WO2018139405A1 - スラリー組成物、セラミックグリーンシートおよび塗工シート - Google Patents

スラリー組成物、セラミックグリーンシートおよび塗工シート Download PDF

Info

Publication number
WO2018139405A1
WO2018139405A1 PCT/JP2018/001816 JP2018001816W WO2018139405A1 WO 2018139405 A1 WO2018139405 A1 WO 2018139405A1 JP 2018001816 W JP2018001816 W JP 2018001816W WO 2018139405 A1 WO2018139405 A1 WO 2018139405A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry composition
ceramic green
green sheet
mass
ceramic
Prior art date
Application number
PCT/JP2018/001816
Other languages
English (en)
French (fr)
Inventor
夕陽 島住
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880006024.4A priority Critical patent/CN110168021B/zh
Priority to JP2018564556A priority patent/JP6666479B2/ja
Priority to KR1020197021441A priority patent/KR102473252B1/ko
Publication of WO2018139405A1 publication Critical patent/WO2018139405A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a slurry composition comprising a specific binder resin, a specific organic compound, an organic solvent, and an inorganic compound.
  • the present invention also relates to a ceramic green sheet and a coated sheet obtained from such a slurry composition.
  • polyvinyl acetal can give a tough film and has a unique structure having both a hydrophilic hydroxy group and a hydrophobic acetal group
  • various resins such as polyvinyl formal and polyvinyl butyral have been proposed.
  • polyvinyl butyral is widely used as a binder for ceramic molding, various binders and films.
  • the binder for ceramic molding is suitably used, for example, in the process of manufacturing a multilayer ceramic capacitor or an IC chip circuit board.
  • a circuit board of a multilayer ceramic capacitor or an IC chip is manufactured by a method in which an electrode layer is formed on a ceramic green sheet, stacked, temporarily pressed, and finally pressed, and then the electrode and the ceramic are fired simultaneously.
  • the performance required for binders for ceramic molding is that a ceramic slurry with excellent dispersibility and storage stability is obtained, the amount of carbon residue after firing is small, and the adhesiveness during thermocompression bonding is excellent. Etc.
  • the dispersibility and storage stability of the ceramic slurry are insufficient, the density, smoothness, etc. of the resulting ceramic green sheet may be insufficient, and the adhesion between the ceramic green sheets may deteriorate.
  • the amount of carbon residue in the ceramic molded product after firing is large, the electrical characteristics of the ceramic molded product may be insufficient.
  • Polyvinyl acetal is also used as a binder for conductive paste used in the production of multilayer ceramic capacitors and the like.
  • the electrode layer is directly formed by printing the electrode layer on the ceramic green sheet, the electrode layer is formed on the carrier film by printing, etc., and the electrode is applied from the carrier film to the ceramic green sheet. There is a method of transferring the layer by hot pressing.
  • Multilayer ceramic capacitors are chip-type ceramic capacitors in which dielectrics such as titanium oxide and barium titanate and internal electrodes are stacked in multiple layers.
  • Such a multilayer ceramic capacitor is obtained by, for example, stacking a plurality of conductive green pastes applied to the surface of a ceramic green sheet by screen printing, etc., and heat-pressing to obtain a laminate, and then heating the laminate Thus, the binder can be decomposed and removed (degreasing) and fired.
  • multilayer ceramic capacitors are required to have large capacities and miniaturization.
  • attempts have been made to reduce the thickness of ceramic green sheets and further increase the number of multilayer ceramic capacitor layers.
  • a ceramic powder having a fine particle diameter of 0.5 ⁇ m or less is used as a ceramic powder used for a ceramic green sheet.
  • the packing density and surface area of the ceramic powder increase, which increases the amount of binder resin to be used.
  • the viscosity of the sheet slurry composition also increases. As a result, coating may become difficult, or a dispersion failure of the ceramic powder itself may occur.
  • the storage stability when it is used as a slurry may not be sufficient.
  • a multilayer ceramic capacitor is obtained by forming an electrode layer on a ceramic green sheet and laminating a ceramic green sheet with an electrode layer formed thereon or a ceramic green sheet with no electrode layer formed thereon to form a composite laminate. .
  • the electrode layer is formed on the carrier film by printing or the like by directly forming the electrode layer on the ceramic green sheet, and the electrode is applied from the carrier film to the ceramic green sheet.
  • the layer may be transferred by hot pressing.
  • the pressure bonding is strengthened, the electrode layer is deformed, and the high accuracy required for the multilayer ceramic component cannot be realized.
  • the pressure bonding is weakened, in the conventional manufacturing method, the adhesive force between the ceramic green sheet and the electrode layer is weak, and the electrode layer and the ceramic green sheet do not adhere to each other. If such adhesion failure occurs, there is a problem that not only the electrode layer cannot be formed, but also a defect may occur after the ceramic laminate is fired, and the reliability of the component is lowered.
  • Patent Document 1 discloses a slurry workability by using a ceramic slurry containing a phthalic acid plasticizer and a glycol plasticizer and / or an amino alcohol plasticizer. It is described that a ceramic green sheet having excellent adhesion during thermocompression bonding and excellent mechanical strength can be obtained.
  • Patent Document 2 describes a ceramic paste having a high plasticizing effect and containing appropriate volatility.
  • Patent Document 3 includes a step of preparing a plurality of ceramic green sheets containing ceramic powder and an organic binder as essential components, and an electrode layer is formed on the surface of at least some of the plurality of ceramic green sheets. And a step of laminating and firing the plurality of ceramic green sheets, wherein the surface of the laminate formed by laminating the plurality of ceramic green sheets is subjected to surface treatment with ozone. After that, a manufacturing method is described in which a ceramic green sheet is laminated on the surface-treated surface.
  • Patent Document 4 a polymerizable monomer mainly composed of (meth) acrylic acid esters is added to an aqueous medium in which a polyvinyl acetal resin is dispersed, and is allowed to permeate the polyvinyl acetal resin, followed by polymerization.
  • the binder resin for electrically conductive paste containing the polyvinyl acetal and (meth) acrylic acid ester composite resin obtained by this is described.
  • Patent Documents 1 and 2 describe ceramic green sheets and ceramic pastes composed of a combination of a specific plasticizer, or a combination of a specific plasticizer and a thermoplastic resin. Although there is a description of improvement in adhesiveness or mechanical strength of the ceramic green sheet, there are still unsatisfactory points regarding the storage stability of the slurry and paste and the quality of the capacitor.
  • Patent Document 3 describes a manufacturing method in which surface treatment with ozone is performed on the surface of a ceramic green sheet to improve adhesion, but the storage stability of the conductive paste should be improved and the amount of carbon residue is reduced. There is no mention of improving the quality of the molded product. If the storage stability of the conductive paste is insufficient, the printing suitability when printing the conductive paste on the surface of the ceramic green sheet is poor, the smoothness of the printed surface is poor, and the amount of carbon residue is large, The electrical characteristics of the fired body may be insufficient.
  • the conductive paste using the binder resin for conductive paste described in Patent Document 4 has insufficient storage stability.
  • cracks may occur on the surface of the sheet. These cracks not only cause problems in appearance but also serve as multilayer ceramic capacitors. It can cause performance problems.
  • an object of the present invention is to provide a slurry composition exhibiting high dispersibility and storage stability, and a ceramic green sheet and a coated sheet produced using the slurry composition.
  • Another object of the present invention is to provide a slurry composition excellent in adhesiveness at the time of pressure bonding of the ceramic green sheet when a ceramic green sheet or a coated sheet is produced using the slurry composition, By providing a ceramic green sheet or a coated sheet that hardly causes delamination when a sheet is laminated to produce a fired body, and by providing a slurry composition that can suppress the occurrence of cracks after drying the slurry composition is there.
  • Binder resin (A) having a hydroxyl group in the molecule the following general formula (1): [Where: R 1 and R 4 each independently represents an organic group having at least one ether bond, R 2 represents an alkylene group which may have a branch having 1 to 20 carbon atoms, R 3 represents an alkylene group which may have a branch having 1 to 4 carbon atoms, m represents an integer of 0 to 5]
  • a slurry composition comprising an organic compound (B), an organic solvent (C) and an inorganic compound (D) represented by: The slurry composition whose difference
  • the binder resin (A) contains polyvinyl acetal, The polyvinyl acetal has an acetalization degree of 50 to 85 mol%, a content of vinyl ester monomer units of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000.
  • the slurry composition according to the above [5] containing 2 to 200 parts by mass of the organic solvent (C) with respect to 100 parts by mass of the ceramic powder.
  • a ceramic green sheet comprising at least one layer of a dried film of the slurry composition according to [5] or [6].
  • the slurry composition according to [8] above containing 1 to 50 parts by mass of the binder resin (A) with respect to 100 parts by mass of the conductive powder.
  • a slurry composition exhibiting high dispersibility and storage stability, and a ceramic green sheet and a coated sheet produced using the slurry composition.
  • a slurry composition having excellent adhesiveness when the ceramic green sheet is pressed can be provided. Furthermore, when the fired body is produced by laminating the sheets, it is possible to provide a ceramic green sheet or a coated sheet that hardly causes delamination.
  • the occurrence of cracks can be suppressed after the slurry composition is dried.
  • the slurry composition which is one embodiment of the present invention includes a binder resin (A) having a hydroxyl group in the molecule, the following general formula (1): [Where: R 1 and R 4 each independently represents an organic group having at least one ether bond, R 2 represents an alkylene group which may have a branch having 1 to 20 carbon atoms, R 3 represents an alkylene group which may have a branch having 1 to 4 carbon atoms, m represents an integer of 0 to 5]
  • a slurry composition comprising an organic compound (B), an organic solvent (C) and an inorganic compound (D) represented by the solubility parameter (SP) of the binder resin (A) and the organic compound (B) Value) difference
  • is 2.1 (J / cm 3 ) 1/2 or less.
  • binder resin (A) Binder resin having a hydroxyl group in the molecule
  • binder resin (A) examples include cellulose resins such as methyl cellulose and ethyl hydroxyethyl cellulose; polyvinyl acetal, polyvinyl alcohol, hydroxyl group (Meth) acrylic resin, polyacrylic acid, polyalkylene oxide, ethyl cellulose, and mixtures thereof having Among them, the binder resin (A) is a (meth) acrylic resin having a polyvinyl acetal, ethyl cellulose, and a hydroxyl group in terms of dispersibility of the inorganic compound in the slurry composition and flexibility and adhesiveness of the ceramic green sheet or the coating sheet.
  • the solubility parameter (SP value) of the binder resin (A) is preferably 9.0 (J / cm 3 ) 1/2 or more, more preferably 9.5 (J / cm 3 ) 1/2 or more, more preferably 10.0 (J / cm 3 ) 1/2 or more, preferably 12.0 (J / cm 3 ) 1/2 or less, more preferably 11.5 (J / cm 3 ) 1/2 or less, It is preferably 11.0 (J / cm 3 ) 1/2 or less. If the SP value of the binder resin (A) is within the above range, the range of solvents that can be used is expanded, and the problem of undissolved matter due to poor dissolution may be reduced. In addition, SP value of binder resin (A) can be adjusted with the kind of resin, for example.
  • the means for controlling the SP value of the polyvinyl acetal is, for example, a degree of acetalization described later, vinyl ester monomer unit / vinyl alcohol monomer unit / acetalized. Adjusting the proportion of the monomer units.
  • the SP value can be controlled by adjusting, for example, the amount of the hydroxy group in the side chain.
  • SP value of binder resin (A) can be measured by the method mentioned later.
  • the content of polyvinyl acetal in the binder resin (A) is preferably 5% by mass or more, more preferably 30% by mass or more, and 50% by mass or more. More preferably, it is particularly preferably 70% by mass or more, and most preferably 100% by mass.
  • content of polyvinyl acetal in binder resin (A) is 100 mass% or less normally.
  • the degree of acetalization of the polyvinyl acetal is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, and even more preferably 65 mol%, from the viewpoint of the storage stability of the slurry composition. Or more, preferably 85 mol% or less, more preferably 82 mol% or less, still more preferably 78 mol% or less, and even more preferably 75 mol% or less.
  • the polyvinyl acetal comprises a vinyl ester monomer unit, a vinyl alcohol monomer unit, and an acetalized monomer unit.
  • the content of the vinyl ester monomer unit of the polyvinyl acetal is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, still more preferably 0.5 mol% or more, from the viewpoint of production. Even more preferably, it is 0.7 mol% or more, preferably 20 mol% or less, more preferably 18 mol% or less, still more preferably 15 mol% or less, and even more preferably 13 mol% or less.
  • the content of the vinyl alcohol monomer unit of the polyvinyl acetal is preferably 15 mol% or more, more preferably 25 mol% or more, preferably 50 mol% or less, more preferably 40 mol from the viewpoint of production. % Or less, more preferably 35 mol% or less.
  • the vinyl alcohol monomer units in the raw material PVA those not acetalized remain as vinyl alcohol monomer units in the obtained polyvinyl acetal.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less. More preferably, it is at most mol%.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is usually 0 mol% or more.
  • the polyvinyl acetal has a viscosity average degree of polymerization of preferably 200 or more, more preferably 300 or more, still more preferably 500 or more, and particularly preferably 800 or more. On the other hand, it is preferably 5000 or less, more preferably 4500 or less, further preferably 4000 or less, and particularly preferably 3500 or less.
  • the viscosity average polymerization degree of the polyvinyl acetal contained in the binder resin (A) is a viscosity of a raw material polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) measured in accordance with JIS K 6726: 1994. Expressed by average degree of polymerization.
  • PVA raw material polyvinyl alcohol
  • the binder resin (A) contains polyvinyl alcohol
  • the degree of acetalization of this polyvinyl acetal, the content of vinyl ester monomer units, and the viscosity average degree of polymerization are simultaneously within the above ranges. That is, when the binder resin (A) contains polyvinyl alcohol, the polyvinyl acetal has, for example, a degree of acetalization of 50 to 85 mol% and a content of vinyl ester monomer units of 0.1 to 20 mol%.
  • the viscosity average degree of polymerization is preferably 200 to 5,000. In this case, it is possible to obtain a slurry composition that exhibits high dispersibility and storage stability and can suppress the occurrence of cracks after drying.
  • the polyvinyl acetal can usually be produced by acetalizing PVA.
  • the saponification degree of the raw material PVA is preferably 80 mol% or more, more preferably 82 mol% or more, still more preferably 85 mol% or more, still more preferably 87 mol% or more, preferably It is 99.9 mol% or less, More preferably, it is 99.7 mol% or less, More preferably, it is 99.5 mol% or less, More preferably, it is 99.3 mol% or less.
  • the degree of saponification of PVA is measured according to JIS K 6726: 1994.
  • the raw material PVA can be obtained by a conventionally known method, that is, by polymerizing a vinyl ester monomer and saponifying the obtained polymer.
  • a method for polymerizing the vinyl ester monomer conventionally known methods such as solution polymerization method, bulk polymerization method, suspension polymerization method and emulsion polymerization method can be applied.
  • the polymerization initiator an azo initiator, a peroxide initiator, a redox initiator, or the like is appropriately selected depending on the polymerization method.
  • As the saponification reaction a conventionally known alcoholysis or hydrolysis using an alkali catalyst or an acid catalyst can be applied. Among them, a saponification reaction using methanol as a solvent and a caustic soda (NaOH) catalyst is simple and most preferable.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, and palmitic acid.
  • vinyl acid, vinyl stearate, vinyl oleate, vinyl benzoate and the like can be mentioned, and vinyl acetate is particularly preferable.
  • the polyvinyl alcohol in the present invention is a concept including a polymer composed of vinyl alcohol units and other monomer units.
  • Examples of other monomers include ⁇ -olefins such as ethylene, propylene, n-butene and i-butene; acrylic acid and its salts; methyl acrylate, ethyl acrylate, n-propyl acrylate, acrylic Acrylic esters such as i-propyl acid, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and its salts; methacryl Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl
  • the other monomer unit is an ⁇ -olefin unit
  • its content is preferably 1 mol% or more, preferably 20 mol% or less. If the ⁇ -olefin unit content is 1 mol% or more, the effect of containing the ⁇ -olefin is sufficient, and if it is 20 mol% or less, the hydrophobicity does not increase excessively.
  • the acetalization reaction can be carried out smoothly, and the dispersibility of the inorganic compound (D), particularly ceramic powder, tends to be high.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used.
  • acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned.
  • hydrochloric acid, sulfuric acid, and nitric acid are preferably used.
  • Hydrochloric acid is particularly preferable.
  • nitric acid when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected.
  • the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. It is preferable to use it in consideration of certain things.
  • the aldehyde used for the acetalization reaction is not particularly limited, and examples thereof include known aldehydes having a hydrocarbon group.
  • the aldehyde having a hydrocarbon group includes, as aliphatic aldehydes, formaldehyde (including paraformaldehyde), acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, isovaleraldehyde, hexylaldehyde, 2-ethylbutyraldehyde, Pivalaldehyde, octyl aldehyde, 2-ethylhexyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde, etc.
  • cycloaliphatic aldehydes such as cyclopentane aldehyde, methyl cyclopentane aldehyde, dimethyl cyclopentane aldehyde, cyclohexane aldehyde, methyl cyclohexane aldehyde , Dimethylcyclohexanealdehyde, cyclohexaneacetaldehyde, etc.
  • Cydopentaldehyde, cyclohexene aldehyde, etc., and aromatic or unsaturated bond-containing aldehydes include benzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, methoxybenzaldehyde, phenylacetaldehyde, phenylpropylaldehyde, cuminaldehyde, naphthylaldehyde, anthraldehyde, Cinnamaldehyde, crotonaldehyde, acroleinaldehyde, 7-octen-1-al and the like, and examples of the heterocyclic aldehyde include furfural aldehyde, methylfurfural aldehyde and the like.
  • aldehydes having 1 to 8 carbon atoms are preferable, aldehydes having 4 to 6 carbon atoms are more preferable, and n-butyraldehyde is particularly preferably used.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • aldehydes other than hydrocarbons can also be used.
  • an aldehyde having a functional group selected from the group consisting of an amino group, an ester group, a carbonyl group, and a vinyl group may be used.
  • aldehyde having an amino group as a functional group examples include aminoacetaldehyde, dimethylaminoacetaldehyde, diethylaminoacetaldehyde, aminopropionaldehyde, dimethylaminopropionaldehyde, aminobutyraldehyde, aminopentylaldehyde, aminobenzaldehyde, dimethylaminobenzaldehyde, ethylmethylaminobenzaldehyde, Examples thereof include diethylaminobenzaldehyde, pyrrolidylacetaldehyde, piperidylacetaldehyde, pyridylacetaldehyde, and aminobutyraldehyde is preferable from the viewpoint of productivity.
  • aldehyde having an ester group as a functional group examples include methyl glyoxylate, ethyl glyoxylate, methyl formyl acetate, ethyl formyl acetate, methyl 3-formylpropionate, ethyl 3-formylpropionate, methyl 5-formylpentanoate, 5- Examples include ethyl formylpentanoate.
  • aldehyde having a carbonyl group as a functional group examples include glyoxylic acid and its metal salt or ammonium salt, 2-formylacetic acid and its metal salt or ammonium salt, 3-formylpropionic acid and its metal salt or ammonium salt, 5-formylpentane Acid and its metal salt or ammonium salt, 4-formylphenoxyacetic acid and its metal salt or ammonium salt, 2-carboxybenzaldehyde and its metal salt or ammonium salt, 4-carboxybenzaldehyde and its metal salt or ammonium salt, 2,4- Examples include dicarboxybenzaldehyde and its metal salt or ammonium salt.
  • aldehyde having a vinyl group as a functional group examples include acrolein.
  • heterocyclic aldehyde, aldehyde having an amide group, aldehyde having a hydroxyl group, aldehyde having a sulfonic acid group, aldehyde having a phosphate group, cyano group, nitro group, or quaternary ammonium may be used as long as the characteristics of the present invention are not impaired
  • An aldehyde having a salt or the like, an aldehyde having a halogen atom, or the like may be used.
