WO2018147217A1 - 放射線撮像装置および放射線撮像方法 - Google Patents
放射線撮像装置および放射線撮像方法 Download PDFInfo
- Publication number
- WO2018147217A1 WO2018147217A1 PCT/JP2018/003771 JP2018003771W WO2018147217A1 WO 2018147217 A1 WO2018147217 A1 WO 2018147217A1 JP 2018003771 W JP2018003771 W JP 2018003771W WO 2018147217 A1 WO2018147217 A1 WO 2018147217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- period
- radiation
- pixels
- conversion element
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 108
- 230000005855 radiation Effects 0.000 claims abstract description 212
- 238000006243 chemical reaction Methods 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 5
- 230000001066 destructive effect Effects 0.000 claims 1
- 238000011410 subtraction method Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 11
- 208000009989 Posterior Leukoencephalopathy Syndrome Diseases 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 210000004872 soft tissue Anatomy 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/65—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4283—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/542—Control of apparatus or devices for radiation diagnosis involving control of exposure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/17—Circuit arrangements not adapted to a particular type of detector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/30—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/42—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/53—Control of the integration time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/771—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
Definitions
- the present invention relates to a radiation imaging apparatus and a radiation imaging method.
- the energy subtraction method is a method of obtaining a new image (for example, a bone image and a soft tissue image) by processing a plurality of images obtained by imaging a plurality of times with different energy of radiation irradiated to a subject. is there.
- the time interval for capturing a plurality of radiographic images is, for example, several seconds or more for a radiographic imaging device for still image imaging, about 100 milliseconds for a radiographic imaging device for normal moving images, and even for a radiographic imaging device for high-speed moving images. It is about 10 milliseconds. If the subject moves during this time interval, artifacts due to the movement will occur. Therefore, it has been difficult to obtain a radiographic image of a subject such as the heart that moves fast by the energy subtraction method.
- Patent Document 1 describes a system for performing dual energy imaging.
- the tube voltage of the X-ray source is changed to the second kV value after being set to the first kV value at the time of imaging.
- the first signal corresponding to the first sub-image is integrated when the tube voltage is the first kV value, and the integration is reset after the integrated signal is transferred to the sample and hold node.
- the second signal corresponding to the second sub-image is integrated when the tube voltage is the second kV value. Thereby, reading of the integrated first signal and integration of the second signal are performed in parallel.
- the present invention has been made with the above problem recognition as an opportunity, and it is an object of the present invention to provide an advantageous technique for obtaining a radiation image in a shorter time while reducing irradiation of radiation that does not contribute to imaging.
- One aspect of the present invention relates to a radiation imaging apparatus including an imaging unit including a pixel array having a plurality of pixels and a signal processing unit that processes a signal from the imaging unit, and each of the plurality of pixels includes: A conversion element that converts radiation into an electrical signal; and a reset unit that resets the conversion element, wherein the signal processing unit converts the electrical signal converted by the conversion element of each of the plurality of pixels in a first period.
- a second image corresponding to an electrical signal converted by the conversion element of each of the plurality of pixels in a second image that starts after the start of the first period and ends before the end of the first period.
- a radiation image is generated based on the image, and the conversion element is not reset by the reset unit in each of the plurality of pixels in the first period.
- FIG. The figure which shows the structure of the radiation imaging device of one Embodiment of this invention.
- FIG. The figure explaining the dispersion
- FIG. The figure explaining the reduction effect of the dispersion
- FIG. 1 shows a configuration of a radiation imaging apparatus 1 according to an embodiment of the present invention.
- the radiation imaging apparatus 1 can include an imaging unit 100 including a pixel array 110 having a plurality of pixels, and a signal processing unit 352 that processes a signal from the imaging unit 100.
- the imaging unit 100 may have a panel shape, for example.
- the signal processing unit 352 may be configured as a part of the control device 350, may be housed in the same housing as the imaging unit 100, or the imaging unit 100 and the control device 350. It may be housed in a different housing.
- the radiation imaging apparatus 1 is an apparatus for obtaining a radiation image by an energy subtraction method.
- the energy subtraction method is a method for obtaining a new radiographic image (for example, a bone image and a soft tissue image) by processing a plurality of images obtained by imaging a plurality of times with different energy of radiation irradiated to a subject.
- radiation can include, for example, alpha rays, beta rays, gamma rays, particle rays, and cosmic rays in addition to X-rays.
- the radiation imaging apparatus 1 includes a radiation source 400 that generates radiation, an exposure control apparatus 300 that controls the radiation source 400, and a control apparatus 350 that controls the exposure control apparatus 300 (radiation source 400) and the imaging unit 100. sell.
- the control device 350 can include the signal processing unit 352 that processes the signal supplied from the imaging unit 100. All or some of the functions of the control device 350 can be incorporated into the imaging unit 100. Alternatively, some of the functions of the imaging unit 100 can be incorporated into the control device 350.
- the control device 350 can be configured by a computer (processor) and a memory storing a program to be provided to the computer.
- the signal processing unit 352 can be configured by a part of the program.
- the signal processing unit 352 can be configured by a computer (processor) and a memory storing a program to be provided to the computer. All or part of the controller 350 may be configured by a digital signal processor (DSP) or a programmable logic array (PLA). The control device 350 and the signal processing unit 352 may be designed and manufactured by a logic synthesis tool based on a file describing its operation.
- DSP digital signal processor
- PLA programmable logic array
- the exposure control device 300 includes, for example, an exposure switch, and radiates radiation to the radiation source 400 in response to the exposure switch being turned on, and information indicating the timing at which the radiation is emitted to the control device 350. Can be notified. Alternatively, the exposure control device 300 causes the radiation source 400 to emit radiation in response to a command from the control device 350.
- the radiation whose energy (wavelength) changes during the continuous radiation period of radiation from the radiation source 400 can be emitted.
- radiographic images at two different energies can be obtained, and one new radiographic image can be obtained by processing these radiographic images by the energy subtraction method.
- the radiation source 400 may have a function of changing the energy (wavelength) of radiation.
