positioning pin, and cuts the raw wood with a cutter in the longitudinal direction to produce a square and a plate. That's it.
  • the self-propelled various timber making machines of Patent Document 1 and the mobile sawing machine of Patent Document 2 are vehicle-mounted portable sawing devices for sawing timber obtained in the forest locally, such as houses Building materials that were brought to the construction site and consumed on the spot were not processed to the state just before installation.
  • the present invention has been made in view of the above problems, and even if there are no skilled workers or a small number of workers, it can be easily cut at a construction site instead of a factory. It is an object of the present invention to provide a building material processing system and a building material processing method that do not require attention for avoiding the problems of contact with the clamper and damage to each other.
  • the invention according to claim 1 is an in-vehicle building material processing system (100, 101, 103) that has a function of cutting a building material (1) used at a construction site and is movable.
  • An articulated robot (40) having a cutting means (30) which protrudes over a wider range than the outer periphery (51 to 54) of the work cradle (50) and is disposed at the tip;
  • a control unit (80) having an operation unit (70) for causing the articulated robot (40) to cut the building material (1) in a desired manner and controlling the whole; With The control unit (80) allows the cutting means (30) to prevent the contact between the cutting means (30
  • the invention according to claim 2 is the vehicle-mounted building material processing system (103) according to claim 1, wherein the clampers (11 to 14, 5 to 8) are controlled by the control unit (80).
  • a holding arm (47) that is movable in the horizontal direction with respect to the cradle (50) and that can rotate about the vertical axis (48) is provided.
  • the control unit (80) includes the clamper (11
  • the building material (1) is controlled as a whole while operating to avoid contact with the cutting means (30) in (14, 5 to 8).
  • the invention according to claim 3 is the vehicle-mounted building material processing system (100, 101, 103) according to claim 1, wherein the control unit (80) includes: Mutual positional relationship predicting means (81) for predicting the mutual positional relationship between the cutting means (30) and the clampers (11-14, 5-8); Based on the calculation result of the mutual positional relationship predicting means (81), Among the plurality of clampers (11-14, 5-8) arranged on the workpiece cradle (50), only the one predicted to come into contact with the cutting means (30) is operated to avoid and The clamper avoiding means (82) for returning the building material (1) in order to fix the building material (1) in order from the end of It is equipped with.
  • Mutual positional relationship predicting means (81) for predicting the mutual positional relationship between the cutting means (30) and the clampers (11-14, 5-8)
  • Based on the calculation result of the mutual positional relationship predicting means (81) Among the plurality of clampers (11-14, 5-8) arranged on the workpiece cradle (50), only the one predicted
  • the clamper 11-18, 5-8
  • the total number N 8.
  • the invention described in claim 5 is the vehicle-mounted building material processing system (100, 101, 103) according to any one of claims 1 to 3, wherein the clamper (11-18, 5-8) An air cylinder (49) that is driven to open or close or move; An air compressor (93) for applying compressed air to the air cylinder (49); An electromagnetic air valve (71) capable of controlling the compressed air generated by the air compressor (93) to be press-fitted into the air cylinder (49) based on the operation of the operation unit (70); It is equipped with.
  • the invention according to claim 6 is the vehicle-mounted building material processing system (100, 101, 103) according to claim 5, wherein the rail (62) extends adjacent to the work cradle (50). , A transfer body (64) that can move the articulated robot (40) by engaging with the rail (62); With The controller (80) controls the articulated robot (40) and the cutting means (30) together with the transfer body (64).
  • the invention according to claim 7 is the vehicle-mounted building material processing system (100, 101, 103) according to claim 5 or 6, wherein the vehicle (90, 99) A generator (91, 94) capable of supplying the power required by the system; A dust collector (92) for collecting cutting waste; Further comprising The generator (91, 94) and the air compressor (93) are loaded on the front side of the work cradle (50) toward the front of the loading platform (60), The workpiece cradle (50) is formed at an intermediate position in the front-rear direction of the cargo bed (60) A material storage place (10) before processing is set behind the loading platform (60).
  • the invention according to claim 8 is the vehicle-mounted building material processing system (101, 103) according to claim 7, wherein the generator (91, 94) is an engine (96) used for moving the vehicle (99). ) Is also provided with power transmission means (95) that is also driven.
  • the articulated robot (40) having a swingable cutting means (30) disposed at the tip is mounted on the vehicle to cut the building material (1) used at the construction site.
  • a building material processing method A work cradle (50) in which flatness is secured by a rigid member (65, 66) disposed in a predetermined section of the loading platform (60) constituting the vehicle (90, 99);
  • a control unit (80) having an operation unit (70) for causing the articulated robot (40) to cut the building material (1) in a desired manner and controlling the whole;
  • the building material (1) fixed to the work cradle (50) with clampers (11-18, 5-8) is supported by the control unit (80) with the cutting means (30) and the clamper (11).
  • the cutting means (30) performs cutting while operating so that
  • the invention according to claim 10 is the building material processing method according to claim 9, wherein the building material (1) that is scheduled to be used at a building site and is not processed is set behind the loading platform (60).
  • a desired operation step (S40) in which the user operates the operation unit (70) to cause the articulated robot (40) to cut the building material (1) in a desired manner.
  • the control means (80) controls the whole in accordance with the operation of the user, so that the cutting means (5-8) operates so as to avoid contact with the cutting means (30), while the cutting means (30) a cutting step (S50) for cutting the building material (1);
  • invention of Claim 11 is based on the behavior of the said cutting means (30) according to the said desired cutting process in the said cutting process process (S50) in the building material processing method of Claim 10.
  • a clamp return step (S53) for causing the avoidance operation in the avoidance step (S52) to return in order to fix the building material (1) in order from the end of the avoidance purpose; It is what has.
  • the cutting means is in contact with the clamper. Therefore, it is possible to provide a building material processing system and a building material processing method that do not require attention to avoid problems that cause damage to each other.
  • FIG. 1 is a plan view showing an outline of a main part of an in-vehicle building material processing system (hereinafter also referred to as “the present system”) according to an embodiment of the present invention. It is the side view which showed the principal part outline of this system. It is the front view which showed the principal part outline of this system. It is the side view which showed this system more practically. It is the perspective view which showed the cutting means of this system more practically. It is a top view of this system which showed the similar form of FIG. It is a perspective view which shows the modified example in which the clamper of this system enabled the operation
  • FIG. 9A and 9B are diagrams for explaining the operation and effect of the clamper of FIG. 7, and FIG. 9A is a plan view illustrating a state before avoidance and FIG. 9B is a state during avoidance. It is a top view which shows arrangement
  • movement of a clamper. 12A and 12B are diagrams for explaining the retracting operation of the clamper.
  • FIG. 12A is a building material clamping process (FIG. 14)
  • FIG. 12B is an initial stage of a cutting process (FIG. 14)
  • FIG. C) is a schematic plan view showing the last stage of the cutting process (FIG. 14). It is a perspective view which shows the acrylic cover of this system. It is a flowchart for demonstrating the outline of the building material processing method (henceforth "this method") concerning one embodiment of the present invention.
  • FIG. 1 is a plan view
  • FIG. 2 is a side view
  • FIG. 3 is a front view
  • FIG. 4 is a side view showing the system more practically.
  • This system 100 (hereinafter also including 101) is a system in which a device for cutting the building material 1 used at a construction site is mounted on a vehicle 90 (hereinafter also including 99) to be movable. is there.
  • the vehicle 90 is a modification of an existing truck
  • the vehicle 99 is a special specification vehicle designed and manufactured exclusively for the system 101.
  • This system 100 has a function similar to that of a machining center (Machine Center) and is movable.
  • the machining center is defined by the JIS (JIS B0105) as "Numerical (NC) controlled machine tool that performs various types of machining on two or more surfaces without replacing workpieces (workpieces)".
  • this system 100 is a processing machine dedicated to building materials, and processes a plate material, a square material, etc. larger than a workpiece to be processed by a metal processing machine.
  • gypsum boards can be cut into any shape at the construction site.
  • this system 100 is not provided with the automatic change function or automatic selection function of a tool (rotating blade), it does not matter whether or not it is included.
  • the vehicle 90 (99) that can be moved by configuring the system 100 (101) illustrated in FIG. 4 is an automobile that can drive by itself with a driving force like an existing single truck.
  • the present invention is not limited to this, and the present system 100 may be configured based on a towed vehicle (trailer) to be pulled by a towed vehicle (not shown).
  • the system 100 includes a cargo bed 60, a rigid member 65 (FIGS. 2 and 4), a rigid member 66 (FIG. 3), a work cradle (table) 50, clampers 11 to 18 (FIG. 1),
  • the robot includes a joint robot 40 and a control unit 80 (FIGS. 1 and 2).
  • the loading platform 60 is a flat surface formed on the vehicle 90 (99).
  • a material storage 10 before processing is set behind the loading platform 60.
  • the rigid member 65 is a vertical metal frame that coincides with the traveling direction of the vehicle 90 (99), and the rigid member 66 perpendicular thereto is a metal frame in the width direction.
  • the work cradle 50 is formed in a predetermined section of the flat cargo bed 60 with the rigid support of the rigid members 65 and 66. As a result, the work cradle 50 is ensured to have a precise flatness at an intermediate position in the front-rear direction of the loading platform 60.
  • the work cradle 50 has a length K of, for example, 50 to 90% with respect to the total length L of the cargo bed 60, and a width D of, for example, 50 to 90% with respect to the overall width W of the cargo bed 60. .
  • the clampers 11 to 18 fix the building material 1 to the work cradle 50.
  • the building material 1 has the maximum dimensions (mm) for each material as exemplified below.
  • gypsum board for example, 9 ⁇ 12 ⁇ 910 ⁇ 2730
  • flooring for example, 303 ⁇ 1818
  • baseboard for example, 77 ⁇ 4000
  • peripheral edge for example, 55 ⁇ 4000
  • paddle Attached tack for example, 120 ⁇ 1950 ⁇ 70
  • structural plywood for example, 9 ⁇ 12 ⁇ 910 ⁇ 2440
  • 2 ⁇ 4 material 38 ⁇ 89
  • 2 ⁇ 6 material 38 ⁇ 140
  • 2 * 10 material 38 * 184
  • 2 * 12 material 38 * 235
  • the timber of the prescribed dimension specified by the following names is used. That is, 1 ⁇ 4 having different cross-sectional shapes (for example, 19 ⁇ 89 mm for a drying material), 1 ⁇ 6, 2 ⁇ 2, 2 ⁇ 3, 2 ⁇ 4 (204 materials), 2 ⁇ 6 (206 materials), 2 ⁇ Including those displayed as 8, 2 ⁇ 10 (210 materials), 2 ⁇ 12, 4 ⁇ 4 (404 materials).
  • the name is derived from the inch size, the actual dimension is smaller than the called inch size.
  • the standard length is often sold in a unified manner of five types, for example, 910, 1820, 2336, 3040, and 3650 mm according to each demand.
  • FIG. 5 is a perspective view showing the cutting means of the present system more practically.
  • the articulated robot 40 has a swingable cutting means 30 at its tip.
  • the cutting means 30 has a circular saw 21 and a not-illustrated cone (router) mounted on the rotary shaft 20 as exchangeable rotary blades, and protrudes over a wider area than the outer periphery 51 to 54 of the work cradle 50 for cutting. It is possible to operate.
  • the control unit 80 performs NC control of a servo motor (not shown) to control opening and closing of the electromagnetic air valve 71 and to perform integrated control of the whole.
  • the servo motor appropriately flexes and stretches each joint of the articulated robot 40 to support the rotating shaft 20 of the cutting means 30 at an appropriate angle with respect to the building material 1 fixed to the work cradle 50, and also in the cutting direction.
  • the operation necessary for the cutting process is performed by, for example, moving it in accordance with.
  • the cutting means 30 is configured to operate easily over a wide range of the work cradle 50.
  • control unit 80 avoids contact between at least one of the cutting means 30 and the clampers 11 to 18 and 5 to 8.
  • the cutting means 30 is controlled to cut the building material 1.
  • the control unit 80 includes an operation unit (robot control panel) 70, a computer (not shown), and a storage unit that stores a program that can be appropriately executed by the computer.
  • control unit 80 has a control function for causing the articulated robot 40 to perform the desired cutting process based on the programmed processing specifications in accordance with an instruction from the operation unit 70 by the user. Further, as the operation unit 70, a control unit 80 is configured to accept an instruction from a tablet terminal (not shown) or a notebook computer.
  • control unit 80 controls the articulated robot 40 so that the cutting means 30 cuts the building material 1 while avoiding the positions of the clampers 11 to 18 based on the program.
  • the clampers 11 to 18 are of a type that cannot move in the horizontal direction with respect to the workpiece cradle 50, it is possible to appropriately control the cutting means 30 to perform a collision avoidance operation or to stop. is there.