  • ((Meth) acrylic resin having a hydroxyl group) When a (meth) acrylic resin having a hydroxyl group is used as the binder resin (A), for example, as a (meth) acrylic resin having a hydroxyl group, a (meth) acrylic monomer having a hydroxyl group and a (meth) acrylic monomer having no hydroxyl group are used. These copolymers can be used. Examples of the (meth) acrylic monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, and 2,3-dihydroxypropyl acrylate.
  • Acrylates such as polyethylene glycol monoacrylate, polypropylene glycol monoacrylate, polyethylene glycol-polypropylene glycol monoacrylate, polyethylene glycol-polytetramethylene glycol monoacrylate, polypropylene glycol-polytetramethylene glycol monoacrylate; 2-hydroxyethyl methacrylate, 2- Hydroxypropyl methacrylate, 3-hydroxy Lopyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl methacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monomethacrylate, polyethylene glycol-polypropylene glycol monomethacrylate, polyethylene glycol-polytetramethylene glycol mono And methacrylates such as methacrylate and polypropylene glycol-polytetramethylene glycol monomethacrylate.
  • methacrylates having a hydroxyl group are preferable from the viewpoint of calcination, and specifically, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, polyethylene glycol monomethacrylate, and polypropylene glycol monomethacrylate are preferable.
  • Examples of the (meth) acrylic monomer having no hydroxyl group include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n -Hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isodecyl acrylate, isobornyl acrylate, tetrahydrofuryl acrylate and other acrylates; ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl Methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-hexyl meta Relate, cycl
  • methacrylate is preferable from the viewpoint of calcination, and specifically, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-hexyl.
  • Methacrylate, cyclohexyl methacrylate and 2-ethylhexyl methacrylate are preferred.
  • the content of the segment derived from the (meth) acrylic monomer having a hydroxyl group in the (meth) acrylic resin having a hydroxyl group is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the content of the segment derived from the (meth) acrylic monomer having a hydroxyl group is not more than the above upper limit, the amount of residual carbon after firing can be reduced.
  • the content of the segment derived from the (meth) acrylic monomer having a hydroxyl group is preferably 1% by mass or more.
  • the content of the segment derived from the (meth) acrylic monomer having a hydroxyl group is 1% by mass or more, when used together with the polyvinyl acetal as the binder resin (A), the compatibility with the polyvinyl acetal is good. Generation of cracks after drying can be suppressed.
  • Binder resin (A) may be used individually by 1 type, and may be used in combination of 2 or more type. When using 2 or more types together, the mixture of polyvinyl acetal and other binder resin (A) etc. can be used.
  • the mass ratio of polyvinyl acetal and other binder resin (A) is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, from the viewpoints of adhesion and slurry stability.
  • binder resin (A) from the viewpoint of printing characteristics, ethyl cellulose or a (meth) acrylic resin having a hydroxyl group is preferable, and ethyl cellulose is more preferable.
  • the mass ratio of polyvinyl acetal and ethyl cellulose is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, from the same viewpoint as described above.
  • the slurry composition may contain a binder resin having no hydroxyl group in the molecule in addition to the binder resin (A) within a range not impairing the effects of the present invention.
  • the binder resin having no hydroxyl group in the molecule include poly N-vinylacetamide.
  • the ratio is preferably 0.01 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the binder resin (A).
  • a slurry composition contains the binder resin which does not have a hydroxyl group in a molecule
  • numerator is 80 mass parts or less with respect to 100 mass parts of binder resin (A). It is preferable that it is 50 parts by mass or less.
  • Organic compound (B) The slurry composition which is one embodiment of the present invention has the following general formula (1): The organic compound (B) shown by these is contained.
  • R 2 in the general formula (1) represents an alkylene group which may have a branch having 1 to 20 carbon atoms.
  • the number of carbon atoms of R 2 is preferably 15 or less, more preferably 10 or less, still more preferably 8 or less, preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more.
  • R 3 represents an alkylene group which may have a branch having 1 to 4 carbon atoms.
  • the carbon number of R 3 is preferably 3 or less, more preferably 2 or less.
  • R 3 usually has 1 or more carbon atoms.
  • R 2 and R 3 When the carbon number of R 2 and / or R 3 is within the above range, the compatibility between the organic compound (B) and the binder resin (A) is good, the storage stability of the slurry composition, the ceramic green sheet, There exists a tendency for the adhesiveness of a coating sheet to improve, and also the crack generation
  • R 2 and R 3 may have a straight chain structure and may have a branch, but from the viewpoint of suppressing the occurrence of cracks after drying, R 2 and R 3 are each independently a straight chain structure. Preferably there is.
  • M in the general formula (1) is an integer of 0 to 5.
  • m is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • m is within the above range, the boiling point of the organic compound (B) does not become too high, and the occurrence of delamination during firing can be suppressed.
  • R 1 and R 4 in the general formula (1) are each independently an organic group having at least one ether bond.
  • R 1 and R 4 may each independently have a plurality of ether bonds.
  • R 1 and R 4 are preferably each independently a hydrocarbon group having at least one ether bond.
  • R 1 and R 4 may be different or the same.
  • R 1 and R 4 are each represented by the general formula (2): It is preferable from a viewpoint of compatibility with binder resin (A) and suppression of crack generation that it is an organic group which has at least one ether bond shown.
  • R 5 represents an alkyl group which may have a branch having 1 to 10 carbon atoms.
  • R 5 preferably has 8 or less carbon atoms, more preferably 6 or less, and still more preferably 4 or less.
  • the carbon number of R 5 is within the above range, the compatibility between the organic compound (B) and the binder resin (A) is good, and the storage stability of the slurry composition and the adhesiveness of the ceramic green sheet are improved. In addition, the occurrence of cracks after drying can be suppressed.
  • R 6 represents an alkylene group which may have a branch having 1 to 10 carbon atoms.
  • R 6 preferably has 8 or less carbon atoms, more preferably 6 or less, and still more preferably 4 or less.
  • the carbon number of R 6 is within the above range, the compatibility between the organic compound (B) and the binder resin (A) is good, and the storage stability of the slurry composition and the adhesion of the ceramic green sheet are improved. In addition, the occurrence of cracks after drying can be suppressed.
  • R 7 represents an alkylene group which may have a branch having 1 to 4 carbon atoms. From the viewpoint of suppressing crack generation after drying, the carbon number of R 7 is preferably 3 or less, and more preferably 2 or less. R 6 and R 7 may each independently have a linear structure or may have a branch. From the viewpoint of suppressing the occurrence of cracks after drying, R 6 and R 7 preferably have a linear structure. A plurality of R 7 is may be the same or different.
  • N is an integer from 0 to 2.
  • n is preferably 0 or 1, and more preferably 0. When n exceeds the above range, the boiling point of the organic compound (B) increases, which may cause delamination during firing.
  • the solubility parameter (SP value) of the organic compound (B) is preferably 7 (J / cm 3 ) 1/2 or more, more preferably 7.5 (J / cm 3 ) 1/2 or more, further preferably 8 ( J / cm 3 ) 1/2 or more, particularly preferably 8.5 (J / cm 3 ) 1/2 or more, preferably 12 (J / cm 3 ) 1/2 or less, more preferably 11 (J / cm 3 ) 1/2 or less, more preferably 10.5 (J / cm 3 ) 1/2 or less, and particularly preferably 10 (J / cm 3 ) 1/2 or less.
  • the solubility parameter (SP value) of the organic compound (B) is within the above range, the range of solvents to be used can be expanded, and the problem of undissolved matter due to poor dissolution can be reduced.
  • the SP value of the organic compound (B) is determined by, for example, the number of R 1 to R 4 and m in the above formula (1), and optionally the number of R 5 to R 7 and n in the above formula (2). It can adjust by selecting suitably.
  • the SP value of the organic compound (B) can be measured by the method described later.
  • of the solubility parameter (SP value) between the binder resin (A) and the organic compound (B) is 2.1 (J / cm 3 ) 1/2. Or less, preferably 2.0 (J / cm 3 ) 1/2 or less, more preferably 1.7 (J / cm 3 ) 1/2 or less, and even more preferably 1.5 (J / cm 3 ) 1 / 2 or less, even more preferably less than 1.5 (J / cm 3 ) 1/2 , particularly preferably 1.0 (J / cm 3 ) 1/2 or less.
  • the difference in solubility parameter (SP value) between the binder resin (A) and the organic compound (B)
  • the difference in solubility parameter (SP value) between the binder resin (A) and the organic compound (B) is usually 0 (J / cm 3 ) 1/2 or more.
  • the solubility parameter can be determined according to the Fedors method (POLYMER HANDBOOK 4th edition, J. Brandrup et al (John Wiley & Sons, Inc.) 675-714).
  • Fedors has proposed an estimation method for determining solubility parameters relatively easily (RF Fedors: Polym. Eng. Sci., 14 [2], 147-154 (1974)).
  • RF Fedors Polym. Eng. Sci., 14 [2], 147-154 (1974)
  • the following formula (A) and POLYMER HANDBOOK 4th edition, J. MoI. Brandup et al (John Wiley & Sons, Inc) 675-714, constants shown in Table 3 have been proposed.
  • the solubility parameter can be calculated by the method described in the examples.
  • the molecular weight of the organic compound (B) is preferably 200 or more, and more preferably 250 or more. When the molecular weight is not less than the above lower limit, the organic compound (B) is less likely to volatilize when the sheet is dried, and sufficient adhesiveness can be exhibited. Further, the molecular weight of the organic compound (B) used in the present invention is preferably 500 or less, and more preferably 400 or less. When the molecular weight is not more than the above upper limit, the viscosity of the organic compound (B) does not become too high, the compatibility with the resin is good, and the generation of cracks after drying can be further suppressed. The molecular weight of the organic compound (B) can be determined, for example, by analyzing the chemical structural formula using an analytical method such as nuclear magnetic resonance or infrared spectroscopy.
  • the organic compound (B) preferably has a structure that does not contain a hydroxyl group in the molecule.
  • the action at the interface at the time of pressure bonding tends to be improved, and sufficient adhesiveness tends to be exhibited.
  • Examples of the organic compound (B) include bis (2-butoxyethyl) adipate, bis (2-methoxyethyl) adipate, bis (2-ethoxyethyl) adipate, and bis [2- (2-butoxy] Ethoxy) ethyl], bis (3-methoxy-3-methylbutyl) adipate, bis (2-methoxyethyl) sebacate, bis (2-methoxyethyl) diglycolate and the like.
  • bis (2-butoxyethyl) adipate is excellent in terms of excellent storage stability of the slurry composition, suppression of cracking after drying, excellent adhesion of the ceramic green sheet, and maintaining appropriate strength.
  • Bis (2-methoxyethyl) adipate is preferred.
  • content of the organic compound (B) in a slurry composition is not specifically limited, It is preferable that it is 1 mass part or more with respect to 100 mass parts of binder resin (A), and it is more preferable that it is 5 mass parts or more, More preferably, it is 10 parts by mass or more.
  • the content of the organic compound (B) is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.
  • the content of the organic compound (B) is not more than the above upper limit, the strength of the ceramic green sheet obtained from the slurry composition can be increased, and the dimensional stability during pressure bonding is good.
  • Organic solvent (C) The slurry composition which is one embodiment of the present invention contains an organic solvent (C).
  • the organic solvent (C) can be appropriately selected according to its purpose and use.
  • alcohol such as methanol, ethanol, isopropanol, n-propanol, and butanol
  • cellosolve such as methyl cellosolve and butyl cellosolve
  • acetone And ketones such as methyl ethyl ketone
  • aromatic hydrocarbons such as toluene and xylene
  • halogenated hydrocarbons such as dichloromethane and chloroform
  • esters such as ethyl acetate and methyl acetate can be used.
  • Examples of the organic solvent (C) include menthene, menthane, menthone, myrcene, ⁇ -pinene, ⁇ -terpinene, ⁇ -terpinene, limonene, perillyl acetate, menthyl acetate, carbyl acetate, dihydrocarbyl acetate, perillyl alcohol, Dihydroterpinyl acetate, dihydroterpineol acetate, terpineol acetate, dihydroterpineol, terpinyloxyethanol, dihydroterpinyloxyethanol, terpinyl methyl ether, dihydroterpinyl methyl ether, dihydroterpinyl propionate, Isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, nobyl acetate, octyl acetate, dimethyl octyl
  • the inorganic compound (D) contained in the slurry composition according to one embodiment of the present invention is not particularly limited, but may be, for example, ceramic powder, conductive powder, glass powder, phosphor fine particles, silicon, depending on the purpose and application. An oxide etc. are mentioned. These can be used alone or in combination of two or more.
  • the amount of the binder resin (A) relative to the inorganic compound (D) varies depending on the purpose of use of the slurry composition, but is preferably 1 part by mass or more with respect to 100 parts by mass of the inorganic compound (D). Preferably it is 3 mass parts or more, More preferably, it is 5 mass parts or more, Preferably it is 50 mass parts or less, More preferably, it is 20 mass parts or less, Preferably it is 15 mass parts or less.
  • the amount of the binder resin (A) with respect to the inorganic compound (D) is not less than the above lower limit value, the dispersibility of the slurry and the storage stability are good, and further the adhesiveness of the obtained ceramic green sheet or coated sheet and the like Strength can be increased.
  • the amount of the binder resin (A) with respect to the inorganic compound (D) is less than or equal to the above upper limit value, the occurrence of delamination can be suppressed as a result of relatively less volatile components during firing.
  • a binder for ceramic molding it is required that a ceramic slurry excellent in dispersibility and storage stability is obtained, that the amount of carbon residue after firing is small, and that the adhesiveness during thermocompression bonding is excellent.
  • the slurry composition which is one embodiment of the present invention not only suppresses the generation of cracks after drying, but also has excellent dispersibility and storage stability. Therefore, the density and smoothness of the obtained ceramic green sheet are excellent, and the adhesion between the ceramic green sheets is good.
  • a ceramic slurry is also provided.
  • the ceramic slurry is the above slurry composition in which the inorganic compound (D) is a ceramic powder.
  • the slurry composition in the production of the ceramic green sheet, generation of cracks on the ceramic green sheet obtained after drying the ceramic slurry is suppressed.
  • the slurry composition is excellent in the dispersibility of the ceramic powder and is excellent in storage stability. Therefore, this slurry composition can be suitably used as a ceramic slurry.
  • a ceramic green sheet obtained by forming such a ceramic slurry that is, a ceramic green sheet comprising a dry film of at least one layer of ceramic slurry is excellent in surface smoothness and sheet strength. Further, this ceramic green sheet has a small amount of carbon residue after firing. Therefore, if the ceramic slurry which is one embodiment of the present invention is used, cracks are suppressed and the amount of carbon residue is small, and a high-performance ceramic molded product can be obtained. In addition, when a crack generate
  • the dry film means the content of the organic solvent (C) in the slurry composition is (X-1) mass%, and the content of the organic solvent (C) in the film is (X-2). ) Means a film satisfying (X-1)> (X-2) when mass%. Especially, it is a film
  • the content of the organic solvent with respect to the mass of the membrane is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, particularly preferably 5% by mass or less, and 0% by mass. %.
  • the amount of the binder resin (A) relative to the ceramic powder (inorganic compound (D)) varies depending on the purpose of use of the ceramic green sheet, but is usually 3 parts by mass or more with respect to 100 parts by mass of the ceramic powder. It is preferable that it is 5 parts by mass or more. It is preferable that the usage-amount of binder resin (A) is 20 mass parts or less with respect to 100 mass parts of ceramic powder, and it is more preferable that it is 15 mass parts or less.
  • the amount of the binder resin (A) used is not less than the above lower limit, the dispersibility and storage stability of the slurry are good, and the adhesion and strength of the resulting ceramic green sheet can be enhanced.
  • the amount of the binder resin (A) used is not more than the above upper limit value, the density of the ceramic powder in the ceramic green sheet is high, so the quality of the multilayer ceramic capacitor as the final product is good. As a result of relatively less volatile components, the occurrence of delamination can be suppressed.
  • the conditions for the binder resin (A) contained in the ceramic slurry are as described above.
  • the binder resin (A) contained in the ceramic slurry contains polyvinyl acetal
  • suitable conditions for the degree of acetalization of the polyvinyl acetal are as described above, but when the degree of acetalization is 50 mol% or more, The storage stability of the ceramic slurry which is one embodiment is good, and the generation of cracks on the surface of the sheet obtained after drying is further suppressed.
  • the degree of acetalization is 85 mol% or less, the content of hydroxyl groups (vinyl alcohol monomer units) in the polyvinyl acetal is sufficient, and the ceramic obtained using the ceramic slurry according to one embodiment of the present invention Strength of green sheet, adhesion and dimensional stability during pressure bonding are improved, crack generation on the sheet surface after drying of the slurry composition is further suppressed, and the amount of carbon residue in the obtained ceramic molded product is low Tend to be.
  • the binder resin (A) contained in the ceramic slurry contains polyvinyl acetal
  • the vinyl alcohol monomer unit of the polyvinyl acetal is within the above-described preferred range, the resulting ceramic green sheet has dimensional stability during compression bonding. It tends to be better.
  • the binder resin (A) contained in the ceramic slurry contains polyvinyl acetal
  • the preferred range of the content of the vinyl ester monomer unit in the polyvinyl acetal is as described above, but the content of the vinyl ester monomer unit. Is 20 mol% or less, the storage stability of the ceramic slurry containing the polyvinyl acetal is good, the amount of carbon residue in the obtained ceramic molded product can be reduced, and the flexibility of the sheet Tend to be low and the strength of the resulting ceramic green sheet tends to be high.
  • the preferred range of the viscosity average polymerization degree of the polyvinyl acetal is as described above, but the ceramic obtained when the viscosity average polymerization degree is 200 or more The strength of the green sheet tends to increase.
  • the viscosity average degree of polymerization is preferably 300 or more, more preferably 500 or more, and still more preferably 800 or more.
  • the viscosity average polymerization degree is 5000 or less, the viscosity of the ceramic slurry prepared when the ceramic green sheet is produced does not become too high, and the influence of the viscosity on productivity can be suppressed.
  • the viscosity average degree of polymerization is preferably 4500 or less, more preferably 4000 or less, and further preferably 3500 or less. Further, from the viewpoint of further improving the dimensional stability of the ceramic green sheet at the time of pressure bonding, the viscosity average polymerization degree is preferably 1400 or more, and more preferably 1500 or more.
  • the preferred range of the saponification degree of the raw material PVA is as described above, but the saponification degree of the raw material PVA is 80 mol% or more, Dispersibility of the ceramic slurry containing polyvinyl acetal is good.
  • Suitable conditions for the organic compound (B) contained in the ceramic slurry are as described above.
  • content of the organic compound (B) in the said ceramic slurry is not specifically limited, It is preferable that it is 1 mass part or more with respect to 100 mass parts of binder resin (A), and it is more preferable that it is 5 mass parts or more, More preferably, it is 10 parts by mass or more.
  • content of the organic compound (B) in the ceramic slurry is at least the above lower limit, the dispersibility and storage stability of the ceramic slurry are good, and the adhesiveness of the resulting ceramic green sheet is also good.
  • the content of the organic compound (B) is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.
  • the content of the organic compound (B) in the ceramic slurry is not more than the above upper limit value, the strength of the ceramic green sheet is increased, and the dimensional stability at the time of pressure bonding is good.
  • the ceramic slurry may further contain an organic compound other than the organic compound (B) as a plasticizer.
  • a plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with the binder resin (A).
  • a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and an alcohol, or the like can be used. These can be used alone or in combination of two or more.
  • triethylene glycol-di-2-ethylhexanoate tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-n-heptanoate, tetraethylene glycol-di-n-heptanoate
  • the total mass ratio of the plasticizer and the organic compound (B) to the binder resin (A) (total amount of the plasticizer and the organic compound (B) / binder resin (A) Mass) is preferably 0.01 or more, more preferably 0.05 or more, from the viewpoint of adhesiveness, and preferably 2 or less, more preferably, from the viewpoint of suppression of deformation during pressing and suppression of delamination. 1.5 or less.