- the radiation source 400 may have a function of changing the energy of radiation by changing a tube voltage (voltage applied between the cathode and the anode of the radiation source 400), for example.
- Each of the plurality of pixels constituting the pixel array 110 of the imaging unit 100 includes a conversion unit that converts radiation into an electric signal (for example, electric charge) and a reset unit that resets the conversion unit.
- Each pixel may be configured to convert radiation directly into an electrical signal, or may be configured to convert the light into an electrical signal after converting the radiation into light such as visible light. In the latter, a scintillator for converting radiation into light can be used. The scintillator can be shared by a plurality of pixels constituting the pixel array 110.
- FIG. 2 shows a configuration example of the imaging unit 100.
- the imaging unit 100 includes the pixel array 110 having the plurality of pixels 112 and the readout circuit RC for reading signals from the plurality of pixels 112 of the pixel array 110.
- the plurality of pixels 112 can be arranged to form a plurality of rows and a plurality of columns.
- the read circuit RC can include a row selection circuit 120, a timing generator (also referred to as a control unit or a state machine) 130, a buffer circuit 140, a column selection circuit 150, an amplification unit 160, and an AD converter 170.
- the row selection circuit 120 selects a row of the pixel array 110.
- the row selection circuit 120 can be configured to select a row by driving a row control signal 122.
- the buffer circuit 140 buffers signals from the pixels 112 in the row selected by the row selection circuit 120 among the plurality of rows of the pixel array 110.
- the buffer circuit 140 buffers signals for a plurality of columns output to the plurality of column signal transmission paths 114 of the pixel array 110.
- the column signal transmission path 114 of each column includes a first signal line and a second column signal line that constitute a column signal line pair.
- a noise level (in a normal mode described later) of the pixel 112 or a radiation signal (in an extended mode described later) corresponding to the radiation detected by the pixel 112 can be output to the first column signal line.
- a radiation signal corresponding to the radiation detected by the pixel 112 can be output to the second column signal line 322.
- the buffer circuit 140 can include an amplifier circuit.
- the column selection circuit 150 selects the signal pairs for one row buffered by the buffer circuit 140 in a predetermined order.
- the amplification unit 160 amplifies the signal pair selected by the column selection circuit 150.
- the amplification unit 160 may be configured as a differential amplifier that amplifies the difference between the signal pair (two signals).
- the AD converter 170 may include an AD converter 170 that AD converts the signal OUT output from the amplification unit 160 and outputs a digital signal DOUT (radiation image signal).
- FIG. 3 shows a configuration example of one pixel 112.
- the pixel 112 includes, for example, a conversion element 210, a reset switch 220 (reset unit), an amplifier circuit 230, a sensitivity change unit 240, a clamp circuit 260, sample hold circuits (hold units) 270 and 280, and an output circuit 310.
- the pixel 112 can have a normal mode and an extended mode as modes related to the imaging method.
- the extended mode is a mode for obtaining a radiation image by the energy subtraction method.
- the conversion element 210 converts radiation into an electrical signal.
- the conversion element 210 can be composed of, for example, a scintillator that can be shared by a plurality of pixels and a photoelectric conversion element.
- the conversion element 210 has a charge storage unit that stores the converted electrical signal (charge), that is, an electrical signal corresponding to radiation, and the charge storage unit is connected to an input terminal of the amplifier circuit 230.
- the amplifier circuit 230 can include MOS transistors 235 and 236 and a current source 237.
- the MOS transistor 235 is connected to the current source 237 via the MOS transistor 236.
- MOS transistor 235 and current source 237 constitute a source follower circuit.
- the MOS transistor 236 is an enable switch that is turned on when the enable signal EN is activated to bring the source follower circuit constituted by the MOS transistor 235 and the current source 237 into an operating state.
- the charge-voltage conversion unit CVC is connected to the reset potential Vres via the reset switch 220. When the reset signal PRES is activated, the reset switch 203 is turned on, and the potential of the charge-voltage converter is reset to the reset potential Vres.
- the reset switch 220 includes a transistor having a first main electrode (drain) connected to the charge storage portion of the conversion element 210, a second main electrode (source) to which a reset potential Vres is applied, and a control electrode (gate). May be included.
- the transistor causes the first main electrode and the second main electrode to conduct when the ON voltage is applied to the control electrode, and resets the charge storage portion of the conversion element 210.
- the clamp circuit 260 clamps the reset noise level output from the amplifier circuit 230 by the clamp capacitor 261 in accordance with the reset potential of the charge-voltage converter CVC.
- the clamp circuit 260 is a circuit for canceling the reset noise level from the signal (radiation signal) output from the amplification circuit 230 in accordance with the electric charge (electric signal) converted by the conversion element 210.
- the reset noise bell includes kTC noise when the charge-voltage conversion unit CVC is reset.
- the clamping operation is performed by turning off the MOS transistor 262 by deactivating the clamp signal PCL after the MOS transistor 262 is turned on by activating the clamp signal PCL.
- the output side of the clamp capacitor 261 is connected to the gate of the MOS transistor 263.
- the source of the MOS transistor 263 is connected to the current source 265 via the MOS transistor 264.
- the MOS transistor 263 and the current source 265 constitute a source follower circuit.
- the MOS transistor 264 is an enable switch that is turned on when the enable signal EN0 supplied to its gate is activated, and puts the source follower circuit constituted by the MOS transistor 263 and the current source 265 into an operating state.
- the output circuit 310 includes MOS transistors 311, 313 and 315, and row selection switches 312 and 314.
- the MOS transistors 311, 313, and 315 form a source follower circuit together with a current source (not shown) connected to the column signal lines 321 and 322, respectively.
- the radiation signal that is a signal output from the clamp circuit 260 in accordance with the electric charge generated in the conversion element 210 can be sampled and held by the sample and hold circuit 280.
- the sample and hold circuit 280 can include a switch 281 and a capacitor 282. The switch 281 is turned on when the sample hold signal TS is activated. The radiation signal output from the clamp circuit 260 is written into the capacitor 282 via the switch 281 when the sample hold signal TS is activated.