  • the contact between the clampers 11 to 18 can be avoided only by opening the one that the cutting means 30 is predicted to contact. Further, as will be described later, in the system 103 (FIGS. 7 to 12) with higher practicality, the control unit 80 causes the clampers 11 to 14 and 5 to 8 to contact the cutting means 30 based on the program. It is also possible to control the whole so that the cutting means 30 cuts the building material 1 while operating so as to avoid it.
  • the clampers 11 to 18 and 5 to 8 will be described in detail later.
  • the X axis coincides with the longitudinal direction of the loading platform 60 and is, for example, a length M of 100% or less with respect to the total length L of the loading platform 60.
  • the Y axis corresponds to the width direction of the loading platform 60 and is, for example, a length V of 120% or less with respect to the entire width W of the loading platform 60.
  • the Z-axis is the height H from the floor 61 to the ceiling 69 of the loading platform 60 so as to coincide with the height direction of the loading platform 60.
  • the system 100 has a function similar to that of a machining center, and the range in which the multi-joint robot 40 can perform cutting is set to an X axis, a Y axis, and a Z axis based on the reference point O of the work cradle 50.
  • the three-dimensional coordinates are set.
  • the control unit 80 NC-controls a servo motor (not shown) based on the coordinate values of the X axis, the Y axis, and the Z axis. Therefore, the system 100 cuts the building material 1 fixed to the work cradle 50 within the ranges of the X axis, the Y axis, and the Z axis by the cutting means 30 of the articulated robot 40.
  • FIG. 6 is a plan view of the system showing a similar form of FIG. 6 are slightly different from those shown in FIG. 1, their functions and operations are the same. Therefore, members and portions having the same effect are denoted by the same reference numerals and description thereof is omitted. Yes.
  • the system 100 further includes a rail 62 and a transport body 64.
  • the rail 62 extends in the X-axis direction adjacent to the work cradle 50 and forms a self-propelled lane for the transport body 64.
  • the transport body 64 includes a servo motor (not shown) that is controlled by the control unit 80, and can engage the rail 62 to move the articulated robot 40 in the X-axis direction.
  • the control unit 80 controls the articulated robot 40 with the transport body 64.
  • FIG. 6 shows a size (mm) in plan view of the work cradle 50, for example, 4160 ⁇ 1100 (when the cushion 19 is not used).
  • the building material 1 has a maximum dimension (mm) for each material, a long base is a baseboard (for example, 77 ⁇ 4000), and a flat plate is a plasterboard (for example, 9 ⁇ 12 ⁇ 910).
  • a baseboard for example, 77 ⁇ 4000
  • a flat plate is a plasterboard (for example, 9 ⁇ 12 ⁇ 910).
  • 4 ⁇ 4 (404) material for structural materials is (89 ⁇ 89 ⁇ 3650) beyond the building materials, and these also have a margin in the work cradle 50. It can be placed and can be cut.
  • the standard dimension of each member changes with areas where this invention is implemented.
  • a cushion 19 is disposed at the corner portion 57 to contribute to the positioning of the building material 1.
  • a reference point O is set at the lower left in FIGS. 1 and 6. Further, the building material 1 is fixed to the work cradle 50 by the clampers 11 to 18, which will be described in detail later.
  • a generator 94 (91) and an air compressor 93 are loaded on the front side of the work platform 50 toward the front of the loading platform 60, and the dust collector 92 is mounted on the work platform. It is configured to be loaded near the rear of the loading platform 60 on the rear side of 50 and to support cutting.
  • the generator 94 (91) can supply power required by the system 100 (101).
  • the dedicated vehicle 99 constituting the system 101 is additionally provided with a power transmission means 95 having a generator drive shaft 97 and a governor (governor) 79.
  • the engine 96 of the vehicle 99 causes the vehicle 99 to travel by the vehicle drive shaft 98, and also transmits the power to the generator drive shaft 97 by the power transmission means 95, and the generator 94 through the generator drive shaft 97. Can be driven.
  • the governor 79 adjusts the rotational speed of the generator 94 to be constant.
  • the output of the engine 96 is adjusted by the command from the governor 79.
  • the governor 79 increases the fuel supply amount to increase the output by opening the throttle of the engine 96 or the like.
  • the governor 79 adjusts the engine 96 so as to decrease the fuel supply amount and reduce the output.
  • the dedicated vehicle 99 can use the power of the engine 96 not only for the traveling movement of the vehicle 99 but also for the driving force of the generator 94. Therefore, since the vehicle 99 can omit an engine dedicated to drive the generator 94, the facility efficiency is improved. In addition, even if it is the exclusive vehicle 99, you may mount the generator 91 with a general engine. In that case, the power transmission means 95 having the generator drive shaft 97 is unnecessary.
  • the air compressor 93 applies compressed air to the clamper air cylinder 49 via the electromagnetic air valve 71 (FIGS. 1 and 2).
  • the electromagnetic air valve 71 can perform valve control for opening and closing the valve based on the operation of the operation unit 70 and a control signal output from the control unit 80.
  • the compressed air generated by the air compressor 93 is pressed into and released from the clamper air cylinder 49 in response to the opening and closing of the electromagnetic air valve 71.
  • hydraulic or electric drive means may be used.
  • the air cylinder 49 in FIGS. 2 to 4 is conceptually illustrated and is actually a more complicated and precise mechanism, but illustration and description thereof will be omitted.
  • the air cylinder 49 drives the opening / closing operation of the clampers 11 to 18 by performing a linear operation of a predetermined stroke by distinguishing between compressed air injection and discharge.
  • the clampers 11 to 18 can selectively operate the building material 1 to be fixed and released with respect to the work cradle 50.
  • the dust collector 92 collects cutting waste generated by the articulated robot 40 cutting the building material 1 with the cutting means 30.
  • the work cradle 50 of the present system 100 is provided with a total number N of clampers 11 to 18 of a fixed position type that does not move in the horizontal direction with respect to the work cradle 50.
  • N the number of clampers 11 to 18 in total
  • (N / 2) +1 is one of the two sides 51 and 53 parallel to the longitudinal (X-axis) direction on the outer periphery 51 to 54 of the work support 50.
  • G variable intervals G.
  • N 4 or more and an arbitrary natural number.
  • (N / 2) -1 of the N clampers 11 to 18 in total is the other of the two sides 51 and 53 parallel to the longitudinal (X-axis) direction on the outer circumferences 51 to 54 of the work support 50.
  • ⁇ 1 3 clampers 16 to 18 are arranged on the other side 53 illustrated here.
  • the clampers 11 to 18 are not provided at the corners 57 and 58 of the work cradle 50 corresponding to both ends of the other side 53.
  • the clampers 11 to 18 that engage with the cut surface do not exist even for the processing specifications for cutting the end portion of the long building material 1 such as “2 ⁇ 4 material”. Further, for the processing specifications in which the end portion of the long building material 1 is cut obliquely, the extended line of the cut surface protrudes from the outer sides 51 to 54 of the work cradle 50 and escapes. . In this case, it is possible for the cutting means 30 to achieve a desired machining specification while performing a cutting operation by protruding from the outer sides 51 to 54 of the workpiece cradle 50.
  • the clampers 11 and 15 are disposed at the corners 55 and 56, respectively, and the cutting means 30 is the clamper. 11 and 15 are avoided. Therefore, the end of the long building material 1 cannot be cut. Conversely, if the long building material 1 is placed on one side 53 of the work cradle 50 where the clampers 11 to 18 are not disposed, cutting is performed at locations corresponding to the corners 57 and 58. Uninterrupted processing.
  • the building material 1 is also cut at a portion corresponding to the corners 57 and 58. Uninterrupted processing. That is, even the long building material 1 can be fixed so as to be used up to the limit in the longitudinal direction of the work cradle 50. As a result, according to the present system 100, it is possible to cut to a longer building material 1. Therefore, even a vehicle-mounted device with severe space restrictions can effectively use the narrow space.
  • FIG. 7 is a perspective view showing a modified embodiment in which, in the present system, a clamper that can move in a defined horizontal direction is employed, thereby enabling an operation for avoiding a problem that the clamper collides with the cutting means. It is.
  • FIG. 8 is a perspective view for explaining an operation in which the clamper of FIG. 7 moves in a defined horizontal direction to avoid a collision.
  • 9 is a diagram for explaining the operation and effect of the clamper of FIG. 7.
  • FIG. 9 (A) is a plan view showing a state before avoidance
  • FIG. 9 (B) is a plan view showing the state under avoidance. .
  • the present system 103 includes four clampers 11 to 14 arranged at equal intervals along the outer periphery 51 of the work cradle 59, and an outer periphery 53 on the opposite side of the outer periphery 51. And four clampers 5 to 8 arranged at equal intervals.
  • the clampers 11 to 14 hold and release the building material 2 by opening and closing the workpiece cradle 59 in the vertical direction, but cannot move in the horizontal direction with respect to the workpiece cradle 59.
  • the clampers 11 to 14 have the same functions as the clampers 11 to 18 described above with reference to FIGS.
  • the work cradle 59 is uncomfortable to call a table, and is not necessarily composed of only a flat surface.
  • the work cradle 59 has an external shape in which four parallel grooves 41 to 44 enable flow in the width direction and are excavated at approximately equal intervals in the longitudinal direction.
  • a flat surface forming member for the table 59 is divided by four grooves 41 to 44 and assembled.
  • the surface of the table 59 does not have to be a continuous flat surface over the entire surface. It is sufficient if a flat surface is formed.
  • the clampers 11 to 14 cannot move in the horizontal direction with respect to the workpiece cradle 59, it is necessary to mainly perform the collision avoidance operation on the cutting means 30. However, in some cases, only one of the plurality of clampers 11 to 14 with which the cutting means 30 approaches can avoid contact or collision between them only by performing an opening operation in the vertical direction. Even in this case, there is no problem in the function of fixing the clamper 11 to 14 if, for example, three of them are closed and the building material 2 is held.
  • the system 103 has three points different from the systems 100 and 101.
  • clampers 5 and 8 are also provided at corners 57 and 58 with respect to one side 53 of the work cradle 59.
  • the clampers 5 to 8 can move in the horizontal direction with respect to the work cradle 59.
  • the control unit 80 controls the whole so that the cutting means 30 cuts the building material 2 while operating the clampers 11 to 14 and 5 to 8 to avoid contact with the cutting means 30. It is.
  • the clampers 6 to 8 can move horizontally in the direction of arrow R in accordance with the width of the building material 2.
  • the clampers 5 to 8 hold the building material 2 that has been grasped when the cutting means 30 approaches and interferes. While moving away, it moves backward in the direction of arrow Q away from the building material 2.
  • the control unit 80 always grasps the mutual positional relationship between the cutting means 30 and the clampers 5 to 8, and appropriately selects one of the clampers 5 to 8 (the clamper 6 in FIGS. 8 and 9). This is realized by controlling to evacuate. Further, when the contact avoidance operation becomes unnecessary, the operation returns to the arrow R direction.
  • FIG. 9A a case where the circular saw 21 tries to cut the building material 2 along the cutting line 31 in the arrow J direction will be described as an example.
  • the control unit 80 always grasps the mutual positional relationship between the cutting means 30 and the clampers 5 to 8, and when the dangerous area 32 occurs, the clamper 6 is retracted in a timely manner, Control is performed so that the safety area 9 is changed.
  • the air cylinder 49 performs a predetermined linear motion of the clampers 11 to 18 and 5 to 8 according to the control of the control unit 80 by performing a predetermined stroke linear operation by distinguishing between compressed air injection and discharge. Drive to open / close or move horizontally.
  • the control unit 80 has at least one of the cutting means 30 and the clampers 11 to 18, 5 to 8. Control is made so that the cutting means 30 cuts the building material 1 while avoiding contact between the two. For this reason, in particular, the clampers 5 to 8 (FIGS. 7 to 12) not only selectively operate the building material 2 with respect to the work cradle 59 under the control of the control unit 80, but also with the horizontal. It is also configured to be movable in the direction.
  • FIG. 10 is a plan view showing the arrangement of the clampers on the work cradle (table) and their movable ranges.
  • a total of eight clampers 11 to 18 and 5 to 8 are arranged at substantially equal intervals along the outer sides 51 and 53 of the work receiving base 59.
  • the clampers 5 to 8 can slide in the horizontal direction along the four grooves 41 to 44.
  • These clampers 11 to 18 and 5 to 8 include pressing arms 45 and 47 for pressing the building material 1 against the work cradle 59 from above, and a lateral pressing pad 46 for surrounding the building material 1 and pressing it horizontally (FIG. 11). And an air cylinder for driving each of them.
  • the building material 1 is placed on the surface of the work cradle 59 by clampers 11 to 18 and 5 to 8 from a plate material having a size almost covering the entire outer shape of the work cradle 59 to a pillar material protruding from the longitudinal direction of the work cradle 59. It is possible to fix. In either case of a large plate material and a thin column material, one side is fixed at a position brought close to the outer side 51 of the work cradle 59. For this reason, the clampers 5 to 8 are moved in the horizontal direction along the grooves 41 to 44 that support them so as to adapt to the widths of these building materials 1.
  • the clampers 11 to 18 and 5 to 8 perform avoidance movement as follows.