  • organic solvent (C) contained in the ceramic slurry among the organic solvents (C) described above, alcohols such as methanol, ethanol, isopropanol, n-propanol and butanol; cellosolves such as methyl cellosolve and butyl cellosolve; acetone, methyl ethyl ketone and the like Preferred are ketones of: aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as dichloromethane and chloroform; esters such as ethyl acetate and methyl acetate. These may be used alone or in combination of two or more. Among these, butanol, ethanol, toluene, ethyl acetate, or a mixed solvent thereof is preferable from the viewpoints of volatility and solubility.
  • alcohols such as methanol, ethanol, isopropanol, n-propanol and butanol
  • cellosolves
  • content of the organic solvent (C) in the said ceramic slurry is not specifically limited, It is preferable that it is 2 mass parts or more with respect to 100 mass parts of ceramic powders, It is more preferable that it is 3 mass parts or more, 5 masses More preferably, it is more preferably 10 parts by mass or more.
  • content of the organic solvent (C) is not less than the above lower limit, the viscosity of the ceramic slurry does not become too high, and the kneadability becomes good.
  • content of an organic solvent (C) it is more preferable that it is 200 mass parts or less with respect to 100 mass parts of ceramic powder, and it is further more preferable that it is 150 mass parts or less.
  • the content of the organic solvent (C) is not more than the above upper limit value, the viscosity of the ceramic slurry does not become too low, and the handling property when forming the ceramic green sheet is good.
  • the ceramic powder contained in the ceramic slurry include powders of metal or non-metal oxides, carbides, nitrides, borides, sulfides, and the like used for the production of ceramics. Specific examples thereof include Li, K, Mg, B, Al, Si, Cu, Ca, Sr, Ba, Zn, Cd, Ga, In, Y, lanthanoid, actinoid, Ti, Zr, Hf, Bi, V, and Nb. , Ta, W, Mn, Fe, Co, Ni, and other oxides, carbides, nitrides, borides, sulfides, and the like. These ceramic powders may be used alone or as a mixture of two or more.
  • the ceramic slurry includes a peptizer, an adhesion promoter, a dispersant, and a tackifier as necessary.
  • a peptizer an adhesion promoter, a dispersant, and a tackifier as necessary.
  • Storage stabilizers, antifoaming agents, thermal decomposition accelerators, antioxidants, surfactants, lubricants, adhesion improvers, and other conventionally known additives may be included.
  • the method for producing the ceramic slurry is not particularly limited.
  • it can be produced by the following method.
  • a predetermined amount of an organic solvent (C) and an additive are added to the ceramic powder to obtain a dispersion of the ceramic powder.
  • the binder resin is dissolved in the organic solvent (C), and the organic compound (B) and, if necessary, the additive are added to the solution, followed by stirring to produce a uniform composition.
  • the above-mentioned composition can be added to a dispersion of ceramic powder and dispersed uniformly to obtain a ceramic slurry.
  • the binder resin (A) is dissolved in the organic solvent (C), and the organic compound (B) and, if necessary, additives are added to the solution, followed by stirring to produce a uniform composition. After adding a ceramic powder to this composition, it is uniformly dispersed to obtain a ceramic slurry.
  • a method of dispersing various methods such as a method using a medium type dispersing machine such as a bead mill, a ball mill, an attritor, a paint shaker, a sand mill, a kneading method, and a method using a three roll can be used.
  • a dispersant containing an ionic group may be used as the dispersant, and an anionic dispersant having a carboxylic acid group, a maleic acid group, a sulfonic acid group, a phosphoric acid group, etc. in the molecule is preferred.
  • an anionic dispersant such as “Marialim” (manufactured by NOF Corporation) that does not contain metal ions is preferably used.
  • Ceramic green sheet In another embodiment of the present invention, a ceramic green sheet obtained using the ceramic slurry is also provided.
  • the ceramic slurry which is one embodiment of the present invention a ceramic green sheet with few cracks can be obtained.
  • the ceramic green sheet which is one embodiment of this invention is excellent in the adhesiveness at the time of pressure bonding, and has little dimensional change at the time of pressure bonding. Moreover, rapid debinding of the ceramic green sheet laminate during firing is suppressed, and delamination during the production of the multilayer ceramic capacitor is suppressed.
  • barium titanate is used as the ceramic powder contained in the ceramic slurry.
  • the ceramic green sheet that is excellent in adhesion at the time of crimping and has little dimensional change at the time of crimping, and further, when the ceramic green sheet is fired, the binder component is rapidly burned out. Can be suppressed, and delamination during the production of the multilayer ceramic capacitor can be suppressed.
  • the ceramic green sheet which is one embodiment of the present invention is suitably used as a material for various electronic components.
  • it is suitably used as a material for chip-type multilayer ceramic capacitors and circuit boards for IC chips. These are manufactured by forming electrodes on a ceramic green sheet, stacking and pressing them, followed by firing.
  • the ceramic green sheet can be obtained by drying the coating film of the slurry composition. That is, the ceramic green sheet comprises a dry film obtained by partially or completely removing the organic solvent (C) from the coating film of the ceramic slurry (slurry composition).
  • the ceramic green sheet may be composed of one layer of the dry film or a plurality of layers of the dry film. Examples of the method for producing a ceramic green sheet include a method in which a ceramic slurry is applied on a support film subjected to a single-sided release treatment, and then the organic solvent (C) is dried to form a sheet. .
  • a roll coater, a blade coater, a die coater, a squeeze coater, a curtain coater, or the like can be used.
  • a support film made of a resin having heat resistance and solvent resistance and flexibility is preferable.
  • the support film is made of a flexible resin, and the film on which the ceramic green sheet obtained by coating the ceramic slurry on the support film and drying is formed is stored in a roll shape. And can be supplied as needed.
  • the resin constituting the support film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, polyfluoroethylene, and other fluorine-containing resins, nylon, and cellulose. It is done.
  • the thickness of the said support film is not specifically limited, It is preferable that it is a thickness of 20 micrometers or more, and it is preferable that it is a thickness of 100 micrometers or less.
  • the surface of the support film is preferably subjected to a mold release treatment. Since the release treatment is performed on the surface of the support film, the support film can be easily peeled off in the transfer step.
  • a preferable specific example of the support film is a silicone-coated PET film.
  • the thickness of the ceramic green sheet varies depending on the purpose of use, it cannot be generally defined, but is preferably 0.1 ⁇ m or more, and preferably 300 ⁇ m or less.
  • the drying temperature when drying the coating film formed on the carrier film varies depending on the thickness of the ceramic green sheet and the like, it cannot be specified unconditionally, but it is preferably 25 ° C. or higher. It is preferable that it is 200 degrees C or less.
  • the conductive paste in which the inorganic compound (D) is a conductive powder. That is, the conductive paste according to one embodiment of the present invention includes a conductive resin as the binder resin (A), the organic compound (B) represented by the general formula (1), the organic solvent (C), and the inorganic compound (D). Comprising.
  • the slurry composition according to one embodiment of the present invention is excellent in the dispersibility of the conductive powder and also in storage stability. Therefore, such a slurry composition can be suitably used as a conductive paste.
  • This conductive paste is excellent in the dispersibility of the conductive powder, and is excellent in storage stability.
  • the printability when printing on the surface of the ceramic green sheet is excellent, and the printing surface becomes smooth.
  • the conductive paste By using the conductive paste, the occurrence of cracks on the surface of the coated sheet obtained after the drying is suppressed, the appearance and the performance are hardly caused, the amount of carbon residue after firing is small, and the delamination is further performed. A fired body with a small amount can be obtained. If the storage stability of the conductive paste is reduced, the desired printing thickness may not be obtained, or the surface after printing may be rough, which may adversely affect the electrical characteristics of the fired body.
  • content of binder resin (A) in the said electrically conductive paste is not specifically limited, It is preferable that it is 1 mass part or more with respect to 100 mass parts of conductive powder, and it is more preferable that it is 3 mass parts or more.
  • content of binder resin is more than the said lower limit, the film formability when printing an electrically conductive paste is favorable.
  • the content of the binder resin in the conductive paste is preferably 50 parts by mass or less, more preferably 25 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the content of the binder resin (A) in the conductive paste is not more than the above upper limit value, the amount of carbon residue in the obtained fired body is reduced.
  • the conditions for the binder resin (A) contained in the conductive paste are as described above.
  • the binder resin (A) for the conductive paste preferably contains polyvinyl acetal.
  • the content of polyvinyl acetal in the binder resin (A) for the conductive paste is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • content of the polyvinyl acetal in the binder resin (A) for electrically conductive paste is 100 mass% or less normally.
  • the binder resin (A) contained in the conductive paste contains polyvinyl acetal
  • suitable conditions for the degree of acetalization of the polyvinyl acetal are as described above, but when the degree of acetalization is 50 mol% or more, the polyvinyl acetal There exists a tendency for the storage stability of the electrically conductive paste containing this to increase.
  • the degree of acetalization is 85 mol% or less, the efficiency of the acetalization reaction is good, the productivity is increased, and the amount of carbon residue after heating the conductive paste is reduced, and the resulting firing There is a tendency that the electrical characteristics of the body become sufficient.
  • the binder resin (A) contained in the conductive paste contains polyvinyl acetal
  • the preferred range of the content of the vinyl ester monomer unit in the polyvinyl acetal is as described above, but the content of the vinyl ester monomer unit. Is 20 mol% or less, the storage stability of the conductive paste containing the polyvinyl acetal is good.
  • the preferred range of the viscosity average polymerization degree of the polyvinyl acetal is preferably 200 or more as described above.
  • the viscosity average degree of polymerization is more preferably 250 or more, further preferably 300 or more, and particularly preferably 350 or more.
  • the viscosity average polymerization degree is not less than the above lower limit value, the strength of the coating film formed by applying the conductive paste is increased, and the occurrence of cracks on the surface is further suppressed.
  • the viscosity average degree of polymerization is preferably 5000 or less, more preferably 4500 or less, further preferably 4000 or less, particularly preferably 3500 or less, and most preferably 2500 or less. preferable.
  • the viscosity average polymerization degree is not more than the above upper limit value, the viscosity of the conductive paste does not become too high, and printing can be easily performed.
  • the preferred range of the saponification degree of the raw material PVA is as described above, but when the saponification degree of the raw material PVA is 80 mol% or more, The dispersibility of the conductive powder in the conductive paste is good, and the storage stability of the conductive paste containing polyvinyl acetal is improved.
  • Suitable conditions for the organic compound (B) contained in the conductive paste are as described above.
  • the content of the organic compound (B) in the conductive paste is not particularly limited, but is preferably 1 part by mass or more with respect to 100 parts by mass of the binder resin. When the content of the binder resin in the conductive paste is not less than the above lower limit value, the adhesiveness tends to be improved.
  • the content of the organic compound (B) in the conductive paste is preferably 50 parts by mass or less with respect to 100 parts by mass of the binder resin. When the content of the organic compound (B) is not more than the above upper limit value, the dimensional stability at the time of pressure bonding tends to be improved.
  • the conductive paste may contain an organic compound other than the organic compound (B) as a plasticizer.
  • a plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with the binder resin (A).
  • the plasticizer include those exemplified as the plasticizer used in the ceramic slurry.
  • the organic solvent (C) contained in the conductive paste is not particularly limited as long as it can dissolve the binder resin (A).
  • menten, menthane, menthone, myrcene, ⁇ -pinene, ⁇ -terpinene, ⁇ -Terpinene, limonene perillyl acetate, menthyl acetate, carbyl acetate, dihydrocarbyl acetate, perillyl alcohol, dihydroterpineol acetate, terpineol acetate, dihydroterpineol, terpinyloxyethanol, dihydroterpinyloxyethanol, tarpinyl Methyl ether, dihydroterpinyl methyl ether, dihydroterpinyl propionate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, nobyl acetate Octyl acetate Oct
  • terpenes having no polar substituents such as hydroxyl groups represented by dihydroterpineol acetate, terpineol acetate, terpinyl methyl ether, dihydroterpinyl methyl ether and the like and hydrogenated products thereof are particularly preferable. From the viewpoint of attack property, dihydroterpineol acetate is preferred.
  • the content of the organic solvent (C) in the conductive paste is not particularly limited, but is preferably 5 parts by mass or more and more preferably 10 parts by mass or more with respect to 100 parts by mass of the conductive powder.
  • the content of the organic solvent (C) in the conductive paste is preferably 600 parts by mass or less and more preferably 150 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the conductive powder contained in the conductive paste for example, powders of highly conductive metals such as nickel, palladium, platinum, gold, silver, alloy powders of these metals, oxides thereof, and the like are used. Further, metals such as copper and iron, which have good adsorption characteristics with a carboxyl group, amino group, amide group and the like and are easily oxidized, can be suitably used. These conductive powders may be used alone or in combination of two or more.
  • the conductive paste is known as exemplified in the description of the ceramic slurry, if necessary. You may contain resin other than an additive and binder resin (A).
  • the conductive paste may contain a dielectric such as barium titanate or titanium oxide.
  • the conductive paste can be manufactured, for example, by the following method.
  • the binder resin is dissolved in the organic solvent (C), and the organic compound (B) and, if necessary, additives are added to the solution, and then stirred to produce a uniform composition. After adding conductive powder and an additive as needed to this composition, it is uniformly dispersed to obtain a conductive paste.
  • a method of dispersing various methods such as a method using a medium type dispersing machine such as a blender mill, a bead mill, a ball mill, an attritor, a paint shaker, and a sand mill, a kneading method, and a method using three rolls can be used.
  • a dispersant containing an ionic group may be used as the dispersant, and an anionic dispersant having a carboxylic acid group, a maleic acid group, a sulfonic acid group, a phosphoric acid group, etc. in the molecule is preferred.
  • an anionic dispersant such as “Marialim” (manufactured by NOF Corporation) that does not contain metal ions is preferably used.
  • the amount of the binder resin (A) with respect to the conductive powder as the inorganic compound (D) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, further preferably 100 parts by mass of the conductive powder. It is 5 parts by mass or more, preferably 50 parts by mass or less, more preferably 20 parts by mass or less, and preferably 15 parts by mass or less.
  • the amount of the binder resin (A) with respect to the conductive powder is not less than the above lower limit value, the dispersibility and storage stability of the conductive paste are good, and the adhesiveness and strength of the resulting coated sheet can be enhanced.
  • the amount of the binder resin (A) with respect to the inorganic compound (D) is less than or equal to the above upper limit value, the occurrence of delamination can be suppressed as a result of relatively less volatile components during firing.
  • a coated sheet in another embodiment of the present invention, can also be provided.
  • the coated sheet may be formed by disposing at least one layer of a conductive paste dry film on at least one surface of a ceramic green sheet according to an embodiment of the present invention. You may arrange
  • the coated sheet can be produced, for example, by applying a conductive paste to the surface of a ceramic green sheet and drying it. Part or all of the organic solvent (C) contained in the conductive paste can be removed by drying.
  • the conductive paste may be a conductive paste that is one embodiment of the present invention, or may be a conductive paste that is generally used other than that.
  • the electrically conductive paste which is one embodiment of this invention may be applied to the surface of a ceramic green sheet.
  • the ceramic green sheet may be a ceramic green sheet which is one embodiment of the present invention, or other commonly used ceramics. It may be a green sheet.
  • the method for applying the conductive paste is not particularly limited, and examples thereof include a screen printing method, a die coat printing method, an offset printing method, a gravure printing method, and an ink jet printing method.
  • the ceramic green sheet is subjected to plasma treatment. That is, in the production, it is preferable to include a step of performing plasma treatment on at least a part of one surface or both surfaces of the ceramic green sheet.
  • at least a part of one surface or both surfaces of the ceramic green sheet is subjected to a plasma treatment, and the surfaces subjected to the plasma treatment and the surface of the other ceramic green sheet are laminated. .
  • the obtained laminate has better adhesion as compared to a case where a laminate is produced using a ceramic green sheet whose surface has not been subjected to plasma treatment.
  • At least a part of at least one surface of the coated sheet is subjected to plasma treatment. That is, in the manufacture, it is preferable to include a step of performing plasma treatment on at least a part of at least one surface of the coated sheet. It is sufficient that at least a part of at least one surface of the coated sheet is subjected to plasma treatment.
  • a method of performing plasma treatment on the ceramic green sheet before applying the conductive paste, or applying the conductive paste to the ceramic green sheet It can be obtained by any of the methods of performing plasma treatment on the coated sheet after processing.
  • the surface of the coated sheet on which the conductive paste is coated is subjected to plasma treatment, and lamination is performed so that the surface treated with plasma and one surface of the other coated sheet are in contact with each other.
  • the obtained laminate exhibits better adhesion as compared to the case where the laminate is produced using a coating sheet whose surface is not subjected to plasma treatment.
  • the surface to which the plasma treatment is applied may be a surface coated with a conductive paste (conductive paste surface), the other surface of the coated sheet (ceramic green sheet surface), or both surfaces of the coated sheet.
  • a conductive paste conductive paste surface
  • the conductive paste surface can be subjected to plasma treatment and laminated so that this surface and the ceramic green sheet surface of another coated sheet are in contact with each other.
  • the laminate thus obtained exhibits good adhesion.
  • the ceramic green sheet surface can be subjected to plasma treatment and laminated so that this surface and the conductive paste surface of another coating sheet are in contact with each other.
  • the laminate thus obtained also exhibits good adhesion.
  • the coated sheet in this case is a coated sheet obtained by coating a conductive paste generally used on the surface of a ceramic green sheet which is one embodiment of the present invention, or one embodiment of the present invention.
  • a coated sheet obtained by coating the surface of the ceramic green sheet with the conductive paste according to one embodiment of the present invention may be suitably used.
  • plasma treatment is applied to one or both surfaces of the coated sheet, and lamination is performed so that the surface subjected to the plasma treatment is in contact with the ceramic green sheet surface or conductive paste surface of the other coated sheet. May be.
  • the laminate thus obtained also exhibits good adhesion.
  • plasma treatment may be performed on the ceramic green sheet, and a conductive paste may be applied to the plasma-treated surface.
  • the laminate obtained in this way exhibits better adhesion as compared to the case where a laminate is produced using a coating sheet whose surface has not been subjected to plasma treatment.
  • a coated sheet obtained by coating the surface of the green sheet with the conductive paste according to one embodiment of the present invention can be suitably used.
  • the plasma treatment method is not particularly limited, and examples thereof include low-pressure plasma, high-pressure plasma, corona discharge treatment, and atmospheric pressure plasma treatment. Any appropriate processing method can be used as the processing method.
  • Low pressure plasma must be applied in a vacuum and can be difficult to produce in-line. Since high energy is applied in the corona discharge treatment, the surface shape may change and the treated surface may become unexpectedly uniform.
  • the atmospheric pressure plasma treatment is advantageous in that it does not need to be performed in a vacuum state and the energy can be selected at a high or low level. From the viewpoint of productivity and performance, atmospheric pressure plasma is particularly preferable as the processing method.
  • atmospheric pressure plasma apparatuses can be used for the atmospheric pressure plasma treatment.
  • a device that can generate low-temperature plasma by performing intermittent discharge while passing an inert gas at a pressure close to atmospheric pressure between electrodes covered with a dielectric is suitable, but any device can be used.
  • the “pressure near atmospheric pressure” in the “atmospheric pressure plasma” refers to a range of 70 kPa to 130 kPa, preferably 90 kPa to 110 kPa.
  • the temperature and humidity at the time of performing the atmospheric pressure plasma treatment are not particularly limited and can be appropriately changed. However, it is preferable to perform the atmospheric pressure plasma treatment at room temperature and normal humidity.
  • any gas selected from the group consisting of nitrogen, oxygen, hydrogen, carbon dioxide, helium, and argon, or a mixed gas of two or more of these is used. be able to. It is preferable to use a rare gas such as He and Ar, which is an inert gas, or a nitrogen gas, and a rare gas such as Ar or He is particularly preferable.
  • the nitrogen gas is preferably supplied at a flow rate of 10 L / min or more and 500 L / min or less. Further, it is preferable to supply dry air at a flow rate of 0.1 L / min or more and 3 L / min or less.
  • the voltage applied between the electrodes is preferably 5 kv or more, and preferably 15 kv or less.
  • the distance between the electrode and the object to be irradiated is preferably 1 mm or more, and more preferably 2 mm or more.
