WO2018147262A1 - 滅菌済み酸素吸収性多層体の製造方法 - Google Patents

滅菌済み酸素吸収性多層体の製造方法 Download PDF

Info

Publication number
WO2018147262A1
WO2018147262A1 PCT/JP2018/003981 JP2018003981W WO2018147262A1 WO 2018147262 A1 WO2018147262 A1 WO 2018147262A1 JP 2018003981 W JP2018003981 W JP 2018003981W WO 2018147262 A1 WO2018147262 A1 WO 2018147262A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oxygen
multilayer body
thermoplastic resin
absorbing multilayer
Prior art date
Application number
PCT/JP2018/003981
Other languages
English (en)
French (fr)
Inventor
史裕 伊東
聡史 岡田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP18751880.8A priority Critical patent/EP3581377B1/en
Priority to JP2018567435A priority patent/JP6935061B2/ja
Priority to CN201880011041.7A priority patent/CN110300660B/zh
Priority to KR1020197022679A priority patent/KR102459001B1/ko
Priority to US16/483,972 priority patent/US11534508B2/en
Publication of WO2018147262A1 publication Critical patent/WO2018147262A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/08Sterilising wrappers or receptacles prior to, or during, packaging by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/06Sterilising wrappers or receptacles prior to, or during, packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/085Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using X-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0856Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0875Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation
    • B32B2310/0887Treatment by energy or chemical effects by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging

Definitions

  • the present invention relates to a method for producing a sterilized oxygen-absorbing multilayer body.
  • gamma ray sterilization using Co 60 which is a radioactive isotope of Co, has been common for a long time, and in addition, X-rays and electron beams There is processing by. Since radiation sterilization can be performed at low temperatures, the processing time is short, and it is relatively inexpensive, it is becoming widely used as a sterilization method.
  • oxygen in the package that stores these products for the purpose of preventing the oxidation of various products that are easily altered or deteriorated by the influence of oxygen, such as food, beverages, pharmaceuticals, and cosmetics, and storing them for a long period of time.
  • An oxygen absorber that performs the removal is used.
  • Patent Document 4 International Publication No. 2015/119230
  • the color generated by irradiation with radiation can be discolored by heat treatment.
  • a material such as a multilayer container
  • coloring may occur by heating.
  • sterilization is performed, odor may be generated due to generation of radical products.
  • the odor can be reduced by leaving it for several weeks after sterilization, for example.
  • the present invention provides a method for producing a sterilized oxygen-absorbing multilayer body capable of reducing the generation of odors while maintaining oxygen absorption ability and suppressing container deformation and heat deterioration coloring.
  • the purpose is to do.
  • the inventors have been able to suppress deformation of the container by carrying out heat treatment under specific conditions after radiation sterilization treatment such as gamma rays, X-rays, and electron beams.
  • radiation sterilization treatment such as gamma rays, X-rays, and electron beams.
  • the inventors have found that the above problems can be solved even at a low temperature, and completed the present invention.
  • An oxygen-absorbing multilayer body comprising at least a thermoplastic resin (a) having a tetralin ring as a structural unit and an oxygen-absorbing layer containing a transition metal catalyst, and a layer containing a thermoplastic resin (b), A sterilization step of irradiating radiation;
  • the oxygen-absorbing multilayer body irradiated with radiation in the sterilization step is at least 50 hours at a glass transition temperature of the thermoplastic resin (a) of ⁇ 20 ° C. or higher and lower than the glass transition temperature of the thermoplastic resin (a).
  • a method for producing a sterilized oxygen-absorbing multilayer body comprising: ⁇ 2>
  • the oxygen-absorbing multilayer body includes a layer containing at least two layers of the thermoplastic resin (b), and the oxygen-absorbing layer is between two layers containing the thermoplastic resin (b).
  • the glass transition temperature (Tg 1 ) of the thermoplastic resin (a) and the glass transition temperature (Tg 2 ) of the thermoplastic resin (b) have the relationship represented by the following formula (A) ⁇
  • ⁇ 6> The method for producing a sterilized oxygen-absorbing multilayer body according to any one of ⁇ 1> to ⁇ 5>, wherein in the heating step, the oxygen-absorbing multilayer body is heated in the presence of oxygen.
  • ⁇ 7> The method for producing a sterilized oxygen-absorbing multilayer body according to any one of ⁇ 1> to ⁇ 6>, wherein the thermoplastic resin (b) has a glass transition temperature of 60 to 80 ° C.
  • ⁇ 8> The method for producing a sterilized oxygen-absorbing multilayer body according to any one of ⁇ 1> to ⁇ 7>, wherein the oxygen-absorbing multilayer body is an oxygen-absorbing multilayer container.
  • thermoplastic resin (a) is a polyester compound containing a structural unit having at least one tetralin ring selected from the group consisting of the following general formulas (1) to (4): The manufacturing method of the sterilized oxygen absorptive multilayer body in any one of ⁇ 8>.
  • each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, Group consisting of cyano group, hydroxy group, carboxyl group, ester group, amide group, nitro group, alkoxy group, aryloxy group, acyl group, amino group, thiol group, alkylthio group, arylthio group, heterocyclic thio group and imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least at the benzyl position of the tetralin ring.
  • X is an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group and a complex. It represents a divalent group containing at least one group selected from the group consisting of groups.) ⁇ 10> The sterilized oxygen according to any one of ⁇ 1> to ⁇ 9>, wherein the transition metal catalyst includes at least one transition metal selected from the group consisting of manganese, iron, cobalt, nickel, and copper. Method for producing absorbent multilayer body.
  • thermoplastic resin (a) is a polyester compound containing a structural unit having at least one tetralin ring selected from the group consisting of the following general formulas (5) to (7): ⁇ 11> The method for producing a sterilized oxygen-absorbing multilayer body according to any one of the above. ⁇ 13> The method for producing a sterilized oxygen-absorbing multilayer body according to any one of ⁇ 1> to ⁇ 12>, wherein the radiation is gamma rays, X-rays, or electron beams.
  • the present invention it is possible to provide a method for producing a sterilized oxygen-absorbing multilayer body capable of reducing the generation of odor while maintaining the oxygen-absorbing ability, and suppressing heat deformation and heat-deterioration coloring.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the method for producing a sterilized oxygen-absorbing multilayer body of the present embodiment includes a thermoplastic resin (a) having a tetralin ring as a structural unit and a transition metal.
  • An oxygen absorbing layer containing a catalyst hereinafter sometimes simply referred to as “layer A”
  • a layer containing a thermoplastic resin hereinafter sometimes simply referred to as “layer B”
  • a certain high temperature for example, layer A
  • layer A is used to reduce (discolor) the color generated by the sterilization treatment. It is advantageous to perform the heat treatment at a temperature higher than the glass transition temperature of the thermoplastic resin (a) used.
  • thermoplastic resin (a) used.
  • the glass transition temperature difference between the above-mentioned layer A and layer B is reduced, it is higher than the glass transition temperature of the thermoplastic resin (a) in the heating step after container sterilization due to thermal deterioration coloring and thermal deformation. It may be difficult to process at temperature. Odor generated during sterilization is presumed to be caused by radicals (ozone) generated by radiation irradiation. For example, materials can be used for a long time (for example, several weeks or more) in the presence of oxygen (in an air atmosphere). It can also be reduced by leaving it to stand. However, in the case of a material having oxygen absorbing ability, it is preferable to avoid leaving it for a long time in the presence of oxygen from the viewpoint of maintaining oxygen absorbing ability.
  • the oxygen-absorbing multilayer body is converted into a glass transition temperature of the thermoplastic resin (a) at ⁇ 20 ° C. or higher in the heating step.
  • a temperature lower than the glass transition temperature of the thermoplastic resin (a) for example, even when a material having a small glass transition temperature difference between the layer A and the layer B is used, oxygen Odor generation can be effectively reduced while maintaining the absorption capacity, and further, container deformation and heat deterioration coloring can be suppressed.
  • each component, each process, etc. are demonstrated.
  • An oxygen-absorbing multilayer body having at least
  • the oxygen-absorbing multilayer body includes at least two layers (A / B structure) including an oxygen-absorbing layer (layer A) and a layer containing the thermoplastic resin (b) (layer B).
  • the layer configuration of the oxygen-absorbing multilayer body is not particularly limited, and the number and type of layers A and B are not particularly limited.
  • the oxygen-absorbing multilayer body includes at least two layers (layer B) containing the thermoplastic resin (b), and the oxygen-absorbing layer (layer A) is composed of two layers of the thermoplastic resin (b). (B / A / B structure). That is, the oxygen-absorbing multilayer body may have an A / B configuration including one layer A and one layer B as described above, or one layer A and two layers B. A three-layer structure like the / A / B structure may be used.
  • the multilayer body of the present embodiment may include an arbitrary layer such as an adhesive layer (layer AD) as necessary.
  • layer AD an adhesive layer
  • the multilayer body has a seven-layer configuration of B1 / AD / B2 / A / B2 / AD / B1.
  • the layer structure of the oxygen-absorbing multilayer body preferably has at least three layers such as a B / A / B structure.
  • the glass transition temperature (Tg 1 ) of the thermoplastic resin (a) and the glass transition temperature (Tg 2 ) of the thermoplastic resin (b) are as follows: It is preferable to have the relationship shown by Formula (A).
  • the relationship between the glass transition temperatures represented by the formula (A) is a relationship represented by the following formula (A ′).
  • the glass transition temperature of the thermoplastic resin (a) and “the glass transition temperature of the thermoplastic resin (b)” can be measured, for example, according to the method described in JIS K7121: 2012.
  • the glass transition temperature (Tg 2 ) of the B layer located in the inner and outer layers is not necessarily the same (that is, the same material is used for each B layer). but it is preferable that the glass transition temperature of the glass transition temperature of at least the layer B (Tg 2) and the thermoplastic resin (a) (Tg 1) satisfies the relationship of formula (a). Considering processes such as multilayer extrusion, it is preferable that the materials used for each B layer are the same in the B / A / B structure.
  • the oxygen absorbing layer (layer A) is not particularly limited as long as it contains a thermoplastic resin (a) having a tetralin ring as a structural unit and a transition metal catalyst.
  • the oxygen absorbing layer (layer A) is composed of a tetralin ring. It can be formed using an oxygen-absorbing resin composition containing a thermoplastic resin (a) as a unit and a transition metal catalyst.
  • the oxygen-absorbing resin composition is not particularly limited as long as it contains a thermoplastic resin (a) having a tetralin ring as a structural unit and a transition metal catalyst, and known materials can be used.
  • thermoplastic resin (a) a polymer having a tetralin ring as described in International Publication No. 2013/0777436, International Publication No. 2013/089268, International Publication No. 2013/118882, or the like is used. You can also.
  • thermoplastic resin (a) is preferably a polyester compound having a tetralin ring as a structural unit, and at least one selected from the group consisting of the following general formulas (1) to (4)
  • the polyester compound (a) containing a structural unit having one tetralin ring is more preferable.
  • a polyester compound containing a structural unit having a tetralin ring may be referred to as a tetralin ring-containing polyester compound.
  • each R independently represents a hydrogen atom or a monovalent substituent, and the monovalent substituent is a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, Group consisting of cyano group, hydroxy group, carboxyl group, ester group, amide group, nitro group, alkoxy group, aryloxy group, acyl group, amino group, thiol group, alkylthio group, arylthio group, heterocyclic thio group and imide group At least one selected from the above, which may further have a substituent, m represents an integer of 0 to 3, n represents an integer of 0 to 7, and at least at the benzyl position of the tetralin ring.
  • X is an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated aliphatic hydrocarbon group and a complex. It represents a divalent group containing at least one group selected from the group consisting of groups.
  • the structural unit represented by the general formula (1) is preferably at least one selected from the group consisting of the following formulas (5) to (7).
  • “containing a structural unit” or “containing as a structural unit” means having one or more of the structural unit in a compound.
  • Such a structural unit is preferably contained as a repeating unit in the tetralin ring-containing polyester compound.
  • the tetralin ring-containing polyester compound is a polymer, any of a homopolymer of the structural unit, a random copolymer of the structural unit and other structural units, and a block copolymer of the structural unit and other structural units I do not care.
  • the monovalent substituent represented by R includes a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom, etc.), an alkyl group (preferably Is a linear, branched or cyclic alkyl group having 1 to 15 carbon atoms, more preferably 1 to 6 carbon atoms; for example, methyl group, ethyl group, n-propyl group, isopropyl group, tert group -Butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, etc.), alkenyl group (preferably having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms) A chain, branched or cyclic alkenyl group; for example, a vinyl group, an allyl group, etc.), an alkynyl group (preferably an alkynyl group (preferably an alkynyl group
  • the hydrogen atom is a substituent T (wherein the substituent T has the same meaning as described for the monovalent substituent R above). Further, it may be substituted. Specific examples thereof include, for example, an alkyl group substituted with a hydroxy group (eg, a hydroxyethyl group), an alkyl group substituted with an alkoxy group (eg, a methoxyethyl group), and an alkyl group substituted with an aryl group.
  • a benzyl group an alkyl group substituted with a primary amino group or a secondary amino group (for example, an aminoethyl group), an aryl group substituted with an alkyl group (for example, a p-tolyl group) ), An aryloxy group substituted with an alkyl group (for example, 2-methylphenoxy group, etc.) and the like, but are not particularly limited thereto.
  • the above carbon number does not include the carbon number of the substituent T.
  • a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group.
  • the monovalent substituent R described above has a substituent T, there may be a plurality of the substituents T.
  • X represents an aromatic hydrocarbon group, a saturated or unsaturated alicyclic hydrocarbon group, a linear or branched saturated or unsaturated group. It represents a divalent group containing at least one group selected from the group consisting of an aliphatic hydrocarbon group and a heterocyclic group.
  • the aromatic hydrocarbon group, saturated or unsaturated alicyclic hydrocarbon group, linear or branched saturated or unsaturated aliphatic hydrocarbon group and heterocyclic group may be substituted or unsubstituted. .
  • X may contain a hetero atom, and may contain an ether group, sulfide group, carbonyl group, hydroxy group, amino group, sulfoxide group, sulfone group, and the like.
  • the aromatic hydrocarbon group include an o-phenylene group, m-phenylene group, p-phenylene group, methylphenylene group, o-xylylene group, m-xylylene group, p-xylylene group, naphthylene group, anthracenylene group, Examples thereof include, but are not limited to, a phenanthrylene group, a biphenylene group, and a fluorinylene group.
  • Examples of the alicyclic hydrocarbon group include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a methylcyclohexylene group, a cycloheptylene group, and a cyclooctylene group, and a cycloalkenylene group such as a cyclohexenylene group. Although it is mentioned, it is not specifically limited to these.