- the reset switch 220 resets the potential of the charge-voltage converter CVC, and the noise level (offset component) of the clamp circuit 260 is output from the clamp circuit 260 when the MOS transistor 262 is turned on.
- the noise level of the clamp circuit 260 can be sampled and held by the sample and hold circuit 270.
- the sample and hold circuit 270 can include a switch 271 and a capacitor 272. The switch 271 is turned on when the sample hold signal TN is activated. The noise level output from the clamp circuit 260 is written into the capacitor 272 via the switch 271 when the sample hold signal TN is activated.
- the sample hold circuit 270 can be used to hold a radiation signal that is a signal output from the clamp circuit 260 in accordance with the electric charge generated in the conversion element 210.
- signals corresponding to the signals held in the sample hold circuits 270 and 280 are applied to the first column signal line 321 and the second column signal line 322 constituting the column signal transmission path 114. Is output. Specifically, a signal N corresponding to a signal (noise level or radiation signal) held by the sample hold circuit 270 is output to the column signal line 321 via the MOS transistor 311 and the row selection switch 312. A signal S corresponding to the signal held by the sample hold circuit 280 is output to the column signal line 322 via the MOS transistor 313 and the row selection switch 314.
- the pixel 112 may include addition switches 301 and 302 for adding signals from the plurality of pixels 112.
- the addition mode signals ADDN and ADDS are activated.
- the addition mode signal ADDN By activating the addition mode signal ADDN, the capacitors 272 of the plurality of pixels 112 are connected to each other, and the signal (noise level or radiation signal) is averaged.
- the activation of the addition mode signal ADDS connects the capacitors 282 of the plurality of pixels 112, and the radiation signals are averaged.
- the pixel 112 may include a sensitivity changing unit 240.
- the sensitivity changing unit 240 can include switches 241 and 242, capacitors 243 and 244, and MOS transistors 245 and 246.
- the switch 241 When the first change signal WIDE is activated, the switch 241 is turned on, and the capacitance value of the first additional capacitor 243 is added to the capacitance value of the charge voltage conversion unit CVC. As a result, the sensitivity of the pixel 112 decreases.
- the switch 242 is also turned on, and the capacitance value of the second additional capacitor 244 is added to the capacitance value of the charge voltage conversion unit CVC. This further reduces the sensitivity of the pixel 112.
- the dynamic range can be expanded.
- the enable signal ENW may be activated.
- the MOS transistor 246 performs a source follower operation.
- the switch 241 of the sensitivity changing unit 240 is turned on, the potential of the charge storage unit of the conversion element 210 can be changed by charge redistribution. Thereby, a part of the signal can be destroyed.
- the reset signal Pres, the enable signal EN, the clamp signal PCL, the enable signal EN0, the sample hold signals TN and TS, and the row selection signal VST are control signals controlled by the row selection circuit 120, and are the row control signals in FIG. 122.
- the signal is not destroyed in the charge storage portion of the conversion element 210 or the like during sample hold. That is, in the pixel 112 configured as shown in FIG. 3, the radiation signal can be read out nondestructively.
- Such a configuration is advantageous for radiation imaging using the energy subtraction method described below.
- the extended mode can include the following three submodes (extended modes 1, 2, and 3).
- FIG. 4 shows the operation of the radiation imaging apparatus 1 in the expansion mode 1.
- the horizontal axis is time.
- “Radiation energy” is the energy of radiation emitted from the radiation source 400 and applied to the imaging unit 100.
- PRES is a reset signal RPES.
- TS is the sample hold signal TS.
- DOUT is an output of the AD converter 170.
- the synchronization of the radiation emission from the radiation source 400 and the operation of the imaging unit 100 can be controlled by the control device 350. Operation control in the imaging unit 100 is performed by the timing generator 130. While the reset signal PRES is activated, the clamp signal PCL is also activated for a predetermined period, and the noise level is clamped in the clamp circuit 260.
- the energy (wavelength) of the radiation 800 emitted from the radiation source 400 changes during the radiation emission period. This can be attributed to the rise and fall of the tube voltage of the radiation source 400 being dull. Therefore, it is considered that the radiation 800 is composed of radiation 801 in the rising period, radiation 802 in the stable period, and radiation 803 in the falling period.
- the energy E1 of the radiation 801, the energy E2 of the radiation 802, and the energy E3 of the radiation 803 may be different from each other. By utilizing this, a radiographic image can be obtained by the energy subtraction method.
- the conversion element 210 of the pixel 112 is not reset (the reset signal Pres is not activated) during the period of irradiation with the radiation 800 (first period TT). Therefore, in the period of irradiation with the radiation 800 (first period TT), the electrical signal (charge) for the incident radiation continues to be accumulated in the conversion element 210.
- the fact that the conversion element 210 of the pixel 112 is not reset in the period during which the radiation 800 is irradiated (first period TT) means that the radiation image for the energy subtraction method can be shortened in a shorter time while reducing the irradiation of radiation that does not contribute to imaging. Is advantageous to obtain.
- the reset signal PRES is activated for a predetermined period, thereby resetting the conversion element 210.
- the clamp signal PCL is also activated for a predetermined period, and the reset level (noise level) is clamped in the clamp circuit 260.
- the exposure switch of the exposure control device 300 is turned on, and this is notified from the exposure control device 300 to the control device 350.
- the control device 350 notifies the imaging unit 100 for imaging.
- a command is issued to start a series of operations (hereinafter referred to as an imaging sequence).
- the imaging unit 100 activates the reset signal PRES over a predetermined period as the first operation of the imaging sequence.
- the control device 350 issues a command to start radiation emission to the radiation source 400 via the exposure control device 300.
- the radiation source 400 starts emitting radiation.
- the sample hold signal TN is activated for a predetermined period after the predetermined period has elapsed since the reset signal PRES was activated for a predetermined period. Accordingly, the sample and hold circuit 270 samples and holds a signal (E1) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiation 801 of energy E1.