  • the clampers 11 to 18 arranged along the outer peripheral side 51 of the work cradle 59 are mainly configured so that a rotatable presser arm 47 that presses the building material 1 against the work cradle 59 from above is centered on the vertical shaft 48. And avoiding movement by rotating.
  • clampers 5 to 8 arranged along the outer peripheral side 53 of the work cradle 59 are mainly provided with holding arms 45 for pressing the building material 1 against the work cradle 59 from above in the four grooves 41 to 44. It avoids movement by moving horizontally along.
  • Each of the clampers 11 to 18 and 5 to 8 is also provided with a laterally pressing pad 46 (FIG. 11) for pressing the building material 1 in the horizontal direction.
  • the control unit 80 includes a program that exhibits the functions of the mutual positional relationship predicting unit 81 and the clamper avoiding unit 82 in addition to the function of realizing the operation content from the operation unit 70.
  • the mutual positional relationship predicting means 81 predicts the mutual positional relationship between the cutting means 30 and the clampers 11 to 14 and 5 to 8.
  • the mutual positional relationship includes the size of the building material 1, its fixing position, the shapes and the postures of the clampers 11 to 18 and 5 to 8 for fixing them, and the cutting path by the cutting means 30 such as the circular saw 21 and the like. Based on this, it is predicted by executing a prescribed operation.
  • the clamper avoiding means 82 controls the electromagnetic air valve 71 so that the air cylinder (not shown) performs the avoiding operation and the returning operation of the clampers 11-14, 5-8.
  • the control unit 80 achieves the object by controlling the opening and closing of an electromagnetic air valve 71 inserted between an air compressor 93 and an air cylinder (not shown).
  • the avoidance operation is an operation for avoiding contact of only one of the clampers 11 to 14 and 5 to 8 arranged on the work cradle 50, which is predicted to come into contact with the cutting means 30.
  • the return operation is an operation for returning the building material 1 in order from the end of the avoidance operation in order from the end of the avoidance operation.
  • the clampers 5 to 8 have a holding arm 47 that can move in the horizontal direction with respect to the work cradle 59 and can rotate with respect to the vertical shaft 48 under the control of the control unit 80. 80 controls the whole so as to cut the building material 1 while operating the clampers 5 to 8 so as to avoid contact with the cutting means 30.
  • FIG. 11 is an enlarged perspective view for explaining the operation of the clamper.
  • the clamper 11 (12 to 14, 5 to 8) includes arms 45 and 47 capable of avoiding a problem in which the cutting means 30 such as the circular saw 21 contacts and damages each other. ing.
  • the arms 45 and 47 have a function of avoiding either the rotation of the work cradle 50 relative to the vertical axis 48 or the movement in the horizontal direction. This avoidance function is executed under the control of the control unit 80.
  • the clamper 11 is particularly preferably used in the present system 103 of FIGS. 7 to 10.
  • the clamper 11 includes a brace 47 that can avoid the above-described problems.
  • the arms 45 and 47 can move up and down as indicated by arrows U and C and rotate as indicated by arrows RT and LT.
  • the horizontal push pad 46 can also move in the horizontal direction indicated by arrows A and B.
  • the arm 47 and the laterally pushing pad 46 are fixed to the work cradle 50 after the building material 1 is received in the state shown in FIG. Further, the building material 1 is released by the operation in the opposite direction.
  • 11 can move slightly horizontally as indicated by arrows A and B, but the entire clamper 6 shown in FIGS. 8 to 10 and 12 can move horizontally in the R direction. It doesn't move as big as possible.
  • the arm 47 rises to release the restraint of the building material 1 and then rotates in a direction along the avoidance purpose.
  • the lateral push pad 46 moves in the direction opposite to the direction in which the building material 1 is pressed in the horizontal direction, that is, in the horizontal direction to release, thereby achieving the avoidance purpose. be able to.
  • FIG. 12A and 12B are diagrams for explaining the retracting operation of the clamper.
  • FIG. 12A is a building material clamping process (S30 in FIG. 14)
  • FIG. 12B is an initial stage of a cutting process (S51 in FIG. 14).
  • FIG. 12C is a schematic plan view showing the last stage of the cutting process (S51 to S53 in FIG. 14). Note that FIG. 12 is limited to the clampers 6 and 13 instead of adding the avoidance operation of the lateral push pad 46 to the explanation using FIG. It is the figure simplified in order to demonstrate typically.
  • the arm 47 presses the building material 1 against the work cradle 59 from above at an angle orthogonal to the longitudinal direction of the building material 1, A laterally pressing pad 46 surrounds the building material 1 and presses it in the horizontal direction.
  • FIG. 12 (B) based on the prediction that the circular saw 21 of the clamp 13 will come into contact with the laterally-pressed pad 46 at the initial stage of the cutting process (mutual positional relationship predicting step S51 in FIG. 14). It is necessary to take some kind of avoidance measures.
  • the side push pad 46 moves in the direction opposite to the direction in which the building material 1 is pressed in the horizontal direction, that is, in the horizontal direction to release, and the arm 47 rises to release the restraint of the building material 1.
  • the right direction RT along the avoidance purpose.
  • the building material 1 in order from the clamp 13 that has finished the purpose of avoiding the risk of the circular saw 21 coming into contact with the arm 47 and the laterally pushing pad 46 at the end of the cutting process. Is returned to make it possible to fix (clamp return step S53 in FIG. 14).
  • the arm 47 and the lateral push pad 46 are used.
  • the avoidance operation is performed in the direction along the avoidance purpose.
  • the clamp 6 is also returned in order to enable the building material 1 to be fixed in the order in which the purpose of avoiding danger following the clamp 13 is completed (clamp return process S53 in FIG. 14). ).
  • FIG. 13 is a perspective view showing an acrylic cover of the present system.
  • the present systems 100, 101, and 103 are preferably provided with an acrylic cover 3 for preventing scattering of sawdust (saw dust) generated near the cutting means 30.
  • the acrylic cover 3 has an outer shape and shape that covers at least the work cradle 59, the joint robot 40, and the cutting means 30 without hindering the cutting operation, and has a rigid member 65 (see FIG. 2, FIG. 4), 66 is fixed to the base.
  • the acrylic cover 3 includes a window 33 and an inspection port 23.
  • the window 33 can be put in and out of the building materials 1 and 2 by automatically opening and closing appropriately according to the progress of the work. That is, the window is lifted and opened in the direction of the arrow E and the window is lowered and closed in the direction of the arrow F by a driving force of an air cylinder (not shown).
  • the inspection port 23 is an openable / closable door that allows a person who performs maintenance to enter and exit appropriately.
  • This method is a building material processing method in which the building material 1 used at a construction site is cut locally by the system 100.
  • the present system 100 used in the present method includes a work cradle 59 for fixing the building material 1 to the loading platform 60 of the movable vehicle 90, the joint robot 40, and the like.
  • the cutting means 30 and the control unit 80 for controlling them are loaded and moved.
  • the flatness of the work cradle 59 is ensured by the rigid members 65 and 66 disposed in a predetermined section of the cargo bed 60 constituting the vehicle 90.
  • the articulated robot 40 has a swingable cutting means 30 at its tip.
  • the cutting means 30 protrudes from the outer periphery of the work cradle 59 and can swing freely. By this cutting means 30, the building material 1 fixed to the work cradle 59 is freely cut.
  • the control unit 80 causes the articulated robot 40 and the cutting means 30 to cut the building material 1 according to a desired processing specification based on a program executed in association with the operation by the operation unit 70. At this time, the control unit 80 controls the articulated robot 40 so that the cutting means 30 cuts the building material 1 fixed to the workpiece cradle 59 by the clampers 11 to 18 while avoiding contact with the clampers 11 to 18. Control.
  • a detailed procedure will be described with reference to FIG.
  • FIG. 14 is a flowchart for explaining the outline of this method. As shown in FIG. 14, this method includes a material loading step (S10), a self-propelled moving step (S20), a building material clamping step (S30), a desired operation step (S40), and a cutting step (S50). And a building material clamp releasing step (S60).
  • the building material 1 that is scheduled to be used at the construction site and is not processed is loaded into the material storage site 10 before the processing that is set behind the loading platform 60.
  • the vehicle 90 in the fully equipped state after the material loading process (S10) travels by itself to the construction site.
  • the building material clamping step (S30) the loaded building material 1 before processing is moved to the work cradle 59 in the order of assembly use and fixed by the clampers 11-18.
  • the user operates the operation unit 70 to cause the articulated robot 40 to cut the building material 1 in a desired manner based on the processing specifications.
  • the control unit 80 controls the articulated robot 40 in accordance with the user's operation, so that the cutting means 30 applies the building material 1 fixed to the work cradle 59 to the clampers 11-18. Cutting while avoiding contact.
  • the building material clamp releasing step (S60) the clampers 11 to 18 are released to remove the desired cut building material 1 from the work cradle 59.
  • the cutting process (S50) includes a mutual positional relationship prediction process (S51), a contact avoidance process (S52), and a clamp return process (S53).
  • the mutual positional relationship predicting step (S51) the mutual positional relationship between the cutting means 30 and the clampers 11 to 14, 5 to 8 by the mutual positional relationship predicting means 81 based on the behavior of the cutting means 30 according to the desired cutting process. Predict.
  • the contact avoidance step (S52) an operation of avoiding the one of the plurality of clampers 11 to 14, 5 to 8 that is predicted to come into contact with the cutting means 30 based on the prediction result in the mutual positional relationship prediction step (S51).
  • the clamp return process (S53) the avoidance operation performed in the avoidance process (S52) is returned in order to fix the building material 1 in order from the end of the avoidance purpose.
  • an operation mode suitable for this purpose there may be a mode in which the present systems 100 and 101 are released from the on-board state and are used as stationary equipment on the ground.
  • the building material processing robot system configured as a unit is lowered from the loading platform 60 of the vehicles 90 and 99, the loading platform 60 becomes empty and can be used for the purpose of transporting other supplies, so that the equipment efficiency is improved.
  • the systems 100 and 101 may be returned to the in-vehicle state and withdrawn.
  • a building material processing robot system configured in a compact unit on a base having rigid members 65 and 66 that secure and reinforce its flatness is placed on the platform 60 of the vehicles 90 and 99.
  • the function of the pallet adapted to the forklift is formed by the base having the rigid members 65 and 66.
  • the loading platform 60 and the rigid members 65 and 66 are appropriately coupled with bolts and nuts (not shown), or the coupling is released.
  • Pallets here are plate-shaped transportation platforms used in logistics operations such as transportation and storage, and are made of resin, wood or metal.
  • the pallet has an insertion port 67 into which a forklift and a handlift claw (not shown) are inserted in order to efficiently carry the pallet and load it on the truck.
  • Many pallets have an allowable dynamic load of about 1 t.
  • the dynamic load is a weight that can withstand a state of being moved by a forklift or the like
  • the static load is a weight that can be withstand when placed on a flat ground, and is larger than 1 t of the dynamic load.
  • the weight (static load) of the building material processing robot system configured as a unit on the loading platform 60 is also approximately 1 t. It is easy to form a pallet function corresponding to this by the base having the rigid members 65 and 66. Therefore, when the systems 100 and 101 are released from the on-board state and are used as stationary equipment on the ground, the unit is loaded and unloaded with one general forklift having a lifting capacity of 1 ton or more even without a crane. Can do. If a crane hook is to be hooked, it is more preferable that suspension rings (not shown) are arranged at the four corners of the rigid members 65 and 66.
  • Two-way insertion has a side with no insertion slot.
  • the four-way insertion has insertion holes on all four sides of the resin pallet, so you can insert and lift a forklift from anywhere. About this point, what is necessary is just to design optimally according to an actual business form.
  • the present invention may be employed in building material processing steps in relatively simple residential buildings such as the “2 ⁇ 4 method”.
  • it is beneficially adopted in line with the high demands of the local circumstances where it is easy to realize cutting at the construction site instead of the factory. There is a possibility that.
  • This system has the advantage of being able to handle all building materials with a single machine, even if there is a slight decrease in efficiency compared to dedicated processing machines. Therefore, it is suitable for an application for starting a housing construction business on a small scale using this system in an undeveloped area where there is no building material processing factory equipped with a plurality of high-efficiency dedicated processing machines for each processing content. If the housing construction business develops in that area on a large scale, a more efficient building material processing factory should be constructed. In other words, the present invention may be suitably employed even in a developing area even for a trial purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Sawing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Manipulator (AREA)
  • Milling Processes (AREA)
  • Jigs For Machine Tools (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