  • Examples of the aliphatic hydrocarbon group include methylene group, ethylene group, trimethylene group, propylene group, isopropylidene group, tetramethylene group, isobutylene group, tert-butylene group, pentamethylene group, hexamethylene group, heptamethylene group, Linear or branched alkylene groups such as octamethylene group, nonamethylene group, decamethylene group, vinylene group, propenylene group, 1-butenylene group, 2-butenylene group, 1,3-butadienylene group, 1-pentenylene group , Alkenylene groups such as 2-pentenylene group, 1-hexenylene group, 2-hexenylene group, 3-hexenylene group and the like, but are not particularly limited thereto.
  • substituents may further have a substituent, and specific examples thereof include, for example, a halogen atom, an alkoxy group, a hydroxy group, a carboxyl group, a carboalkoxy group, an acyl group, a thio group (for example, an alkylthio group, a phenylthio group). Group, tolylthio group, pyridylthio group, etc.), amino group (for example, unsubstituted amino group, methylamino group, dimethylamino group, phenylamino group, etc.), cyano group, nitro group and the like, but not limited thereto. .
  • a substituent include, for example, a halogen atom, an alkoxy group, a hydroxy group, a carboxyl group, a carboalkoxy group, an acyl group, a thio group (for example, an alkylthio group, a phenylthio group). Group
  • the polyester compound (a) containing the structural unit represented by the general formula (1) can be produced by, for example, a known method. For example, it can be produced by polymerizing tetralin dicarboxylic acid alkyl ester corresponding to the monomer.
  • a structural unit having no tetralin ring may be incorporated as a copolymer component to the extent that the performance is not affected.
  • compounds such as aliphatic dicarboxylic acids such as adipic acid and sebacic acid, benzene dicarboxylic acids such as terephthalic acid, and naphthalenedicarboxylic acids such as 2,6-naphthalenedicarboxylic acid may be used as other copolymerization components. it can.
  • polyester compound (a) containing the structural unit represented by the general formula (1) include the above formulas (5) to (7) and the following formulas (8) to (10). However, it is not limited to these. Among these, a polyester compound containing a structural unit represented by any one of formulas (5) to (7) is preferable.
  • polyester compounds (a) all have hydrogen at the benzylic position of the tetralin ring, and when used in combination with a transition metal catalyst, the hydrogen at the benzylic position is extracted, thereby exhibiting excellent oxygen absorption capacity. (However, the operation of this embodiment is not limited to these.)
  • the oxygen-absorbing resin composition as described above can also suppress the formation of low molecular weight compounds after oxygen absorption.
  • the following oxidation reaction mechanism is assumed. That is, in the polyester compound (a), hydrogen at the benzyl position of the tetralin ring is first extracted to generate a radical, and then the carbon at the benzyl position is oxidized by the reaction between the radical and oxygen to produce a hydroxy group or a ketone group. Is considered to generate. Therefore, in the oxygen-absorbing resin composition, the molecular chain is not broken by an oxidation reaction, and the structure of the polyester compound (a) is maintained, so that a low molecular weight organic compound that causes odor is generated after oxygen absorption. As a result, it is presumed that the increase in odor intensity after oxygen absorption is suppressed and that the low molecular weight compound is prevented from being mixed into the contents (however, the function of the present embodiment is not limited to these). Not limited.)
  • a mixed solvent of the intrinsic viscosity (phenol: 1,1,2,2-tetrachloroethane mass ratio 6: 4 (phenol: 1,1,2,2-tetrachloroethane) of the polyester compound (a) of the present embodiment is used.
  • Measured value at 25 ° C. used is not particularly limited, but is preferably 0.1 to 2.0 dL / g, preferably 0.5 to 1.5 dL / g from the viewpoint of moldability of the polyester compound (a). More preferably, it is g.
  • the glass transition temperature (Tg 1 ) of the thermoplastic resin (a) is not particularly limited, but is preferably 60 to 80 ° C., more preferably 62 to 78 ° C., and 65 to 75 ° C. More preferably.
  • the content of the thermoplastic resin (a) in the layer A is not particularly limited, but is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and 90 to 100% by mass. More preferably. By controlling the content of the thermoplastic resin (a) within the above range, the oxygen absorption performance can be further enhanced.
  • the transition metal catalyst is not particularly limited as long as it can function as a catalyst for the oxidation reaction of the thermoplastic resin (a) having a tetralin ring as a structural unit, and can be appropriately selected from known ones. .
  • transition metal catalysts include, for example, organic acid salts, halides, phosphates, phosphites, hypophosphites, nitrates, sulfates, oxides and hydroxides of transition metals.
  • examples of the transition metal contained in the transition metal catalyst include, but are not limited to, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ruthenium, and rhodium. Among these, manganese, iron, cobalt, nickel, and copper are preferable.
  • organic acid examples include acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, acetylacetone, dimethyldithiocarbamic acid, palmitic acid, 2-ethylhexanoic acid, neodecanoic acid, linoleic acid, toluic acid, oleic acid, Although capric acid and naphthenic acid are mentioned, it is not limited to these.
  • the transition metal catalyst is preferably a combination of these transition metals and an organic acid, the transition metal is manganese, iron, cobalt, nickel or copper, and the organic acid is acetic acid, stearic acid, 2-ethylhexanoic acid, olein A combination that is an acid or naphthenic acid is more preferred.
  • a transition metal catalyst can be used individually by 1 type or in combination of 2 or more types.
  • the blending amount of the transition metal catalyst can be appropriately set according to the type of the thermoplastic resin (a) and the transition metal catalyst used and the desired performance, and is not particularly limited. From the viewpoint of the oxygen absorption amount of the oxygen absorption layer, the blending amount of the transition metal catalyst is preferably 0.0001 to 10 parts by mass as the transition metal amount with respect to 100 parts by mass of the thermoplastic resin (a). The amount is more preferably 0002 to 2 parts by mass, and further preferably 0.0005 to 1 part by mass.
  • thermoplastic resin (a) and the transition metal catalyst can be mixed by a known method, but are preferably kneaded by an extruder. Thereby, it can be set as an oxygen-absorbing resin composition with good dispersibility.
  • the oxygen-absorbing resin composition includes a desiccant, a pigment, a dye, an antioxidant, a slip agent, an antistatic agent, a stabilizer; calcium carbonate, clay, mica, as long as the effects of the present embodiment are not impaired.
  • Other additives such as a filler such as silica; a deodorant and the like may be added, but various materials can be mixed without being limited to those described above.
  • the oxygen absorbing layer may further contain a radical generator or a photoinitiator as necessary in order to promote the oxygen absorption reaction.
  • the oxygen-absorbing resin composition can be kneaded with a thermoplastic resin other than the thermoplastic resin (a) with an extruder as long as the object of the present embodiment is not impaired.
  • These radical generators, photoinitiators, and other thermoplastic resins may be known ones.
  • the radical generator include N-hydroxyimide compounds such as N-hydroxysuccinimide and N-hydroxymaleimide.
  • the photoinitiator include benzophenone and its derivatives, thiazine dyes, metal porphyrin derivatives, anthraquinone derivatives, and the like.
  • examples of other thermoplastic resins include polyolefins typified by polyethylene, ethylene-vinyl compound copolymers, styrene resins, polyvinyl compounds, polyamides, polyesters, polycarbonates, and the like.
  • the thickness of the oxygen absorbing layer (layer A) is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 2 to 800 ⁇ m, and still more preferably 5 to 700 ⁇ m. By controlling the thickness of the layer A within the above range, the oxygen absorbability of the layer A can be further increased and economic efficiency can be prevented from being impaired.
  • the layer B is a layer containing a thermoplastic resin (b).
  • the layer B1 and the layer B2 are collectively referred to as “layer B”.
  • thermoplastic resin (b) is a thermoplastic resin other than the thermoplastic resin (a).
  • the content of the thermoplastic resin (b) in the layer B is not particularly limited, but is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the content of the thermoplastic resin (b) in the layer B referred to here is the heat in each layer. It refers to the content of the plastic resin (b).
  • the oxygen-absorbing multilayer body of this embodiment may have a plurality of layers B as described above.
  • the configurations of the layers B may be the same as or different from each other.
  • the thickness of the layer B can be appropriately determined according to the application.
  • the thickness of one layer B is preferably 5 ⁇ m from the viewpoint of securing various physical properties such as drop resistance and flexibility required for the multilayer container. ⁇ 1000 ⁇ m, more preferably 10 ⁇ m to 800 ⁇ m, even more preferably 20 ⁇ m to 500 ⁇ m.
  • thermoplastic resin (b) any thermoplastic resin other than the thermoplastic resin (a) can be used, and is not particularly limited.
  • specific examples of the thermoplastic resin (b) include known polyolefins, polyesters, polyamides, ethylene-vinyl alcohol copolymers, plant-derived resins, and chlorine-based resins.
  • the thermoplastic resin (b) preferably contains at least one selected from the group consisting of these resins. Among these, polyolefin is preferable.
  • More specific preferred examples include a copolymer made from olefins such as norbornene and ethylene; a cycloolefin copolymer (COC) that is a copolymer made from olefins such as tetracyclododecene and ethylene. It is done.
  • COC and COP those described in, for example, JP-A-5-300939 and JP-A-5-317411 can be used.
  • a commercially available product can be used as the COC.
  • Apel registered trademark
  • Mitsui Chemicals, Inc. is commercially available.
  • a commercial item can be used as said COP.
  • it is commercially available as ZEONEX (registered trademark) manufactured by ZEON Corporation.
  • the COC and the COP have chemical properties such as heat resistance and light resistance, and chemical resistance as a polyolefin resin, and physical properties such as mechanical properties, melting, flow properties, and dimensional accuracy are amorphous resins. It is a particularly preferable material because it exhibits the characteristics as described above.
  • the glass transition temperature (Tg 2 ) of the thermoplastic resin (b) is preferably 60 to 80 ° C., more preferably 62 to 78 ° C., and further preferably 65 to 75 ° C.
  • Tg 2 glass transition temperature
  • the oxygen-absorbing multilayer body may further include an optional layer depending on the desired performance in addition to the oxygen-absorbing layer (layer A) and the layer (layer B) containing the thermoplastic resin (b).
  • an optional layer depending on the desired performance in addition to the oxygen-absorbing layer (layer A) and the layer (layer B) containing the thermoplastic resin (b).
  • Examples of such an arbitrary layer include an adhesive layer (layer AD).
  • layer AD adhesive layer
  • the layer B is formed on the layer A via the layer AD (layer A / layer AD / layer B). Good.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • a thermoplastic resin having adhesiveness for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc.
  • the adhesive layer it is preferable to use a modified resin of the same type as the thermoplastic resin used as the layer B from the viewpoint of adhesiveness.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m, from the viewpoint of ensuring molding processability while exhibiting practical adhesive strength. .
  • the production method of the oxygen-absorbing multilayer body in the present embodiment is not particularly limited, and can be produced by a normal injection molding method.
  • the material constituting the layer A and the material constituting the layer B are passed from the respective injection cylinders through the mold hot runner into the cavity.
  • the multilayer container corresponding to the shape of the injection mold can be manufactured.
  • the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder simultaneously with the resin constituting the layer B, and then the resin constituting the layer B A multi-layer container having a three-layer structure B / A / B can be manufactured by injecting the required amount to fill the cavity.
  • a multilayer container having a five-layer structure B / A / B / A / B can be manufactured.
  • the material constituting the layer B1 is injected from the injection cylinder, then the material constituting the layer B2 is injected from another injection cylinder simultaneously with the resin constituting the layer B1, and then the resin constituting the layer A Is injected at the same time as the resin constituting the layer B1 and the layer B2, and then the required quantity of the resin constituting the layer B1 is injected to fill the cavity so that a multilayer container having a five-layer structure B1 / B2 / A / B2 / B1 Can be manufactured.
  • a multilayer molded body may be obtained by a compression molding method.
  • a molded article can be obtained by providing an oxygen-absorbing resin agent in a thermoplastic resin melt, supplying the molten mass to a male mold, compressing the molten mass with a female mold, and cooling and solidifying the compression molded article.
  • the mouth and neck may be crystallized by heat treatment at this stage.
  • the degree of crystallinity is preferably 30 to 50%, more preferably 35 to 45%.
  • a molding means such as extrusion molding or compression molding (sheet molding, blow molding).
  • the oxygen-absorbing multilayer body used in the present embodiment is not particularly limited, and may be used as a film or in the form of an oxygen-absorbing multilayer container.
  • the shape of the oxygen-absorbing multilayer container is not limited in any way, and examples include bags, trays, cups, bottles, tubes, PTP (also referred to as press-through packs, blisters), vials, ampoules, prefilled syringes, vacuum blood collection tubes, and the like. It is done.
  • the sterilization step in the present embodiment includes a thermoplastic resin (a) having a tetralin ring as a structural unit and an oxygen absorbing layer (layer A) containing a transition metal catalyst, and a layer containing a thermoplastic resin (b) (layer B). And irradiating the oxygen-absorbing multilayer body comprising at least radiation.
  • the oxygen-absorbing multilayer body is subjected to a sterilization process by radiation (hereinafter sometimes simply referred to as “radiation sterilization process”) in the sterilization step. It can be used as a container used for foods, beverages, pharmaceuticals, cosmetics and the like.
  • the radiation sterilization treatment is performed by irradiating at least one selected from gamma rays and X-rays classified as electromagnetic waves; and electron beams classified as particle beams.