- the sample and hold signal TS is activated for a predetermined period after the predetermined period has elapsed after the sample and hold signal TN has been activated for a predetermined period.
- a signal (E1 + E2) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiation 801 of energy E1 and the radiation 802 of energy E2 is sampled and held by the sample and hold circuit 280.
- a signal corresponding to the difference between the signal (E1) sampled and held by the sample and hold circuit 270 and the signal (E1 + E2) sampled and held by the sample and hold circuit 280 is output from the readout circuit RC as the first signal 805.
- “N” indicates a signal sampled and held by the sample and hold circuit 270 and output to the first column signal line 321, and “S” is sampled and held by the sample and hold circuit 280.
- a signal output to the column signal line 322 is shown.
- the sample hold signal TS is again applied for the predetermined period. Activated.
- a signal (E1 + E2 + E3) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiations 801, 802, 803 of the energy E1, E2, E3 is sampled by the sample hold circuit 280. Hold.
- a signal corresponding to the difference between the signal (E1) sampled and held by the sample and hold circuit 270 and the signal (E1 + E2 + E3) sampled and held by the sample and hold circuit 280 is output from the readout circuit RC as the second signal 806.
- the reset signal PRES is activated for a predetermined period
- the sample hold signal TN is activated for a predetermined period.
- the reset level (0) is sampled and held by the sample and hold circuit 270.
- a signal corresponding to the difference between the signal (0) sampled and held by the sample and hold circuit 270 and the signal (E1 + E2 + E3) sampled and held by the sample and hold circuit 280 is output as a third signal 807 from the readout circuit RC.
- a plurality of frames of radiation images (that is, moving images) can be obtained by repeating the above operation a plurality of times.
- the signal processing unit 352 can obtain the first signal 805 (E2), the second signal 806 (E2 + E3), and the third signal 807 (E1 + E2 + E3) as described above. Based on the first signal 805, the second signal 806, and the third signal 807, the signal processing unit 352 performs the irradiation e1 of the radiation 801 having the energy E1, the irradiation e2 of the radiation 802 having the energy E2, and the radiation 803 having the energy E3. An irradiation amount e3 can be obtained.
- the signal processing unit 352 calculates the difference ((E2 + E3) ⁇ E2) between the first signal 805 (E2) and the second signal (E2 + E3), thereby irradiating the radiation 803 of the energy E3 with the radiation 803. Can be obtained. Further, the signal processing unit 352 calculates the dose e1 of the radiation 801 of energy E1 by calculating the difference ((E1 + E2 + E3) ⁇ (E2 + E3)) between the second signal 806 (E2 + E3) and the third signal (E1 + E2 + E3). Obtainable.
- the first signal 805 (E2) indicates the irradiation amount e2 of the radiation 802 with energy E2.
- the signal processing unit 352 obtains a radiation image by the energy subtraction method based on the irradiation amount e1 of the radiation 801 having the energy E1, the irradiation amount e2 of the radiation 802 having the energy E2, and the irradiation amount e3 of the radiation 803 having the energy E3. Can do.
- FIG. 5A shows an estimation of the tube voltage of the radiation source 400 estimated based on the energy E1, E2, E3 obtained in the radiation imaging apparatus 1 when the operation shown in FIG. 4 is performed a plurality of times (over a plurality of frames).
- the time variation of the value (“estimated tube voltage") is shown, the estimated values corresponding to the energies E1, E2, E3 are shown as E1, E2, E3.
- 4 is performed a plurality of times (estimated values of radiation dose estimated based on the energy E1, E2, and E3 obtained in the radiation imaging apparatus 1 when performed over a plurality of frames (“estimated dose”)).
- the estimated values corresponding to the energies E1, E2, E3 are shown as E1, E2, E3 From FIGS. And it can be seen that the dose of radiation may vary greatly.
- the time from the transmission of the exposure command to the radiation source 400 from the exposure control device 300 to the start of radiation emission by the radiation source 400 varies. Due to this variation, the period T1 (see FIG. 4) from when the irradiation of the radiation 800 is started until the sample hold circuit 270 completes the sample hold can vary. Further, the period (T1 + T2) (see FIG. 4) from when the irradiation of the radiation 800 is started until the sample hold circuit 280 completes the sample hold may vary. As a result, the values of the first signal 805 (E2) and the second signal 806 (E2 + E3) vary from frame to frame.
- the period T1 even if the period T1 varies, the start time of the period T2 is only shifted accordingly, and the length of the period T2 itself does not deviate. Therefore, even if the period T1 varies, the error in the irradiation amount e2 of the radiation 802 of the energy E2 detected by the radiation imaging apparatus 1 is small. Further, when the period T1 becomes longer, the period T3 becomes shorter, and when the period T1 becomes shorter, the period T3 becomes longer. Therefore, even if the period T1 varies, the error of the sum of the doses e1 and e3 of the radiations 802 of the energy E1 and E3 detected by the radiation imaging apparatus 1 is small.
- FIG. 6A shows an estimated value of the tube voltage corresponding to the energy E2 and the energy E1 + E3.
- FIG. 6B shows an estimated value of radiation dose corresponding to energy E2 and energy E1 + E3. From FIG. 6A and FIG. 6B, it can be seen that, for the energy E2 and the energy E1 + E3, the variation between the frames of the radiographic image becomes small.
- the image with the dose e2 (second image) and the image with the dose e1 + e3 (third image) are images with small variations. Therefore, it is preferable to generate a new radiation image by the energy subtraction method based on the image with the dose e2 (second image) and the image with the dose e1 + e3 (third image).
- 210 is an image corresponding to the generated electrical signal.
- a method selected from various methods can be adopted.
- a bone image and a soft tissue image can be obtained by calculating the difference between the radiation image of the first energy and the radiation image of the second energy.
- the bone image and the soft tissue image may be generated by solving the nonlinear simultaneous equations based on the radiation image of the first energy and the radiation image of the second energy.
- a contrast agent image and a soft tissue image can be obtained based on the first energy radiation image and the second energy radiation image.
- an electron density image and an effective atomic number image can be obtained based on the first energy radiation image and the second energy radiation image.