  • the distance between the electrode and the object to be irradiated is preferably 10 mm or less, and more preferably 5 mm or less.
  • the time for the ceramic green sheet to pass directly under the irradiation port is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more. Moreover, it is preferable that it is 40 seconds or less, and it is more preferable that it is 20 seconds or less. Note that the vicinity of the irradiation port may also have a plasma atmosphere.
  • organic compound (plasticizer) other than organic compound (B) or organic compound (B) when voltage applied between electrodes, distance between electrodes, or moving speed of ceramic green sheet is within the above range
  • the obtained ceramic green sheet is excellent in not only the dimensional stability at the time of pressure bonding but also the adhesion at the time of pressure bonding.
  • polymerization degree means “viscosity average polymerization degree”.
  • ceramic green sheet means a portion not including a polyester film as a support.
  • Solubility parameters are determined by the parameters of the TABLE 3 functional group Ecoh (cal / cal) described on pages 685-686 of (POLYMER HANDBOOK 4th edition, J. Brandrup et al (John Wiley & Sons, Inc) 675-714). It was calculated from the formula (A) with reference to mol (converted into mol) and V (cm 3 / mol). Here, ⁇ represents a solubility parameter, and the unit is ((J / cm 3 ) 1/2 ). For the binder resin (A), the solubility parameter of each monomer was calculated, and each was multiplied by the molar ratio, and the sum was calculated. When using the mixture of multiple types of resin as binder resin (A), each molar ratio was computed from the average molecular weight of each resin, and it computed similarly to the above.
  • the viscosity of the ceramic slurry was measured under the following measurement conditions using a rotary rheometer (manufactured by TA INSTRUMENT; ARES G2).
  • Ceramic green sheets (on a polyester film) used in Examples and Comparative Examples were cut into squares having a size of 10 cm ⁇ 10 cm together with the polyester film. After peeling the ceramic green sheet from the polyester film, nitrogen gas is flowed at a flow rate of 150 L / min and dry pure air is flowed at a flow rate of 0.5 L on the surface of the ceramic green sheet using an atmospheric pressure plasma apparatus at room temperature and normal humidity.
  • the voltage between the electrodes is 11 kV
  • the distance between the electrodes is 2 mm
  • the moving speed of the sample (ceramic green sheet) is 10 mm / second
  • the time for the ceramic green sheet to pass directly under the irradiation port with a width of 2 cm is 2 seconds.
  • the atmospheric pressure plasma treatment was performed under the condition of (10 seconds for the entire 10 cm ⁇ 10 cm square ceramic green sheet).
  • the obtained laminate was cut into 5 mm ⁇ 5 mm squares, and 100 pieces were arbitrarily extracted.
  • the adhesion surface of the arbitrarily extracted laminate was visually observed, and the adhesion between the ceramic green sheets was evaluated in the following five stages.
  • Adhesive evaluation of coated sheet Adhering according to the method described in “4-1. Adhesive evaluation of ceramic green sheet” except that the coated sheet used in Examples and Comparative Examples was used instead of the ceramic green sheet. Sexuality was evaluated. At this time, the atmospheric pressure plasma treatment is performed on the surface coated with the conductive paste, and the surface of the coated sheet that has been subjected to the atmospheric pressure plasma treatment is the surface of the other coated sheet that has not been subjected to the atmospheric pressure plasma treatment (the conductive paste). Was laminated so as to be in contact with the surface not coated).
  • the obtained laminate is cut into 5 mm ⁇ 5 mm squares, and 100 pieces are arbitrarily extracted from the cut laminate, and the temperature is raised to 400 ° C. at a heating rate of 15 ° C./min in a nitrogen atmosphere, and held for 5 hours. Then, the temperature was further raised to 1350 ° C. at a temperature rising rate of 5 ° C./min and held for 10 hours to obtain a ceramic fired body.
  • the obtained laminate is cut into 5 mm ⁇ 5 mm squares, and 100 pieces are arbitrarily extracted from the cut laminate, and the temperature is raised to 400 ° C. at a heating rate of 15 ° C./min in a nitrogen atmosphere, and held for 5 hours. Then, the temperature was further raised to 1350 ° C. at a temperature rising rate of 5 ° C./min and held for 10 hours to obtain a ceramic fired body.
  • Synthesis Example 2 Polyvinyl butyral (PVB-2) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 336 g of n-butyraldehyde was used. It was.
  • Synthesis Example 3 Polyvinyl butyral (PVB-3) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 388 g of n-butyraldehyde was used. It was.
  • Synthesis Example 4 Polyvinyl butyral (PVB-4) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 453 g of n-butyraldehyde was used. It was.
  • Polyvinyl butyral (PVB-5) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 511 g of n-butyraldehyde was used. It was.
  • Synthesis Example 6 Polyvinyl butyral (PVB-6) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 398 g of n-butyraldehyde was used. It was.
  • Synthesis Example 7 Polyvinyl butyral (PVB-7) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 405 g of n-butyraldehyde was used. It was.
  • Synthesis Example 8 Polyvinyl butyral (PVB-8) was obtained in the same manner as in Synthesis Example 1 except that PVA having the polymerization degree and saponification degree shown in Table 1 was used instead of PVA-1 and 399 g of n-butyraldehyde was used. It was.
  • Ceramic green sheets GS-2 to GS-8 were produced in the same manner as in Production Example 1 except that PVB-2 to PVB-8 were used instead of PVB-1.
  • Ceramic green sheets GS-9 to GS-14 were prepared in the same manner as in Production Example 1, except that the organic compounds shown in Table 2-1 were used instead of bis (2-butoxyethyl) adipate, respectively. .
  • a conductive paste (slurry composition) was obtained by adding several parts and passing through a three-roll several times.
  • the composition ratio in the conductive paste was adjusted so that the binder resin (A) was 3% by mass, the nickel powder was 50% by mass, the barium titanate was 10% by mass, and the others were organic solvents.
  • the solubility parameter of ethyl cellulose (manufactured by Dow Chemical Co., Ltd., STD-45) was calculated according to the method described in the evaluation method “2. Determination of solubility parameter”, 10.3 (J / cm 3 ) 1 / 2 .
  • the green sheet GS-1 obtained in Production Example 1 was cut into a square having a size of 10 cm ⁇ 10 cm, and atmospheric pressure plasma was applied according to the method described in the evaluation method “4-1. Adhesion evaluation of ceramic green sheet”. Treated.
  • the above-mentioned conductive paste is screen-printed on the surface that has been subjected to the atmospheric pressure plasma treatment using a screen printer (DP-320 manufactured by Neurong Seimitsu Kogyo Co., Ltd.) and dried at 120 ° C. for 1 hour to obtain a 10 mm square paste.
  • a coated sheet TS-1 was obtained by forming a dry film of a conductive paste having a distance (margin) of 2.5 mm and a film thickness of 2 ⁇ m.
  • a conductive paste (slurry composition) was produced in the same manner as in Production Example 1 except that the composition (4) obtained here was used instead of the composition (3). Next, using the obtained conductive paste, coating was performed in the same manner as in Production Example 1 except that coating was performed on GS-D to obtain a coated sheet TS-2.
  • ) were evaluated as described above.
  • Each solubility parameter was measured according to the method described in the method “2. Determination of solubility parameter”. Table 4 shows the measurement results.
  • Example 2 For each of the green sheets GS-1 to GS-22, the storage stability of the ceramic slurry before the production of the green sheet, the crack evaluation of the green sheet, the dimensional stability when the green sheet is pressed, the adhesion of the green sheet The delamination of the fired body obtained using the green sheet was evaluated according to the method described in the evaluation method. The evaluation results are shown in Table 5.
  • Example 23 Evaluation was performed in the same manner as in Example 1 except that the adhesion evaluation at the time of pressure bonding was performed without performing atmospheric pressure plasma treatment on GS-1. The evaluation results are shown in Table 5.
  • Example 24 In the same manner as in Example 1 except that the coated sheet TS-1 subjected to the atmospheric pressure plasma treatment on the surface coated with the conductive paste and the coated sheet TS-1 not subjected to the atmospheric pressure plasma treatment were laminated. A thermocompression test was performed to evaluate the adhesion. At this time, lamination was performed so that the surface treated with the atmospheric pressure plasma was in contact with the surface of the other coated sheet TS-1 that was not treated with the atmospheric pressure plasma (the surface not coated with the conductive paste). Further, the obtained laminate TS-1 was evaluated for crack evaluation, dimensional stability, and delamination of the fired body by the same method as in Example 1. The evaluation results are shown in Table 5.
  • Example 25 to 27 For coated sheets TS-2 to TS-4, slurry storage stability of the conductive paste, crack evaluation of the coated sheet, dimensional stability when the coated sheet is pressed, adhesiveness of the coated sheet, and About the delamination of the sintered body obtained using a coating sheet, it evaluated in accordance with the method described in the said evaluation method. Table 7 shows the evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、高い分散性および保存安定性を示すと同時に、乾燥後にクラック発生を抑制することができるスラリー組成物、ならびに該スラリー組成物を用いて製造されるセラミックグリーンシートおよび塗工シートを提供すること;スラリー組成物を用いてセラミックグリーンシートまたは塗工シートを作製した場合に、該セラミックグリーンシートの圧着時の接着性に優れるスラリー組成物を提供すること;該シートを積層させ焼成体を作製した場合に、デラミネーションが生じ難いセラミックグリーンシートまたは塗工シートを提供すること;およびスラリー組成物の乾燥後にクラックの発生を抑制できるスラリー組成物を提供することを目的とする。 本発明は、分子内に水酸基を有するバインダー樹脂(A)、下記一般式(1):で表される有機化合物(B)、有機溶剤(C)および無機化合物(D)を含有してなるスラリー組成物であって、バインダー樹脂(A)と有機化合物(B)との溶解度パラメーターの差|ΔSP|が2.1(J/cm1/2以下である、スラリー組成物に関する。

Description

スラリー組成物、セラミックグリーンシートおよび塗工シート
 本特許出願は日本国特許出願第2017-011534号(出願日:2017年1月25日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、特定のバインダー樹脂、特定の有機化合物、有機溶剤および無機化合物を含んでなるスラリー組成物に関する。また、本発明は、かかるスラリー組成物から得られるセラミックグリーンシートおよび塗工シートにも関する。
 ポリビニルアセタールは、強靭なフィルムを与え得ること、親水性のヒドロキシ基と疎水性のアセタール基を併せ持つユニークな構造を有することなどから、ポリビニルホルマールやポリビニルブチラールなど種々の樹脂が提案されている。