  • gamma rays that can be used in gamma irradiation include, but are not limited to, gamma rays emitted from a Co 60 source, which is generally a radioactive isotope of Co.
  • X-rays that can be used in X-ray irradiation generally X-rays generated by applying an accelerated electron beam in an X-ray tube or a crux tube using Cu, Mo, W or the like as an anti-cathode are used.
  • electron beams that can be used in electron beam irradiation generally, Cockcroft-Watson type, Van de Graaff type, resonant transformer type, insulated core transformer type, linear accelerator, electrostatic accelerator, dynamitron type, high frequency
  • An electron beam having an energy of 150 to 10,000 KeV emitted from various electron beam accelerators such as a cyclotron can be mentioned, but is not limited thereto.
  • the radiation dose to be irradiated is not particularly limited, but is preferably 1 kGy to 200 kGy, more preferably 10 kGy, from the viewpoint of suppressing the deterioration of the resin constituting the oxygen-absorbing multilayer body. ⁇ 150 kGy, more preferably 20 kGy to 100 kGy, and even more preferably 20 kGy to 55 kGy.
  • the timing for performing the radiation sterilization process on the oxygen-absorbing multilayer body is not limited at all, but from the viewpoint of reducing the risk of contamination before the radiation sterilization process, the radiation sterilization process may be performed immediately after the multilayer body is manufactured. preferable.
  • the oxygen-absorbing multilayer body is colored by the radiation sterilization treatment, it can be confirmed whether or not the sterilization treatment is performed by confirming the color tone before performing the heat treatment described later. That is, it can be used as an oxygen-absorbing radiation sterilization treatment indicator.
  • the oxygen-absorbing multilayer body irradiated with radiation in the sterilization step is converted into a glass transition temperature of the thermoplastic resin (a) of ⁇ 20 ° C. or higher and a glass transition of the thermoplastic resin (a). It is a step of heating at a temperature lower than 50 hours for 50 hours or more.
  • the coloring of the oxygen-absorbing multilayer produced by the radiation sterilization treatment can be faded by applying the heat treatment to the oxygen-absorbing multilayer in the heating step.
  • the heating condition of the heating process of the present embodiment is set to a glass transition temperature of the thermoplastic resin (a) ⁇ 20 ° C.
  • the manufacturing method of the present embodiment especially when an oxygen-absorbing multilayer body having a reduced glass transition temperature difference between the A layer and the B layer and having improved moldability is used, the oxygen absorbing ability is maintained.
  • the odor of the oxygen-absorbing multilayer body generated in the sterilization process can be reduced while suppressing the occurrence of heat deformation and heat deterioration coloring.
  • the heating temperature in the heating step is a glass transition temperature of the thermoplastic resin (a) of ⁇ 20 ° C. or higher and lower than a glass transition temperature of the thermoplastic resin (a).
  • the upper limit of the heating temperature exceeds the glass transition temperature of the thermoplastic resin (a)
  • the oxygen-absorbing multilayer body is deformed by heat or colored due to thermal deterioration when heated for 50 hours or more.
  • the lower limit value of the heating temperature is less than the glass transition temperature of the thermoplastic resin (a) ⁇ 20 ° C., the odor reducing effect cannot be sufficiently exhibited, and the fading effect is also reduced.
  • the heating temperature can be based on the temperature of the oxygen-absorbing multilayer body surface during heating.
  • the upper limit of the heating temperature is preferably not more than “glass transition temperature of the thermoplastic resin (a) ⁇ 5 ° C.” from the viewpoint of sufficiently suppressing coloring due to thermal deformation and thermal deterioration of the oxygen-absorbing multilayer body. More preferably, the glass transition temperature of the thermoplastic resin (a) is ⁇ 7 ° C. or lower.
  • the lower limit of the heating temperature is preferably “glass transition temperature of the thermoplastic resin (a) ⁇ 15 ° C.” or more from the viewpoint of sufficiently exerting the odor reducing effect and the fading effect of the oxygen-absorbing multilayer body. It is more preferable that the glass transition temperature of the thermoplastic resin (a) is ⁇ 12 ° C. or higher.
  • the above-mentioned heating conditions can be determined by appropriately combining the above-described upper limit value and lower limit value.
  • the heating time of the heating process in this embodiment is 50 hours or more. If the heating time is less than 50 hours, the odor reduction effect cannot be sufficiently exhibited, and the fading effect may be reduced.
  • the start of the heating time can be based on the time when the temperature of the oxygen-absorbing multilayer body surface reaches the above range.
  • the upper limit value of the heating time is not particularly limited, but is 120 hours or less from the viewpoints of the above-described effects and costs due to the heat treatment, and from the viewpoint of suppressing thermal deformation and thermal deterioration due to excessive heating. Preferably, it is more preferably 100 hours or less. Specifically, the heating time is preferably 50 hours or longer and 120 hours or shorter, and more preferably 70 hours or longer and 100 hours or shorter, from the viewpoint of the above-described effects and the cost of the heat treatment.
  • the atmosphere during heating includes, but is not limited to, inert gases such as nitrogen, carbon dioxide, and argon, air, vacuum, and water.
  • inert gases such as nitrogen, carbon dioxide, and argon
  • air, vacuum, and water the atmosphere during heating.
  • oxygen for example, in an air atmosphere
  • the apparatus used for the heat treatment is not limited at all, and a known product can be appropriately selected and used, and examples thereof include a hot air dryer.
  • heat processing are given after radiation sterilization processing, the timing is not limited at all. It may be carried out subsequent to the radiation sterilization treatment or after a certain period of time.
  • the sterilized oxygen-absorbing multilayer body manufactured by the manufacturing method of this embodiment does not require moisture for oxygen absorption, it can be used in a wide range of humidity conditions (relative humidity 0% to 100%) from low humidity to high humidity. It is suitable for packaging various articles because of its excellent oxygen absorption performance and excellent flavor retention of contents.
  • a biopharmaceutical that easily deteriorates in the presence of oxygen can be given.
  • the biopharmaceutical is not particularly defined as long as it contains a protein-derived medicinal ingredient, and biopharmaceuticals known to those skilled in the art can be widely used. Specifically, it is preferably a biopharmaceutical selected from the group consisting of antibodies, hormones, enzymes, and complexes containing these.
  • biopharmaceuticals include adrenergic antagonists, analgesics, anesthetics, angiotensin antagonists, anti-inflammatory drugs, anxiolytics, antiarrhythmic drugs, anticholinergics, anticoagulants, antiepileptics, antipruritics, anti Histamine, anti-neoplastic and antimetabolite, anti-neoplastic and antimetabolite, antiplastic, anti-ulcer, bisphosphonate, bronchodilator, cardiotonic, cardiovascular, centrally acting ⁇ 2 stimulant, contrast agent , Converting enzyme inhibitors, skin drugs, diuretics, drugs for erectile dysfunction, drugs for abuse, endothelin antagonists, hormones and cytokines, hypoglycemic drugs, drugs for promoting uric acid excretion and gout, immunosuppressants, lipids Lowering drugs, various drugs, psychotherapeutic drugs, renin inhibitors, serotonin antagonists, steroids, sympathomimetics, thyroid
  • Dimethyl tetralin-2,6-dicarboxylate obtained from the above was added to a polyester resin production apparatus equipped with a packed tower type rectification tower, a partial condenser, a full condenser, a cold trap, a stirrer, a heating device and a nitrogen introduction pipe. 543 g, ethylene glycol 217 g, and tetrabutyl titanate 0.171 g were charged, and the temperature was raised to 230 ° C. in a nitrogen atmosphere to perform a transesterification reaction.
  • the weight average molecular weight in terms of polystyrene was 8.5 ⁇ 10 4
  • the number average molecular weight. was 3.0 ⁇ 10 4
  • the glass transition temperature and the melting point was 67 ° C., and the melting point was not recognized because it was amorphous.
  • the material constituting the layer B is injected from the injection cylinder, then the material constituting the layer A is injected from another injection cylinder at the same time as the material constituting the layer B, and then the layer A is constituted.
  • an injection molded body having a three-layer structure of B / A / B is obtained, and then the injection molded body is cooled to a predetermined temperature, and a blow mold
  • the vial (bottle part) was manufactured by performing blow molding after shifting to.
  • the total mass of the vial was 24 g, and the mass of layer A was 30% by mass of the total mass of the vial.
  • a cycloolefin polymer (COP, manufactured by Nippon Zeon Co., Ltd., trade name: ZEONEX (registered trademark) 5000; glass transition temperature 69 ° C.) was used.
  • OTR Vial oxygen permeability
  • Cobalt stearate (II) is dry blended with respect to 100 parts by mass of the above-mentioned polyester compound (1) so that the amount of cobalt is 0.00025 parts by mass, and 30 kg / in a twin screw extruder having two screws with a diameter of 37 mm.
  • the material was supplied at a speed of h, melt kneaded under the condition of a cylinder temperature of 220 ° C., the strand was extruded from the extruder head, cooled, and pelletized to obtain an oxygen-absorbing resin composition.
  • an oxygen-absorbing multilayer vial was produced by the method described above.
  • the obtained oxygen-absorbing multilayer vial was irradiated with 50 kGy of gamma rays emitted from a Co 60 radiation source at room temperature and in air.
  • the vial irradiated with gamma rays was placed in a constant temperature dryer (manufactured by Yamato Kagaku Co., Ltd., model: DS400), and subjected to heat treatment at 55 ° C. for 96 hours in air. Thereafter, after cooling to room temperature, YI and oxygen permeability of the vial were measured.
  • each vial after gamma irradiation and heat treatment is placed in a barrier bag made of an aluminum foil laminated film, each with 300 cc of air, and stored for one day at 23 ° C / 50% relative humidity (RH). The presence or absence of odor was confirmed. In addition, the presence or absence of deformation of the container was visually confirmed after gamma ray irradiation and heat treatment.
  • Example 2 to 6 Except that the gamma ray irradiation dose, the heating temperature and the heating time were changed as shown in Table 1, it was carried out in the same manner as in Example 1 to measure the YI and oxygen permeability of the oxygen-absorbing multilayer vial, and the odor and deformation The presence or absence of was determined. These results are shown in Table 1.
  • Example 7 An oxygen-absorbing multilayer vial produced in the same manner as in Example 1 was irradiated with an electron beam emitted from an electron beam generator using an electrostatic accelerator at room temperature and in air at 50 kGy. Next, the vial irradiated with the electron beam was placed in a constant temperature dryer (manufactured by Yamato Kagaku Co., Ltd., model: DS400), and heat treatment was performed in air at 55 ° C. for 96 hours. Then, after cooling to room temperature, YI and oxygen permeability of the vial were measured.
  • a constant temperature dryer manufactured by Yamato Kagaku Co., Ltd., model: DS400
  • each film after electron beam irradiation and heat treatment is put into a barrier bag made of an aluminum foil laminated film, each with 300 ml of air, and stored for one day at 23 ° C./50% relative humidity (RH) and sealed.
  • RH relative humidity
  • the presence or absence of odor in the bag was confirmed.
  • transformation of a container was confirmed visually after electron beam irradiation and heat processing.
  • Example 8 to 12 Except that the electron beam irradiation dose, heating temperature, and heating time were changed as shown in Table 1, it was carried out in the same manner as in Example 7 to measure the YI and oxygen permeability of the oxygen-absorbing multilayer vial, and the odor And the presence or absence of deformation was determined. These results are shown in Table 1.
  • Example 13 to 18 Except that the gamma ray irradiation dose, the heating temperature and the heating time were changed as shown in Table 1, it was carried out in the same manner as in Example 1 to measure the YI and oxygen permeability of the oxygen-absorbing multilayer vial. The presence or absence of deformation was determined. These results are shown in Table 1.
  • Example 1 Except not having performed heat processing, it carried out like Example 1 and measured YI and oxygen permeability of a vial, and judged the existence of odor and a deformation. These results are shown in Table 1.
  • Comparative Example 2 Except that the dose was 25 kGy, the same procedure as in Comparative Example 1 was performed, and the YI and oxygen permeability of the oxygen-absorbing multilayer vial were measured to determine the presence or absence of odor and deformation. These results are shown in Table 1.
  • Example 6 Except that the heating temperature was set to 80 ° C., the same procedure as in Example 1 was performed, and the YI and oxygen permeability of the vial were measured to determine the presence or absence of odor and deformation. These results are shown in Table 1.
  • Example 8 Except that the heating temperature was set to 70 ° C., the same procedure as in Example 1 was performed, and the YI and oxygen permeability of the vial were measured to determine the presence or absence of odor and deformation. These results are shown in Table 1.
  • Example 9 Except that the heating temperature was 40 ° C., it was carried out in the same manner as in Example 1, and the YI and oxygen permeability of the vial were measured to determine the presence or absence of odor and deformation. These results are shown in Table 1.
  • Example 12 Except that the heating temperature was 80 ° C., the same procedure as in Example 4 was performed to measure the YI and oxygen permeability of the vial to determine the presence or absence of odor and deformation. These results are shown in Table 1.
  • the multilayer vial manufactured by the manufacturing method of the present embodiment which was subjected to heat treatment under the appropriate conditions after irradiation as compared with the comparative example, had a reduced odor and a large decrease in YI. Even after the heat treatment, the oxygen absorption performance was maintained. Furthermore, the occurrence of coloring due to deformation of the container or thermal deterioration was also suppressed. Thus, according to the manufacturing method of the present embodiment, the odor due to radiation irradiation is reduced while maintaining the oxygen absorption performance, and at the same time, it is very effective in suppressing coloration due to deformation of the container due to heating or heat deterioration. It was.
  • the sterilized oxygen-absorbing multilayer produced by the production method of the present invention can be used as a material for containers for storing various objects such as foods, beverages, pharmaceuticals, and cosmetics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層と、熱可塑性樹脂(b)を含有する層と、を少なくとも備えた酸素吸収性多層体に、放射線を照射する滅菌工程と、前記滅菌工程において放射線が照射された前記酸素吸収性多層体を、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱する加熱工程と、を含む滅菌済み酸素吸収性多層体の製造方法。