非熟練労働者が工場でない建築現場で容易に切削加工することが可能で、切削手段がクランパに接触して互いに損傷する不具合のない車載型建材加工システムを提供する。 車両(90)に形成された平坦な荷台(60)と、その所定区画に形成されたワーク受け台(50)に対する平坦度を確保する剛性部材と、ワーク受け台(50)に建材を固定するクランパ(11~18)と、ワーク受け台(50)の外周(51~54)からはみ出して首振り自在の切削手段(30)を先端に配設された多関節ロボット(40)と、多関節ロボット(40)により建材(1)を所望の切削加工させるための操作部(70)を有する制御部(80)とを備え、制御部(80)は、切削手段(30)とクランパ(11~18)との少なくとも何れかが両者の接触を回避しながら切削手段(30)が建材(1)を切削加工するように制御する。

Description

車載型建材加工システムおよび建材加工方法
 本発明は、建築現場まで移動し、現地で使用する建材を現地で切削加工できる車載型建材加工システムおよび建材加工方法に関する。
 工場でないところに、製材装置を自動車で運んで製材作業を行えるようにした自走式各種角材製作機が知られている。例えば、特許文献1に、他の動力を必要としない、自己動力による軽便で、自在に移動可能な、自走式各種角材製作機が開示されている。また、特許文献2に、現地で切り出した原木をその場で加工して角材や板材を作製できる現場製材装置(移動式製材機)等が開示されている。
 特許文献1の自走式各種角材製作機は、森林内に放置される小径木、および間伐材等の現地加工が可能で、木材生産に伴う、諸経費を削減することを目的としている。具体的には、軽貨物自動車荷台に積載して森林内まで運搬可能な製材装置を用いて、小径木および間伐材等の現地加工し、加工済の木材を製材装置とともに軽貨物自動車荷台に積載して持ち帰る。しかも、軽貨物自動車のリヤホイルと同軸回転するVベルトプーリーを介して製材装置の動力を得る、というものである。
 特許文献2の現場製材装置(移動式製材機)等は、以下のような特徴を有している。すなわち、原木を載置しパンタグラフ式の昇降機能を有する原木載置台、原木の両端面を押さえる回転機能を備えた原木回転押さえ部を支える原木押さえ移動部、原木載置台および原木押さえ移動部を配置し移動可能にするレール、原木切断用カッターを備える組立て式の移動式製材機である。
 この移動式製材機は、原木の両端面を押さえる部分はチャックピンを持つチャックプレートで、芯出し機構を用いて芯出しを行い、原木押さえ移動部をレール上で動かしてチャックプレートに取り付けたチャックピンを原木両端面に押しつけて原木を固定する。さらに、この移動式製材機は、複数個の回転角度調節用孔を持つホイールおよび位置決めピンを持つ回転角度調節機構を用いて、カッターにより原木を長手方向に切断し、角材や板材を作製する、というものである。
特開2001-287204 特開2012-192682
 しかしながら、特許文献1の自走式各種角材製作機、および特許文献2の移動式製材機は、森林で得た材木を現地で製材するための車載型可搬式製材装置であって、住宅等の建築現場に持ち込んで、その場で消費する建材を、建付け直前の状態に加工するものではなかった。
 つまり、通常ならば加工工場での半自動加工、又は現地で熟練技能者の手作業で行われる建材加工を、建築現場で半自動化できるものではなかった。一方、世相の変化に応じて建築現場で就労する労働者の構成も変化し、高度な熟練技能者が減少し、技能程度が平均的に低下する傾向にある。
 したがって、熟練労働者が不在、又は少数であっても、建材加工を建築現場で容易に実行可能な、車載型建材加工システムおよび建材加工方法が求められていた。
 本発明は、上記課題に鑑みてなされたものであり、熟練労働者が不在、又は少数であっても、工場でなく建築現場で容易に切削加工することが可能であり、特に、切削手段がクランパに接触して互いに損傷する不具合を避けるための注意力が不要な建材加工システムおよび建材加工方法を提供することを目的とする。
 請求項1に記載の発明は、建築現場で使用する建材(1)を切削加工する機能を有して移動可能な車載型建材加工システム(100,101,103)であって、
 車両(90,99)に形成された平坦な荷台(60)と、
 該荷台(60)の所定区画に形成されたワーク受け台(50)に対する平坦度を確保する剛性部材(65,66)と、
 制御を受けて前記ワーク受け台(50)に前記建材(1)を固定するクランパ(11~18,5~8)と、
 前記ワーク受け台(50)の外周(51~54)より広い範囲にはみ出して首振り自在の切削手段(30)を先端に配設された多関節ロボット(40)と、
 該多関節ロボット(40)に前記建材(1)を所望の切削加工させるための操作部(70)を有して全体を制御する制御部(80)と、
 を備え、
 該制御部(80)は、前記切削手段(30)と前記クランパ(11~18,5~8)との少なくとも何れかが両者の接触を回避しながら、前記切削手段(30)が前記建材(1)を切削加工するように制御するようにしたものである。
 また、請求項2に記載の発明は、請求項1に記載の車載型建材加工システム(103)において、前記クランパ(11~14,5~8)は前記制御部(80)の制御により前記ワーク受け台(50)に対して水平方向に移動可能であるとともに鉛直軸(48)を中心にして回転動作可能な押さえ腕木(47)を有し、前記制御部(80)は、前記クランパ(11~14,5~8)に前記切削手段(30)との接触を回避するように動作させながら、前記建材(1)を切削加工するように全体を制御するようにしたものである。
 また、請求項3に記載の発明は、請求項1に記載の車載型建材加工システム(100,101,103)において、前記制御部(80)は、
 前記切削手段(30)と前記クランパ(11~14,5~8)との相互位置関係を予測する相互位置関係予測手段(81)と、
 該相互位置関係予測手段(81)の演算結果に基づいて、
 前記ワーク受け台(50)に複数が配設された前記クランパ(11~14,5~8)のうち、前記切削手段(30)が接触すると予測されたものだけを回避動作させるとともに、回避目的の終了したものから順に、前記建材(1)を固定可能にするために復帰動作させるクランパ回避手段(82)と、
 を備えたものである。
 また、請求項4に記載の発明は、請求項1~3の何れか1項に記載の車載型建材加工システム(100,101,103)において、前記クランパ(11~18,5~8)は総数N=8個である。
 また、請求項5に記載の発明は、請求項1~3の何れか1項に記載の車載型建材加工システム(100,101,103)において、前記クランパ(11~18,5~8)が開閉又は移動の動作をするために駆動するエアシリンダ(49)と、
 該エアシリンダ(49)に圧縮空気を付与するエアコンプレッサ(93)と、
 該エアコンプレッサ(93)により生成された圧縮空気を前記操作部(70)の操作に基づいて前記エアシリンダ(49)へ圧入する制御が可能な電磁式空気弁(71)と、
 を備えたものである。
 また、請求項6に記載の発明は、請求項5に記載の車載型建材加工システム(100,101,103)において、前記ワーク受け台(50)に隣接して延在するレール(62)と、
 該レール(62)に係合して前記多関節ロボット(40)を移動可能な搬送体(64)と、
 を備え、
 前記制御部(80)は、前記搬送体(64)も交えて前記多関節ロボット(40)および前記切削手段(30)を制御するようにしたものである。
 また、請求項7に記載の発明は、請求項5又は6に記載の車載型建材加工システム(100,101,103)において、前記車両(90,99)には、
 当該システムで必要とする電力を供給可能な発電機(91,94)と、
 切削屑を収集する集塵機(92)と、
 をさらに備え、
 前記発電機(91,94)および前記エアコンプレッサ(93)を前記ワーク受け台(50)の前側で前記荷台(60)の前方寄りに積載し、
 前記ワーク受け台(50)を前記荷台(60)の前後方向の中間位置に形成し、
 前記荷台(60)の後方に加工前の材料置き場(10)を設定したものである。
 また、請求項8に記載の発明は、請求項7に記載の車載型建材加工システム(101,103)において、前記発電機(91,94)は前記車両(99)の移動に用いるエンジン(96)の動力を兼用して駆動する動力伝達手段(95)を備えたものである。
 また、請求項9に記載の発明は、先端に首振り自在の切削手段(30)が配設された多関節ロボット(40)を車載して建築現場で使用する建材(1)を切削加工する建材加工方法であって、
 車両(90,99)を構成する荷台(60)の所定区画に配設された剛性部材(65,66)で平坦度を確保されたワーク受け台(50)と、
 該ワーク受け台(50)の外周(51~54)より広い範囲にはみ出して首振り自在の切削手段(30)を先端に配設された多関節ロボット(40)と、
 該多関節ロボット(40)に前記建材(1)を所望の切削加工させるための操作部(70)を有して全体を制御する制御部(80)と、
 を用い、
 前記ワーク受け台(50)にクランパ(11~18,5~8)で固定された前記建材(1)を、前記制御部(80)の支援により、前記切削手段(30)と前記クランパ(11~18,5~8)との少なくとも何れかが両者の接触を回避するように動作しながら前記切削手段(30)が切削加工するようにしたものである。
 また、請求項10に記載の発明は、請求項9に記載の建材加工方法において、建築現場における使用予定で加工前の前記建材(1)を、前記荷台(60)の後方に設定された加工前の材料置き場(10)に積込む材料積込み工程(S10)と、
 全装備状態の前記車両(90,99)を建築現場まで自力走行して移動させる自走移動工程(S20)と、
 積み込まれた加工前の建材(1)を、組み立て利用の順に前記ワーク受け台(50)へ移動し、前記クランパ(11~14,5~8)で固定する建材クランプ工程(S30)と、
 ユーザが、前記多関節ロボット(40)に、前記建材(1)を所望の切削加工させるため、操作部(70)を操作する所望操作工程(S40)と、
 前記ユーザの操作に応じて前記制御部(80)が全体を制御することにより、前記クランパ(5~8)が前記切削手段(30)との接触を回避するように動作しながら、前記切削手段(30)が前記建材(1)を切削加工する切削加工工程(S50)と、
 前記クランパ(11~14,5~8)を解除して前記所望の切削加工された建材(1)を前記ワーク受け台(50)から取り外す建材クランプ解除工程(S60)と、
 を有するものである。
 また、請求項11に記載の発明は、請求項10に記載の建材加工方法において、前記切削加工工程(S50)では、前記所望の切削加工に応じた前記切削手段(30)の挙動に基づいて、
 相互位置関係予測手段(81)により前記切削手段(30)と前記クランパ(11~14,5~8)との相互位置関係を予測する相互位置関係予測工程(S51)と、
 該相互位置関係予測工程(S51)による予測結果に応じて、複数の前記クランパ(11~14,5~8)のうち、前記切削手段(30)との接触が予測されたものを回避動作させる接触回避工程(S52)と、
 該回避工程(S52)によって回避動作したものを、回避目的の終了したものから順に、前記建材(1)を固定可能にするために復帰動作させるクランプ復帰工程(S53)と、
 を有するものである。
 以上説明したように本発明によれば、熟練労働者が不在、又は少数であっても、工場でなく建築現場で容易に切削加工することが可能であり、特に、切削手段がクランパに接触して互いに損傷する不具合を避けるための注意力が不要な建材加工システムおよび建材加工方法を提供できる。
本発明の一実施形態に係る車載型建材加工システム(以下、「本システム」ともいう)の要部概略を示した平面図である。 本システムの要部概略を示した側面図である。 本システムの要部概略を示した正面図である。 本システムをより実態的に示した側面図である。 本システムの切削手段をより実態的に示した斜視図である。 図1の類似形態を示した本システムの平面図である。 本システムのクランパが衝突回避の動作を可能にした変形実施例を示す斜視図である。 図7のクランパの動作を説明するための斜視図である。 図7のクランパの動作及び効果を説明するための図であり、図9(A)は回避前の状態、図9(B)は回避中の状態を、それぞれ示す平面図である。 ワーク受け台(テーブル)におけるクランパの配置及びそれらの可動範囲を示す平面図である。 クランパの動作を説明するための拡大斜視図である。 図12は、クランパの退避動作を説明するための図であり、図12(A)は建材クランプ工程(図14)、図12(B)は切削加工工程(図14)の初期、図12(C)は切削加工工程(図14)の末期を、それぞれ示す模式平面図である。 本システムのアクリルカバーを示す斜視図である。 本発明の一実施形態に係る建材加工方法(以下、「本方法」ともいう)の概略を説明するためのフローチャートである。