 中でも、ポリビニルブチラールは、セラミック成形用のバインダー、各種バインダーやフィルム等として広く用いられている。
 セラミック成形用のバインダーは、例えば、積層セラミックコンデンサやICチップの回路基板を製造する過程において、好適に使用される。積層セラミックコンデンサやICチップの回路基板は、セラミックグリーンシートに電極層を形成し、これを積み重ねて仮圧着し、本圧着をした後、電極とセラミックとを同時に焼成する方法などによって製造される。
 セラミック成形用のバインダーに要求される性能としては、分散性や保存安定性に優れたセラミックスラリーが得られること、焼成後に炭素残渣の量が少ないこと、熱圧着時の接着性に優れていることなどが挙げられる。セラミックスラリーの分散性や保存安定性が不十分である場合、得られるセラミックグリーンシートの密度、平滑性等が不十分になり、セラミックグリーンシート間の接着性が悪化することがある。焼成後のセラミック成形品中において炭素残渣の量が多い場合、セラミック成形品の電気特性等が不十分になることがある。
 また、ポリビニルアセタールは、積層セラミックコンデンサ等の製造に用いられる導電ペースト用のバインダーとしても用いられている。この電極層の形成工程には、セラミックグリーンシートに電極層を印刷する方法により電極層を直接形成する方法と、電極層を印刷等によりキャリアフィルム上に形成し、キャリアフィルムからセラミックグリーンシートに電極層を熱プレスにより転写する方法がある。
 積層セラミックコンデンサは、酸化チタンやチタン酸バリウムなどの誘電体と内部電極とを多層に積み重ねたチップタイプのセラミックコンデンサである。このような積層セラミックコンデンサは、例えばセラミックグリーンシートの表面に内部電極となる導電ペーストをスクリーン印刷等により塗布したものを複数枚積み重ね、加熱圧着して積層体を得た後、該積層体を加熱してバインダーを分解除去(脱脂)し、焼成することにより製造できる。
 近年、電子機器の多機能化や小型化に伴い、積層セラミックコンデンサには大容量化および小型化が求められている。これらの要求に応えるために、セラミックグリーンシートを薄膜化する試みや積層セラミックコンデンサの層をさらに多層化する試みがなされている。例えば、積層セラミックコンデンサの薄膜化のために、セラミックグリーンシートに用いられるセラミック粉体として0.5μm以下の微細な粒子径のものが用いられる。
 しかしながら、薄膜化のために微細な粒子径のセラミック粉体を用いると、セラミック粉体の充填密度や表面積が増加するため、使用すべきバインダーの樹脂量が増加し、これに伴って、セラミックグリーンシート用スラリー組成物の粘度も増大する。その結果、塗工が困難となったり、セラミック粉体自体の分散不良が発生したりすることがある。また、スラリーとしたときの保存安定性についても十分でない場合がある。
 積層セラミックコンデンサを大容量化、または容量を保ったまま小型化するためには、セラミックグリーンシートの薄膜化に加え、その多層化の試みもなされている。積層セラミックコンデンサは、セラミックグリーンシート上に電極層を形成し、電極層が形成されたセラミックグリーンシートや電極層が形成されていないセラミックグリーンシートを積層して、複合積層体とすることにより得られる。
 しかし、積層セラミックコンデンサを作製する際に、セラミックグリーンシートを仮圧着する工程において、圧着を強くするとセラミックグリーンシートや電極層に変形が生じ、積層セラミック部品に求められる高精度化が困難であった。一方で、圧着を弱くすると、従来の製造方法では、セラミックグリーンシート同士もしくはセラミックグリーンシートと電極層の接着力が弱く、上下のセラミックグリーンシートあるいはセラミックグリーンシートと電極層が密着しないことがあった。このような密着不良が発生してしまうと、接着面の位置ずれによる切断不良、セラミック積層体を焼成した後にデラミネーションと呼ばれる層間剥離等の欠陥が生じ、部品の信頼性が低下してしまう問題があった。また、セラミックグリーンシートの薄膜を多層に積層する場合、脱脂時に樹脂の分解が一気に進み、デラミネーションが生じることもあり得る。
 上記のとおり、電極層の形成工程には、セラミックグリーンシートに電極層を印刷する方法により直接形成する方法と、電極層を印刷等によりキャリアフィルム上に形成し、キャリアフィルムからセラミックグリーンシートに電極層を熱プレスにより転写する場合がある。
 キャリアフィルムからセラミックグリーンシートに電極層をプレスし、転写する工程においても、圧着を強くすると電極層に変形が生じ、積層セラミック部品に求められる高精度化が実現できない。一方、圧着を弱くすると、従来の製造方法では、セラミックグリーンシートと電極層の接着力が弱く、電極層とセラミックグリーンシートが密着しない。このような密着不良が発生してしまうと、電極層を形成できないばかりか、セラミック積層体を焼成した後に欠陥が生じることがあり、部品の信頼性が低下してしまう問題がある。
 上記の課題を解決する試みとして、例えば特許文献1には、フタル酸系可塑剤およびグリコール系可塑剤および/またはアミノアルコール系可塑剤を含有するセラミックスラリーを用いることで、スラリーの調製作業性、熱圧着時の接着性に優れ、機械強度に優れたセラミックグリーンシートを得られることが記載されている。特許文献2には、可塑化効果が高く、適度な揮発性を含有するセラミックペーストが記載されている。
 特許文献3には、セラミック粉体と有機バインダーを必須成分として含む複数のセラミックグリーンシートを準備する工程と、前記複数のセラミックグリーンシートのうち少なくとも一部のセラミックグリーンシートの表面に電極層を形成する工程と、前記複数のセラミックグリーンシートを積層し焼成する工程とを含む積層セラミック部品の製造方法であって、前記複数のセラミックグリーンシートを積層してなる積層体表面にオゾンによる表面処理を施した後、表面処理をした面にセラミックグリーンシートを積層する製造方法が記載されている。
 特許文献4には、(メタ)アクリル酸エステル類を主成分とする重合性モノマーを、ポリビニルアセタール樹脂が分散されている水性媒体に添加してポリビニルアセタール樹脂中に浸透させた後、重合させることにより得られるポリビニルアセタール・(メタ)アクリル酸エステル複合樹脂を含有する導電ペースト用バインダー樹脂が記載されている。
特開2001-106580号公報 特開2006-027990号公報 特開2003-95750号公報 特開2005-15654号公報
 しかしながら、特許文献1および2には特定の可塑剤の組み合わせや、特定の可塑剤と熱可塑性樹脂の組み合わせによる組成物からなるセラミックグリーンシート、セラミックペーストが記載されているが、これらの特許文献にはセラミックグリーンシートの接着性あるいは機械強度の向上の記載はあるものの、スラリーやペーストの保存安定性、並びにコンデンサの品質においては未だ不十分な点があった。
 特許文献3にはセラミックグリーンシート表面にオゾンによる表面処理を施し、接着性を向上させる製造方法が記載されているが、導電ペーストの保存安定性を向上させるべきことや、炭素残渣の量を少なくして成型品の品質を向上させるべきことの言及はない。導電ペーストの保存安定性が不十分である場合は、セラミックグリーンシートの表面に導電ペーストを印刷する際の印刷適正が劣り、印刷表面の平滑性が悪くなり、炭素残渣の量が多い場合は、焼成体の電気特性等が不十分になることがある。
 特許文献4に記載の導電ペースト用バインダー樹脂を用いた導電ペーストは、保存安定性が不十分であった。
 さらに、スラリー組成物を乾燥してセラミックグリーンシートや導電ペーストを形成する際に、シート表面にクラックが生じることがあり、こうしたクラックは、外観上の問題となるだけでなく、積層セラミックコンデンサとしての性能上に問題を引き起こし得る。
 そこで、本発明は、高い分散性および保存安定性を示すスラリー組成物、ならびに該スラリー組成物を用いて製造されるセラミックグリーンシートおよび塗工シートを提供することを目的とする。
 また、本発明の別の目的は、スラリー組成物を用いてセラミックグリーンシートまたは塗工シートを作製した場合に、該セラミックグリーンシートの圧着時の接着性に優れるスラリー組成物を提供すること、該シートを積層させ焼成体を作製した場合に、デラミネーションが生じ難いセラミックグリーンシートまたは塗工シートを提供すること、およびスラリー組成物の乾燥後にクラックの発生を抑制できるスラリー組成物を提供することである。
 本発明は、以下の好適な態様を包含する。
[1]分子内に水酸基を有するバインダー樹脂(A)、下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
[式中、
およびRは、それぞれ独立して、エーテル結合を少なくとも一つ有する有機基を表し、
は、炭素数1~20の分岐を有してもよいアルキレン基を表し、
は、炭素数1~4の分岐を有してもよいアルキレン基を表し、
mは0~5の整数を表す]
で表される有機化合物(B)、有機溶剤(C)および無機化合物(D)を含有してなるスラリー組成物であって、
 バインダー樹脂(A)と有機化合物(B)との溶解度パラメーターの差|ΔSP|が2.1(J/cm1/2以下である、スラリー組成物。
[2]バインダー樹脂(A)100質量部に対して、有機化合物(B)を1~60質量部含有する、前記[1]に記載のスラリー組成物。
[3]バインダー樹脂(A)は、ポリビニルアセタール、エチルセルロース、および水酸基を有する(メタ)アクリル樹脂からなる群から選ばれる少なくとも1種を含む、前記[1]または[2]に記載のスラリー組成物。
[4]バインダー樹脂(A)はポリビニルアセタールを含み、
 該ポリビニルアセタールは、アセタール化度が50~85モル%であり、ビニルエステル単量体単位の含有量が0.1~20モル%であり、粘度平均重合度が200~5000である、前記[1]~[3]のいずれかに記載のスラリー組成物。
[5]無機化合物(D)はセラミック粉体である、前記[1]~[4]のいずれかに記載のスラリー組成物。
[6]セラミック粉体100質量部に対して、有機溶剤(C)を2~200質量部含有する、前記[5]に記載のスラリー組成物。
[7]少なくとも1層の、前記[5]または[6]に記載のスラリー組成物の乾燥膜からなるセラミックグリーンシート。
[8]無機化合物(D)は導電粉末である、前記[1]~[4]のいずれかに記載のスラリー組成物。
[9]導電粉末100質量部に対して、バインダー樹脂(A)を1~50質量部含有する、前記[8]に記載のスラリー組成物。
[10]導電粉末100質量部に対して、有機溶剤(C)を5~600質量部含有する、前記[8]または[9]に記載のスラリー組成物。
[11]前記[7]に記載のセラミックグリーンシートの少なくとも一方の面に、少なくとも1層の導電ペーストの乾燥膜が配置されてなる塗工シート。
[12]少なくとも1層の、請求項8~10のいずれかに記載のスラリー組成物の乾燥膜が、セラミックグリーンシートの少なくとも一方の面に配置されてなる塗工シート。
 本発明によれば、高い分散性および保存安定性を示すスラリー組成物、ならびに該スラリー組成物を用いて製造されるセラミックグリーンシートおよび塗工シートを提供することができる。
 また、スラリー組成物を用いてセラミックグリーンシートまたは塗工シートを作製した場合に、該セラミックグリーンシートの圧着時の接着性に優れるスラリー組成物を提供できる。さらに、該シートを積層させて焼成体を作製した場合に、デラミネーションが生じ難いセラミックグリーンシートまたは塗工シートを提供できる。
 さらに、本発明の一実施態様であるスラリー組成物を用いてセラミックグリーンシートや塗工シートを作製する場合、該スラリー組成物の乾燥後にクラックの発生を抑制することができる。
[スラリー組成物]
 本発明の一実施態様であるスラリー組成物は、分子内に水酸基を有するバインダー樹脂(A)、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、
およびRは、それぞれ独立して、エーテル結合を少なくとも一つ有する有機基を表し、
は、炭素数1~20の分岐を有してもよいアルキレン基を表し、
は、炭素数1~4の分岐を有してもよいアルキレン基を表し、
mは0~5の整数を表す]
で表される有機化合物(B)、有機溶剤(C)および無機化合物(D)を含有してなるスラリー組成物であって、バインダー樹脂(A)と有機化合物(B)との溶解度パラメーター(SP値)の差|ΔSP|が2.1(J/cm1/2以下である。
[分子内に水酸基を有するバインダー樹脂(A)]
 分子内に水酸基を有するバインダー樹脂(A)(以下「バインダー樹脂(A)」と略称する場合がある)としては、例えば、メチルセルロース、エチルヒドロキシエチルセルロース等のセルロース系樹脂;ポリビニルアセタール、ポリビニルアルコール、水酸基を有する(メタ)アクリル樹脂、ポリアクリル酸、ポリアルキレンオキサイド、エチルセルロース、およびその混合物などが挙げられる。中でも、スラリー組成物における無機化合物の分散性、ならびにセラミックグリーンシートや塗工シートの柔軟性および接着性の点で、バインダー樹脂(A)は、ポリビニルアセタール、エチルセルロース、および水酸基を有する(メタ)アクリル樹脂からなる群から選択される少なくとも1種を含むことが好ましく、ポリビニルアセタール、エチルセルロース、または水酸基を有する(メタ)アクリル樹脂であることがより好ましく、ポリビニルアセタールを含むことがさらに好ましく、ポリビニルアセタールであることが特に好ましい。ポリビニルアセタールの中では、ポリビニルブチラールが好ましい。
 バインダー樹脂(A)の溶解度パラメーター(SP値)は、好ましくは9.0(J/cm1/2以上、より好ましくは9.5(J/cm1/2以上、さらに好ましくは10.0(J/cm1/2以上であり、好ましくは12.0(J/cm1/2以下、より好ましくは11.5(J/cm1/2以下、さらに好ましくは11.0(J/cm1/2以下である。バインダー樹脂(A)のSP値が上記範囲内であると、使用し得る溶剤の範囲が広がり、また溶解不良による未溶解物の問題が低減する可能性がある。なお、バインダー樹脂(A)のSP値は、例えば樹脂の種類によって調節することができる。バインダー樹脂(A)として後述するポリビニルアセタールを用いる場合、ポリビニルアセタールのSP値を制御する手段としては、例えば後述するアセタール化度、ビニルエステル単量体単位・ビニルアルコール単量体単位・アセタール化された単量体単位の割合等を調整することが挙げられる。バインダー樹脂(A)として後述するセルロース系樹脂または水酸基を有する(メタ)アクリル樹脂を用いる場合、例えば側鎖のヒドロキシ基の量等を調整することによりSP値を制御することができる。なお、バインダー樹脂(A)のSP値は、後述する方法により測定することができる。
(ポリビニルアセタール)
 バインダー樹脂(A)がポリビニルアセタールを含む場合、バインダー樹脂(A)中のポリビニルアセタールの含有量は5質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましく、100質量%であることが最も好ましい。なお、バインダー樹脂(A)がポリビニルアセタールを含む場合、バインダー樹脂(A)中のポリビニルアセタールの含有量は通常100質量%以下である。
 前記ポリビニルアセタールのアセタール化度は、スラリー組成物の保存安定性の観点から、好ましくは50モル%以上、より好ましくは55モル%以上、さらに好ましくは60モル%以上、さらにより好ましくは65モル%以上であり、好ましくは85モル%以下、より好ましくは82モル%以下、さらに好ましくは78モル%以下、さらにより好ましくは75モル%以下である。
 前記ポリビニルアセタールは、ビニルエステル単量体単位、ビニルアルコール単量体単位、およびアセタール化された単量体単位を含んでなる。前記ポリビニルアセタールのビニルエステル単量体単位の含有量は、製造上の観点から、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、さらに好ましくは0.5モル%以上、さらにより好ましくは0.7モル%以上であり、好ましくは20モル%以下、より好ましくは18モル%以下、さらに好ましくは15モル%以下、さらにより好ましくは13モル%以下である。
 前記ポリビニルアセタールのビニルアルコール単量体単位の含有量は、製造上の観点から、好ましくは15モル%以上、より好ましくは25モル%以上であり、好ましくは50モル%以下、より好ましくは40モル%以下、さらに好ましくは35モル%以下である。なお、原料のPVA中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。
 前記ポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位およびビニルアルコール単量体単位以外の単量体単位の含有量は、20モル%以下であることが好ましく、10モル%以下であることがより好ましい。なお、前記ポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位およびビニルアルコール単量体単位以外の単量体単位の含有量は、通常0モル%以上である。
 前記ポリビニルアセタールの粘度平均重合度は200以上であることが好ましく、300以上であることがより好ましく、500以上であることがさらに好ましく、800以上であることが特に好ましい。一方で、5000以下であることが好ましく、4500以下であることがより好ましく、4000以下であることがさらに好ましく、3500以下であることが特に好ましい。なお、バインダー樹脂(A)に含有されるポリビニルアセタールの粘度平均重合度は、JIS K 6726:1994に準拠して測定される原料のポリビニルアルコール(以後「PVA」と略記する場合がある)の粘度平均重合度で表される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](l/g)から、数式(I):
   P=([η]×10000/8.29)(1/0.62)    (I)
により求めることができる。PVAの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
 バインダー樹脂(A)がポリビニルアルコールを含む場合、このポリビニルアセタールのアセタール化度、ビニルエステル単量体単位の含有量および粘度平均重合度が、同時に上記範囲内であることが好ましい。すなわち、バインダー樹脂(A)がポリビニルアルコールを含む場合、このポリビニルアセタールは、例えば、アセタール化度が50~85モル%であり、ビニルエステル単量体単位の含有量が0.1~20モル%であり、粘度平均重合度が200~5000であることが好ましい。この場合、高い分散性および保存安定性を示すと同時に、乾燥後にクラックの発生を抑制することができるスラリー組成物を得ることができる。
(ポリビニルアセタールの製造方法)
 前記ポリビニルアセタールは、通常、PVAをアセタール化することにより製造することができる。
 原料のPVAのけん化度は、製造上の観点から、好ましくは80モル%以上、より好ましくは82モル%以上、さらに好ましくは85モル%以上、さらにより好ましくは87モル%以上であり、好ましくは99.9モル%以下、より好ましくは99.7モル%以下、さらに好ましくは99.5モル%以下、さらにより好ましくは99.3モル%以下である。原料のPVAのけん化度が99.9モル%を超える場合、PVAを安定に製造することができない場合がある。なお、PVAのけん化度はJIS K 6726:1994に準拠して測定される。
 原料のPVAは、従来公知の手法、すなわちビニルエステル系単量体を重合し、得られた重合体をけん化することによって得ることができる。ビニルエステル系単量体を重合する方法としては、溶液重合法、塊状重合法、懸濁重合法および乳化重合法等の従来公知の方法を適用することができる。重合開始剤としては、重合方法に応じて、アゾ系開始剤、過酸化物系開始剤、またはレドックス系開始剤等が適宜選ばれる。けん化反応は、従来公知のアルカリ触媒または酸触媒を用いる加アルコール分解、加水分解等が適用でき、この中でもメタノールを溶剤とし苛性ソーダ(NaOH)触媒を用いるけん化反応が簡便であり最も好ましい。
 前記ビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、および安息香酸ビニル等が挙げられるが、とりわけ酢酸ビニルが好ましい。
 また、前記ビニルエステル系単量体を重合する際、本発明の趣旨を損なわない範囲で他の単量体と共重合させることもできる。したがって、本発明におけるポリビニルアルコールは、ビニルアルコール単位と他の単量体単位とから構成される重合体も含む概念である。他の単量体の例としては、例えば、エチレン、プロピレン、n-ブテン、i-ブテン等のα-オレフィン;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその酸塩または4級塩、N-メチロールアクリルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその酸塩または4級塩、N-メチロールメタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸およびその塩、エステルまたは無水物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。これらの単量体は通常ビニルエステル系単量体に対して10モル%未満の割合で用いることができる。
 他の単量体単位がα-オレフィン単位である場合、その含有量は、好ましくは1モル%以上、好ましくは20モル%以下である。α-オレフィン単位の含有量が1モル%以上であると、上記α-オレフィンを含有する効果が十分となり、20モル%以下であると、疎水性が過度に増加しないため、ポリビニルアルコールの溶解性が良好であり、アセタール化反応をスムーズに行うことができ、さらに無機化合物(D)、特にセラミック粉体の分散性が高くなる傾向にある。
 本発明において、アセタール化反応に用いる酸触媒は特に限定されず、有機酸および無機酸のいずれも使用可能である。例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、および硝酸が好ましく用いられる。特に塩酸が好ましい。また、一般に、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向があることを考慮して使用することが好ましい。
 アセタール化反応に用いるアルデヒドは特に限定されないが、炭化水素基を有する公知のアルデヒドが挙げられる。該炭化水素基を有するアルデヒドは、脂肪族アルデヒドとしては、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、ヘキシルアルデヒド、2-エチルブチルアルデヒド、ピバルアルデヒド、オクチルアルデヒド、2-エチルヘキシルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ドデシルアルデヒド等が、脂環族アルデヒドとしては、シクロペンタンアルデヒド、メチルシクロペンタンアルデヒド、ジメチルシクロペンタンアルデヒド、シクロヘキサンアルデヒド、メチルシクロヘキサンアルデヒド、ジメチルシクロヘキサンアルデヒド、シクロヘキサンアセトアルデヒド等が、環式不飽和アルデヒドとしては、シクロペンテンアルデヒド、シクロヘキセンアルデヒド等が、芳香族または不飽和結合含有アルデヒドとしては、ベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、メトキシベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、クミンアルデヒド、ナフチルアルデヒド、アントラアルデヒド、シンナムアルデヒド、クロトンアルデヒド、アクロレインアルデヒド、7-オクテン-1-アール等が、複素環アルデヒドとしては、フルフラールアルデヒド、メチルフルフラールアルデヒド等が挙げられる。これらのアルデヒドの中で、炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましく用いられる。本発明において、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。
 アセタール化反応に用いるアルデヒドとして、炭化水素系以外のアルデヒドも用いることができる。例えば、アミノ基、エステル基、カルボニル基、およびビニル基からなる群から選ばれる官能基を有するアルデヒドを用いてもよい。