Description

滅菌済み酸素吸収性多層体の製造方法
 本発明は、滅菌済み酸素吸収性多層体の製造方法に関する。
 食品、飲料、医薬品、化粧品等に用いられる容器の放射線滅菌方法として、古くからCoの放射性同位体であるCo60を線源としたガンマ線滅菌が一般的であり、その他にもX線、電子線による処理がある。放射線滅菌は低温で処理でき、処理時間も短く、比較的安価であるため、滅菌処理方法として広く普及しつつある。
 一方、食品、飲料、医薬品、化粧品に代表される、酸素の影響を受けて変質あるいは劣化しやすい各種物品の酸素による酸化を防止し、長期に保存する目的で、これらを収納した包装体内の酸素除去を行う酸素吸収剤が使用されている。
 さらに、所定のテトラリン環を有するポリマーと遷移金属触媒とを含有する酸素吸収性樹脂組成物及びこれを用いた多層容器(下記、特許文献1~3参照)が開発されている。
 また、放射線を照射して滅菌処理を行った後であっても着色が抑制された技術が提案されている(下記、特許文献4参照)。
国際公開第2013/077436号 国際公開第2013/089268号 国際公開第2013/118882号 国際公開第2015/119230号
 特許文献4(国際公開第2015/119230号)の技術においては放射線を照射して滅菌処理を行った後であっても、放射線照射によって発生した着色を加熱処理によって退色させることができる。しかし、多層容器等の材料を用いる場合、組み合わせる樹脂や使用用途によっては容器の変形を抑制するために高温における処理を避けたい事情が存在する場合がある。また、用いる樹脂によっては加熱により着色が生じる場合がある。
 更に、滅菌処理を行うとラジカル生成物の生成により臭気が発生する場合がある。酸素吸収能を有さないフィルム等の場合には滅菌処理後に、例えば数週間放置することで、当該臭気を低減させることができる。しかし、酸素吸収能を有する材料の場合、酸素の存在下で長期間放置することは製品の性能上好ましくない。
 本発明は、上述の課題を解決すべく、酸素吸収能を維持しつつ臭気の発生を低減し、容器変形及び熱劣化着色を抑制することのできる滅菌済み酸素吸収性多層体の製造方法を提供することを目的とする。
 本発明者らは、酸素吸収性多層体について検討を進めた結果、ガンマ線、X線、電子線等の放射線滅菌処理後に加熱処理を特定条件で実施することで、容器の変形を抑制できるような低温でも前記課題が解決されることを見出し、本発明を完成した。
 すなわち、本発明は、以下に示す通りである。
 <1> テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層と、熱可塑性樹脂(b)を含有する層と、を少なくとも備えた酸素吸収性多層体に、放射線を照射する滅菌工程と、
 前記滅菌工程において放射線が照射された前記酸素吸収性多層体を、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱する加熱工程と、
を含む滅菌済み酸素吸収性多層体の製造方法。
 <2> 前記酸素吸収性多層体は、少なくとも2層の前記熱可塑性樹脂(b)を含有する層を備え、前記酸素吸収層が2層の前記熱可塑性樹脂(b)を含有する層の間に配置された前記<1>に記載の滅菌済み酸素吸収性多層体の製造方法。
 <3> 前記熱可塑性樹脂(a)のガラス転移温度(Tg1)と、前記熱可塑性樹脂(b)のガラス転移温度(Tg2)と、が下記式(A)で示す関係を有する前記<1>又は<2>に記載の滅菌済み酸素吸収性多層体の製造方法。
式(A):Tg1≦Tg2≦[Tg1+10℃]
 <4> 前記加熱工程における加熱時間が50時間以上120時間以下である、前記<1>~<3>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <5> 前記加熱工程における加熱温度が、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度-5℃以下である、前記<1>~<4>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <6> 前記加熱工程において、前記酸素吸収性多層体の加熱を酸素存在下で行う前記<1>~<5>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <7> 前記熱可塑性樹脂(b)のガラス転移温度が、60~80℃である前記<1>~<6>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <8> 前記酸素吸収性多層体が、酸素吸収性多層容器である前記<1>~<7>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <9> 前記熱可塑性樹脂(a)が、下記一般式(1)~(4)からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有するポリエステル化合物である前記<1>~<8>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、それぞれ独立して、水素原子又は一価の置換基を表し、前記一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、チオール基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0~3の整数を表し、nは0~7の整数を表し、テトラリン環のベンジル位に少なくとも1つの水素原子が結合している。Xは芳香族炭化水素基、飽和又は不飽和の脂環式炭化水素基、直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基及び複素環基からなる群より選ばれる少なくとも1つの基を含有する2価の基を表す。)
 <10> 前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選択される少なくとも1種の遷移金属を含む前記<1>~<9>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <11> 前記遷移金属触媒が、前記熱可塑性樹脂(a)100質量部に対し、遷移金属量として0.0001~10質量部含まれる前記<1>~<10>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 <12> 前記熱可塑性樹脂(a)が、下記一般式(5)~(7)からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有するポリエステル化合物である前記<1>~<11>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
Figure JPOXMLDOC01-appb-C000004
 <13> 前記放射線が、ガンマ線、X線又は電子線である前記<1>~<12>のいずれかに記載の滅菌済み酸素吸収性多層体の製造方法。
 本発明によれば、酸素吸収能を維持しつつ臭気の発生を低減し、熱変形及び熱劣化着色を抑制することのできる滅菌済み酸素吸収性多層体の製造方法を提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態の滅菌済み酸素吸収性多層体の製造方法(以下、「本実施形態の製造方法」と称する場合がある。)は、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層(以下、単に"層A"と称することがある)と、熱可塑性樹脂(b)を含有する層(以下、単に"層B"と称することがある)と、を少なくとも備えた酸素吸収性多層体に、放射線を照射する滅菌工程と、前記滅菌工程において放射線が照射された前記酸素吸収性多層体を、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱する加熱工程と、を含む。
 多層容器等の滅菌済み酸素吸収性多層体を製造するために放射線照射による滅菌処理を施した場合、滅菌処理によって発生する着色を低減(退色)させるためにはある程度高い温度(例えば、層Aに用いられる熱可塑性樹脂(a)のガラス転移温度よりも高い温度)で加熱処理を行うことが有利である。しかし、多層容器等の滅菌済み酸素吸収性多層体を製造する際、例えば成形性を高めるために、各層に用いられる樹脂のガラス転移温度の差を小さくしたい場合等が存在する。例えば、上述の層Aと層Bとのガラス転移温度差を小さくすると、熱劣化着色や熱変形のために、容器滅菌処理後の加熱工程において熱可塑性樹脂(a)のガラス転移温度よりも高い温度で処理することが難しい場合がある。滅菌処理の際に発生する臭気は放射線照射によって発生するラジカル(オゾン)に起因するものと推測されるため、例えば、長期間(例えば、数週間以上)材料を酸素存在下(空気雰囲気下)で放置することによっても低減させることができる。しかし、酸素吸収能を有する材料の場合、酸素存在下で長期間放置することは酸素吸収能の維持の観点から避けることが好ましい。
 本実施形態の作用はこれらに限定されるものではないが、本実施形態の製造方法によれば、加熱工程において酸素吸収性多層体を、熱可塑性樹脂(a)のガラス転移温度-20℃以上熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱することにより、例えば、上述の層Aと層Bとのガラス転移温度差が小さい材料を用いた場合であっても、酸素吸収能を維持しつつ効果的に臭気の発生を低減し、更に容器変形及び熱劣化着色を抑制することができる。以下、各成分及び各工程等について説明する。
[酸素吸収樹脂多層体]
 本実施形態においては、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層(層A)と、熱可塑性樹脂(b)を含有する層(層B)と、を少なくとも備えた酸素吸収性多層体を用いる。
 酸素吸収性多層体は、酸素吸収層(層A)と、熱可塑性樹脂(b)を含有する層(層B)と、の少なくとも2層を備える(A/B構造)。
 ただし、酸素吸収性多層体の層構成は特に限定されず、層A及び層Bの数や種類は特に限定されない。例えば、酸素吸収性多層体は、少なくとも2層の前記熱可塑性樹脂(b)を含有する層(層B)を備え、前記酸素吸収層(層A)を2層の前記熱可塑性樹脂(b)を含有する層(層B)の間に配置することができる(B/A/B構造)。即ち、酸素吸収性多層体は、上述のように1層の層A及び1層の層BからなるA/B構成であってもよく、1層の層A及び2層の層BからなるB/A/B構造のように3層構成であってもよい。また、1層の層A並びに層B1及び層B2の2種4層の層BからなるB1/B2/A/B2/B1の5層構成であってもよい。さらに、本実施形態の多層体は、必要に応じて接着層(層AD)等の任意の層を含んでもよく、例えば、B1/AD/B2/A/B2/AD/B1の7層構成であってもよい。酸素吸収性多層体の層構成は、B/A/B構造のように3層を少なくとも有するものが好ましい。
 また、酸素吸収性多層体において、成形性を高める観点から、熱可塑性樹脂(a)のガラス転移温度(Tg1)と、熱可塑性樹脂(b)のガラス転移温度(Tg2)と、は下記式(A)で示す関係を有することが好ましい。
式(A):Tg1≦Tg2≦[Tg1+10℃]
 特に限定されるものではないが、前記式(A)で示される各ガラス転移温度の関係は、下記式(A')の関係を示すことが更に好ましい。
式(A'):Tg1≦Tg2≦[Tg1+5℃]
 ここで、"熱可塑性樹脂(a)のガラス転移温度"及び"熱可塑性樹脂(b)のガラス転移温度"は、例えば、JIS K7121:2012に記載の方法に従って測定することができる。
 例えば、上述のB/A/B構造を有する場合、内外層に位置するB層のガラス転移温度(Tg2)は必ずしも同一である(即ち、各B層に同一の材料を用いる)必要はないが、少なくとも各B層のガラス転移温度(Tg2)と前記熱可塑性樹脂(a)のガラス転移温度(Tg1)とが前記式(A)の関係を満たしていることが好ましい。多層押出等の工程を考慮すると、B/A/B構造においては各B層に用いられる材料は同一であることが好ましい。
[酸素吸収層(層A)]
 酸素吸収層(層A)は、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含むものであれば特に製法等は限定されるものではないが、例えば、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収性樹脂組成物を用いて形成することができる。前記酸素吸収樹脂組成物は、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含むものであれば何ら限定されず、公知の物を用いることができる。例えば、熱可塑性樹脂(a)としては、国際公開第2013/077436号、国際公開第2013/089268号、国際公開第2013/118882号等に記載されたような、テトラリン環を有するポリマー等を用いることもできる。
(熱可塑性樹脂(a))
 酸素吸収性能の観点から、熱可塑性樹脂(a)としては、テトラリン環を構成単位として有するポリエステル化合物であることが好ましく、下記一般式(1)~(4)からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有するポリエステル化合物(a)がより好ましい。尚、以下、テトラリン環を有する構成単位を含有するポリエステル化合物を、テトラリン環含有ポリエステル化合物という場合がある。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、それぞれ独立して、水素原子又は一価の置換基を表し、前記一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、チオール基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0~3の整数を表し、nは0~7の整数を表し、テトラリン環のベンジル位に少なくとも1つの水素原子が結合している。Xは芳香族炭化水素基、飽和又は不飽和の脂環式炭化水素基、直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基及び複素環基からなる群より選ばれる少なくとも1つの基を含有する2価の基を表す。)
 特に、一般式(1)で表される構成単位は、下記式(5)~(7)からなる群より選択される少なくとも1つであることが好ましい。ここで、「構成単位を含有する」や「構成単位として含有する」とは、化合物中に当該構成単位を1以上有することを意味する。かかる構成単位は、テトラリン環含有ポリエステル化合物中に繰り返し単位として含まれていることが好ましい。テトラリン環含有ポリエステル化合物が重合体である場合、前記構成単位のホモポリマー、前記構成単位と他の構成単位とのランダムコポリマー、前記構成単位と他の構成単位とのブロックコポリマーのいずれであっても構わない。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)~(4)で表される構成単位において、Rで表される一価の置換基としては、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(好ましくは炭素数が1~15であり、より好ましくは炭素数が1~6である、直鎖状、分岐状又は環状アルキル基;例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基等)、アルケニル基(好ましくは炭素数が2~10であり、より好ましくは炭素数が2~6である、直鎖状、分岐状又は環状アルケニル基;例えば、ビニル基、アリル基等)、アルキニル基(好ましくは炭素数が2~10であり、より好ましくは炭素数が2~6である、アルキニル基;例えば、エチニル基、プロパルギル基等)、アリール基(好ましくは炭素数が6~16であり、より好ましくは炭素数が6~10である、アリール基;例えば、フェニル基、ナフチル基等)、複素環基(好ましくは炭素数が1~12であり、より好ましくは炭素数が2~6である、5員環又は6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる一価の基;例えば、1-ピラゾリル基、1-イミダゾリル基、2-フリル基等)、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基(好ましくは炭素数が1~10であり、より好ましくは炭素数が1~6である、直鎖状、分岐状又は環状アルコキシ基;例えば、メトキシ基、エトキシ基等)、アリールオキシ基(好ましくは炭素数が6~12であり、より好ましくは炭素数が6~8である、アリールオキシ基;例えば、フェノキシ基等)、アシル基(ホルミル基を含む。好ましくは炭素数が2~10であり、より好ましくは炭素数が2~6であるアルキルカルボニル基、好ましくは炭素数が7~12であり、より好ましくは炭素数が7~9である、アリールカルボニル基;例えば、アセチル基、ピバロイル基、ベンゾイル基等)、アミノ基(好ましくは炭素数が1~10であり、より好ましくは炭素数が1~6である、アルキルアミノ基、好ましくは炭素数が6~12であり、より好ましくは炭素数が6~8である、アニリノ基、好ましくは炭素数が1~12であり、より好ましくは炭素数が2~6である、複素環アミノ基;例えば、アミノ基、メチルアミノ基、アニリノ基等)、チオール基、アルキルチオ基(好ましくは炭素数が1~10であり、より好ましくは炭素数が1~6である、アルキルチオ基;例えば、メチルチオ基、エチルチオ基)、アリールチオ基(好ましくは炭素数が6~12であり、より好ましくは炭素数が6~8である、アリールチオ基;例えば、フェニルチオ基)、複素環チオ基(好ましくは炭素数が2~10であり、より好ましくは炭素数が1~6である、複素環チオ基;例えば、2-ベンゾチアゾリルチオ基等)、イミド基(好ましくは炭素数が2~10であり、より好ましくは炭素数が4~8であるイミド基;例えば、N-スクシンイミド基、N-フタルイミド基等)等が挙げられるが、これらに特に限定されない。