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。まず、図1~図6を用いて、常時車載型の本システムについて説明し、その後、図7~図12を用いて、変形例として加工ユニットを車両の荷台から降ろして使用する地上据え置き型について説明する。
[常時車載型]
 図1~図3は本システムの要部概略図であり、図1は平面図、図2は側面図、図3は正面図をそれぞれ示している。図4は、本システムをより実態的に示した側面図である。本システム100(以下、101も含めることがある)は、建築現場で使用する建材1を切削加工する装置を車両90(以下、99も含めることがある)に搭載して移動可能にしたシステムである。なお、車両90は既存のトラックを改造利用したものであり、車両99は本システム101専用に設計製造された特殊仕様車とする。
 本システム100は、マシンニングセンタ(Machining Center)と似た機能を車載して移動可能にしたものである。マシンニングセンタは、JIS(JIS B0105)により、「工作物(ワーク)の取り替えなしに2面以上について、それぞれ多種類の加工を施す数値(NC)制御工作機械」と定義されている。
 これに対し、本システム100は、建材専用の加工機であり、金属加工機で加工対象とするワークよりも大きな板材や角材等を加工する。また、木材のほかには石膏ボード等も任意の形状に建築現場で切削加工でき。なお、本システム100には、工具(回転刃)の自動交換機能又は自動選択機能までは具備されていないが、それが含まれていてもいなくても構わない。
 図4に例示した本システム100(101)を構成して移動可能な車両90(99)は、既存の単体トラックのように駆動力を備えて自力走行可能な自動車である。しかし、これに限定されるものではなく、不図示の牽引車に牽引される被牽引車両(トレーラ)をベースに本システム100を構成しても構わない。
 本システム100は、荷台60と、剛性部材65(図2、図4)と、剛性部材66(図3)と、ワーク受け台(テーブル)50と、クランパ11~18(図1)と、多関節ロボット40と、制御部80(図1、図2)と、を備えて構成されている。荷台60は、車両90(99)上に形成された平坦面である。荷台60の後方には、加工前の材料置き場10が設定されている。剛性部材65は、車両90(99)の進行方向に一致する縦方向の金属フレームであり、それと直角な剛性部材66は、幅方向の金属フレームである。
 ワーク受け台50は、平坦な荷台60の所定区画に、剛性部材65,66の堅牢な支持を受けて形成されている。その結果、ワーク受け台50は、荷台60の前後方向の中間位置で、精密な平坦度を確保されている。このワーク受け台50は、荷台60の全長Lに対して、例えば、50~90%の長さKであるとともに、荷台60の全幅Wに対して、例えば、50~90%の幅Dである。クランパ11~18は、ワーク受け台50に建材1を固定する。
 建材1は、各材料別の最大寸法(mm)を以下に例示するとおりである。本システム100では、石膏ボード(例えば、9・12×910×2730)、フローリング(例えば、303×1818)、巾木(例えば、77×4000)、廻り縁(例えば、55×4000)、框・付け框(例えば、120×1950×70)、構造用合板(例えば、9・12×910×2440)、例えば、2×4材(38×89)、2×6材(38×140)、2×10材(38×184)、2×12材(38×235)、等を切削加工できる。
 なお、2×4工法用製材としては、JAS(日本農林規格)に規定されているが、以下の名称で特定される規定寸法の材木が用いられる。すなわち、断面形状の異なる1×4(例えば、乾燥材で19×89mm),1×6,2×2,2×3,2×4(204材),2×6(206材),2×8,2×10(210材),2×12,4×4(404材)と表示されるものを含む。なお、名称はインチサイズに由来するが、実際の寸法は呼称されるインチサイズよりも小さい。また、定尺長さをそれぞれの需要に応じて、例えば、910,1820,2336,3040,3650mmの5種類位に統一して販売されることが多い。
 図5は、本システムの切削手段をより実態的に示した斜視図である。図5に示すように、多関節ロボット40は、その先端に首振り自在の切削手段30を配設している。その切削手段30は、交換自在の回転刃として、丸ノコ21や不図示の錐(ルータ)を回転軸20に装着し、ワーク受け台50の外周51~54より広い範囲にはみ出して切削加工の動作をすることが可能である。制御部80は不図示のサーボモータをNC制御し、電磁式空気弁71を開閉制御するほか、全体を統合制御する。
 そのサーボモータは、多関節ロボット40の各関節を適宜に屈伸させ、切削手段30の回転軸20をワーク受け台50に固定された建材1に対して、適切な角度に支持するとともに、切削方向に合わせて移動させる等して、切削加工に必要な動作をさせる。また、多関節ロボット40は、サーボモータによりレール62の上を自走可能であるため、ワーク受け台50の広範囲にわたって切削手段30を動作させ易く構成されている。
 本システム100,101(図4),103(図7~図12)において、制御部80は、切削手段30とクランパ11~18,5~8との少なくとも何れかが両者の接触を回避しながら、切削手段30に建材1を切削加工させるように制御する。制御部80には、操作部(ロボット制御盤)70と、不図示のコンピュータと、それにより適宜実行可能なプログラムが格納された記憶手段等を備えている。
 すなわち、この制御部80は、ユーザによる操作部70からの指示に応じて、多関節ロボット40に建材1を、プログラムされた加工仕様に基づく所望の切削加工させるための制御機能を備えている。また、操作部70として、不図示のタブレット端末やノートパソコンからの指示も受け付けるように、制御部80が構成されている。
 また、本システム100,101において、制御部80は、プログラムに基づいて切削手段30がクランパ11~18の位置を避けて建材1を切削加工するように多関節ロボット40を制御する。また、クランパ11~18が、ワーク受け台50に対して水平方向に移動できないタイプの場合は、適宜に、切削手段30が衝突回避の動作を行うか、停止するように制御することも可能である。
 ただし、クランパ11~18のうち、切削手段30が接触すると予測されたものを開く動作するだけで両者の接触を回避できる場合もある。さらに後述するように、より実用性を高めた本システム103(図7~図12)において、制御部80は、プログラムに基づいて、クランパ11~14,5~8に切削手段30との接触を回避するように動作させながら、切削手段30に建材1を切削加工させるように全体を制御することも可能である。なお、クランパ11~18,5~8については、より詳細に後述する。
 X軸は荷台60の長手方向に一致して荷台60の全長Lに対し、例えば、100%以下の長さMである。Y軸は荷台60の幅方向に一致して荷台60の全幅Wに対し、例えば、120%以下の長さVである。Z軸は荷台60の高さ方向に一致して荷台60の床61から天井69までの高さHである。
 本システム100は、上述のように、マシンニングセンタと似た機能を有し、多関節ロボット40が切削加工できる範囲を、ワーク受け台50の基準点Oに基づくX軸、Y軸、Z軸、の3次元座標により設定されている。これらX軸、Y軸、Z軸、それぞれの座標値を、制御部80が不図示のサーボモータをNC制御する。したがって、本システム100は、ワーク受け台50に固定された建材1を、多関節ロボット40の切削手段30によって、X軸と、Y軸と、Z軸の範囲内で切削加工する。
 図6は、図1の類似形態を示した本システムの平面図である。図6は図1に示したものに比べて若干異なる形態であっても、それらの機能および動作は同様であるため、同一効果の部材や箇所には同一符号を付して説明を省略している。本システム100は、さらに、レール62と、搬送体64と、を備えている。
 レール62は、ワーク受け台50に隣接してX軸方向に延在し、搬送体64のための自走用レーンを形成する。搬送体64は、制御部80に制御される不図示のサーボモータを備え、レール62に係合して多関節ロボット40をX軸方向に移動可能である。制御部80は、搬送体64も交えて多関節ロボット40を制御する。図6にワーク受け台50を平面視した大きさ(mm)を、例えば、4160×1100(クッション19不使用時)と示している。
 一方、建材1は、上述のとおり、各材料別の最大寸法(mm)が、長尺ものでは巾木が(例えば、77×4000)、平板材では石膏ボードが(例えば、9・12×910×2730)、2×4工法用製材としては、建材を超えて構造材用の例えば、4×4(404)材が(89×89×3650)であり、これらも余裕をもってワーク受け台50に載置可能であり、切削加工が可能である。なお、本発明を実施する地域によって、各部材の標準的寸法が異なることはいうまでもない。
 なお、ワーク受け台50の角部55~58のうち、角部57にはクッション19が配設されて建材1の位置決めに寄与している。また、図1および図6における左下方に基準点Oを設定している。さらに、建材1はクランパ11~18でワーク受け台50に固定されるが、これについては、より詳細に後述する。
 また、本システム100(101)の車両90(99)には、発電機94(91)およびエアコンプレッサ93をワーク受け台50の前側で荷台60の前方寄りに積載し、集塵機92をワーク受け台50の後側で荷台60の後方寄りに積載して備え、切削加工を支援するように構成されている。発電機94(91)は、本システム100(101)で必要とする電力を供給可能である。
 また、本システム101を構成する専用の車両99は、発電機駆動軸97と、調速機(ガバナ)79と、を有する動力伝達手段95を追加で備えている。車両99のエンジン96は、車両駆動軸98により車両99を走行させるほか、その動力を動力伝達手段95によって、発電機駆動軸97へも伝達し、その発電機駆動軸97を介して発電機94までも駆動できる。
 調速機79は発電機94の回転速度を一定になるように調整する。この調速機79の指令により、エンジン96の出力が調整される。つまり、本システム101の作業に応じた重負荷のため発電機94の回転速度が低下しそうな場合、調速機79はエンジン96のスロットルを開く等により、燃料供給量を増加して出力を高めて発電機94の回転速度を維持する。また、逆の場合は燃料供給量を減少して出力を低下させるように調速機79がエンジン96を調整する。
 専用の車両99は、エンジン96の動力を、車両99の走行移動用のみならず、発電機94の駆動力としても兼用することが可能である。したがって、この車両99は、発電機94を駆動するための専用のエンジンを省略できるので、設備効率が良好となる。なお、専用の車両99であっても、一般的なエンジン付きの発電機91を搭載しても構わない。その場合は、発電機駆動軸97を有する動力伝達手段95は不要である。
 エアコンプレッサ93は、クランパ用のエアシリンダ49に電磁式空気弁71(図1、図2)を介して圧縮空気を付与する。電磁式空気弁71は、操作部70の操作や制御部80から出力される制御信号に基づいて、弁を開閉する弁制御が可能である。電磁式空気弁71の開閉に応じて、エアコンプレッサ93で生成された圧縮空気が、クランパ用のエアシリンダ49へ圧入されたり放出されたりする。なお、クランパ用のエアシリンダ49に代えて、油圧や電動その他の駆動手段を用いても構わない。なお、図2~図4のエアシリンダ49は概念的に示したものであり、実際にはより複雑かつ精密な機構であるが、その点については、図解・説明を省略する。
 このように、エアシリンダ49は、圧縮空気の圧入と、放出と、の区別によって、所定ストロークの直線的動作を行うことにより、クランパ11~18の開閉動作を駆動する。その結果、クランパ11~18は、建材1を、ワーク受け台50対して、固定と、解放と、選択的に動作させることができる。集塵機92は、多関節ロボット40が切削手段30で建材1を切削加工することによって発生する切削屑を収集する。
[定位置クランパ]
 本システム100のワーク受け台50には、ワーク受け台50に対し、水平方向に移動することのない定位置タイプで、総数N個のクランパ11~18を備えている。それら総数N個のクランパ11~18のうち(N/2)+1個が、ワーク受け台50の外周51~54で長手(X軸)方向に平行な2辺51,53のうち一方の辺51を可変間隔Gで分割するように配設されている。なお、Nは4以上で任意の自然数である。ここで例示するクランパ11~18は、総数N=8個である。その場合、一方の辺51には、(8/2)+1=5個のクランパ11~15が配設されている。