 アミノ基を官能基として有するアルデヒドとしては、アミノアセトアルデヒド、ジメチルアミノアセトアルデヒド、ジエチルアミノアセトアルデヒド、アミノプロピオンアルデヒド、ジメチルアミノプロピオンアルデヒド、アミノブチルアルデヒド、アミノペンチルアルデヒド、アミノベンズアルデヒド、ジメチルアミノベンズアルデヒド、エチルメチルアミノベンズアルデヒド、ジエチルアミノベンズアルデヒド、ピロリジルアセトアルデヒド、ピペリジルアセトアルデヒド、ピリジルアセトアルデヒドなどが挙げられ、アミノブチルアルデヒドが生産性の観点から好ましい。
 エステル基を官能基として有するアルデヒドとしては、グリオキシル酸メチル、グリオキシル酸エチル、ホルミル酢酸メチル、ホルミル酢酸エチル、3-ホルミルプロピオン酸メチル、3-ホルミルプロピオン酸エチル、5-ホルミルペンタン酸メチル、5-ホルミルペンタン酸エチルなどが挙げられる。
 カルボニル基を官能基として有するアルデヒドとしては、グリオキシル酸およびその金属塩またはアンモニウム塩、2-ホルミル酢酸およびその金属塩またはアンモニウム塩、3-ホルミルプロピオン酸およびその金属塩またはアンモニウム塩、5-ホルミルペンタン酸およびその金属塩またはアンモニウム塩、4-ホルミルフェノキシ酢酸およびその金属塩またはアンモニウム塩、2-カルボキシベンズアルデヒドおよびその金属塩またはアンモニウム塩、4-カルボキシベンズアルデヒドおよびその金属塩またはアンモニウム塩、2,4-ジカルボキシベンズアルデヒドおよびその金属塩またはアンモニウム塩などが挙げられる。
 ビニル基を官能基として有するアルデヒドとしてはアクロレイン等が挙げられる。
 また、本発明の特性を損なわない範囲で、複素環アルデヒド、アミド基を有するアルデヒド、水酸基を有するアルデヒド、スルホン酸基を有するアルデヒド、リン酸基を有するアルデヒド、シアノ基、ニトロ基または4級アンモニウム塩などを有するアルデヒド、ハロゲン原子を有するアルデヒドなどを使用してもよい。
(水酸基を有する(メタ)アクリル樹脂)
 バインダー樹脂(A)として水酸基を有する(メタ)アクリル樹脂を用いる場合、例えば、水酸基を有する(メタ)アクリル樹脂として、水酸基を有する(メタ)アクリルモノマーと水酸基を有さない(メタ)アクリルモノマーとの共重合体を用いることができる。
 水酸基を有する(メタ)アクリルモノマーとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2,3-ジヒドロキシプロピルアクリレート、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、ポリエチレングリコール-ポリプロピレングリコールモノアクリレート、ポリエチレングリコール-ポリテトラメチレングリコールモノアクリレート、ポリプロピレングリコール-ポリテトラメチレングリコールモノアクリレート等のアクリレート;2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、2,3-ジヒドロキシプロピルメタクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコール-ポリプロピレングリコールモノメタクリレート、ポリエチレングリコール-ポリテトラメチレングリコールモノメタクリレート、ポリプロピレングリコール-ポリテトラメチレングリコールモノメタクリレート等のメタクリレートが挙げられる。中でも焼成性の面から水酸基を有するメタクリレートが好ましく、具体的には、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノメタクリレートが好ましい。
 また、水酸基を有さない(メタ)アクリルモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、イソデシルアクリレート、イソボロニルアクリレート、テトラヒドロフリルアクリレート等のアクリレート;エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、イソデシルメタクリレート、イソボロニルメタクリレート、テトラヒドロフリルメタクリレート等のメタクリレートが挙げられる。中でも焼成性の面からメタクリレートであることが好ましく、具体的には、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレートが好ましい。
 上記水酸基を有する(メタ)アクリル樹脂中の水酸基を有する(メタ)アクリルモノマーに由来するセグメントの含有量は30質量%以下であることが好ましく、20質量%以下であることがさらに好ましい。水酸基を有する(メタ)アクリルモノマーに由来するセグメントの含有量が上記上限値以下であると、焼成後の残留炭素の量を低くすることができる。水酸基を有する(メタ)アクリルモノマーに由来するセグメントの含有量は1質量%以上であることが好ましい。水酸基を有する(メタ)アクリルモノマーに由来するセグメントの含有量が1質量%以上であると、バインダー樹脂(A)として、ポリビニルアセタールとともに用いた場合に、ポリビニルアセタールとの相溶性が良好であり、乾燥後のクラック発生を抑制することができる。
(その他)
 バインダー樹脂(A)は、1種を単独で用いてもよいし、2種以上を併用して用いてもよい。2種以上を併用する場合、ポリビニルアセタールとその他のバインダー樹脂(A)との混合物などを用いることができる。ポリビニルアセタールとその他のバインダー樹脂(A)とを混合する場合は、例えば、ポリビニルアセタールとその他のバインダー樹脂(A)との質量比([ポリビニルアセタールの質量]/[その他のバインダー樹脂(A)の質量])は、接着性およびスラリーの安定性の観点から、好ましくは5/95~95/5、より好ましくは10/90~90/10である。その他のバインダー樹脂(A)としては、印刷特性の観点から、エチルセルロースまたは水酸基を有する(メタ)アクリル樹脂が好ましく、エチルセルロースがより好ましい。ポリビニルアセタールとエチルセルロースを混合する場合、ポリビニルアセタールとエチルセルロースの質量比は、上記と同様の観点から、好ましくは5/95~95/5、より好ましくは10/90~90/10である。
 本発明の一実施態様において、スラリー組成物は、本発明の効果を損なわない範囲内で、バインダー樹脂(A)の他に、分子内に水酸基を有さないバインダー樹脂を含有してもよい。分子内に水酸基を有さないバインダー樹脂としては、例えば、ポリN-ビニルアセトアミド等が挙げられる。スラリー組成物が分子内に水酸基を有さないバインダー樹脂を含む場合、その割合はバインダー樹脂(A)100質量部に対して0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましい。また、スラリー組成物が分子内に水酸基を有さないバインダー樹脂を含む場合、分子内に水酸基を有さないバインダー樹脂の割合は、バインダー樹脂(A)100質量部に対して80質量部以下であることが好ましく、50質量部以下であることがより好ましい。
[有機化合物(B)]
 本発明の一実施態様であるスラリー組成物は、以下の一般式(1):
Figure JPOXMLDOC01-appb-C000004
で示される有機化合物(B)を含有する。
 一般式(1)中のRは、炭素数1~20の分岐を有してもよいアルキレン基を表す。Rの炭素数は、好ましくは15以下、より好ましくは10以下、さらに好ましくは8以下であり、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上である。Rは、炭素数1~4の分岐を有してもよいアルキレン基を表す。Rの炭素数は、好ましくは3以下、より好ましくは2以下である。Rの炭素数は通常1以上である。Rおよび/またはRの炭素数が上記範囲内であると、有機化合物(B)とバインダー樹脂(A)との相溶性が良好であり、スラリー組成物の保存安定性、セラミックグリーンシートや塗工シートの接着性が向上する傾向にあり、さらにスラリー組成物の乾燥後に得られるシート表面のクラック発生を更に抑制することができる。RおよびRは直鎖構造であってもよく、分岐を有していてもよいが、乾燥後のクラック発生の抑制の観点から、RおよびRはそれぞれ独立して直鎖構造であることが好ましい。
 一般式(1)中のmは0~5の整数である。mは0~2の整数であることが好ましく、0または1であることがより好ましく、0であることがさらに好ましい。mが上記範囲内であると、有機化合物(B)の沸点が高くなり過ぎず、焼成時のデラミネーションの発生を抑制することができる。
 一般式(1)中のRおよびRは、それぞれ独立して、エーテル結合を少なくとも一つ有する有機基である。RおよびRは、それぞれ独立して、複数のエーテル結合を有していてもよい。RおよびRは、それぞれ独立してエーテル結合を少なくとも一つ有する炭化水素基であることが好ましい。RおよびRは異なるものであってもよく、同一であってもよい。RおよびRはそれぞれ、一般式(2):
Figure JPOXMLDOC01-appb-C000005
で示されるエーテル結合を少なくとも一つ有する有機基であることが、バインダー樹脂(A)との相溶性およびクラック発生の抑制の観点から好ましい。
 一般式(2)において、Rは、炭素数1~10の分岐を有してもよいアルキル基を表す。Rの炭素数は、8以下であることが好ましく、6以下であることがより好ましく、4以下であることがさらに好ましい。Rの炭素数が上記範囲内であると、有機化合物(B)とバインダー樹脂(A)との相溶性が良好であり、スラリー組成物の保存安定性、セラミックグリーンシートの接着性が向上する傾向にあり、さらに乾燥後のクラック発生を抑制することができる。
 一般式(2)において、Rは、炭素数1~10の分岐を有してもよいアルキレン基を表す。Rの炭素数は、8以下であることが好ましく、6以下であることがより好ましく、4以下であることがさらに好ましい。Rの炭素数が上記範囲内であると、有機化合物(B)とバインダー樹脂(A)との相溶性が良好であり、スラリー組成物の保存安定性、セラミックグリーンシートの接着性が向上する傾向にあり、さらに乾燥後のクラック発生を抑制することができる。
 一般式(2)において、Rは、炭素数1~4の分岐を有してもよいアルキレン基を表す。乾燥後のクラック発生の抑制の観点から、Rの炭素数は、3以下であることが好ましく、2以下であることがより好ましい。RおよびRは、それぞれ独立して、直鎖構造であってもよく、分岐を有していてもよい。乾燥後のクラック発生の抑制の観点から、RおよびRは直鎖構造であることが好ましい。複数のRは同一であっても、異なっていてもよい。
 nは0~2の整数である。nは0または1が好ましく、0であることがより好ましい。nが上記範囲を超えると、有機化合物(B)の沸点が高くなり、焼成時のデラミネーションの原因となることがある。
 有機化合物(B)の溶解度パラメーター(SP値)は、好ましくは7(J/cm1/2以上、より好ましくは7.5(J/cm1/2以上、さらに好ましくは8(J/cm1/2以上、特に好ましくは8.5(J/cm1/2以上であり、好ましくは12(J/cm1/2以下、より好ましくは11(J/cm1/2以下、さらに好ましくは10.5(J/cm1/2以下、特に好ましくは10(J/cm1/2以下である。有機化合物(B)の溶解度パラメーター(SP値)が上記範囲内であると、使用する溶剤の範囲が拡がり、また溶解不良による未溶解物の問題が低減し得る。なお、有機化合物(B)のSP値は、例えば上記式(1)中のR~Rおよびmの数、ならびに場合により上記式(2)中のR~Rおよびnの数を適宜選択することにより調節することができる。有機化合物(B)のSP値は、後述する方法により測定することができる。
 本発明の一実施態様であるスラリー組成物において、バインダー樹脂(A)と有機化合物(B)との溶解度パラメーター(SP値)の差|ΔSP|は2.1(J/cm1/2以下であり、好ましくは2.0(J/cm1/2以下、より好ましくは1.7(J/cm1/2以下、さらに好ましくは1.5(J/cm1/2以下、さらにより好ましく1.5(J/cm1/2未満、特に好ましくは1.0(J/cm1/2以下である。バインダー樹脂(A)と有機化合物(B)との溶解度パラメーター(SP値)の差|ΔSP|が上記上限値以下であると、スラリー組成物の保存安定性が良好であり、また乾燥後のクラックの発生をさらに抑制することができる。なお、バインダー樹脂(A)と有機化合物(B)との溶解度パラメーター(SP値)の差|ΔSP|は、通常0(J/cm1/2以上である。
 バインダー樹脂(A)と有機化合物(B)との溶解度パラメーターの差|ΔSP|(J/cm1/2)を以下の式に従って算出することができる。
   |ΔSP|((J/cm1/2)=│(バインダー樹脂(A)のSP値)-(有機化合物(B)のSP値)│
 なお、本発明において、溶解度パラメーター(SP値)は、Fedors法に従って決定することができる(POLYMER HANDBOOK 4th edition, J.Brandrup et al(John Wiley & Sons, Inc.) 675-714)。Fedorsは、比較的簡便に溶解度パラメーターを求める推算法を提唱しており(R.F.Fedors: Polym. Eng. Sci., 14〔2〕, 147-154(1974))、具体的には、凝集エネルギー密度とモル分子容の両方が置換基の種類および数に依存していると考え、以下の(A)式とPOLYMER HANDBOOK 4th edition, J.Brandrup et al(John Wiley & Sons, Inc) 675-714のTable 3に示す定数を提案している。溶解度パラメーターは実施例に記載する方法より算出することができる。
Figure JPOXMLDOC01-appb-M000006
 有機化合物(B)の分子量は、200以上が好ましく、250以上がより好ましい。分子量が上記下限値以上であると、シート乾燥時に有機化合物(B)が揮発し難く、十分な接着性を発現することができる。また、本発明で用いられる有機化合物(B)の分子量は、500以下であることが好ましく、400以下であることがより好ましい。分子量が上記上限値以下であると、有機化合物(B)の粘度が高くなり過ぎず、樹脂との相溶性が良好であり、乾燥後のクラック発生をさらに抑制することができる。なお、有機化合物(B)の分子量は、例えば、核磁気共鳴法や赤外分光法等の分析法により化学構造式を分析することにより決定することができる。
 有機化合物(B)は、分子中に水酸基を含まない構造を有することが好ましい。有機化合物(B)に水酸基が含まれない場合、圧着時の界面での作用が向上する傾向に有り、十分な接着性を発現できる傾向にある。
 有機化合物(B)としては、例えば、アジピン酸ビス(2-ブトキシエチル)、アジピン酸ビス(2-メトキシエチル)、アジピン酸ビス(2-エトキシエチル)、アジピン酸ビス[2-(2-ブトキシエトキシ)エチル]、アジピン酸ビス(3-メトキシ-3-メチルブチル)、セバシン酸ビス(2-メトキシエチル)、ジグリコール酸ビス(2-メトキシエチル)などが挙げられる。中でも、スラリー組成物の保存安定性に優れ、乾燥後のクラック発生を抑制でき、セラミックグリーンシートの接着性に優れ、適度な強度を保持できるという点で、アジピン酸ビス(2-ブトキシエチル)、アジピン酸ビス(2-メトキシエチル)が好ましい。
 スラリー組成物における有機化合物(B)の含有量は特に限定されないが、バインダー樹脂(A)100質量部に対して1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。有機化合物(B)の含有量が上記下限値以上であると、無機化合物の分散性、スラリー組成物の保存安定性が良好であり、乾燥後のクラックの発生をさらに抑制することができる。有機化合物(B)の含有量は、60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。有機化合物(B)の含有量が上記上限値以下であると、スラリー組成物により得られるセラミックグリーンシートの強度を高くすることができ、圧着時の寸法安定性が良好である。
[有機溶剤(C)]
 本発明の一実施態様であるスラリー組成物は、有機溶剤(C)を含有する。有機溶剤(C)は、その目的や用途に応じたものを適宜用いることができ、例えば、メタノール、エタノール、イソプロパノール、n-プロパノール、およびブタノール等のアルコール;メチルセロソルブ、およびブチルセロソルブ等のセロソルブ;アセトン、およびメチルエチルケトン等のケトン;トルエン、およびキシレン等の芳香族炭化水素;ジクロロメタン、およびクロロホルム等のハロゲン系炭化水素;酢酸エチル、酢酸メチル等のエステルを用いることができる。また有機溶剤(C)としては、メンテン、メンタン、メントン、ミルセン、α-ピネン、α-テルピネン、γ-テルピネン、リモネン、ペリリルアセテート、メンチルアセテート、カルビルアセテート、ジヒドロカルビルアセテート、ペリリルアルコール、ジヒドロターピニルアセテート、ジヒドロターピネオールアセテート、ターピネオールアセテート、ジヒドロターピネオール、ターピニルオキシエタノール、ジヒドロターピニルオキシエタノール、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル、ジヒドロターピニルプロピオネート、イソボニルアセテート、イソボニルプロピオネート、イソボニルブチレート、イソボニルイソブチレート、ノビルアセテート、オクチルアセテート、ジメチルオクチルアセテート、ブチルカルビトールアセテート、アセトキシ-メトキシエトキシ-シクロヘキサノールアセテート、ジヒドロカルベオール、2-エチルヘキシルグリコール、ベンジルグリコール、フェニルプロピレングリコール、メチルデカリン、アミルベンゼン、クメン、シメン、1,1-ジイソプロピルヘキサン、シトロネロール等が挙げられる。これらは単独、または2種類以上を併用して適宜用いることができる。
[無機化合物(D)]
 本発明の一実施態様であるスラリー組成物に含まれる無機化合物(D)は特に限定されないが、その目的や用途に応じて、例えば、セラミック粉体、導電粉末、ガラス粉末、蛍光体微粒子、珪素酸化物等が挙げられる。これらは単独、または2種類以上を併用して適宜用いることができる。
 スラリー組成物において、無機化合物(D)に対するバインダー樹脂(A)の量は、スラリー組成物の使用目的によって異なるが、無機化合物(D)100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、好ましくは50質量部以下、より好ましくは20質量部以下、好ましくは15質量部以下である。無機化合物(D)に対するバインダー樹脂(A)の量が上記下限値以上であると、スラリーの分散性、保存安定性が良好であり、さらに得られるセラミックグリーンシートや塗工シート等の接着性および強度を高められる。無機化合物(D)に対するバインダー樹脂(A)の量が上記上限値以下であると、焼成時の揮発成分が比較的少なくなる結果、デラミネーションの発生を抑制することができる。
 セラミック成形用のバインダーとしては、分散性や保存安定性に優れたセラミックスラリーが得られること、焼成後に炭素残渣の量が少ないこと、熱圧着時の接着性に優れていることなどが求められる。本発明の一実施態様であるスラリー組成物は、乾燥後のクラック発生が抑制されるだけでなく、分散性および保存安定性に優れる。そのため、得られるセラミックグリーンシートの密度および平滑性等に優れ、セラミックグリーンシート間の接着性が良好となる。
 さらに、該スラリー組成物を用いて得られるセラミックグリーンシートおよび/または塗工シートを積層させて圧着させる場合に、圧着時の寸法変化が起こり難いという効果を有する。そのため、圧着時の変形が抑制され、所望の積層シートを得ることができる。
 また、該スラリー組成物を用いて得られるセラミックグリーンシートおよび/または塗工シートを積層させ焼成体を作製した場合に、デラミネーションが生じ難い。本発明によれば、焼成後のセラミック成形品中において炭素残渣の量が抑制され、セラミック成形品の電気特性等に優れる。
[セラミックスラリー]
 本発明の一実施態様においては、セラミックスラリーも提供される。セラミックスラリーとは、無機化合物(D)がセラミック粉体である上記スラリー組成物である。本発明の一実施態様であるセラミックスラリーによれば、セラミックグリーンシートの製造において、該セラミックスラリーを乾燥した後に得られるセラミックグリーンシート上のクラック発生が抑制される。さらに、該スラリー組成物は、セラミック粉体の分散性に優れており、かつ保存安定性にも優れる。よって、このスラリー組成物をセラミックスラリーとして好適に用いることができる。このようなセラミックスラリーを成形して得られるセラミックグリーンシート、すなわち少なくとも1層のセラミックスラリーの乾燥膜からなるセラミックグリーンシートは、表面の平滑性に優れ、シート強度にも優れる。またこのセラミックグリーンシートは、焼成後の炭素残渣の量が少ない。したがって、本発明の一実施態様であるセラミックスラリーを用いれば、クラックが抑制され、また炭素残渣の量が少なく、高性能なセラミック成形品が得られる。なお、スラリー組成物の乾燥後にシート表面にクラックが発生すると、得られるセラミック成形品の外観に問題が生じるだけでなく、性能が低下するおそれがある。また、セラミックスラリーの分散性、保存安定性が低下すると、セラミックグリーンシート表面が粗面化し、セラミックグリーンシートの接着性、その後の成型品、および焼成後の品質に悪影響を及ぼすおそれがある。なお、本明細書において、乾燥膜とは、スラリー組成物中の有機溶剤(C)の含有量を(X-1)質量%、膜中の有機溶剤(C)の含有量を(X-2)質量%としたときに、(X-1)>(X-2)となる膜を意味する。中でも、スラリー組成物由来の膜であって、10℃以下で流動性を示さず、形状を保持できる状態の膜が好ましい。乾燥膜において、膜の質量に対する有機溶媒の含有量は、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下であり、0質量%であってもよい。
 セラミックスラリーにおいて、セラミック粉体(無機化合物(D))に対するバインダー樹脂(A)の量は、セラミックグリーンシートの使用目的によって異なるが、通常、セラミック粉体100質量部に対して3質量部以上であることが好ましく、5質量部以上であることがより好ましい。バインダー樹脂(A)の使用量は、セラミック粉体100質量部に対して20質量部以下であることが好ましく、15質量部以下であることがより好ましい。バインダー樹脂(A)の使用量が上記下限値以上であると、スラリーの分散性、保存安定性が良好であり、さらに得られるセラミックグリーンシートの接着性および強度を高められる。バインダー樹脂(A)の使用量が上記上限値以下であると、セラミックグリーンシート中のセラミック粉体の密度が高いため、最終製品となる積層セラミックコンデンサの品質が良好であり、さらに、焼成時の揮発成分が比較的少なくなる結果、デラミネーションの発生を抑制することができる。
 セラミックスラリーに含まれるバインダー樹脂(A)の条件は前述した通りである。
 セラミックスラリーに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールのアセタール化度の好適な条件は前述した通りであるが、アセタール化度が50モル%以上であると、本発明の一実施態様であるセラミックスラリーの保存安定性が良好であり、その乾燥後に得られるシート表面のクラック発生がさらに抑制される。一方、アセタール化度が85モル%以下であると、ポリビニルアセタール中の水酸基(ビニルアルコール単量体単位)含有量が十分であり、本発明の一実施態様であるセラミックスラリーを用いて得られるセラミックグリーンシートの強度、接着性や圧着時の寸法安定性が良好となり、スラリー組成物の乾燥後のシート表面におけるクラック発生がさらに抑制され、さらに、得られるセラミック成形品中において炭素残渣の量が低くなる傾向にある。
 セラミックスラリーに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールのビニルアルコール単量体単位が前述した好適な範囲内であると、得られるセラミックグリーンシートの圧着時の寸法安定性がより優れる傾向にある。
 セラミックスラリーに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールのビニルエステル単量体単位の含有量の好適な範囲は前述した通りであるが、ビニルエステル単量体単位の含有量が20モル%以下であると、前記ポリビニルアセタールを含有するセラミックスラリーの保存安定性が良好であるとともに、得られるセラミック成形品中において炭素残渣の量を低くすることができ、さらに、シートの柔軟性が低くなり、得られるセラミックグリーンシートの強度が高くなる傾向にある。