 上述の一価の置換基Rが水素原子を有する場合、その水素原子が置換基T(ここで、置換基Tは、上述の一価の置換基Rで説明したものと同義である。)でさらに置換されていてもよい。その具体例としては、例えば、ヒドロキシ基で置換されたアルキル基(例えば、ヒドロキシエチル基等)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基等)、アリール基で置換されたアルキル基(例えば、ベンジル基等)、第1級アミノ基又は第2級アミノ基で置換されたアルキル基(例えば、アミノエチル基等)、アルキル基で置換されたアリール基(例えば、p-トリル基等)、アルキル基で置換されたアリールオキシ基(例えば、2-メチルフェノキシ基等)等が挙げられるが、これらに特に限定されない。
 尚、上述の一価の置換基Rが一価の置換基Tを有する場合、上述の炭素数には、置換基Tの炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と看做し、フェニル基で置換された炭素数7のアルキル基とは看做さない。また、上述の一価の置換基Rが置換基Tを有する場合、その置換基Tは複数あってもよい。
 一般式(1)~(4)で表される構成単位において、Xは、芳香族炭化水素基、飽和又は不飽和の脂環式炭化水素基、直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基及び複素環基からなる群より選ばれる少なくとも1つの基を含有する2価の基を表す。芳香族炭化水素基、飽和又は不飽和の脂環式炭化水素基、直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基及び複素環基は、置換されていても無置換でもよい。Xは、ヘテロ原子を含有していてもよく、エーテル基、スルフィド基、カルボニル基、ヒドロキシ基、アミノ基、スルホキシド基、スルホン基等を含有していてもよい。芳香族炭化水素基としては、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、メチルフェニレン基、o-キシリレン基、m-キシリレン基、p-キシリレン基、ナフチレン基、アントラセニレン基、フェナントリレン基、ビフェニレン基、フルオニレン基等が挙げられるが、これらに特に限定されない。脂環式炭化水素基としては、例えば、シクロペンチレン基、シクロへキシレン基、メチルシクロへキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基や、シクロヘキセニレン基等のシクロアルケニレン基が挙げられるが、これらに特に限定されない。脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、イソプロピリデン基、テトラメチレン基、イソブチレン基、tert‐ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等の直鎖状又は分枝鎖状アルキレン基や、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、1,3-ブタジエニレン基、1-ペンテニレン基、2-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、3-ヘキセニレン基等のアルケニレン基等が挙げられるが、これらに特に限定されない。これらは、さらに置換基を有していてもよく、その具体例としては、例えば、ハロゲン原子、アルコキシ基、ヒドロキシ基、カルボキシル基、カルボアルコキシ基、アシル基、チオ基(例えば、アルキルチオ基、フェニルチオ基、トリルチオ基、ピリジルチオ基等)、アミノ基(例えば、非置換アミノ基、メチルアミノ基、ジメチルアミノ基、フェニルアミノ基等)、シアノ基、ニトロ基等が挙げられるが、これらに特に限定されない。
 一般式(1)で表される構成単位を含有するポリエステル化合物(a)は、例えば、公知の方法で製造することができる。例えば、単量体に相当するテトラリンジカルボン酸アルキルエステルを重合することにより製造することができる。
 本実施形態のポリエステル化合物(a)には、性能に影響しない程度で、テトラリン環を有さない構成単位を共重合成分として組み込んでもよい。具体的には、アジピン酸やセバシン酸等の脂肪族ジカルボン酸類、テレフタル酸等のベンゼンジカルボン酸類、2,6-ナフタレンジカルボン酸等のナフタレンジカルボン酸類等の化合物を他の共重合成分として用いることができる。
 一般式(1)で表される構成単位を含有するポリエステル化合物(a)の好ましい具体例としては、上述の式(5)~(7)及び、下記式(8)~(10)が挙げられるが、これらに限定されない。これらの中でも式(5)~(7)のいずれかで表される構成単位を含有するポリエステル化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上述のポリエステル化合物(a)は、いずれも、テトラリン環のベンジル位に水素を有するものであり、遷移金属触媒と併用することでベンジル位の水素が引き抜かれ、これにより優れた酸素吸収能を発現する(但し、本実施形態の作用はこれらに限定されない。)。
 また、上述のような酸素吸収性樹脂組成物は、酸素吸収後の低分子量化合物の生成を抑制することもできる。その理由は明らかではないが、例えば以下の酸化反応機構が推測される。すなわち、ポリエステル化合物(a)においては、まずテトラリン環のベンジル位にある水素が引き抜かれてラジカルが生成し、その後、ラジカルと酸素との反応によりベンジル位の炭素が酸化され、ヒドロキシ基又はケトン基が生成すると考えられる。そのため、前記酸素吸収性樹脂組成物においては、酸化反応による分子鎖の切断がなく、ポリエステル化合物(a)の構造が維持されるため、臭気の原因となる低分子量の有機化合物が酸素吸収後に生成し難く、その結果、酸素吸収後の臭気強度の増大が抑制されるとともに、内容物への低分子量化合物の混入が防止されているものと推測される(但し、本実施形態の作用はこれらに限定されない。)。
 本実施形態のポリエステル化合物(a)の極限粘度(フェノールと1,1,2,2-テトラクロロエタンとの質量比6:4(フェノール:1,1,2,2-テトラクロロエタン)の混合溶媒を用いた25℃での測定値)は特に限定されないが、ポリエステル化合物(a)の成形性の観点から、0.1~2.0dL/gであることが好ましく、0.5~1.5dL/gであることがより好ましい。
 熱可塑性樹脂(a)のガラス転移温度(Tg1)は、特に限定されるものではないが、60~80℃であることが好ましく、62~78℃であることがより好ましく、65~75℃であることが更に好ましい。
 層A中の熱可塑性樹脂(a)の含有量は、特に限定されないが、50~100質量%であることが好ましく、70~100質量%であることがより好ましく、90~100質量%であることが更に好ましい。熱可塑性樹脂(a)の含有量を前記範囲に制御することで、酸素吸収性能をより高めることができる。
(遷移金属触媒)
 前記遷移金属触媒としては、テトラリン環を構成単位として有する熱可塑性樹脂(a)の酸化反応の触媒として機能し得るものであれば、公知のものから適宜選択して用いることができ、特に限定されない。
 かかる遷移金属触媒の具体例としては、例えば、遷移金属の有機酸塩、ハロゲン化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩、硫酸塩、酸化物、水酸化物等が挙げられる。ここで、遷移金属触媒に含まれる遷移金属としては、例えば、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム等が挙げられるが、これらに限定されない。これらの中でも、マンガン、鉄、コバルト、ニッケル、銅が好ましい。また、有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸、アセチルアセトン、ジメチルジチオカルバミン酸、パルミチン酸、2-エチルヘキサン酸、ネオデカン酸、リノール酸、トール酸、オレイン酸、カプリン酸、ナフテン酸が挙げられるが、これらに限定されない。遷移金属触媒は、これらの遷移金属と有機酸とを組み合わせたものが好ましく、遷移金属がマンガン、鉄、コバルト、ニッケル又は銅であり、有機酸が酢酸、ステアリン酸、2-エチルヘキサン酸、オレイン酸又はナフテン酸である組み合わせがより好ましい。尚、遷移金属触媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
 遷移金属触媒の配合量は、使用する熱可塑性樹脂(a)や遷移金属触媒の種類及び所望の性能に応じて適宜設定でき、特に限定されない。酸素吸収層の酸素吸収量の観点から、遷移金属触媒の配合量は、熱可塑性樹脂(a)100質量部に対し、遷移金属量として0.0001~10質量部であることが好ましく、0.0002~2質量部であることがより好ましく、0.0005~1質量部であることが更に好ましい。
 熱可塑性樹脂(a)及び遷移金属触媒は、公知の方法で混合することができるが、好ましくは押出機により混練することが好ましい。これにより、分散性の良い酸素吸収性樹脂組成物とすることができる。また、酸素吸収性樹脂組成物には、本実施形態の効果を損なわない範囲で、乾燥剤、顔料、染料、酸化防止剤、スリップ剤、帯電防止剤、安定剤;炭酸カルシウム、クレー、マイカ、シリカ等の充填剤;消臭剤等といった他の添加剤を添加してもよいが、以上に示したものに限定されることなく、種々の材料を混合することができる。
 尚、酸素吸収層は、酸素吸収反応を促進させるために、必要に応じて、さらにラジカル発生剤や光開始剤を含有していてもよい。また、酸素吸収性樹脂組成物は、本実施形態の目的を阻害しない範囲で熱可塑性樹脂(a)以外の熱可塑性樹脂と押出機で混練することもできる。これらの、ラジカル発生剤、光開始剤、他の熱可塑性樹脂は公知の物を用いることができる。ラジカル発生剤としては、例えば、N-ヒドロキシコハクイミド、N-ヒドロキシマレイミド等のN-ヒドロキシイミド化合物が挙げられる。光開始剤としては、例えば、ベンゾフェノンとその誘導体、チアジン染料、金属ポルフィリン誘導体、アントラキノン誘導体等が挙げられる。他の熱可塑性樹脂としては、例えば、ポリエチレンに代表されるポリオレフィン、エチレン-ビニル化合物共重合体、スチレン系樹脂、ポリビニル化合物、ポリアミド、ポリエステル、ポリカーボネート等が挙げられる。
 酸素吸収層(層A)の厚みは、特に限定されないが、1~1000μmであることが好ましく、2~800μmであることがより好ましく、5~700μmであることが更に好ましい。層Aの厚みを前記範囲に制御することで、層Aの酸素吸収性をより高めることができるとともに経済性が損なわれることを防止することができる。
[熱可塑性樹脂(b)を含有する層(層B)]
 本実施形態において層Bは、熱可塑性樹脂(b)を含有する層である。尚、特に断りがない限り、層B1、層B2も含めて「層B」と総称する。同様に、熱可塑性樹脂(b1)、(b2)を示した場合、こられも含めて「熱可塑性樹脂(b)」と総称する。熱可塑性樹脂(b)は熱可塑性樹脂(a)以外の熱可塑性樹脂である。層B中の熱可塑性樹脂(b)の含有量は、特に限定されないが、70~100質量%であることが好ましく、80~100質量%がより好ましく、90~100質量%が更に好ましい。尚、層B1、B2のように、熱可塑性樹脂(b)を含有する層が複数層ある態様の場合、ここでいう層B中の熱可塑性樹脂(b)の含有量とは、各層における熱可塑性樹脂(b)の含有量をいう。
 本実施形態の酸素吸収性多層体は、上述のように複数の層Bを有していてもよい。層Bを複数有する場合、層Bの構成は互いに同一であっても異なっていてもよい。層Bの厚みは、用途に応じて適宜決定することができる。通常、酸素吸収性多層体を多層容器として用いる場合、多層容器に要求される落下耐性等の強度や柔軟性等の諸物性を確保するという観点からは、一つの層Bの厚みは好ましくは5μm~1000μmであり、より好ましくは10μm~800μmであり、更に好ましくは20μm~500μmである。
 熱可塑性樹脂(b)としては、熱可塑性樹脂(a)以外の任意の熱可塑性樹脂を使用することができ、特に限定されない。熱可塑性樹脂(b)の具体例としては、公知の、ポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体、植物由来樹脂及び塩素系樹脂等が挙げられる。熱可塑性樹脂(b)としては、これらの樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。これらの中でも、ポリオレフィンが好ましい。より具体的な好適例としては、ノルボルネンとエチレン等のオレフィンを原料とした共重合体;テトラシクロドデセンとエチレン等のオレフィンを原料とした共重合体であるシクロオレフィンコポリマー(COC)等が挙げられる。また、ノルボルネンを開環重合し、水素添加した重合物であるシクロオレフィンポリマー(COP)も特に好ましい。このようなCOC及びCOPは、例えば特開平5-300939号公報や特開平5-317411号公報等に記載されているものを使用することもできる。
 前記COCとして、市販品を用いることができる。例えば、三井化学社製、アペル(登録商標)が市販されている。前記COPとして、市販品を用いることができる。例えば、日本ゼオン社製、ゼオネックス(登録商標)として市販されている。前記COC及び前記COPは、耐熱性や耐光性等の化学的性質や耐薬品性はポリオレフィン樹脂としての特徴を示し、機械特性、溶融、流動特性、寸法精度等の物理的性質は非晶性樹脂としての特徴を示すことから特に好ましい材質である。
 熱可塑性樹脂(b)のガラス転移温度(Tg2)は、60~80℃であることが好ましく、62~78℃であることがより好ましく、65~75℃であることが更に好ましい。熱可塑性樹脂(b)のガラス転移温度(Tg2)が前記温度範囲にあると、熱可塑性樹脂(a)との多層成形において、外観の良好な成形体を作製することができる。
(酸素吸収性多層体の層構成等)
 酸素吸収性多層体は、酸素吸収層(層A)及び熱可塑性樹脂(b)を含有する層(層B)に加えて、所望する性能等に応じて任意の層を更に含んでいてもよい。そのような任意の層としては、例えば、接着層(層AD)等が挙げられる。例えば、層Aの上に層Bが形成された構成である場合において、層ADを介して層Aの上に層Bが形成された構成(層A/層AD/層B)であってもよい。
 酸素吸収性多層体において、隣接する2つの層の間で実用的な層間接着強度が得られない場合には、当該2つの層の間に接着層(層AD)を設けることが好ましい。接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂;ポリエステル系ブロック共重合体を主成分とした、ポリエステル系熱可塑性エラストマー等が挙げられる。接着層としては、接着性の観点から、層Bとして用いられている熱可塑性樹脂と同種の樹脂を変性したものを用いることが好ましい。接着層の厚みは、実用的な接着強度を発揮しつつ成形加工性を確保するという観点から、好ましくは2~100μmであり、より好ましくは5~90μmであり、更に好ましくは10~80μmである。
 本実施形態における酸素吸収性多層体の製造方法は特に限定されず、通常の射出成形法により製造することができる。
 例えば、2台以上の射出機を備えた成形機及び射出用金型を用いて、層Aを構成する材料及び層Bを構成する材料をそれぞれの射出シリンダーから金型ホットランナーを通して、キャビティー内に射出して、射出用金型の形状に対応した多層容器を製造することができる。
 また、先ず、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する樹脂と同時に射出し、次に層Bを構成する樹脂を必要量射出してキャビティーを満たすことにより3層構造B/A/Bの多層容器が製造できる。
 また、先ず、層Bを構成する材料を射出し、次いで層Aを構成する材料を単独で射出し、最後に層Bを構成する材料を必要量射出して金型キャビティーを満たすことにより、5層構造B/A/B/A/Bの多層容器が製造できる。
 また、先ず、層B1を構成する材料を射出シリンダーから射出し、次いで層B2を構成する材料を別の射出シリンダーから、層B1を構成する樹脂と同時に射出し、次に層Aを構成する樹脂を層B1、層B2を構成する樹脂と同時に射出し、次に層B1を構成する樹脂を必要量射出してキャビティーを満たすことにより5層構造B1/B2/A/B2/B1の多層容器が製造できる。
 また、圧縮成形法により多層成形体を得てもよい。例えば、熱可塑性樹脂溶融物中に酸素吸収樹脂剤を設け、その溶融塊を雄型に供給するとともに、雌型により圧縮し、圧縮成形物を冷却固化することにより成形体を得られる。
 得られた成形体の口頸部に耐熱性を与えるため、この段階で口頸部を熱処理により結晶化させてもよい。結晶化度は好ましくは30~50%、より好ましくは35~45%である。尚、結晶化は後述する二次加工を施した後に実施してもよい。
 また、押出成形、圧縮成形(シート成形、ブロー成形)等の成形手段によって所望の容器形状に成形してもよい。
 本実施形態で用いられる酸素吸収性多層体は特に限定されるものではなく、フィルム状として用いてもよいし酸素吸収性多層容器の形態で用いることができる。前記酸素吸収性多層容器の形状は何ら限定されず、袋、トレイ、カップ、ボトル、チューブ、PTP(プレス・スルー・パック、ブリスターともいう)、バイアル、アンプル、プレフィルドシリンジ、真空採血管等が挙げられる。
[滅菌工程]
 本実施形態における滅菌工程は、テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層(層A)と、熱可塑性樹脂(b)を含有する層(層B)と、を少なくとも備えた酸素吸収性多層体に、放射線を照射する工程である。本実施形態の製造方法によれば、滅菌工程において放射線による滅菌処理(以下、単に「放射線滅菌処理」と称することがある。)を酸素吸収性多層体に施すことで、酸素吸収性多層体を食品、飲料、医薬品、化粧品等に用いられる容器などとして用いることができる。
(放射線滅菌処理)