 また、それら総数N個のクランパ11~18のうち(N/2)-1個が、ワーク受け台50の外周51~54で長手(X軸)方向に平行な2辺51,53のうち他方の辺53を可変間隔Gで分割するように配設されている。総数N=8個であるため、ここで例示する他方の辺53には、(8/2)-1=3個のクランパ16~18が配設されている。また、他方の辺53の両端に該当するワーク受け台50の角部57,58にはクランパ11~18を配設していない。
 ここで、「2×4材」等による長尺ものの建材1の端末部分を切断する加工仕様に対しても、切断面に係合するクランパ11~18が存在しない。さらに、長尺ものの建材1の端末部分を斜め方向に切断する加工仕様に対しても、切断面の延長線をワーク受け台50の外周の辺51~54からはみ出して逃がすような位置関係になる。この場合、切削手段30はワーク受け台50の外周の辺51~54からはみ出して切削動作しながら所望の加工仕様を実現することが可能である。
 また、長尺ものの建材1を、ワーク受け台50における一方の辺51に寄せて載置した場合、その角部55,56にそれぞれクランパ11,15が配設されており、切削手段30はクランパ11,15を避けるような動作をする。したがって、長尺ものの建材1の端部を切削加工できない。逆に、長尺ものの建材1を、ワーク受け台50において、クランパ11~18の配設されていない片方の辺53に寄せて載置すれば、その角部57,58に該当する箇所でも切削加工することを妨げられない。さらに、荷台60の所定区画に形成されたワーク受け台50の全面を占有する程の広い面積の建材1であっても、クランパ11~18に邪魔されることなく、長手方向の切削加工ができる。
 このように、ワーク受け台50の片方の辺53に対する角部57,58にクランパ11~18を配設していないことにより、建材1のうち、その角部57,58に該当する箇所でも切削加工することを妨げられない。つまり、長尺ものの建材1であっても、ワーク受け台50の長手方向の限界まで利用するように固定することができる。その結果、本システム100によれば、より長い建材1まで切削加工できる。したがって、スペースに対する制約が厳しい車載型の装置であっても、その狭隘なスペースを有効利用できる。
[移動クランパ]
 つぎに、図7~図12を用いて、より実用性を高めた本システム103について説明する。なお、本システム100,101(図1~図6)で説明済みであって、同一効果の部材や箇所には同一符号を付して説明を省略している。図7は、本システムにおいて、規定された水平方向に移動可能なクランパを採用することによって、そのクランパが切削手段と衝突する不具合を回避するための動作を可能にした変形実施例を示す斜視図である。図8は、図7のクランパが規定された水平方向に移動して衝突を回避する動作を説明するための斜視図である。図9は、図7のクランパの動作及び効果を説明するための図であり、図9(A)は回避前の状態、図9(B)は回避中の状態を、それぞれ示す平面図である。
 図7~図12に示すように、本システム103は、ワーク受け台59の外周51に沿って等間隔に配設された4個のクランパ11~14と、外周51の対辺の外周53に沿って等間隔に配設された4個のクランパ5~8と、を備えている。クランパ11~14は、ワーク受け台59において、垂直方向に開閉動作をすることにより、建材2をつかんだり解放したりするが、ワーク受け台59に対して水平方向に移動することはできない。その点でクランパ11~14は、図1及び図2を用いて上述したクランパ11~18と同一機能のものである。
 なお、ワーク受け台59は、テーブルと呼ぶには違和感を伴う程であって、平坦な台面ばかりで構成されているとは限らない。すなわち、ワーク受け台59は、平行な4本の溝41~44が、幅方向の流通を可能にし、長手方向に対して概ね等間隔で掘削されたような外観形状である。剛性部材65,66(図2~図4)の上に、テーブル59用の平坦面形成部材が4本の溝41~44で分断されて組み立てられている。なお、建材1そのものが、ある程度の剛性を持った平坦面を有するので、テーブル59の表面は、全面にわたって連続的な平坦面である必要はなく、平坦面を有する鋼材等の組合せによって、全体的に平坦面が形成されていれば十分である。
 クランパ11~14は、ワーク受け台59に対して水平方向に移動できないので、主に切削手段30の方で衝突回避の動作を行う必要がある。ただし、複数のクランパ11~14のうち、切削手段30が接近した1つだけが、垂直方向に開く動作をするだけで両者の接触や衝突を回避できる場合もある。その場合も、複数のクランパ11~14のうち、例えば3つが閉じて建材2をつかんだ状態を維持していれば固定する機能に不具合はない。
 本システム103には、本システム100,101と異なる3点がある。第1に、ワーク受け台59の片方の辺53に対する角部57,58にもクランパ5,8を配設している点。第2に、クランパ5~8は、ワーク受け台59に対し、水平方向に移動可能である点。第3に、制御部80は、クランパ11~14,5~8に切削手段30との接触を回避するように動作させながら、切削手段30が建材2を切削加工するように全体を制御する点である。
 図7に示すように、本システム103において、クランパ6~8は、建材2の幅に合わせて矢印R方向に水平移動することが可能である。また、図8、図9(A)及び図9(B)に示すように、本システム103において、クランパ5~8は、切削手段30が接近して干渉しそうになると、つかんでいた建材2を離すとともに、建材2から離れる矢印Q方向へと後退動作する。
 その結果、切削手段30がクランパ5~8に接触して互いに損傷する事故を回避することができる。このような接触回避動作は、制御部80が切削手段30とクランパ5~8との相互位置関係を常時把握し、クランパ5~8の何れか(図8、図9ではクランパ6)を適宜に退避させるように制御することによって実現する。また、接触回避動作が不要になれば、矢印R方向へと復帰動作する。
 より詳しくは、図9(A)に示すように、丸ノコ21が建材2を切断線31に沿って矢印J方向へと切断しようとする場合を一例として説明する。この場合、切断線31の終点間際でクランパ6に丸ノコ21が干渉する危険領域32が存在し、何らかの回避措置を採る必要がある。
 そこで、図9(B)に示すように、制御部80が切削手段30とクランパ5~8との相互位置関係を常時把握し、危険領域32が生ずる場合、クランパ6を適時に退避させて、安全領域9に変えるように制御する。このとき、エアシリンダ49は、制御部80の制御に応じて、圧縮空気の圧入と、放出と、の区別によって、所定ストロークの直線的動作を行うことにより、クランパ11~18,5~8に、開閉又は水平移動の動作をさせるように駆動する。
 このように、本システム100,101(図1~図6),103(図7~図12)において、制御部80は、切削手段30とクランパ11~18,5~8との少なくとも何れかが両者の接触を回避しながら、切削手段30が建材1を切削加工するように制御する。このため、特に、クランパ5~8(図7~図12)は、制御部80の制御によりワーク受け台59に対し、建材2を固定と、解放と、選択的に動作させるのみならず、水平方向にも移動可能に構成されている。
 図10は、ワーク受け台(テーブル)におけるクランパの配置及びそれらの可動範囲を示す平面図である。図10に示すように、合計8個のクランパ11~18,5~8が、ワーク受け台59の外周の辺51,53に沿って概ね等間隔に配設されている。特に、クランパ5~8は、4本の溝41~44に沿って水平方向に摺動可能である。これらのクランパ11~18,5~8には、建材1を上方からワーク受け台59に押え付ける押さえ腕木45,47と、建材1を取り囲んで水平方向に押え付ける横押しパッド46(図11)と、それぞれを駆動するエアシリンダと、を備えて構成されている。
 建材1は、ワーク受け台59の概ね外形の全部にわたる大きさの板材から、ワーク受け台59の長手方向からはみ出す柱材まで、クランパ11~18,5~8により、ワーク受け台59の盤面に固定することが可能である。また、大きな板材と細い柱材との何れの場合も、片方の1辺をワーク受け台59の外周の辺51に寄せられた位置に固定される。そのため、これら建材1の幅に適応するように、クランパ5~8は、それぞれを支承する溝41~44に沿って水平方向に移動させる。
 また、クランパ11~18,5~8は、丸ノコ21等の切削手段30が、接触すると予測された場合、以下のように回避運動する。まず、ワーク受け台59の外周の辺51に沿って配設されクランパ11~18は、主に建材1を上方からワーク受け台59に押え付ける回転可能な押さえ腕木47が、鉛直軸48を中心にして回転することにより回避運動する。
 また、ワーク受け台59の外周の辺53に沿って配設されクランパ5~8は、主に建材1を上方からワーク受け台59に押え付ける押さえ腕木45が、4本の溝41~44に沿って水平移動することにより回避運動する。これらクランパ11~18,5~8のそれぞれに、建材1を水平方向に押え付ける横押しパッド46(図11)も配設されているが、これらも適宜に退避動作する。
 本システム103において、制御部80は、操作部70からの操作内容を実現する機能に加えて、相互位置関係予測手段81と、クランパ回避手段82と、の機能を発揮するプログラムを備えている。相互位置関係予測手段81は、切削手段30とクランパ11~14,5~8との相互位置関係を予測する。相互位置関係は、建材1の大きさと、その固定位置と、それらを固定するクランパ11~18,5~8の形状及びそれぞれの姿勢と、丸ノコ21等の切削手段30による切削経路と、に基づいて、規定の演算を実行することにより予測される。
 クランパ回避手段82は、相互位置関係予測手段81の演算結果に基づいて、クランパ11~14,5~8の回避動作及び復帰動作を不図示のエアシリンダに実行させるように電磁式空気弁71を制御する。制御部80は、エアコンプレッサ93とエアシリンダ(不図示)との間に介挿された電磁式空気弁71の開閉制御することによって、目的を達成する。
 回避動作は、ワーク受け台50に複数が配設されたクランパ11~14,5~8のうち、切削手段30が接触すると予測されたものだけを接触回避させる動作である。復帰動作は、回避動作の後、回避目的が終了したものから順に、建材1を固定可能にするために復帰させる動作である。
 本システム103において、クランパ5~8は制御部80の制御によりワーク受け台59に対して水平方向に移動可能であるとともに鉛直軸48に対して回転動作可能な押さえ腕木47を有し、制御部80は、クランパ5~8に切削手段30との接触を回避するように動作させながら、建材1を切削加工するように全体を制御する。
 図11は、クランパの動作を説明するための拡大斜視図である。図11に示すように、クランパ11(12~14,5~8)は、丸ノコ21等の切削手段30が接触して相互に傷付け合う不具合を回避することが可能な腕木45,47を備えている。この腕木45,47は、ワーク受け台50に対し、少なくとも、鉛直軸48に対して回転動作可能であるか、又は、水平方向の移動が可能であるか、何れかの回避機能を有する。この回避機能は、制御部80の制御により実行される。なお、クランパ11は、特に図7~図10の本システム103において、好適に用いられるものを例示している。クランパ11は、上述の不具合を回避することが可能な腕木47を備えている。
 腕木45,47は、矢印U,Cに示す昇降動作、及び矢印RT,LTに示す回転動作が可能である。横押しパッド46も矢印A,Bに示す水平方向の移動が可能である。これら腕木47及び横押しパッド46は、建材1を、図11に示す状態で受け入れた後、ワーク受け台50に固定する。また、その逆方向の動作で建材1を解放する。なお、図11の横押しパッド46は矢印A,Bに示すように、わずかな水平移動は可能であるが、図8~図10,図12に示したクランパ6全体がR方向に水平移動を可能にするほど大きく移動するものではない。
 ここで、腕木47は、切削手段30が接触すると予測されたとき、上昇して建材1の拘束を解放してから、回避目的に沿った方向へと回転する。同様に、横押しパッド46も、切削手段30が接触すると予測されたとき、建材1を水平方向に押え付けていた方向の逆方向、つまり解放する水平方向へ移動して、回避目的を達成することができる。