- a plurality of images having different energies are obtained by utilizing the fact that the rise and fall of the tube voltage of the radiation source 400 are dull, and a new radiation image is formed based on the plurality of images.
- a plurality of images having different energies can be obtained by intentionally adjusting the tube voltage waveform of the radiation source 400.
- radiation having a wide energy band (wavelength band) may be emitted from the radiation source 400, and the energy of the radiation may be changed by switching a plurality of filters.
- FIG. 7 shows the operation of the radiation imaging apparatus 1 in the expansion mode 2.
- the second signal 806 (E2 + E3) is output from the read circuit RC.
- the read circuit RC outputs the first signals 805 (E2) and 807 (E1 + E2 + E3), but does not output the third signal second signal 806 (E2 + E3).
- the sample and hold circuit 270 samples and holds a signal (E1) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiation 801 of energy E1.
- the sample and hold signal TS is activated for a predetermined period after the predetermined period has elapsed after the sample and hold signal TN has been activated for a predetermined period.
- a signal (E1 + E2) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiation 801 of energy E1 and the radiation 802 of energy E2 is sampled and held by the sample and hold circuit 280.
- a signal corresponding to the difference between the signal (E1) sampled and held by the sample and hold circuit 270 and the signal (E1 + E2) sampled and held by the sample and hold circuit 280 is output from the readout circuit RC as the first signal 805.
- the sample hold signal TS is again applied for the predetermined period. Activated.
- a signal (E1 + E2 + E3) corresponding to the electrical signal generated by the conversion element 210 of the pixel 112 of the pixel array 110 upon receiving the radiations 801, 802, 803 of the energy E1, E2, E3 is sampled by the sample hold circuit 280. Hold.
- the reset signal PRES is activated for a predetermined period
- the sample hold signal TN is activated for a predetermined period.
- the reset level (0) is sampled and held by the sample and hold circuit 270.
- a plurality of frames of radiation images (that is, moving images) can be obtained by repeating the above operation a plurality of times.
- FIG. 8 shows the operation of the radiation imaging apparatus 1 in the expansion mode 3.
- the second period T2 is determined based on the synchronization signal DET indicating the start of radiation irradiation to the radiation imaging apparatus 1. More specifically, in the extended mode 3, the timing generator 130 controls the timing at which the row selection circuit 120 activates the sample hold signals TN and TS in response to the synchronization signal DET, thereby the second period T2. Is determined.
- FIG. 9A shows estimated values of tube voltages corresponding to energy E2 and energy E1 + E3.
- FIG. 9B shows estimated values of radiation doses corresponding to energy E2 and energy E1 + E3. From FIG. 9A and FIG. 9B, it can be seen that, by controlling the sample hold based on the synchronization signal DET, the variation between the frames of the radiation image is reduced with respect to the energy E2 and the energy E1 + E3.
- the synchronization signal DET can be generated by various methods.
- a measuring instrument for measuring the tube current can be provided in the radiation source 400, and the synchronization signal DET indicating the start of radiation irradiation can be activated when the tube current exceeds a threshold value.
- the imaging unit 100 receives the synchronization signal DET.
- the imaging unit 100 can periodically read a signal from one or a plurality of conversion elements 210 by the read circuit RC and generate the synchronization signal DET based on the signal.
- a sensor that detects radiation irradiation may be provided in the imaging unit 100, and the synchronization signal DET may be generated based on the output of the sensor.
- the expansion mode 3 it becomes insensitive to the variation in time from the transmission of the exposure command to the radiation source 400 from the exposure control device 300 to the start of radiation emission by the radiation source 400, and a radiation image can be obtained more accurately. Can do.
- the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program
- This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measurement Of Radiation (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