 セラミックスラリーに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールの粘度平均重合度の好適な範囲は前述した通りであるが、粘度平均重合度が200以上であると、得られるセラミックグリーンシートの強度が高くなる傾向にある。粘度平均重合度は、300以上が好ましく、500以上がより好ましく、800以上がさらに好ましい。一方、粘度平均重合度が5000以下であると、セラミックグリーンシートを製造する際に調製されるセラミックスラリーの粘度が高くなりすぎず、粘度による生産性への影響を抑えることができ、さらにスラリー組成物の乾燥後に得られるシートの表面におけるクラック発生を抑制できる。粘度平均重合度は、4500以下が好ましく、4000以下がより好ましく、3500以下がさらに好ましい。また、より一層圧着時のセラミックグリーンシートの寸法安定性を優れたものとする観点から、粘度平均重合度は1400以上が好ましく、1500以上がさらに好ましい。
 セラミックスラリーに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、原料のPVAのけん化度の好適な範囲は前述した通りであるが、原料のPVAのけん化度が80モル%以上であると、ポリビニルアセタールを含有するセラミックスラリーの分散性が良好である。
 セラミックスラリーに含まれる有機化合物(B)の好適な条件は前述した通りである。
 前記セラミックスラリーにおける有機化合物(B)の含有量は特に限定されないが、バインダー樹脂(A)100質量部に対して1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。セラミックスラリーにおける有機化合物(B)の含有量が上記下限値以上であると、セラミックスラリーの分散性、保存安定性が良好であり、さらに得られるセラミックグリーンシートの接着性も良好となる。有機化合物(B)の含有量は、60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。セラミックスラリーにおける有機化合物(B)の含有量が上記上限値以下であると、セラミックグリーンシートの強度が高くなり、圧着時の寸法安定性が良好である。
 前記セラミックスラリーは、さらに有機化合物(B)以外の有機化合物を可塑剤として含有していてもよい。このような可塑剤は、本発明の効果を損なわず、なおかつバインダー樹脂(A)との相溶性に問題がない限り、特に制限はない。可塑剤として、両末端に水酸基を有するオリゴアルキレングリコールとカルボン酸とのモノまたはジエステル、ジカルボン酸とアルコールとのジエステルなどを用いることができる。これらは単独で、または2種以上を組み合わせて用いることができる。具体的には、トリエチレングリコール-ジ-2-エチルヘキサノエート、テトラエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-n-ヘプタノエート、テトラエチレングリコール-ジ-n-ヘプタノエート等のトリまたはテトラエチレングリコールなどの両末端に水酸基を有するオリゴアルキレングリコールとカルボン酸とのモノまたはジエステル;ジオクチルフタレート、ジブチルフタレート、ジオクチルアジペート、ジブチルアジペート等のジカルボン酸とアルコールとのジエステルが挙げられる。
 可塑剤を添加する場合、セラミックスラリー中において、バインダー樹脂(A)に対する可塑剤および有機化合物(B)の合計の質量比(可塑剤および有機化合物(B)の合計量/バインダー樹脂(A)の質量)は、接着性の観点から、好ましくは0.01以上、より好ましくは0.05以上であり、圧着時の変形の抑制およびデラミネーションの抑制の観点から、好ましくは2以下、より好ましくは1.5以下である。
 セラミックスラリーに含まれる有機溶剤(C)としては、前述した有機溶剤(C)の中でも、メタノール、エタノール、イソプロパノール、n-プロパノール、ブタノール等のアルコール;メチルセロソルブ、ブチルセロソルブ等のセロソルブ;アセトン、メチルエチルケトン等のケトン;トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム等のハロゲン系炭化水素、酢酸エチル、酢酸メチル等のエステルなどが好適である。これらは単独でまたは2種以上併用してもよい。中でも、ブタノール、エタノール、トルエン、酢酸エチル、またはそれらの混合溶剤が揮発性、溶解性の観点から好ましい。
 前記セラミックスラリーにおける有機溶剤(C)の含有量は特に限定されないが、セラミック粉体100質量部に対して2質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であることが特に好ましい。有機溶剤(C)の含有量が上記下限値以上であると、セラミックスラリーの粘度が高くなりすぎず、混練性が良好となる。有機溶剤(C)の含有量は、セラミック粉体100質量部に対して、200質量部以下であることがより好ましく、150質量部以下であることがさらに好ましい。有機溶剤(C)の含有量が、上記上限値以下であると、セラミックスラリーの粘度が低くなりすぎず、セラミックグリーンシートを形成する際のハンドリング性が良好である。
 セラミックスラリーに含まれるセラミック粉体としては、セラミックの製造に使用される金属または非金属の酸化物、炭化物、窒化物、ホウ化物、または硫化物等の粉末が挙げられる。その具体例として、Li、K、Mg、B、Al、Si、Cu、Ca、Sr、Ba、Zn、Cd、Ga、In、Y、ランタノイド、アクチノイド、Ti、Zr、Hf、Bi、V、Nb、Ta、W、Mn、Fe、Co、Ni等の酸化物、炭化物、窒化物、ホウ化物、硫化物等が挙げられる。これらのセラミック粉体は、単独で用いても、または2種類以上の混合物として用いてもよい。
 前記セラミックスラリーは、バインダー樹脂(A)、有機化合物(B)、有機溶剤(C)、およびセラミック粉体のほかに、必要に応じて、解膠剤、密着促進剤、分散剤、粘着付与剤、保存安定剤、消泡剤、熱分解促進剤、酸化防止剤、界面活性剤、滑剤、接着性改良剤、その他従来から公知の添加剤を含んでいてもよい。また、本発明の効果を阻害しない範囲であれば、バインダー樹脂(A)以外の樹脂を含有していてもよい。
 前記セラミックスラリーを作製する方法は特に限定されない。例えば、以下の方法により製造できる。セラミック粉体に所定量の有機溶剤(C)、添加剤を加え、セラミック粉体の分散液を得る。別途、有機溶剤(C)にバインダー樹脂を溶解させ、この溶液に有機化合物(B)、および必要に応じて添加剤を添加した後、撹拌して均一な組成物を製造する。続いて、セラミック粉体の分散液に前述の組成物を添加し、均一に分散させてセラミックスラリーを得ることができる。
 または、有機溶剤(C)にバインダー樹脂(A)を溶解させ、この溶液に有機化合物(B)、および必要に応じて添加剤を添加した後、撹拌して均一な組成物を製造する。この組成物にセラミック粉体を添加した後、均一に分散させてセラミックスラリーを得る。分散させる方法としては、ビーズミル、ボールミル、アトライタ、ペイントシェーカー、サンドミルなどの媒体型分散機を用いる方法、固練り法、三本ロールを用いる方法など、種々の方法を用いることができる。なお、その際に分散剤としてイオン性基を含有する分散剤を用いてもよく、カルボン酸基、マレイン酸基、スルホン酸基、リン酸基等を分子内に有するアニオン系分散剤が好適に用いられ、特に金属イオンを含有しない「マリアリム」(日油社製)のようなアニオン系分散剤が好適に用いられる。
[セラミックグリーンシート]
 本発明の別の実施態様においては、上記セラミックスラリーを用いて得られるセラミックグリーンシートも提供される。本発明の一実施態様であるセラミックスラリーを用いることにより、クラックの少ないセラミックグリーンシートを得ることができる。また、本発明の一実施態様であるセラミックグリーンシートは、圧着時の接着性に優れ、且つ、圧着時の寸法変化も少ない。また、焼成時におけるセラミックグリーンシートの積層体の急激な脱バインダーが抑制され、積層セラミックコンデンサ作製時のデラミネーションが抑制される。
 本発明の好ましい実施態様においては、セラミックスラリーに含まれるセラミック粉体としてチタン酸バリウムが用いられる。この場合、圧着時の接着性に優れ、且つ、圧着時の寸法変化も少ないセラミックグリーンシートを得ることができ、さらに、セラミックグリーンシートを焼成した際に、バインダー成分の積層体からの急激な焼失を抑制することができ、積層セラミックコンデンサ作製時のデラミネーションを抑制することができる。
 本発明の一実施態様であるセラミックグリーンシートは、各種電子部品の材料として好適に使用される。とりわけチップタイプの積層セラミックコンデンサ、およびICチップの回路基板などの材料として好適に使用される。これらは、セラミックグリーンシート上に電極を形成し、積み重ねて圧着した後、焼成することにより製造される。
 セラミックグリーンシートは、上記スラリー組成物の塗膜を乾燥することによって得ることができる。すなわち、セラミックグリーンシートは、上記セラミックスラリー(スラリー組成物)の塗膜から有機溶剤(C)を部分的または完全に除去して得られる乾燥膜からなる。上記セラミックグリーンシートは、1層の該乾燥膜からなってもよく、複数層の該乾燥膜からなってもよい。セラミックグリーンシートの製造方法としては、例えば、片面離型処理を施した支持フィルム上にセラミックスラリーを塗工した後、有機溶剤(C)を乾燥させてシート状に成形する方法を挙げることができる。セラミックスラリーの塗工には、ロールコーター、ブレードコーター、ダイコーター、スクイズコーター、カーテンコーター等を用いることができる。
 セラミックグリーンシートを製造する際に用いる支持フィルムとしては、耐熱性および耐溶剤性を有し、なおかつ可撓性を有する樹脂からなるものが好ましい。支持フィルムが可撓性を有する樹脂からなることで、支持フィルム上に前記セラミックスラリーを塗工し、乾燥して得られるセラミックグリーンシートが形成されたフィルムを、ロール状に巻回した状態で保存し、必要に応じて供給することができる。
 支持フィルムを構成する樹脂は特に限定されず、例えば、ポリエチレンテレフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル、ポリフロロエチレン等の含フッ素樹脂、ナイロン、セルロース等が挙げられる。上記支持フィルムの厚みは特に限定されず、20μm以上の厚さであることが好ましく、100μm以下の厚さであることが好ましい。また、支持フィルムの表面には離型処理が施されていることが好ましい。支持フィルムの表面に離型処理が施されていることにより、転写工程において、支持フィルムの剥離操作を容易に行うことができる。支持フィルムの好ましい具体例としては、シリコーンコートPETフィルムが挙げられる。
 セラミックグリーンシートの厚さは、その使用目的によって異なるため、一概に規定することができないが、0.1μm以上であることが好ましく、300μm以下であることが好ましい。また、キャリアフィルム上に形成された塗膜を乾燥する際の乾燥温度は、セラミックグリーンシートの厚さなどによって異なるため、これを一概に規定することはできないが、25℃以上であることが好ましく、200℃以下であることが好ましい。
[導電ペースト]
 本発明の別の実施態様においては、無機化合物(D)が導電粉末である上記スラリー組成物(以下、「導電ペースト」ともいう)も提供される。すなわち、本発明の一実施態様である導電ペーストは、バインダー樹脂(A)、一般式(1)で示される有機化合物(B)、有機溶剤(C)、および無機化合物(D)としての導電粉末を含んでなる。
 本発明の一実施態様であるスラリー組成物は、導電粉末の分散性に優れており、かつ保存安定性にも優れる。よって、かかるスラリー組成物を導電ペーストとして好適に用いることができる。この導電ペーストは、導電粉末の分散性に優れており、保存安定性にも優れている。セラミックグリーンシート表面に印刷する際の印刷適性に優れて、印刷表面が平滑になる。前記導電ペーストを用いることにより、その乾燥後に得られる塗工シート表面上のクラック発生が抑制され、外観上および性能上の問題が生じ難く、さらに焼成後の炭素残渣の量が少なく、さらにデラミネーションの少ない焼成体が得られる。導電ペーストの保存安定性が低下すると、所望の印刷厚みにならなかったり、印刷後の表面が荒れ、焼成体の電気特性等に悪影響を及ぼすおそれがある。
 前記導電ペーストにおけるバインダー樹脂(A)の含有量は特に限定されないが、導電粉末100質量部に対して1質量部以上であることが好ましく、3質量部以上であることがより好ましい。バインダー樹脂の含有量が、上記下限値以上である場合、導電ペーストを印刷したときの成膜性が良好である。導電ペーストにおけるバインダー樹脂の含有量は、50質量部以下であることが好ましく、25質量部以下であることがより好ましく、10質量部以下が特に好ましい。導電ペーストにおけるバインダー樹脂(A)の含有量が上記上限値以下であると、得られる焼成体中の炭素残渣の量が少なくなる。
 導電ペーストに含まれるバインダー樹脂(A)の条件は前述した通りである。
 導電ペースト用のバインダー樹脂(A)は、ポリビニルアセタールを含むことが好ましい。導電ペースト用のバインダー樹脂(A)中のポリビニルアセタールの含有量は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。なお、導電ペースト用のバインダー樹脂(A)中のポリビニルアセタールの含有量は、通常100質量%以下である。
 導電ペーストに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールのアセタール化度の好適な条件は前述した通りであるが、アセタール化度が50モル%以上であると、前記ポリビニルアセタールを含有する導電ペーストの保存安定性が高まる傾向にある。一方、アセタール化度が85モル%以下であると、アセタール化反応の効率が良好であり、生産性が高くなり、さらに、導電ペーストを加熱した後の炭素残渣の量が少なくなり、得られる焼成体の電気特性等が十分となる傾向にある。
 導電ペーストに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールのビニルエステル単量体単位の含有量の好適な範囲は前述した通りであるが、ビニルエステル単量体単位の含有量が20モル%以下であると、前記ポリビニルアセタールを含有する導電ペーストの保存安定性が良好である。
 導電ペーストに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、ポリビニルアセタールの粘度平均重合度の好適な範囲は前述した通り200以上が好ましい。粘度平均重合度は、250以上であることがより好ましく、300以上であることがさらに好ましく、350以上であることが特に好ましい。粘度平均重合度が上記下限値以上である場合、導電ペーストを塗工して形成した塗膜の強度が高くなり、表面にクラック発生がさらに抑制される。一方、粘度平均重合度は、5000以下であることが好ましく、4500以下であることがより好ましく、4000以下であることがさらに好ましく、3500以下であることが特に好ましく、2500以下であることが最も好ましい。粘度平均重合度が上記上限値以下であると、導電ペーストの粘度が高くなりすぎず、印刷を容易に行うことができる。
 導電ペーストに含まれるバインダー樹脂(A)がポリビニルアセタールを含む場合、原料のPVAのけん化度の好適な範囲は前述した通りであるが、原料のPVAのけん化度が80モル%以上であると、導電ペーストにおける導電粉末の分散性が良好であり、また、ポリビニルアセタールを含有する導電ペーストの保存安定性が向上する。
 導電ペーストに含まれる有機化合物(B)の好適な条件は前述した通りである。
 前記導電ペーストにおける有機化合物(B)の含有量は特に限定されないが、バインダー樹脂100質量部に対して1質量部以上であることが好ましい。導電ペーストにおけるバインダー樹脂の含有量が上記下限値以上であると、接着性が向上する傾向となる。導電ペーストにおける有機化合物(B)の含有量が、バインダー樹脂100質量部に対して50質量部以下であることが好ましい。有機化合物(B)の含有量が上記上限値以下であると、圧着時の寸法安定性が向上する傾向にある。
 前記導電ペーストは有機化合物(B)以外の有機化合物を可塑剤として含有していてもよい。このような可塑剤は、本発明の効果を損なわず、なおかつバインダー樹脂(A)との相溶性に問題がない限り、特に制限はない。可塑剤としては、セラミックスラリーにおいて用いられる可塑剤として例示したものが挙げられる。
 導電ペーストに含まれる有機溶剤(C)としては、バインダー樹脂(A)を溶解し得るものであれば特に限定されず、例えば、メンテン、メンタン、メントン、ミルセン、α-ピネン、α-テルピネン、γ-テルピネン、リモネン、ペリリルアセテート、メンチルアセテート、カルビルアセテート、ジヒドロカルビルアセテート、ペリリルアルコール、ジヒドロターピネオールアセテート、ターピネオールアセテート、ジヒドロターピネオール、ターピニルオキシエタノール、ジヒドロターピニルオキシエタノール、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル、ジヒドロターピニルプロピオネート、イソボニルアセテート、イソボニルプロピオネート、イソボニルブチレート、イソボニルイソブチレート、ノビルアセテート、オクチルアセテート、ジメチルオクチルアセテート、ブチルカルビトールアセテート、アセトキシ-メトキシエトキシ-シクロヘキサノールアセテート、ジヒドロカルベオール、2-エチルヘキシルグリコール、ベンジルグリコール、フェニルプロピレングリコール、メチルデカリン、アミルベンゼン、クメン、シメン、1,1-ジイソプロピルヘキサン、シトロネロール等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。中でも、ジヒドロターピネオールアセテート、ターピネオールアセテート、ターピニルメチルエーテル、ジヒドロターピニルメチルエーテル等に代表される水酸基等の極性の高い置換基を有しないテルペン類およびそれらの水添物が好ましく、特にシートアタック性の観点から、ジヒドロターピネオールアセテートが好ましい。
 前記導電ペーストにおける有機溶剤(C)の含有量は特に限定されないが、導電粉末100質量部に対して5質量部以上であることが好ましく、10質量部以上であることがより好ましい。前記導電ペーストにおける有機溶剤(C)の含有量は、導電粉末100質量部に対して600質量部以下であることが好ましく、150質量部以下であることがより好ましい。導電ペーストにおける有機溶剤(C)の含有量が上記範囲内であると、導電ペーストの塗工性が良好であり、導電粉末の分散性が良好である。
 導電ペーストに含まれる導電粉末としては、例えば、ニッケル、パラジウム、白金、金、銀等の導電性の高い金属の粉末の他、これら金属の合金の粉末、これらの酸化物等が使用される。また、カルボキシル基、アミノ基、アミド基等との吸着特性が良好で酸化されやすい銅や鉄等の金属も好適に用いることができる。これらの導電粉末は、単独、または2種類以上を組み合わせて用いてもよい。
 前記導電ペーストは、バインダー樹脂(A)、有機化合物(B)、有機溶剤(C)および無機化合物(D)としての導電粉末のほかに、必要に応じて、セラミックスラリーの説明で例示した公知の添加剤や、バインダー樹脂(A)以外の樹脂を含有していてもよい。また、導電ペーストにはチタン酸バリウムや酸化チタン等の誘電体が含まれていてもよい。
 前記導電ペーストは、例えば、以下の方法により製造できる。有機溶剤(C)にバインダー樹脂を溶解させ、この溶液に有機化合物(B)、および必要に応じて添加剤を添加した後、撹拌して均一な組成物を製造する。この組成物に導電粉末および必要に応じて添加剤を添加した後、均一に分散させて導電ペーストを得る。分散させる方法としては、ブレンダーミル、ビーズミル、ボールミル、アトライタ、ペイントシェーカー、サンドミルなどの媒体型分散機を用いる方法、固練り法、三本ロールを用いる方法など、種々の方法を用いることができる。なお、その際に分散剤としてイオン性基を含有する分散剤を用いてもよく、カルボン酸基、マレイン酸基、スルホン酸基、リン酸基等を分子内に有するアニオン系分散剤が好適に用いられ、特に金属イオンを含有しない「マリアリム」(日油社製)のようなアニオン系分散剤が好適に用いられる。
 導電ペーストにおいて、無機化合物(D)としての導電粉末に対するバインダー樹脂(A)の量は、導電粉末100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、好ましくは50質量部以下、より好ましくは20質量部以下、好ましくは15質量部以下である。導電粉末に対するバインダー樹脂(A)の量が上記下限値以上であると、導電ペーストの分散性、保存安定性が良好であり、さらに得られる塗工シートの接着性および強度を高められる。無機化合物(D)に対するバインダー樹脂(A)の量が上記上限値以下であると、焼成時の揮発成分が比較的少なくなる結果、デラミネーションの発生を抑制することができる。
[塗工シート]
 本発明の別の実施態様において、塗工シートを提供することもできる。塗工シートは、本発明の一実施態様であるセラミックグリーンシートの少なくとも一方の面に、少なくとも1層の導電ペーストの乾燥膜を配置してなってよく、少なくとも1層の、本発明の一実施態様である導電ペーストの乾燥膜を、セラミックグリーンシートの少なくとも一方の面に配置してなってもよい。塗工シートは、例えば、セラミックグリーンシートの表面に、導電ペーストを塗工し、乾燥することによって製造することができる。乾燥により、導電ペーストに含まれる有機溶剤(C)の一部または全部を除去することができる。塗工シートにおいて、上記導電ペーストは、本発明の一実施態様である導電ペーストであってもよいし、それ以外の一般的に用いられる導電ペーストであってもよい。また、塗工シートにおいては、セラミックグリーンシートの表面に本発明の一実施態様である導電ペーストが塗工されてもよい。該セラミックグリーンシートは、本発明の一実施態様である導電ペーストと組み合わせて用いる場合は、本発明の一実施態様であるセラミックグリーンシートであってもよいし、それ以外の一般的に用いられるセラミックグリーンシートであってもよい。
 導電ペーストを塗工する方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等が挙げられる。導電ペーストをセラミックグリーンシートの表面に塗工することによって、セラミックグリーンシート表面の少なくとも一部に導電ペースト被膜を有する塗工シートが得られる。
[プラズマ処理]
 本発明の好適な実施態様においては、セラミックグリーンシートの少なくとも一方の面の少なくとも一部にプラズマ処理が施されていることが好ましい。すなわち、その製造において、セラミックグリーンシートの一方の面または両方の面の少なくとも一部にプラズマ処理を施す工程を備えることが好ましい。本発明の好ましい実施態様において、セラミックグリーンシートの一方の面または両方の面の少なくとも一部にプラズマ処理を施し、プラズマ処理された面と、他のセラミックグリーンシートの表面とが接するように積層する。この場合、得られた積層体は、表面にプラズマ処理を施さなかったセラミックグリーンシートを用いて積層体を作製した場合と比べて、良好な接着性を有する。
 本発明の好適な実施態様において、塗工シートの少なくとも一方の面の少なくとも一部にプラズマ処理が施されていることが好ましい。すなわち、その製造において、塗工シートの少なくとも一方の面の少なくとも一部にプラズマ処理を施す工程を備えることが好ましい。塗工シートの少なくとも一方の面の少なくとも一部にプラズマ処理が施されていればよく、導電ペーストを塗工する前のセラミックグリーンシートにプラズマ処理を施す方法や、セラミックグリーンシートに導電ペーストを塗工した後の塗工シートにプラズマ処理を施す方法のいずれの方法によっても得ることができる。
 本発明の好ましい実施態様において、塗工シートにおいて導電ペーストが塗工された面にプラズマ処理を施し、プラズマ処理された面と、他の塗工シートの片面とが接するように積層する。この場合、得られた積層体は、表面にプラズマ処理が施されていない塗工シートを用いて積層体を作製した場合と比べて、良好な接着性を示す。