 前記放射線滅菌処理は、電磁波に分類されるガンマ線やX線;及び粒子線に分類される電子線より選ばれる少なくとも1種を照射して行う。ガンマ線照射において、用いることができるガンマ線としては、一般的にCoの放射性同位体であるCo60線源より放出されるガンマ線が挙げられるが、これらに限定されるものではない。また、X線照射において、用いることができるX線としては、一般にCu、Mo、W等を対陰極として用い、X線管やクルックス管内で加速させた電子ビームを当てることにより発生するX線が挙げられるが、これらに限定されるものではない。また、電子線照射において用いることができる電子線としては、一般的にコッククロフト-ワトソン型、バンデグラーフ型、共振変圧器型、絶縁コア変圧器型、線形加速器、静電加速器、ダイナミトロン型、高周波サイクロトロン等の各種電子線加速器から放出される150~10000KeVのエネルギーをもつ電子線が挙げられるが、これらに限定したものではない。
 本実施形態における放射線滅菌処理において、照射する放射線の線量は特に限定されないが、酸素吸収性多層体を構成する樹脂の劣化を抑制する観点から、1kGy~200kGyであることが好ましく、より好ましくは10kGy~150kGyであり、更に好ましくは20kGy~100kGyであり、より更に好ましくは20kGy~55kGyである。
 本実施形態において酸素吸収性多層体に対して放射線滅菌処理を行うタイミングは何ら限定されないが、放射線滅菌処理前の汚染リスクを低減する観点から、多層体作製後すみやかに放射線滅菌処理を行うことが好ましい。
 酸素吸収性多層体は放射線滅菌処理によって着色するので、後述する加熱処理を施す前に色調を確認することで滅菌処理の実施有無を確認することができる。即ち、酸素吸収性放射線滅菌処理インジケーターとしての利用が可能である。
[加熱工程]
 本実施形態における加熱工程は、前記滅菌工程において放射線が照射された前記酸素吸収性多層体を、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱する工程である。本実施形態の製造方法によれば、加熱工程において加熱処理を酸素吸収性多層体に施すことで、放射線滅菌処理によって発生した酸素吸収性多層体の着色を退色させることができる。この際、本実施形態の加熱工程の加熱条件を、記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上とすることで、酸素吸収性多層体の加熱による変形及び熱劣化着色を抑制できると共に酸素吸収能を維持したまま放射線滅菌処理によって発生した酸素吸収性多層体の臭気を減少させることができる。本実施形態の製造方法によれば、特に、A層とB層とのガラス転移温度の差を小さくして成形性を高めた酸素吸収性多層体等を用いた場合においても酸素吸収能を維持し、熱による変形及び熱劣化着色の発生を抑制しながら滅菌工程において発生した酸素吸収性多層体の臭気を低減させることができる。
 本実施形態における加熱工程の加熱温度は、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満である。前記加熱温度の上限値が前記熱可塑性樹脂(a)のガラス転移温度を超えてしまうと50時間以上加熱した場合に熱によって酸素吸収性多層体が変形したり、熱劣化によって着色してしまう場合がある。また、前記加熱温度の下限値が前記熱可塑性樹脂(a)のガラス転移温度-20℃未満であると、臭気低減効果を十分に発揮することができず、また退色効果も低減してしまう場合がある。尚、加熱温度は加熱時の酸素吸収性多層体表面の温度を基準とすることができる。
 前記加熱温度の上限値は、酸素吸収性多層体の熱変形や熱劣化による着色を十分に抑制する観点から"熱可塑性樹脂(a)のガラス転移温度-5℃"以下であることが好ましく、"熱可塑性樹脂(a)のガラス転移温度-7℃"以下であることが更に好ましい。
 また、加熱温度の下限値は、酸素吸収性多層体の臭気低減効果及び退色効果を十分に発揮する観点から"熱可塑性樹脂(a)のガラス転移温度-15℃"以上であることが好ましく、"熱可塑性樹脂(a)のガラス転移温度-12℃"以上であることが更に好ましい。
 尚、上述の上限値及び下限値を適宜組み合わせることで上述の加熱条件を決定することができる。
 本実施形態における加熱工程の加熱時間は、50時間以上である。前記加熱時間が50時間未満であると、臭気低減効果を十分に発揮することができず、また退色効果も低減してしまう場合がある。尚、加熱時間の開始は酸素吸収性多層体表面の温度が上述の範囲に達した時を基準とすることができる。
 前記加熱時間の上限値は、特に限定されるものではないが、加熱処理による上述の効果とコストとの観点、並びに、過剰な加熱による熱変形や熱劣化を抑制する観点から120時間以下であることが好ましく、100時間以下であることが更に好ましい。前記加熱時間として具体的には、上述の効果と加熱処理によるコストとの観点から、50時間以上120時間以下が好ましく、70時間以上100時間以下であることが更に好ましい。
 加熱時の雰囲気は窒素、二酸化炭素、アルゴン等の不活性ガス中、空気中、真空中、水中等が挙げられ、これらに限定するものではない。但し、臭気低減効果を高める観点からは、加熱工程において、酸素吸収性多層体の加熱を酸素存在下(例えば、空気雰囲気下)で行うことが好ましい。
 加熱処理に用いる装置は何ら限定されず公知の物を適宜選定して用いることができ、例えば熱風乾燥器等が挙げられる。また、加熱処理は放射線滅菌処理の後に施されるが、そのタイミングは何ら限定されない。放射線滅菌処理に引き続いて行ってもよいし、一定時間経過後に行ってもよい。
 本実施形態の製造方法により製造された滅菌済み酸素吸収性多層体は、酸素吸収に水分を必要としないので、低湿度から高湿度までの広範な湿度条件(相対湿度0%~100%)での酸素吸収性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の包装に適している。被保存物の代表例として、酸素存在下で劣化を起こしやすいバイオ医薬品が挙げられる。バイオ医薬品は、タンパク質由来の薬効成分を含む限り特に定めるものではなく、当業者に公知のバイオ医薬品を広く用いることができる。具体的には、抗体、ホルモン、酵素、およびこれらを含む複合体からなる群より選ばれる、バイオ医薬品であることが好ましい。バイオ医薬品の具体例としては、アドレナリン拮抗薬、鎮痛薬、麻酔薬、アンジオテンシン拮抗薬、抗炎症薬、抗不安薬、抗不整脈薬、抗コリン薬、抗凝固薬、抗てんかん薬、止瀉薬、抗ヒスタミン薬、抗新生物薬および代謝拮抗薬、抗新生物薬および代謝拮抗薬、抗塑性薬、抗潰瘍薬、ビスホスホネート、気管支拡張薬、強心薬、心臓血管薬、中枢作用α2刺激薬、造影剤、変換酵素阻害薬、外皮用薬、利尿薬、勃起不全用薬物、乱用薬物、エンドセリン拮抗薬、ホルモン薬およびサイトカイン、血糖降下薬、尿酸排泄促進薬および痛風に用いられる薬物、免疫抑制薬、脂質降下薬、種々の薬品、精神治療薬、レニン阻害薬、セロトニン拮抗薬、ステロイド、交感神経興奮薬、甲状腺薬および抗甲状腺薬、および血管拡張薬、バソペプチダーゼ阻害薬、インスリン、血液因子、血栓溶解薬、ホルモン、造血成長因子、インターフェロン、インターロイキン系生成物、ワクチン、モノクローナル抗体、腫瘍壊死因子、治療用酵素、抗体-薬物複合体、バイオシミラー、エリスロポエチン、免疫グロブリン、体細胞、遺伝子治療、組織、および治療用組換タンパク質が挙げられる。
 その他、バイオ医薬品以外の医薬品、飲料、食品、農薬、殺虫剤等の化学品、ペットフード、洗剤等、種々の物品を挙げることができるが、これらに特に限定されない。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 以下に実施例と比較例を用いて本発明を具体的に説明するが、本発明はこれによって限定されるものではない。尚、特に記載が無い限り、NMR(核磁気共鳴: nuclear magnetic resonance)測定は室温で行った。
(モノマーの合成)
 内容積18Lのオートクレーブに、ナフタレン-2,6-ジカルボン酸ジメチル2.20kg、2-プロパノール11.0kg、5%パラジウムを活性炭に担持させた触媒350g(50wt%含水品)を仕込んだ。次いで、オートクレーブ内の空気を窒素と置換し、さらに窒素を水素と置換した後、オートクレーブ内の圧力が0.8MPaとなるまで水素を供給した。次に、撹拌機を起動し、回転速度を500rpmに調整し、30分間かけて内温を100℃まで上げた後、さらに水素を供給し圧力を1MPaとした。その後、反応の進行による圧力低下に応じ、1MPaを維持するよう水素の供給を続けた。7時間後に圧力低下が無くなったので、オートクレーブを冷却し、未反応の残存水素を放出した後、オートクレーブから反応液を取り出した。反応液を濾過し、触媒を除去した後、分離濾液から2-プロパノールをエバポレーターで蒸発させた。得られた粗生成物に、2-プロパノールを4.40kg加え、再結晶により精製し、テトラリン-2,6-ジカルボン酸ジメチルを80%の収率で得た。尚、NMRの分析結果は下記の通りである。
1H‐NMR(400MHz CDCl3)δ7.76-7.96(2H m)、7.15(1H d)、3.89(3H s)、3.70(3H s)、2.70-3.09(5H m)、2.19-2.26(1H m)、1.80-1.95(1H m)
(ポリマーの合成)
 充填塔式精留塔、分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えたポリエステル樹脂製造装置に、上述より得られたテトラリン-2,6-ジカルボン酸ジメチル543g、エチレングリコール217g、テトラブチルチタネート0.171gを仕込み、窒素雰囲気で230℃まで昇温してエステル交換反応を行った。ジカルボン酸成分の反応転化率を85%以上とした後、テトラブチルチタネート0.171gを添加し、昇温と減圧を徐々に行い、245℃、133Pa以下で重縮合を行い、ポリエステル化合物(1)を得た。
 得られたポリエステル化合物(1)の重量平均分子量と数平均分子量とをGPC(ゲルパーミエーションクロマトグラフィー)により測定を行った結果、ポリスチレン換算の重量平均分子量は8.5×104、数平均分子量は3.0×104であった。ガラス転移温度と融点をDSC(示差走査熱量測定:Differential Scanning Calorimetry)により測定を行った結果、ガラス転移温度は67℃、融点は非晶性のため認められなかった。
[多層容器(バイアル)の製造例]
 下記の条件により、層Bを構成する材料を射出シリンダーから射出し、次いで層Aを構成する材料を別の射出シリンダーから、層Bを構成する材料と同時に射出し、次に層Aを構成する材料を必要量射出して射出金型内キャビティーを満たすことにより、B/A/Bの3層構成の射出成形体を得た後、射出成形体を所定の温度まで冷却し、ブロー金型へ移行した後にブロー成形を行うことでバイアル(ボトル部)を製造した。バイアルの総質量を24gとし、層Aの質量をバイアルの総質量の30質量%とした。層Bを構成する材料としてはシクロオレフィンポリマー(COP、日本ゼオン株式会社製、商品名:ZEONEX(登録商標)5000;ガラス転移温度69℃)を使用した。
(バイアルの形状)
 全長89mm、外径40mmφ、肉厚1.8mmとした。尚、バイアルの製造には、射出ブロー一体型成形機(UNILOY製、型式:IBS 85、4個取り)を使用した。
(バイアルの成形条件)
 層A用の射出シリンダー温度:260℃
 層B用の射出シリンダー温度:280℃
 射出金型内樹脂流路温度:280℃
 ブロー温度:150℃
 ブロー金型冷却水温度:15℃
[バイアルの評価]
 実施例及び比較例で得られたバイアルの酸素透過率について、以下の方法で測定し評価した。
・バイアルの酸素透過率(OTR)
 23℃、成形体外部の相対湿度50%、内部の相対湿度100%の雰囲気にて、測定開始から30日目の酸素透過率を測定した。測定は、酸素透過率測定装置(MOCON社製、商品名:OX-TRAN 2-21 ML)を使用した。測定値が低いほど酸素バリア性が良好であることを示す。尚測定の検出下限界は酸素透過率5×10-5mL/(0.21atm・day・package)である。
[実施例1]
 上述のポリエステル化合物(1)100質量部に対し、ステアリン酸コバルト(II)をコバルト量が0.00025質量部となるようドライブレンドし、直径37mmのスクリューを2本有する2軸押出機に30kg/hの速度で前記材料を供給し、シリンダー温度220℃の条件にて溶融混練を行い、押出機ヘッドからストランドを押し出し、冷却後、ペレタイジングし、酸素吸収性樹脂組成物を得た。層Aを構成する材料として前記酸素吸収樹脂組成物を用い、上述した方法により酸素吸収性多層バイアルを製造した。次に、得られた酸素吸収性多層バイアルに、Co60線源より放出されるガンマ線を室温・空気中で50kGy照射した。次いで、ガンマ線照射したバイアルを定温乾燥器(ヤマト科学株式会社製、型式:DS400)に入れて、空気中で55℃、96時間の加熱処理を行った。その後、室温まで冷却した後にバイアルのYIと酸素透過率とを測定した。また、ガンマ線照射・加熱処理の後のバイアルをアルミ箔積層フィルムからなるバリア袋に、空気量300ccとともにそれぞれ1本ずつ入れ、23℃/50%相対湿度(RH)で1日間保存し、密封袋内の臭気の有無を確認した。また、ガンマ線照射・加熱処理後に容器の変形の有無を目視で確認した。これらの結果を表1に示す。
[実施例2~6]
 ガンマ線照射線量、加熱温度及び加熱時間を表1に示した通りに変更したこと以外は、実施例1と同様に行って、酸素吸収性多層バイアルのYIと酸素透過率を測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[実施例7]
 実施例1と同様に作製した酸素吸収性多層バイアルに、静電加速器を用いた電子線発生装置より放出される電子線を室温・空気中で50kGy照射した。次いで、電子線照射したバイアルを定温乾燥器(ヤマト科学株式会社製、型式:DS400)に入れて、空気中で55℃、96時間の加熱処理を行った。その後、室温まで冷却した後にバイアルのYIと酸素透過率を測定した。また、電子線照射・加熱処理の後のフィルムをアルミ箔積層フィルムからなるバリア袋に、空気量300mlとともにそれぞれ1枚ずつ入れ、23℃/50%相対湿度(RH)で1日間保存し、密封袋内の臭気の有無を確認した。また、電子線照射・加熱処理後に容器の変形の有無を目視で確認した。これらの結果を表1に示す。
[実施例8~12]
 電子線照射線量、加熱温度及び加熱時間を表1に示した通りに変更したこと以外は、実施例7と同様に行って、酸素吸収性多層バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[実施例13~18]
 ガンマ線照射線量、加熱温度及び加熱時間を表1に示した通りに変更したこと以外は、実施例1と同様に行って、酸素吸収性多層バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例1]
 加熱処理を行わなかったこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例2]
 線量を25kGyとしたこと以外は比較例1と同様に行って、酸素吸収性多層バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例3]
 加熱処理を行わなかったこと以外は実施例7と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例4]
 線量を25kGyとしたこと以外は比較例3と同様に行って、酸素吸収性多層バイアルのYIと酸素透過率を測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例5]
 加熱時間を10時間としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例6]
 加熱温度を80℃としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例7]
 加熱温度を45℃としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例8]
 加熱温度を70℃としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例9]
 加熱温度を40℃としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例10]
 加熱時間を45時間としたこと以外は実施例1と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例11]
 加熱時間を10時間としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例12]
 加熱温度を80℃としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例13]
 加熱温度を45℃としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例14]
 加熱温度を70℃としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例15]
 加熱温度を40℃としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
[比較例16]
 加熱時間を45時間としたこと以外は実施例4と同様に行って、バイアルのYIと酸素透過率とを測定し、臭気及び変形の有無を判定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 表1に示されるように、比較例に比べ放射線照射後に適切な条件で加熱処理を実施した本実施形態の製造方法によって製造された多層バイアルは、臭気が低減されていると共にYIが大きく減少しており、加熱処理を実施した後も、酸素吸収性能は保持されていた。更に、容器の変形や熱劣化による着色の発生も抑制されていた。
 これより、本実施形態の製造方法によれば、酸素吸収性能を保持したまま放射線照射による臭気を低減させると同時に、加熱による容器の変形や熱劣化による着色を抑制することに非常に有効であった。
 2017年2月8日に出願された日本国特許出願2017-021416号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 本発明の製造方法によって製造された滅菌済み酸素吸収性多層体は、食品、飲料、医薬品、化粧品をはじめとする種々の対象物を保存する容器の材料等として利用できる。