Claims (15)
- 複数の画素を有する画素アレイを含む撮像部と、前記撮像部からの信号を処理する信号処理部とを備える放射線撮像装置であって、
前記複数の画素の各々は、放射線を電気信号に変換する変換素子と、前記変換素子をリセットするリセット部と、を含み、
前記信号処理部は、第1期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じた第1画像と、前記第1期間の開始後に開始し前記第1期間の終了前に終了する第2期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じた第2画像とに基づいて放射線画像を生成し、
前記複数の画素の各々において、前記第1期間においては、前記変換素子が前記リセット部によってリセットされない、
ことを特徴とする放射線撮像装置。 - 前記信号処理部は、前記第1画像と前記第2画像との差分を演算することによって第3画像を生成し、前記第2画像および前記第3画像に基づいて放射線画像を生成する、
ことを特徴とする請求項1に記載の放射線撮像装置。 - 前記信号処理部は、前記第2画像と前記第3画像との差分に基づいて放射線画像を生成する、
ことを特徴とする請求項2に記載の放射線撮像装置。 - 前記複数の画素の各々は、前記変換素子が変換した電気信号に応じて信号が非破壊で読み出されることを特徴とする請求項2又は3に記載の放射線撮像装置。
- 前記複数の画素の各々は、前記変換素子が変換した電気信号をサンプルホールドするサンプルホールド回路を含み、前記サンプルホールド回路がサンプルホールドした電気信号に応じて信号が非破壊で読み出されることを特徴とする請求項4に記載の放射線撮像装置。
- 前記撮像部は、前記第2期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記複数の画素から非破壊で読み出された第1信号と、前記第2期間の開始から前記第1期間の終了までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記複数の画素から非破壊で読み出された第2信号と、前記第1期間の全体において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記複数の画素から非破壊で読み出された第3信号とを出力し、
前記信号処理部は、前記第1信号、前記第2信号および前記第3信号に基づいて前記第2画像および前記第3画像を得る、
ことを特徴とする請求項4又は5に記載の放射線撮像装置。 - 前記撮像部は、前記画素アレイから信号を読み出す読出回路を含み、
前記読出回路は、
前記第1期間の開始から前記第2期間の開始までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号と、前記第1期間の開始から前記第2期間の終了までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号とに基づいて前記第1信号を生成し、
前記第1期間の開始から前記第2期間の開始までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号と、前記第1期間の全体において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号とに基づいて前記第2信号を生成し、
前記第1期間の全体において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号に基づいて前記第3信号を生成する、
ことを特徴とする請求項6に記載の放射線撮像装置。 - 前記撮像部は、前記第2期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記複数の画素から非破壊で読み出された第1信号と、前記第1期間の全体において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記複数の画素から非破壊で読み出された第3信号とを出力し、
前記信号処理部は、前記第1信号および前記第3信号に基づいて前記第2画像および前記第3画像を得る、
ことを特徴とする請求項4又は5に記載の放射線撮像装置。 - 前記撮像部は、前記画素アレイから信号を読み出す読出回路を含み、
前記読出回路は、
前記第1期間の開始から前記第2期間の開始までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号と、前記第1期間の開始から前記第2期間の終了までの期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号とに基づいて前記第1信号を生成し、
前記第1期間の全体において前記複数の画素の各々の前記変換素子が変換した電気信号に応じて前記画素アレイから出力される信号に基づいて前記第3信号を生成し、
ことを特徴とする請求項8に記載の放射線撮像装置。 - 前記放射線撮像装置に対する放射線の照射の開始を示す同期信号に基づいて前記第2期間が決定される、
ことを特徴とする請求項1乃至9のいずれか1項に記載の放射線撮像装置。 - 前記サンプルホールド回路が前記放射線撮像装置に対する放射線の照射の開始を示す同期信号に基づいて制御される、
ことを特徴とする請求項5に記載の放射線撮像装置。 - 前記撮像部は、放射線が照射されたことを検出して前記同期信号を生成する、
ことを特徴とする請求項10又は11に記載の放射線撮像装置。 - 前記撮像部は、前記同期信号を受信する、
ことを特徴とする請求項10又は11に記載の放射線撮像装置。 - 放射線源を更に備える、
ことを特徴とする請求項1乃至13のいずれか1項に記載の放射線撮像装置。 - 複数の画素を有する放射線撮像装置を使って放射線画像を得る放射線撮像方法であって、
前記複数の画素の各々は、放射線を電気信号に変換する変換素子と、前記変換素子をリセットするリセット部と、を含み、
前記放射線撮像方法は、第1期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じた第1画像と、前記第1期間の開始後に開始し前記第1期間の終了前に終了する第2期間において前記複数の画素の各々の前記変換素子が変換した電気信号に応じた第2画像とに基づいて放射線画像を生成し、
前記複数の画素の各々において、前記第1期間においては、前記変換素子が前記リセット部によってリセットされない、
ことを特徴とする放射線撮像方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18750869.2A EP3582489A4 (en) | 2017-02-10 | 2018-02-05 | RADIOLOGICAL IMAGING DEVICE AND METHOD FOR RADIOLOGICAL IMAGING |
BR112019015769-7A BR112019015769A2 (pt) | 2017-02-10 | 2018-02-05 | Aparelho de imageamento por radiação e método de imageamento por radiação |
CN201880010403.0A CN110268706B (zh) | 2017-02-10 | 2018-02-05 | 放射线成像装置和放射线成像方法 |
KR1020197025495A KR102314357B1 (ko) | 2017-02-10 | 2018-02-05 | 방사선 촬상 장치 및 방사선 촬상 방법 |
RU2019128201A RU2019128201A (ru) | 2017-02-10 | 2018-02-05 | Устройство радиационной визуализации и способ радиационной визуализации |
US16/519,456 US11303831B2 (en) | 2017-02-10 | 2019-07-23 | Radiation imaging apparatus and radiation imaging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-023474 | 2017-02-10 | ||
JP2017023474A JP6974948B2 (ja) | 2017-02-10 | 2017-02-10 | 放射線撮像装置および放射線撮像方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/519,456 Continuation US11303831B2 (en) | 2017-02-10 | 2019-07-23 | Radiation imaging apparatus and radiation imaging method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147217A1 true WO2018147217A1 (ja) | 2018-08-16 |
Family
ID=63107423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003771 WO2018147217A1 (ja) | 2017-02-10 | 2018-02-05 | 放射線撮像装置および放射線撮像方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11303831B2 (ja) |
EP (1) | EP3582489A4 (ja) |
JP (1) | JP6974948B2 (ja) |
KR (1) | KR102314357B1 (ja) |
CN (1) | CN110268706B (ja) |
BR (1) | BR112019015769A2 (ja) |
RU (1) | RU2019128201A (ja) |