 図12は、クランパの退避動作を説明するための図であり、図12(A)は建材クランプ工程(図14のS30)、図12(B)は切削加工工程の初期(図14のS51)、図12(C)は切削加工工程の末期(図14のS51~S53)を、それぞれ示す模式平面図である。なお、この図12は、回避動作について、図9を用いた説明に対し、横押しパッド46の回避動作まで加えている代わりに、クランパ6,13のみに限定し、要点のみをクローズアップして模式説明するために簡略化した図である。
 図12(A)に示すように、建材クランプ工程(図14のS30)において、腕木47が、建材1の長手方向に直交する角度で、上方から建材1をワーク受け台59に押え付けるとともに、横押しパッド46が建材1を取り囲んで水平方向に押え付けている。つぎに、図12(B)に示すように、切削加工工程の初期において、クランプ13の丸ノコ21が横押しパッド46に接触するとい予測(図14の相互位置関係予測工程S51)に基づいて、何らかの回避措置を採る必要がある。この回避措置として、横押しパッド46が建材1を水平方向に押え付けていた方向の逆方向、つまり解放する水平方向へ移動するとともに、腕木47は、上昇して建材1の拘束を解放してから、回避目的に沿った右方向RTへと回転する。
 つぎに、図12(C)に示すように、切削加工工程の末期において、丸ノコ21が腕木47及び横押しパッド46に接触するという危険を回避する目的を終了したクランプ13から順に、建材1を固定可能にするために復帰動作させる(図14のクランプ復帰工程S53)。その一方で、クランプ6に対し、丸ノコ21がクランプ6の腕木47及横押しパッド46に接触するとい予測(図14の相互位置関係予測工程S51)に基づいて、腕木47及び横押しパッド46を回避目的に沿った方向へと回避動作させる。最後は、図12から省略しているが、クランプ13に続いて危険を回避する目的を終了した順に、クランプ6も建材1を固定可能にするために復帰動作させる(図14のクランプ復帰工程S53)。
 図13は、本システムのアクリルカバーを示す斜視図である。図13に示すように、本システム100,101,103には、切削手段30の近傍から発生する、おがくず(大鋸屑、sawdust)等の飛散防止のため、アクリルカバー3を備えることが好ましい。このアクリルカバー3は、少なくとも、ワーク受け台59と、関節ロボット40と、切削手段30とに対し、切削加工の動作に支障なく、覆い被さるだけの外形・形状であって、剛性部材65(図2、図4),66を有する基台に固設されている。
 このアクリルカバー3は、窓33と、点検口23とを備えている。窓33は、作業の進捗に応じて適宜に自動開閉することにより、建材1,2を出し入れ可能である。すなわち、不図示のエアシリンダ等の駆動力により、矢印E方向に窓を持ち上げて開き、矢印F方向に窓を下げて閉じる。点検口23は、適宜にメンテナンスする者が出入りできる開閉可能な扉である。
 以下、本方法について説明する。本方法は、建築現場で使用する建材1を、本システム100により、現地で切削加工する建材加工方法である。本方法で用いる本システム100とは、上述のように、建築現場で建材1を加工するため、移動可能な車両90の荷台60に、建材1を固定するワーク受け台59と、関節ロボット40と、切削手段30と、これらを制御する制御部80と、を積載して移動可能にしたものをいう。
 ワーク受け台59は、車両90を構成する荷台60の所定区画に配設された剛性部材65,66で平坦度を確保されている。多関節ロボット40は、先端に首振り自在の切削手段30が配設されている。切削手段30は、ワーク受け台59の外周からはみ出して首振り自在である。この切削手段30により、ワーク受け台59に固定された建材1を自在に切削加工する。
 制御部80は、操作部70による操作に関連して実行されたプログラムに基づいて、多関節ロボット40および切削手段30に建材1を所望の加工仕様どおりに切削加工させる。このとき、制御部80は、クランパ11~18でワーク受け台59に固定された建材1を、切削手段30がクランパ11~18への接触を避けながら切削加工するように、多関節ロボット40を制御する。以下、図7を用いて詳細な手順を説明する。
 図14は、本方法の概略を説明するためのフローチャートである。図14に示すように、本方法は、材料積込み工程(S10)と、自走移動工程(S20)と、建材クランプ工程(S30)と、所望操作工程(S40)と、切削加工工程(S50)と、建材クランプ解除工程(S60)と、を有している。
 材料積込み工程(S10)では、建築現場における使用予定で加工前の建材1を、荷台60の後方に設定された加工前の材料置き場10に積込む。つぎに、自走移動工程(S20)では、材料積込み工程(S10)後における全装備状態の車両90により建築現場まで自力走行して移動する。つぎに、建材クランプ工程(S30)では、積み込まれた加工前の建材1を、組み立て利用の順にワーク受け台59へ移動し、クランパ11~18で固定する。
 所望操作工程(S40)では、ユーザが、多関節ロボット40に、建材1を、加工仕様に基づいて所望の切削加工させるため、操作部70を操作する。切削加工工程(S50)では、ユーザの操作に応じて制御部80が多関節ロボット40を制御することにより、ワーク受け台59に固定された建材1を、切削手段30がクランパ11~18への接触を避けながら切削加工する。建材クランプ解除工程(S60)では、クランパ11~18を解除して所望の切削加工された建材1をワーク受け台59から取り外す。
 また、切削加工工程(S50)には、相互位置関係予測工程(S51)と、接触回避工程(S52)と、クランプ復帰工程(S53)と、を有する。相互位置関係予測工程(S51)では、所望の切削加工に応じた切削手段30の挙動に基づいて、相互位置関係予測手段81により切削手段30とクランパ11~14,5~8との相互位置関係を予測する。接触回避工程(S52)では、相互位置関係予測工程(S51)による予測結果により、複数のクランパ11~14,5~8のうち、切削手段30との接触が予測されたものを回避動作させる。クランプ復帰工程(S53)では、回避工程(S52)によって回避動作したものを、回避目的の終了したものから順に、建材1を固定可能にするために復帰動作させる。
 以上、説明したように、建築現場で使用する建材を、現地で容易に切削加工できる車載型建材加工システムおよび建材加工方法を提供できる。すなわち、本システムでは、切削手段がクランパに接触して互いに損傷する不具合が無く、この不具合を避けるための注意力が不要となる。また、本方法では、工場でなく建築現場で切削加工する多段階の工程を定型業務化し易いので、非熟練労働者でさえも、より有効に活用できる。したがって、本発明によれば、熟練労働者が不在、又は少数であっても、工場でなく建築現場で容易に切削加工することが可能となる。
[車載解除による据え置き型]
 以下に、変形例として、本システム100,101を車載された状態から解除し、地上の固定設備として据え置き利用する場合について説明する。本システム100,101は、車両90,99の荷台60に、ユニット構成された建材加工ロボットシステムを載置したものである。その目的とするところは、木工設備の完備されていない発展途上地域へ機動的に出張サービスすることにある。
 この目的に適合する運用形態として、本システム100,101を車載された状態から解除し、地上の固定設備として据え置きして利用する形態もあり得る。その一方で、ユニット構成された建材加工ロボットシステムを車両90,99の荷台60から降ろせば、その荷台60が空になって他の物資を運搬する用途に使えるので設備効率が向上する。また、出張サービスの目的を完了した後は、本システム100,101を車載された状態に戻して撤収すれば良い。
 本システム100,101は、車両90,99の荷台60に、その平坦度を確保して補強する剛性部材65,66を有する基台上でコンパクトにユニット構成された建材加工ロボットシステムを載置したものである。荷台60に対し、そのユニットを積み下ろしするために、フォークリフトに適応したパレットの機能が、剛性部材65,66を有する基台によって形成されることが好ましい。なお、不図示のボルト・ナットで荷台60と剛性部材65,66とを適宜に結合し、あるいは、それらの結合を解除したりすることはいうまでもない。
 ここでいうパレットとは、輸送・保管などの物流業務で使用される板状運搬用架台であり、樹脂製、木製又は金属製のものがある。パレットは、構内運搬、トラックへの積み込みを効率的に行うため、不図示のフォークリフト、ハンドリフトのツメを差し込む差込口67がある。また、多くのパレットは、許容される動荷重が約1tである。なお、動荷重はフォークリフトなどで動かしている状態に耐えられる重量で、静荷重は平地においた時に耐えられる重量であり、動荷重の1tより大きい。
 本システム100,101において、荷台60上に、ユニット構成された建材加工ロボットシステムの重量(静荷重)も概ね1t程度である。これに対応するようなパレットの機能を剛性部材65,66を有する基台によって形成することは容易である。したがって、本システム100,101を車載された状態から解除し、地上の固定設備として据え置き利用する場合については、クレーンが無くても持ち上げ能力1t以上の一般的なフォークリフト1台でユニットを積み下ろしすることができる。なお、クレーンフックを掛けることがあれば、不図示の吊り輪を剛性部材65,66の4隅に配設しておくと、なお好ましい。
 なお、パレットには、リフトのツメの差込口がついている数の違いによって、2方差し、4方差しという種類がある。2方差しでは差込口のない側面がある。4方差しは樹脂パレットの4つの側面すべてに差込口があるので、どこからでもフォークリフトを差し込んで持ち上げることができる。この点については、実際の業務形態に応じて最適設計すれば良い。
 本発明は、「2×4工法」をはじめとする比較的簡便な住宅建築における建材加工の工程に採用される可能性がある。特に、人材や設備の観点から、熟練労働者が不在、又は少数であっても、工場でなく建築現場での切削加工を容易に実現したいという要望の高い地域事情に即して、有益に採用される可能性がある。
 本システムは、専用加工機に比べると若干の効率低下があるとしても、1台であらゆる建材加工に対応可能な長所を有する。したがって、加工内容別に高効率の専用加工機を複数台に及んで備える建材加工工場のない未開発の地域で、本システムを用いて小規模に住宅建設事業に着手する用途に好適である。その地域で住宅建設事業が大規模に発展すれば、より効率の高い建材加工工場を建設すれば良い。つまり、本発明は、発展途上の地域において、試験的な目的であっても好適に採用される可能性がある。
 なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。したがって、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、車載型建材加工システムの構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。
 1,2 建材、3 全体カバー、5~8 (移動可能な)クランパ、9 安全領域、10 加工前の材料置き場、11~18 (定位置の)クランパ、19 クッション、20 回転軸、21 丸ノコ、23 (全体カバーの)点検口、30 切削手段、31 切断線、32 危険領域、33 (全体カバーの)自動開閉窓、40 多関節ロボット、41~44 テーブル分断溝、46 (クランパ用の)横押しパッド、45,47 (クランパ用の)押さえ腕木、48 (クランパ用の)鉛直軸、49 (クランパ用の)エアシリンダ、50,59 ワーク受け台(テーブル)、51~54 (ワーク受け台50,59の)外周の辺、55~58 (ワーク受け台50,59の)角部、60 荷台、61 (荷台60の)床、62 レール、64 搬送体、65,66 剛性部材、67 (リフトのツメの)差込口、69 天井、70 操作部(ロボット制御盤)、71 電磁式空気弁、79 調速機(ガバナ)、80 制御部、81 相互位置関係予測手段、82 クランパ回避手段、90 車両、91,94 発電機、92 集塵機、93 エアコンプレッサ、95 動力伝達手段、96 エンジン、97 発電機駆動軸、98 車両駆動軸、99 専用車両、100,101,103 車載型建材加工システム(本システム)、D (ワーク受け台50,59の)幅、H (荷台60の床61から天井69までの)高さ(Z軸)、K (ワーク受け台50,59の)長さ、L (荷台60の)全長、M 長さ(X軸)、N (クランパ11~18)の総数、O 基準点、A,B,E,F,J,P,Q,R,RT,LT 矢印、S10 材料積込み工程、S20 自走移動工程、S30 建材クランプ工程、S40 所望操作工程、S50 切削加工工程、S60 建材クランプ解除工程、V 長さ(Y軸)、W (荷台60の)全幅、X,Y,Z 3次元の座標軸