Claims (13)

  1.  テトラリン環を構成単位として有する熱可塑性樹脂(a)及び遷移金属触媒を含む酸素吸収層と、熱可塑性樹脂(b)を含有する層と、を少なくとも備えた酸素吸収性多層体に、放射線を照射する滅菌工程と、
     前記滅菌工程において放射線が照射された前記酸素吸収性多層体を、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度未満の温度で50時間以上加熱する加熱工程と、
    を含む滅菌済み酸素吸収性多層体の製造方法。
  2.  前記酸素吸収性多層体は、少なくとも2層の前記熱可塑性樹脂(b)を含有する層を備え、前記酸素吸収層が2層の前記熱可塑性樹脂(b)を含有する層の間に配置された請求項1に記載の滅菌済み酸素吸収性多層体の製造方法。
  3.  前記熱可塑性樹脂(a)のガラス転移温度(Tg1)と、前記熱可塑性樹脂(b)のガラス転移温度(Tg2)と、が下記式(A)で示す関係を有する請求項1又は2に記載の滅菌済み酸素吸収性多層体の製造方法。
    式(A):Tg1≦Tg2≦[Tg1+10℃]
  4.  前記加熱工程における加熱時間が50時間以上120時間以下である、請求項1~3のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  5.  前記加熱工程における加熱温度が、前記熱可塑性樹脂(a)のガラス転移温度-20℃以上前記熱可塑性樹脂(a)のガラス転移温度-5℃以下である、請求項1~4のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  6.  前記加熱工程において、前記酸素吸収性多層体の加熱を酸素存在下で行う請求項1~5のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  7.  前記熱可塑性樹脂(b)のガラス転移温度が、60~80℃である請求項1~6のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  8.  前記酸素吸収性多層体が、酸素吸収性多層容器である請求項1~7のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  9.  前記熱可塑性樹脂(a)が、下記一般式(1)~(4)からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有するポリエステル化合物である請求項1~8のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、それぞれ独立して、水素原子又は一価の置換基を表し、前記一価の置換基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシ基、カルボキシル基、エステル基、アミド基、ニトロ基、アルコキシ基、アリールオキシ基、アシル基、アミノ基、チオール基、アルキルチオ基、アリールチオ基、複素環チオ基及びイミド基からなる群より選択される少なくとも1種であり、これらはさらに置換基を有していてもよい。mは0~3の整数を表し、nは0~7の整数を表し、テトラリン環のベンジル位に少なくとも1つの水素原子が結合している。Xは芳香族炭化水素基、飽和又は不飽和の脂環式炭化水素基、直鎖状又は分岐状の飽和又は不飽和の脂肪族炭化水素基及び複素環基からなる群より選ばれる少なくとも1つの基を含有する2価の基を表す。)
  10.  前記遷移金属触媒が、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選択される少なくとも1種の遷移金属を含む請求項1~9のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  11.  前記遷移金属触媒が、前記熱可塑性樹脂(a)100質量部に対し、遷移金属量として0.0001~10質量部含まれる請求項1~10のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
  12.  前記熱可塑性樹脂(a)が、下記一般式(5)~(7)からなる群より選択される少なくとも1つのテトラリン環を有する構成単位を含有するポリエステル化合物である請求項1~11のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  13.  前記放射線が、ガンマ線、X線又は電子線である請求項1~12のいずれか一項に記載の滅菌済み酸素吸収性多層体の製造方法。
PCT/JP2018/003981 2017-02-08 2018-02-06 滅菌済み酸素吸収性多層体の製造方法 WO2018147262A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18751880.8A EP3581377B1 (en) 2017-02-08 2018-02-06 Method for producing sterilized oxygen-absorbable multilayer body
JP2018567435A JP6935061B2 (ja) 2017-02-08 2018-02-06 滅菌済み酸素吸収性多層体の製造方法
CN201880011041.7A CN110300660B (zh) 2017-02-08 2018-02-06 已灭菌的吸氧性多层体的制造方法
KR1020197022679A KR102459001B1 (ko) 2017-02-08 2018-02-06 멸균필 산소 흡수성 다층체의 제조 방법
US16/483,972 US11534508B2 (en) 2017-02-08 2018-02-06 Method for producing sterilized oxygen-absorbing multilayer body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021416 2017-02-08
JP2017-021416 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147262A1 true WO2018147262A1 (ja) 2018-08-16

Family

ID=63108108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003981 WO2018147262A1 (ja) 2017-02-08 2018-02-06 滅菌済み酸素吸収性多層体の製造方法

Country Status (7)

Country Link
US (1) US11534508B2 (ja)
EP (1) EP3581377B1 (ja)
JP (1) JP6935061B2 (ja)
KR (1) KR102459001B1 (ja)
CN (1) CN110300660B (ja)
TW (1) TWI743309B (ja)
WO (1) WO2018147262A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300939A (ja) 1992-02-12 1993-11-16 Daikyo Seiko:Kk 医療用具品
JPH05317411A (ja) 1992-05-21 1993-12-03 Nippon Zeon Co Ltd 医療用器材
JP2000005283A (ja) * 1998-06-22 2000-01-11 Nippon Zeon Co Ltd 放射線滅菌法および滅菌した成形品
JP2007099366A (ja) * 2005-10-06 2007-04-19 Toyo Seikan Kaisha Ltd 酸素吸収性容器及びその製造方法
WO2013077436A1 (ja) 2011-11-25 2013-05-30 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性成形体、並びに、これらを用いた多層体、容器、インジェクション成形体および医療用容器
WO2013089268A1 (ja) 2011-12-16 2013-06-20 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物、並びにこれを用いた多層体、容器、インジェクション成形体および医療用容器
WO2013118882A1 (ja) 2012-02-08 2013-08-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器
JP2013540462A (ja) * 2010-08-20 2013-11-07 アボット カーディオヴァスキュラー システムズ インコーポレイテッド ポリマー製医療用装具の電子線後安定化
WO2015119230A1 (ja) 2014-02-06 2015-08-13 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
JP2015217971A (ja) * 2014-05-20 2015-12-07 三菱瓦斯化学株式会社 酸素吸収性多層ダイレクトブロー容器
JP2016174731A (ja) * 2015-03-20 2016-10-06 三菱瓦斯化学株式会社 多層採血管
JP2017021416A (ja) 2015-07-07 2017-01-26 富士通株式会社 ライセンス数管理システム、ライセンス数管理装置、ライセンス数管理プログラムおよびライセンス数管理方法
JP2018016723A (ja) * 2016-07-28 2018-02-01 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物及び多層容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007069473A1 (ja) 2005-12-12 2009-05-21 コニカミノルタオプト株式会社 偏光板保護フィルム、フィルム製造方法、偏光板及び液晶表示装置
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
US10150107B2 (en) * 2013-03-05 2018-12-11 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition
CN105008128B (zh) * 2013-03-06 2017-01-11 三菱瓦斯化学株式会社 吸氧性多层体、吸氧性容器、吸氧性密闭容器、吸氧性ptp包装体、及使用它们的保存方法
US9840360B2 (en) 2013-03-06 2017-12-12 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbent composition
WO2014136918A1 (ja) * 2013-03-06 2014-09-12 三菱瓦斯化学株式会社 酸素吸収性医療用多層容器及びバイオ医薬の保存方法
KR102147384B1 (ko) * 2013-03-06 2020-08-24 미츠비시 가스 가가쿠 가부시키가이샤 산소 흡수성 수지 조성물, 및 이것을 이용한 산소 흡수성 다층 인젝션 성형체 및 산소 흡수성 다층 용기
JP6593709B2 (ja) * 2014-03-26 2019-10-23 三菱瓦斯化学株式会社 酸素吸収性多層容器及びその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300939A (ja) 1992-02-12 1993-11-16 Daikyo Seiko:Kk 医療用具品
JPH05317411A (ja) 1992-05-21 1993-12-03 Nippon Zeon Co Ltd 医療用器材
JP2000005283A (ja) * 1998-06-22 2000-01-11 Nippon Zeon Co Ltd 放射線滅菌法および滅菌した成形品
JP2007099366A (ja) * 2005-10-06 2007-04-19 Toyo Seikan Kaisha Ltd 酸素吸収性容器及びその製造方法
JP2013540462A (ja) * 2010-08-20 2013-11-07 アボット カーディオヴァスキュラー システムズ インコーポレイテッド ポリマー製医療用装具の電子線後安定化
WO2013077436A1 (ja) 2011-11-25 2013-05-30 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性成形体、並びに、これらを用いた多層体、容器、インジェクション成形体および医療用容器
WO2013089268A1 (ja) 2011-12-16 2013-06-20 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物、並びにこれを用いた多層体、容器、インジェクション成形体および医療用容器
WO2013118882A1 (ja) 2012-02-08 2013-08-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物およびこれを用いた酸素吸収性多層体、これらを用いた成形体および医療用容器
WO2015119230A1 (ja) 2014-02-06 2015-08-13 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
JP2015217971A (ja) * 2014-05-20 2015-12-07 三菱瓦斯化学株式会社 酸素吸収性多層ダイレクトブロー容器
JP2016174731A (ja) * 2015-03-20 2016-10-06 三菱瓦斯化学株式会社 多層採血管
JP2017021416A (ja) 2015-07-07 2017-01-26 富士通株式会社 ライセンス数管理システム、ライセンス数管理装置、ライセンス数管理プログラムおよびライセンス数管理方法
JP2018016723A (ja) * 2016-07-28 2018-02-01 三菱瓦斯化学株式会社 滅菌済み酸素吸収性樹脂組成物及び多層容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581377A4

Also Published As

Publication number Publication date
CN110300660B (zh) 2021-07-09
TW201832939A (zh) 2018-09-16
JP6935061B2 (ja) 2021-09-15
US20200009278A1 (en) 2020-01-09
TWI743309B (zh) 2021-10-21
KR102459001B1 (ko) 2022-10-25
JPWO2018147262A1 (ja) 2019-12-12
EP3581377A1 (en) 2019-12-18
CN110300660A (zh) 2019-10-01
US11534508B2 (en) 2022-12-27
KR20190117509A (ko) 2019-10-16
EP3581377B1 (en) 2020-10-21
EP3581377A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6016098B2 (ja) 酸素吸収性樹脂組成物
KR102174572B1 (ko) 산소 흡수성 수지 조성물
JP6225913B2 (ja) 酸素吸収性樹脂組成物
JP6440098B2 (ja) 滅菌済み酸素吸収性樹脂組成物、滅菌済み酸素吸収性多層容器及びその製造方法
JP6593709B2 (ja) 酸素吸収性多層容器及びその製造方法
JP6935061B2 (ja) 滅菌済み酸素吸収性多層体の製造方法
JP5935648B2 (ja) 酸素吸収性多層体及び酸素吸収性多層容器
JP2018016723A (ja) 滅菌済み酸素吸収性樹脂組成物及び多層容器
JP5935659B2 (ja) 酸素吸収性多層体及び酸素吸収性多層容器
WO2023233984A1 (ja) 樹脂組成物
JP2021011305A (ja) 医療用多層容器
JP5962439B2 (ja) 酸素吸収性インジェクション成形体
JP2014087971A (ja) 酸素吸収性多層インジェクション成形体
JP2018167845A (ja) 酸素吸収性多層容器の梱包体
JP2014076820A (ja) 酸素吸収性多層インジェクション成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567435

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022679

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751880

Country of ref document: EP

Effective date: 20190909