WO (1) | WO2018147217A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190222782A1 (en) * | 2018-01-17 | 2019-07-18 | Canon Kabushiki Kaisha | Radiation imaging apparatus, control method for radiation imaging apparatus, and non-transitory computer-readable storage medium |
EP3659507A4 (en) * | 2017-07-28 | 2020-12-16 | C/o Canon Kabushiki Kaisha | RADIATION IMAGE CAPTURE DEVICE |
EP3890310A4 (en) * | 2018-11-29 | 2022-07-06 | Canon Kabushiki Kaisha | RADIOLOGICAL IMAGING DEVICE AND CONTROL METHOD OF RADIOLOGICAL IMAGING DEVICE |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019012846A1 (ja) | 2017-07-10 | 2019-01-17 | キヤノン株式会社 | 放射線撮像装置および放射線撮像システム |
JP6912965B2 (ja) | 2017-08-04 | 2021-08-04 | キヤノン株式会社 | 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法 |
JP7038506B2 (ja) | 2017-08-25 | 2022-03-18 | キヤノン株式会社 | 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の作動方法 |
JP6882135B2 (ja) | 2017-10-06 | 2021-06-02 | キヤノン株式会社 | 画像処理装置、画像処理方法及びプログラム |
JP7245001B2 (ja) | 2018-05-29 | 2023-03-23 | キヤノン株式会社 | 放射線撮像装置および撮像システム |
JP7093233B2 (ja) | 2018-06-07 | 2022-06-29 | キヤノン株式会社 | 放射線撮影装置、放射線撮影方法およびプログラム |
WO2020003744A1 (ja) | 2018-06-27 | 2020-01-02 | キヤノン株式会社 | 放射線撮影装置、放射線撮影方法およびプログラム |
WO2020110762A1 (ja) * | 2018-11-29 | 2020-06-04 | キヤノン株式会社 | 放射線撮像装置および放射線撮像の制御方法 |
JP7319809B2 (ja) * | 2019-03-29 | 2023-08-02 | キヤノン株式会社 | 放射線撮像装置、その制御方法及び放射線撮像システム |
JP7246281B2 (ja) * | 2019-08-02 | 2023-03-27 | キヤノン株式会社 | 画像処理装置およびその制御方法、放射線撮影装置、プログラム |
JP7378245B2 (ja) | 2019-08-29 | 2023-11-13 | キヤノン株式会社 | 放射線検出装置、その制御方法及び放射線撮像システム |
FR3103939B1 (fr) * | 2019-11-28 | 2022-07-22 | Office National Detudes Rech Aerospatiales | Procede de saisie d’images utilisant des elements sensibles a effet de memoire |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002051265A (ja) * | 2000-08-01 | 2002-02-15 | Canon Inc | 撮像装置 |
JP2009504221A (ja) | 2005-08-09 | 2009-02-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 動的デュアルエネルギーx線撮影のシステム及び方法 |
JP2013219751A (ja) * | 2012-03-16 | 2013-10-24 | Canon Inc | 放射線撮像装置及び撮像システム |
JP2014090960A (ja) * | 2012-11-06 | 2014-05-19 | Toshiba Corp | X線診断装置及び制御プログラム |
JP2017023474A (ja) | 2015-07-23 | 2017-02-02 | 株式会社インテグラル | 皮膚毛穴解析装置,皮膚毛穴解析方法および該装置に用いるプログラム |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852241B2 (en) | 2001-08-14 | 2005-02-08 | Lexmark International, Inc. | Method for making ink jet printheads |
JP5634194B2 (ja) * | 2010-09-28 | 2014-12-03 | キヤノン株式会社 | 放射線撮像装置及びその制御方法 |
JP5576754B2 (ja) * | 2010-09-29 | 2014-08-20 | キヤノン株式会社 | 放射線撮像装置 |
JP5559000B2 (ja) * | 2010-10-12 | 2014-07-23 | キヤノン株式会社 | 放射線撮像装置、放射線撮像装置の制御方法、およびプログラム |
JP2012125409A (ja) * | 2010-12-15 | 2012-07-05 | Fujifilm Corp | 放射線撮影装置 |
JP5814621B2 (ja) | 2011-05-24 | 2015-11-17 | キヤノン株式会社 | 撮像装置及びその制御方法、並びに、撮像システム |
JP5986526B2 (ja) | 2012-04-06 | 2016-09-06 | キヤノン株式会社 | 放射線撮像装置、その制御方法及び放射線撮像システム |
JP6162937B2 (ja) | 2012-08-31 | 2017-07-12 | キヤノン株式会社 | 放射線撮像装置、その制御方法および制御プログラム |
KR102001217B1 (ko) * | 2012-11-01 | 2019-07-17 | 삼성전자주식회사 | 엑스선 검출기를 교정하는 방법 |
JP6041669B2 (ja) | 2012-12-28 | 2016-12-14 | キヤノン株式会社 | 撮像装置及び撮像システム |
JP5986524B2 (ja) | 2013-02-28 | 2016-09-06 | キヤノン株式会社 | 放射線撮像装置および放射線撮像システム |
JP5934128B2 (ja) | 2013-02-28 | 2016-06-15 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
JP2014168205A (ja) | 2013-02-28 | 2014-09-11 | Canon Inc | 放射線撮像装置、放射線検査装置、信号の補正方法およびプログラム |
JP6016673B2 (ja) | 2013-02-28 | 2016-10-26 | キヤノン株式会社 | 放射線撮像装置および放射線撮像システム |
JP6161346B2 (ja) | 2013-03-19 | 2017-07-12 | キヤノン株式会社 | 撮像システム |
JP6238577B2 (ja) | 2013-06-05 | 2017-11-29 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
US20140361189A1 (en) | 2013-06-05 | 2014-12-11 | Canon Kabushiki Kaisha | Radiation imaging system |
US10039516B2 (en) * | 2013-11-08 | 2018-08-07 | Carestream Health, Inc. | Digital radiography detector image readout system and process |
JP6376783B2 (ja) | 2014-03-12 | 2018-08-22 | キヤノン株式会社 | 乳房断層撮影装置および制御方法 |
JP6355387B2 (ja) | 2014-03-31 | 2018-07-11 | キヤノン株式会社 | 撮像装置及び撮像システム |
US9737271B2 (en) | 2014-04-09 | 2017-08-22 | Canon Kabushiki Kaisha | Radiation imaging apparatus and control method of the same |
JP6362421B2 (ja) | 2014-05-26 | 2018-07-25 | キヤノン株式会社 | 放射線撮像装置、その制御方法およびプログラム |
JP6494204B2 (ja) | 2014-07-17 | 2019-04-03 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
JP6385179B2 (ja) | 2014-07-18 | 2018-09-05 | キヤノン株式会社 | 放射線撮像装置及びその駆動方法 |
JP6391388B2 (ja) | 2014-09-24 | 2018-09-19 | キヤノン株式会社 | 放射線撮像装置 |
JP6532214B2 (ja) * | 2014-11-08 | 2019-06-19 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
JP6525579B2 (ja) | 2014-12-22 | 2019-06-05 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