Claims (11)

  1.  建築現場で使用する建材を切削加工する機能を有して移動可能な車載型建材加工システムであって、
     車両に形成された平坦な荷台と、
     該荷台の所定区画に形成されたワーク受け台に対する平坦度を確保する剛性部材と、
     制御を受けて前記ワーク受け台に前記建材を固定するクランパと、
     前記ワーク受け台の外周より広い範囲にはみ出して首振り自在の切削手段を先端に配設された多関節ロボットと、
     該多関節ロボットに前記建材を所望の切削加工させるための操作部を有して全体を制御する制御部と、
     を備え、
     該制御部は、前記切削手段と前記クランパとの少なくとも何れかが両者の接触を回避しながら、前記切削手段が前記建材を切削加工するように制御する車載型建材加工システム。
  2.  前記クランパは、前記両者の接触を回避するため前記制御部の制御により前記ワーク受け台に対し、少なくとも、鉛直軸を中心にして回転動作可能であるか、又は、水平方向の移動が可能であるか、何れかの回避機能を有する押さえ腕木、
     を備えた請求項1に記載の車載型建材加工システム。
  3.  前記制御部は、
     前記切削手段と前記クランパとの相互位置関係を予測する相互位置関係予測手段と、
     該相互位置関係予測手段の演算結果に基づいて、
     前記ワーク受け台に複数が配設された前記クランパのうち、前記切削手段が接触すると予測されたものだけを回避動作させるとともに、回避目的の終了したものから順に、前記建材を固定可能にするために復帰動作させるクランパ回避手段と、
     を備えた請求項2に記載の車載型建材加工システム。
  4.  前記クランパは総数N=8個である請求項1~3の何れか1項に記載の車載型建材加工システム。
  5.  前記クランパが開閉又は移動の動作をするために駆動するエアシリンダと、
     該エアシリンダに圧縮空気を付与するエアコンプレッサと、
     該エアコンプレッサにより生成された圧縮空気を前記操作部の操作に基づいて前記エアシリンダへ圧入する制御が可能な電磁式空気弁と、
     を備えた請求項1~3の何れか1項に記載の車載型建材加工システム。
  6.  前記ワーク受け台に隣接して延在するレールと、
     該レールに係合して前記多関節ロボットを移動可能な搬送体と、
     を備え、
     前記制御部は、前記搬送体も交えて前記多関節ロボットおよび前記切削手段を制御する請求項5に記載の車載型建材加工システム。
  7.  前記車両には、
     当該システムで必要とする電力を供給可能な発電機と、
     切削屑を収集する集塵機と、
     をさらに備え、
     前記発電機および前記エアコンプレッサを前記ワーク受け台の前側で前記荷台の前方寄りに積載し、
     前記ワーク受け台を前記荷台の前後方向の中間位置に形成し、
     前記荷台の後方に加工前の材料置き場を設定した請求項5又は6に記載の車載型建材加工システム。
  8.  前記発電機は前記車両の移動に用いるエンジンの動力を兼用して駆動する動力伝達手段を備えた請求項7に記載の車載型建材加工システム。
  9.  先端に首振り自在の切削手段が配設された多関節ロボットを車載して建築現場で使用する建材を切削加工する建材加工方法であって、
     車両を構成する荷台の所定区画に配設された剛性部材で平坦度を確保されたワーク受け台と、
     該ワーク受け台の外周より広い範囲にはみ出して首振り自在の切削手段を先端に配設された多関節ロボットと、
     該多関節ロボットに前記建材を所望の切削加工させるための操作部を有して全体を制御する制御部と、
     を用い、
     前記ワーク受け台にクランパで固定された前記建材を、前記制御部の支援により、前記切削手段と前記クランパとの少なくとも何れかが両者の接触を回避するように動作しながら前記切削手段が切削加工する建材加工方法。
  10.  建築現場における使用予定で加工前の前記建材を、前記荷台の後方に設定された加工前の材料置き場に積込む材料積込み工程と、
     全装備状態の前記車両を建築現場まで自力走行して移動させる自走移動工程と、
     積み込まれた加工前の建材を、組み立て利用の順に前記ワーク受け台へ移動し、前記クランパで固定する建材クランプ工程と、
     ユーザが、前記多関節ロボットに、前記建材を所望の切削加工させるため、操作部を操作する所望操作工程と、
     前記ユーザの操作に応じて前記制御部が全体を制御することにより、前記クランパが前記切削手段との接触を回避するように動作しながら、前記切削手段が前記建材を切削加工する切削加工工程と、
     前記クランパを解除して前記所望の切削加工された建材を前記ワーク受け台から取り外す建材クランプ解除工程と、
     を有する請求項9に記載の建材加工方法。
  11.  前記切削加工工程では、前記所望の切削加工に応じた前記切削手段の挙動に基づいて、
     相互位置関係予測手段により前記切削手段と前記クランパとの相互位置関係を予測する相互位置関係予測工程と、
     該相互位置関係予測工程による予測結果に応じて、複数の前記クランパのうち、前記切削手段との接触が予測されたものを回避動作させる接触回避工程と、
     該回避工程によって回避動作したものを、回避目的の終了したものから順に、前記建材を固定可能にするために復帰動作させるクランプ復帰工程と、
     を有する請求項10に記載の建材加工方法。
PCT/JP2017/009852 2017-03-10 2017-03-10 車載型建材加工システムおよび建材加工方法 WO2018163436A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3055409A CA3055409C (en) 2017-03-10 2017-03-10 In-vehicle building material processing system and building material processing method
CN201780088259.8A CN110430979B (zh) 2017-03-10 2017-03-10 车载型建材加工系统和建材加工方法
JP2019504293A JP6721916B2 (ja) 2017-03-10 2017-03-10 車載型建材加工システムおよび建材加工方法
US16/492,533 US11318621B2 (en) 2017-03-10 2017-03-10 In-vehicle building material processing system and building material processing method
RU2019131680A RU2725546C1 (ru) 2017-03-10 2017-03-10 Система обработки строительного материала на транспортном средстве и способ обработки строительного материала
PCT/JP2017/009852 WO2018163436A1 (ja) 2017-03-10 2017-03-10 車載型建材加工システムおよび建材加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009852 WO2018163436A1 (ja) 2017-03-10 2017-03-10 車載型建材加工システムおよび建材加工方法

Publications (1)

Publication Number Publication Date
WO2018163436A1 true WO2018163436A1 (ja) 2018-09-13

Family

ID=63447415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009852 WO2018163436A1 (ja) 2017-03-10 2017-03-10 車載型建材加工システムおよび建材加工方法

Country Status (6)

Country Link
US (1) US11318621B2 (ja)
JP (1) JP6721916B2 (ja)
CN (1) CN110430979B (ja)
CA (1) CA3055409C (ja)
RU (1) RU2725546C1 (ja)
WO (1) WO2018163436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093359A (ja) * 2018-12-14 2020-06-18 川崎重工業株式会社 作業ロボットとそれを備えた不要部分掻き出し装置
WO2020217331A1 (ja) * 2019-04-24 2020-10-29 住友電工焼結合金株式会社 焼結体の製造システム及び製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204315A (ja) * 1986-03-05 1987-09-09 Fanuc Ltd 無人搬送車制御方式
JP2000350523A (ja) * 1999-06-09 2000-12-19 Yamafuji Sangyo Kk 伐採作業車
JP2004160667A (ja) * 2002-11-08 2004-06-10 Sumitomo Forestry Co Ltd プレカット木材の製造装置及び製造方法
JP2005254378A (ja) * 2004-03-10 2005-09-22 Sumitomo Forestry Co Ltd 多関節型ロボットを用いた加工装置及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287204A (ja) 2000-04-07 2001-10-16 Kiyoshi Natsume 他の動力を必要としない、自己動力による軽便で、自在に移動可能な、自走式各種角材製作機。
CN100348390C (zh) * 2004-07-12 2007-11-14 亚洲光学股份有限公司 自动剪切机
AU2007234546A1 (en) * 2007-11-15 2009-06-04 Diverse Barrel Solutions Pty Ltd A portable system for reconditioning used barrels
US8185240B2 (en) * 2008-08-29 2012-05-22 Williams Robotics, Llc Automated apparatus for constructing assemblies of building components
JP5799457B2 (ja) 2011-03-17 2015-10-28 公立大学法人秋田県立大学 現場製材装置
US8814177B1 (en) * 2012-06-25 2014-08-26 Linus N. Mubuifor Motorized generator—powered electric car
RU129887U1 (ru) * 2012-12-20 2013-07-10 Общество с ограниченной ответственностью газораспределительная организация "ПЕТЕРБУРГГАЗ" Передвижная мастерская с крано-манипуляторной установкой
CA2894308C (en) * 2014-07-09 2020-03-24 The Boeing Company Mobile platforms for performing operations along an exterior of a fuselage assembly
US9945092B2 (en) * 2014-12-19 2018-04-17 Ulc Robotics, Inc. System and method for utility maintenance
US10150226B2 (en) * 2015-08-14 2018-12-11 Hearthstone, Inc. Robotic apparatus for processing timber used in construction of a log home
CN105397872B (zh) * 2015-11-30 2017-10-10 南兴装备股份有限公司 木工龙门式板料上下料机械手
CN105773756B (zh) * 2016-04-22 2017-10-03 福建味家生活用品制造有限公司 一种竹条精刨机
CN205764448U (zh) * 2016-04-29 2016-12-07 成都国珈星际固态锂电科技有限公司 一种激光切割装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204315A (ja) * 1986-03-05 1987-09-09 Fanuc Ltd 無人搬送車制御方式
JP2000350523A (ja) * 1999-06-09 2000-12-19 Yamafuji Sangyo Kk 伐採作業車
JP2004160667A (ja) * 2002-11-08 2004-06-10 Sumitomo Forestry Co Ltd プレカット木材の製造装置及び製造方法
JP2005254378A (ja) * 2004-03-10 2005-09-22 Sumitomo Forestry Co Ltd 多関節型ロボットを用いた加工装置及び方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093359A (ja) * 2018-12-14 2020-06-18 川崎重工業株式会社 作業ロボットとそれを備えた不要部分掻き出し装置
JP7197859B2 (ja) 2018-12-14 2022-12-28 川崎重工業株式会社 作業ロボットとそれを備えた不要部分掻き出し装置
WO2020217331A1 (ja) * 2019-04-24 2020-10-29 住友電工焼結合金株式会社 焼結体の製造システム及び製造方法
CN113646112A (zh) * 2019-04-24 2021-11-12 住友电工烧结合金株式会社 烧结体的制造系统及制造方法
JPWO2020217331A1 (ja) * 2019-04-24 2021-12-23 住友電工焼結合金株式会社 焼結体の製造システム及び製造方法

Also Published As

Publication number Publication date
CN110430979B (zh) 2021-06-11
JPWO2018163436A1 (ja) 2019-11-07
US20200391389A1 (en) 2020-12-17
CA3055409A1 (en) 2018-09-13
CN110430979A (zh) 2019-11-08
RU2725546C1 (ru) 2020-07-02
US11318621B2 (en) 2022-05-03
JP6721916B2 (ja) 2020-07-15
CA3055409C (en) 2021-11-16

Similar Documents

Publication Publication Date Title
US20080029489A1 (en) Thermal Cutting Machine And Thermal Cutting Method
WO2018163436A1 (ja) 車載型建材加工システムおよび建材加工方法
CN201834688U (zh) 龙门式升降横梁数控焊割起重一体机
US20120060662A1 (en) Automated stick-frame system
CN104785938A (zh) 一种注汽机筒体端板组焊工作站
CN207792531U (zh) 一种钢格板成品码垛系统
CN210884983U (zh) 一种可移动检修龙门架
WO2019093409A1 (ja) 物品仕分け装置
KR101258520B1 (ko) 선반 방진구 쉘 교체장치
CN102501239A (zh) 箱形吊臂在线划线方法、划线装置及吊臂生产线
US10703248B2 (en) Self-contained, mobile rack repair method
KR20200004994A (ko) 박스 운반용 수동 리프트
CN104741890B (zh) 一种电动车翻转定位装置
CN114286738A (zh) 用在机床和/或自动装配机上的机器人单元
CN203030958U (zh) 臂架主梁移动式加工设备
JP3138539U (ja) ロボット内蔵型旋盤装置
CN203526953U (zh) 基于移动式加工平台的幕墙施工用型材现场加工系统
CN113669105B (zh) 一种多功能的搬运矿车
CN211894858U (zh) 一种省工作总时长的行走板材运输车
CN215624507U (zh) 一种物流仓库自动搬运设备
CN217437239U (zh) 一种装卸平台用的支撑板
KR20130005814A (ko) 축계 작업용 대차
KR102433508B1 (ko) 리프팅장치
JPH033543B2 (ja)
CN209955633U (zh) 具有翻板上料功能的板材雕刻机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504293

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3055409

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899402

Country of ref document: EP

Kind code of ref document: A1