JP2016178533A (ja) | 2015-03-20 | 2016-10-06 | キヤノン株式会社 | 放射線撮像装置及び放射線撮像システム |
US9658347B2 (en) | 2015-06-15 | 2017-05-23 | General Electric Company | Digital X-ray detector having multi-tap pixels |
JP6573377B2 (ja) | 2015-07-08 | 2019-09-11 | キヤノン株式会社 | 放射線撮像装置、その制御方法及びプログラム |
JP6573378B2 (ja) | 2015-07-10 | 2019-09-11 | キヤノン株式会社 | 放射線撮像装置、その制御方法及びプログラム |
JP6674222B2 (ja) | 2015-10-09 | 2020-04-01 | キヤノン株式会社 | 放射線撮像装置および放射線撮像装置の制御方法 |
JP6643871B2 (ja) | 2015-11-13 | 2020-02-12 | キヤノン株式会社 | 放射線撮像装置およびフォトンカウンティングの方法 |
JP6643909B2 (ja) | 2016-01-27 | 2020-02-12 | キヤノン株式会社 | 放射線撮像装置、その制御方法及びプログラム |
JP6700828B2 (ja) | 2016-02-10 | 2020-05-27 | キヤノン株式会社 | 放射線撮像装置、その駆動方法及び撮像システム |
JP6871717B2 (ja) | 2016-11-10 | 2021-05-12 | キヤノン株式会社 | 放射線撮像装置、放射線撮像システムおよび放射線撮像方法 |
JP6934769B2 (ja) * | 2017-07-28 | 2021-09-15 | キヤノン株式会社 | 放射線撮像装置および放射線撮像方法 |
JP7067912B2 (ja) | 2017-12-13 | 2022-05-16 | キヤノン株式会社 | 放射線撮像装置および放射線撮像システム |
-
2017
- 2017-02-10 JP JP2017023474A patent/JP6974948B2/ja active Active
-
2018
- 2018-02-05 CN CN201880010403.0A patent/CN110268706B/zh active Active
- 2018-02-05 WO PCT/JP2018/003771 patent/WO2018147217A1/ja unknown
- 2018-02-05 EP EP18750869.2A patent/EP3582489A4/en active Pending
- 2018-02-05 KR KR1020197025495A patent/KR102314357B1/ko active IP Right Grant
- 2018-02-05 BR BR112019015769-7A patent/BR112019015769A2/pt unknown
- 2018-02-05 RU RU2019128201A patent/RU2019128201A/ru not_active Application Discontinuation
-
2019
- 2019-07-23 US US16/519,456 patent/US11303831B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002051265A (ja) * | 2000-08-01 | 2002-02-15 | Canon Inc | 撮像装置 |
JP2009504221A (ja) | 2005-08-09 | 2009-02-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 動的デュアルエネルギーx線撮影のシステム及び方法 |
JP2013219751A (ja) * | 2012-03-16 | 2013-10-24 | Canon Inc | 放射線撮像装置及び撮像システム |
JP2014090960A (ja) * | 2012-11-06 | 2014-05-19 | Toshiba Corp | X線診断装置及び制御プログラム |
JP2017023474A (ja) | 2015-07-23 | 2017-02-02 | 株式会社インテグラル | 皮膚毛穴解析装置,皮膚毛穴解析方法および該装置に用いるプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3582489A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3659507A4 (en) * | 2017-07-28 | 2020-12-16 | C/o Canon Kabushiki Kaisha | RADIATION IMAGE CAPTURE DEVICE |
US11047994B2 (en) | 2017-07-28 | 2021-06-29 | Canon Kabushiki Kaisha | Radiation imaging apparatus |
US20190222782A1 (en) * | 2018-01-17 | 2019-07-18 | Canon Kabushiki Kaisha | Radiation imaging apparatus, control method for radiation imaging apparatus, and non-transitory computer-readable storage medium |
US10742911B2 (en) * | 2018-01-17 | 2020-08-11 | Canon Kabushiki Kaisha | Radiation imaging apparatus, control method for radiation imaging apparatus, and non-transitory computer-readable storage medium |
EP3890310A4 (en) * | 2018-11-29 | 2022-07-06 | Canon Kabushiki Kaisha | RADIOLOGICAL IMAGING DEVICE AND CONTROL METHOD OF RADIOLOGICAL IMAGING DEVICE |
US11825232B2 (en) | 2018-11-29 | 2023-11-21 | Canon Kabushiki Kaisha | Radiation imaging apparatus and radiation imaging apparatus control method |
Also Published As
Publication number | Publication date |
---|---|
CN110268706A (zh) | 2019-09-20 |
EP3582489A1 (en) | 2019-12-18 |
CN110268706B (zh) | 2021-11-02 |
JP6974948B2 (ja) | 2021-12-01 |
KR20190111101A (ko) | 2019-10-01 |
US20190349541A1 (en) | 2019-11-14 |
RU2019128201A (ru) | 2021-03-10 |
JP2018129766A (ja) | 2018-08-16 |
BR112019015769A2 (pt) | 2020-03-17 |
KR102314357B1 (ko) | 2021-10-19 |
EP3582489A4 (en) | 2020-12-16 |
US11303831B2 (en) | 2022-04-12 |
RU2019128201A3 (ja) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018147217A1 (ja) | 放射線撮像装置および放射線撮像方法 | |
JP7108738B2 (ja) | 放射線撮像装置、放射線撮像システムおよび放射線撮像方法 | |
JP6934769B2 (ja) | 放射線撮像装置および放射線撮像方法 | |
JP6525579B2 (ja) | 放射線撮像装置及び放射線撮像システム | |
US11360034B2 (en) | Radiation imaging apparatus and radiation imaging system | |
JP7242266B2 (ja) | 放射線撮像装置および放射線撮像装置の制御方法 | |
JP7397593B2 (ja) | 放射線撮像装置、画像取得方法およびプログラム | |
JP7300045B2 (ja) | 放射線撮像装置、放射線撮像システムおよび放射線撮像方法 | |
WO2020110762A1 (ja) | 放射線撮像装置および放射線撮像の制御方法 | |
JP2020092361A (ja) | 放射線撮像装置および放射線撮像装置の制御方法 | |
JP2023077985A (ja) | 放射線撮像装置および放射線撮像方法 | |
JP2020081664A (ja) | 放射線撮像装置および放射線撮像の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18750869 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019015769 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197025495 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018750869 Country of ref document: EP Effective date: 20190910 |
|
ENP | Entry into the national phase |
Ref document number: 112019015769 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190730 |