 プラズマ処理を施す面は、導電ペーストが塗工された面(導電ペースト面)でもよいし、塗工シートの他方の面(セラミックグリーンシート面)でもよいし、塗工シートの両方の面でもよい。複数枚の塗工シートを積み重ねて積層セラミックコンデンサを製造する場合、導電ペースト面にプラズマ処理を施し、この面と他の塗工シートにおけるセラミックグリーンシート面とが接するように積層することができる。こうして得られる積層体は良好な接着性を示す。
 また、セラミックグリーンシート面にプラズマ処理を施し、この面と他の塗工シートにおける導電ペースト面とが接するように積層することができる。こうして得られる積層体も良好な接着性を示す。この場合の塗工シートとしては、本発明の一実施態様であるセラミックグリーンシートの表面に一般的に用いられる導電ペーストが塗工されてなる塗工シート、または、本発明の一実施態様であるセラミックグリーンシートの表面に本発明の一実施態様である導電ペーストが塗工されてなる塗工シートが好適に用いられてよい。さらに、塗工シートの一方の面または両方の面にプラズマ処理を施し、これらのプラズマ処理が施された面と他の塗工シートにおけるセラミックグリーンシート面または導電ペースト面とが接するように積層してもよい。こうして得られる積層体も良好な接着性を示す。
 また、セラミックグリーンシートにおいてプラズマ処理を施し、プラズマ処理された面に、導電ペーストを塗工してもよい。プラズマ処理が施され、且つ、導電ペーストが塗工された面と、他の塗工シートの片面とが接するように積層してもよい。こうして得られた積層体は、表面にプラズマ処理を施さなかった塗工シートを用いて積層体を作製した場合と比べて、良好な接着性を示す。この場合の塗工シートとしては、本発明の一実施態様であるセラミックグリーンシートの表面に一般的に用いられる導電ペーストが塗工されてなる塗工シート、または本発明の一実施態様であるセラミックグリーンシートの表面に本発明の一実施態様である導電ペーストが塗工されてなる塗工シートを好適に用いることができる。
 プラズマ処理の方法は特に限定されないが、例えば、低圧プラズマ、高圧プラズマ、コロナ放電処理、大気圧プラズマなどの処理等が挙げられる。処理方法としては、任意の適当な処理方法を用いることができる。低圧プラズマは真空状態で施す必要があり、インラインでの製造が難しいことがある。コロナ放電処理では高エネルギーを付与するため、表面形状の変化や、処理面が不意均一になることがある。一方、大気圧プラズマ処理の場合には真空状態で施す必要がなく、またエネルギーも高低選択できる点で有利である。生産性、性能の観点から、処理方法としては大気圧プラズマが特に好ましい。
 大気圧プラズマ処理には、種々の大気圧プラズマ装置を用いることができる。例えば、誘電体で覆われた電極間に大気圧近傍の圧力の不活性気体を通じつつ間欠放電を行うことにより低温プラズマを発生させることができる装置等が好適であるが、いずれの装置も用いることができ、使用目的等に応じて種々の変形例を選択できる。上記の「大気圧プラズマ」における「大気圧近傍の圧力」とは、70kPa以上130kPa以下の範囲を指し、好ましくは90kPa以上110kPa以下の範囲である。大気圧プラズマ処理を行う際の温度と湿度は特に制限されず、適宜変更することが可能であるが、常温、常湿で大気圧プラズマ処理を行うことが好ましい。
 大気圧プラズマの生成時に用いられる放電ガスとしては、窒素、酸素、水素、二酸化炭素、ヘリウム、およびアルゴンからなる群から選択されるいずれかのガス、またはこれらの2種以上の混合ガスを利用することができる。不活性気体であるHeおよびAr等の希ガス、または窒素ガスを用いることが好ましく、ArまたはHeの希ガスが特に好ましい。例えば、窒素ガスと空気の混合ガスを用いる場合は、窒素ガスを流速10L/分以上で、500L/分以下で供給することが好ましい。また、ドライエアーを流速0.1L/分以上、3L/分以下で供給することが好ましい。
 大気圧プラズマ装置を用いてプラズマを生成するために、電極間に印加する電圧は5kv以上であることが好ましく、15kv以下であることが好ましい。電極と被照射物との距離は、1mm以上であることが好ましく、2mm以上であることがより好ましい。また、電極と被照射物との距離は、10mm以下であることが好ましく、5mm以下であることがより好ましい。
 例えば、プラズマ処理の対象となるセラミックグリーンシートの表面がプラズマの照射方向に垂直な状態を維持したまま、プラズマの照射方向に垂直な方向に沿ってセラミックグリーンシートを移動させることにより、セラミックグリーンシートに対してプラズマ処理を行うことができる。この際のセラミックグリーンシートが照射口の直下を通過する時間は、0.1秒以上であることが好ましく、0.5秒以上でることがより好ましい。また、40秒以下であることが好ましく、20秒以下であることがより好ましい。なお、照射口の直下周辺もプラズマ雰囲気になっていてもよい。
 電極間に印加する電圧、電極間距離、または、セラミックグリーンシートの移動速度が上記の範囲内であると、有機化合物(B)や有機化合物(B)以外の有機化合物(可塑剤)の含有量が少ない場合、得られるセラミックグリーンシートは、圧着時の寸法安定性だけでなく、圧着時の接着性に優れる。
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において、「重合度」は「粘度平均重合度」を意味する。また、以下の実施例および比較例において、「セラミックグリーンシート」は支持体であるポリエステルフィルムを含まない部分を意味する。
[評価方法]
1.ポリビニルアセタールの測定
 実施例および比較例で用いるポリビニルアセタールの酢酸ビニル単量体単位の含有量(モル%)、アセタール化度(モル%)およびビニルアルコール単量体単位の含有量(モル%)は、JIS K 6728:1977に準拠して測定した。ポリビニルアセタールの粘度平均重合度は、JIS K 6726:1994に準拠して測定される原料のPVAの粘度平均重合度で示した。
2.溶解度パラメーターの決定
 溶解度パラメーターは、(POLYMER HANDBOOK 4th edition, J.Brandrup et al(John Wiley & Sons, Inc) 675-714)の685~686頁に記載されるTABLE3の官能基のパラメーターEcoh(cal/molに換算)およびV(cm/mol)を参照し、式(A)より算出した。ここでδは溶解度パラメーターを表し、単位は((J/cm1/2)である。
Figure JPOXMLDOC01-appb-M000007
 バインダー樹脂(A)に関しては、各単量体の溶解度パラメーターを算出し、それぞれにモル比を乗じ、その和より算出した。バインダー樹脂(A)として複数種の樹脂の混合物を使用する場合は、それぞれの樹脂の平均分子量からそれぞれのモル比を算出し、上述と同様に算出した。
 バインダー樹脂(A)と有機化合物(B)との溶解度パラメーターの差|ΔSP|(J/cm1/2)を以下の式に従って算出した。
   |ΔSP|((J/cm1/2)=│(バインダー樹脂(A)のSP値)-(有機化合物(B)のSP値)│
3-1.セラミックスラリーの保存安定性
 実施例および比較例で用いるセラミックスラリーの保存安定性は、当該セラミックスラリーの製造直後の粘度ηと製造後1ヶ月の粘度ηとの比率によって評価した。評価基準は以下のとおりである。
評価A:0.95<η/η<1.05
評価B:0.85<η/η≦0.95 または、1.05≦η/η<1.15
評価C:η/η≦0.85 または、1.15≦η/η
 セラミックスラリーの粘度は、回転レオメータ(TA INSTRUMENT社製;ARES G2)を用いて、以下の測定条件で測定した。
<測定条件>
FLOW SWEEPモード
shear rate:100(1/sec)
回転する円盤の直径:40mm
回転する円盤(上側):平板
回転する円盤(下側)のコーンアングル:0.02rad
Truncation gap:0.0262mm
3-2.導電ペーストの保存安定性
 セラミックスラリーの代わりに実施例および比較例で用いる導電ペーストを用いたこと以外は、「3-1.セラミックスラリーの保存安定性」に記載の方法に従って、保存安定性の評価を行った。
4-1.セラミックグリーンシートの接着性評価
 下記条件で大気圧プラズマ処理された、実施例および比較例で用いるセラミックグリーンシートと、大気圧プラズマ処理されていない実施例および比較例で用いるセラミックグリーンシートとを積層して、熱プレス機を用い下記の条件で熱圧着試験を行った。このとき、セラミックグリーンシートの大気圧プラズマ処理された面が、他のセラミックグリーンシートの大気圧プラズマ処理されていない表面に接するように積層し、積層体を得た。
<プラズマ照射>
 実施例および比較例で用いるセラミックグリーンシート(ポリエステルフィルム上)を、ポリエステルフィルムと共に10cm×10cmの大きさの正方形に切断した。該セラミックグリーンシートをポリエステルフィルムから剥がした後、セラミックグリーンシートの表面に、大気圧プラズマ装置を用いて、常温、常湿にて、窒素ガスが流速150L/分、ドライ純エアーが流速0.5L/分の混合ガスを用い、電極間の電圧11kV、電極間距離2mm、サンプル(セラミックグリーンシート)移動速度10mm/秒で、セラミックグリーンシートが幅2cmの照射口の直下を通過する時間が2秒(10cm×10cmの正方形のセラミックグリーンシート全体に対して10秒)となる条件で大気圧プラズマ処理を施した。
<熱プレス条件>
プレス温度 45℃
圧力 1MPa
時間 5秒
 得られた積層体を5mm×5mmの正方形に切断し、100個を任意で抽出した。任意で抽出した積層体の接着面を目視で観察し、セラミックグリーンシート同士の接着性を下記の5段階で評価した。
A:全く層間剥離が認められず、強固に接着している。
(層間剥離している積層体の個数/任意の積層体=0/100)
B:層間剥離がわずかに認められたが、強固に接着している。
(層間剥離している積層体の個数/任意の積層体=1~10/100)
C:層間剥離が一部認められたが、接着している。
(層間剥離している積層体の個数/任意の積層体=11~30/100)
D:層間剥離がかなり多く認められ、ほとんど接着性を示さなかった。
(層間剥離している積層体の個数/任意の積層体=31~99/100)
E:接着性を示さなかった。
(層間剥離している積層体の個数/任意の積層体=100/100)
4-2.塗工シートの接着性評価
 セラミックグリーンシートの代わりに実施例および比較例で用いる塗工シートを用いたこと以外は、「4-1.セラミックグリーンシートの接着性評価」に記載の方法に従って、接着性の評価を行った。このとき、大気圧プラズマ処理は、導電ペーストが塗工された面に行い、塗工シートの大気圧プラズマ処理された面が、他の塗工シートの大気圧プラズマ処理されていない面(導電ペーストが塗工されていない面)に接するように積層した。
5-1.セラミックグリーンシートの寸法安定性評価
 実施例および比較例で用いる、乾燥(常温で1時間風乾後、熱風乾燥機にて80℃2時間、続いて120℃2時間乾燥)後の膜厚が2μmであるセラミックグリーンシートに対し、前記と同様にプラズマ処理を施した。このシートを5cm×5cmの正方形に切断し、2枚を重ね合わせた後、45℃でプレスを行い(プレス圧:3MPa)、変形率(プレス後の面積/プレス前の面積×100)を求めた。このとき、大気圧プラズマ処理された面が、他のセラミックグリーンシートの大気圧プラズマ処理されていない表面に接するように積層した。
A:シート変形率が2%未満
B:シート変形率が2%以上4%未満
C:シート変形率が4%以上
の3段階で評価した。
5-2.塗工シートの寸法安定性評価
 セラミックグリーンシートの代わりに実施例および比較例で用いる塗工シートを用いたこと以外は、「5-1.セラミックグリーンシートの寸法安定性評価」と同様の方法で寸法安定性評価を行った。このとき、大気圧プラズマ処理は、導電ペーストが塗工された面に行い、大気圧プラズマ処理された面が、他の塗工シートの大気圧プラズマ処理されていない面(導電ペーストが塗工されていない面)に接するように積層した。
6-1.セラミックグリーンシート積層体における焼成体のデラミネ-ション評価
 実施例および比較例で用いるセラミックグリーンシート(ポリエステルフィルム上)を10cm×10cmの正方形に切断したものを100枚用意した。切断されたセラミックグリーンシートをポリエステルフィルムから剥がした後、それぞれの片面に「4-1.セラミックグリーンシートの接着性評価」と同様の方法で大気圧プラズマ処理を施し、大気圧プラズマ処理された面と大気圧プラズマ処理されていない面が重なる様に100枚積重ね、セラミックグリーンシートの積層体を得た。続いて、温度70℃、圧力150kg/cmで10分間加熱圧着し、積層体を得た。得られた積層体を5mm×5mmの正方形に切断し、切断した積層体から100個を任意で抽出し、窒素雰囲気下、昇温速度15℃/分で400℃まで昇温し、5時間保持した後、さらに昇温速度5℃/分で1350℃まで昇温し、10時間保持することにより、セラミック焼成体を得た。
 得られた焼成体を常温まで冷却した後、焼成体の断面を電子顕微鏡(倍率:100)で観察し、セラミック層間のデラミネーションの有無を以下の4段階で評価した。
A:デラミネーションなし。
(デラミネーションした焼成体の個数/任意の焼成体=0~2/100)
B:デラミネーションが僅かに見られる。
(デラミネーションした焼成体の個数/任意の焼成体=3~7/100)
C:デラミネーションが一部あり。
(デラミネーションした焼成体の個数/任意の焼成体=8~20/100)
D:デラミネーションが多数あり。
(デラミネーションした焼成体の個数/任意の焼成体=21~100/100)
6-2.塗工シート積層体における焼成体のデラミネ-ション評価
 実施例および比較例で用いる、塗工シートを10cm×10cmの正方形に切断したものを100枚用意した。導電ペーストが塗工された面に「4-1.セラミックグリーンシートの接着性評価」と同様の方法で大気圧プラズマ処理を施し、大気圧プラズマ処理された面と大気圧プラズマ処理されていない面が重なる様に100枚積重ね、塗工シートの積層体を得た。続いて、温度70℃、圧力150kg/cmで10分間加熱圧着し、積層体を得た。得られた積層体を5mm×5mmの正方形に切断し、切断した積層体から100個を任意で抽出し、窒素雰囲気下、昇温速度15℃/分で400℃まで昇温し、5時間保持した後、さらに昇温速度5℃/分で1350℃まで昇温し、10時間保持することにより、セラミック焼成体を得た。
 得られた焼成体を常温まで冷却した後、焼成体の断面を電子顕微鏡(倍率:100)で観察し、セラミック層同士およびセラミック層と電極層間のデラミネーションの有無を以下の4段階で評価した。
A:デラミネーションなし。
(デラミネーションした焼成体の個数/任意の焼成体=0~2/100)
B:デラミネーションが僅かに見られる。
(デラミネーションした焼成体の個数/任意の焼成体=3~7/100)
C:デラミネーションが一部あり。
(デラミネーションした焼成体の個数/任意の焼成体=8~20/100)
D:デラミネーションが多数あり。
(デラミネーションした焼成体の個数/任意の焼成体=21~100/100)
7-1.セラミックグリーンシートのクラック発生評価
 セラミックスラリーを、離型処理したポリエステルフィルム上に、乾燥膜の膜厚が2~3μmとなるようにバーコーターを用いて塗工し、常温で1時間風乾した後、熱風乾燥機にて80℃にて2時間、続いて120℃で2時間乾燥させ、ポリエステルフィルム上に、セラミックグリーンシート(セラミックスラリーの乾燥膜)を得た。得られたシートを50mm×50mmの正方形に切り出しクラック評価用のサンプルとした。
 セラミックグリーンシート表面のクラック発生の有無を、光学顕微鏡(倍率:50)を用いて、以下の3段階で評価した。
A:クラックなし
B:わずかにクラックあり
C:クラック多発
7-2.塗工シートのクラック発生評価
 セラミックグリーンシートの代わりに実施例および比較例で用いる塗工シートを用い、TS-1に関してはグリーンシートの部位、TS-2~TS~5に関しては導電ペーストの部位を観察した以外は、上記と同様の方法でクラック発生評価を行った。
[バインダー樹脂(A)]
(合成例1)
 還流冷却器、温度計、イカリ型撹拌翼を備えた10リットルのガラス製容器に、イオン交換水を7280gと重合度1700、けん化度98.4モル%のポリビニルアルコール(以下、PVA-1と記載)を720g仕込み(PVA濃度9.0質量%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで撹拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド400gと20質量%の塩酸830mLを添加し、ブチラール化反応を150分間行った。その後90分かけて70℃まで昇温し、70℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してポリビニルブチラール(PVB-1)を得た。
(合成例2)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを336g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-2)を得た。
(合成例3)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを388g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-3)を得た。
(合成例4)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを453g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-4)を得た。
(合成例5)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを511g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-5)を得た。
(合成例6)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを398g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-6)を得た。
(合成例7)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを405g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-7)を得た。
(合成例8)
 PVA-1に代えて、表1に示す重合度とけん化度を有するPVAを用い、n-ブチルアルデヒドを399g用いたこと以外は合成例1と同様にして、ポリビニルブチラール(PVB-8)を得た。
(合成例9)
 PVA-1の代わりに、表1に示すように、重合度2400でけん化度98.8モル%のPVAと、重合度500でけん化度98.8モル%のPVAとを70/30の質量比で含む混合物を用い、n-ブチルアルデヒドを399g用いたこと以外は、合成例1と同様の操作を行って、ポリビニルブチラール(PVB-9)を得た。
(合成例10)
 n-ブチルアルデヒドを用いてブチラール化をする代わりに、イソブチルアルデヒドを用いてアセタール化をしたこと以外は、合成例1と同様の操作を行って、ポリビニルブチラール(PVB-10)を得た。
(合成例11)
 n-ブチルアルデヒドを用いてブチラール化をする代わりに、アセトアルデヒドとn-ブチルアルデヒドを質量比100/64で用いてアセタール化をしたこと以外は、合成例1と同様の操作を行って、ポリビニルブチラール(PVB-11)を得た。
 PVB-1~PVB-11について、前記評価方法「1.ポリビニルアセタールの測定」に記載された方法に従って、重合度、酢酸ビニル単量体単位の含有量、アセタール化度およびビニルアルコール単量体単位の含有量を測定した。また、前記評価方法「2.溶解度パラメーターの決定」に記載された方法に従って、PVB-1~PVB-11の溶解度パラメーターを決定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
[セラミックグリーンシートの製造]
(製造例1)
<セラミックスラリーの調製>
 トルエン30質量部とエタノール30質量部との混合溶剤にPVB-1を10質量部加えた後、撹拌してPVB-1を溶解させ、当該溶液に、100質量部のPVB-1に対して38質量部のアジピン酸ビス(2-ブトキシエチル)を加え、撹拌することにより、組成物(1)を調製した。
 セラミック粉体であるチタン酸バリウム(「BT-02」、堺化学工業株式会社製、平均粒子径0.2μm)100質量部にトルエン15質量部とエタノール15質量部とを加え、ボールミルで15時間混合し、セラミック粉体の分散液を得た。続いてセラミック粉体100質量部に対してPVB-1が7.5質量部になるように、前記セラミック粉体の分散液に前記組成物(1)を加え、ボールミルで24時間混合し、セラミックスラリー(スラリー組成物)を得た。
<セラミックグリーンシートの製造>
 得られたセラミックスラリーを、離型処理したポリエステルフィルム上に、乾燥膜の膜厚が2~3μmとなるようにバーコーターを用いて塗工し、常温で1時間、風乾した後、熱風乾燥機にて80℃にて2時間、続いて120℃で2時間乾燥させ、ポリエステルフィルム上に、セラミックグリーンシートGS-1(セラミックスラリーの乾燥膜)を得た。
(製造例2~8)
 PVB-1に代えてPVB-2~PVB-8をそれぞれ用いたこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-2~GS-8をそれぞれ作製した。
(製造例9~14)
 アジピン酸ビス(2-ブトキシエチル)に代えて表2-1に示す有機化合物をそれぞれ用いたこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-9~GS-14をそれぞれ作製した。
(製造例15~18)
 アジピン酸ビス(2-ブトキシエチル)を、バインダー樹脂(A)に対して、それぞれ表2-2に示す割合で添加したこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-15~GS-18をそれぞれ作製した。
(製造例19~21)
 PVB-1に代えてPVB-9~PVB-11をそれぞれ用いたこと、及びアジピン酸ビス(2-ブトキシエチル)に代えて表2-2に示す有機化合物をそれぞれ用いたこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-19~GS-21をそれぞれ作製した。
(製造例22)
 表2-2に示すように、100質量部のPVB-1に対して、アジピン酸ビス(2-ブトキシエチル)19質量部とトリエチレングリコールジ2-エチルヘキサノエート19質量部を添加した以外は、製造例1と同様の方法でセラミックグリーンシートGS-22を作製した。
(製造例A~H)
 アジピン酸ビス(2-ブトキシエチル)に代えて表3に示す有機化合物を用いたこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-A~GS-Hをそれぞれ作製した。
(製造例I)
 表3に示すように、アジピン酸ビス(2-ブトキシエチル)を用いなかったこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-Iを作製した。
(製造例J)
 PVB-1に代えてPVB-3を用いたこと、およびアジピン酸ビス(2-ブトキシエチル)に代えて表3に示す有機化合物を用いたこと以外は、製造例1と同様の方法でセラミックグリーンシートGS-Jを作製した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
[導電ペースト、塗工シートおよび積層体の製造]
(作製例1)
<導電ペーストの作製>
 撹拌機、冷却器、温度計、湯浴および窒素ガス導入口を備えた2Lセパラブルフラスコに、バインダー樹脂(A)であるエチルセルロース(ダウケミカル社製、STD-45)およびジヒドロターピニルアセテートを加えて組成物(3)を得た。次いで、導電粉末としてニッケル粉末(「NFP201」、JFEミネラル株式会社製)を組成物(3)に混合し、さらに市販の平均粒子径0.1μmのチタン酸バリウム粉末をニッケル粉末に対して20質量部添加し、三本ロールに数回通して導電ペースト(スラリー組成物)を得た。なお、導電ペースト中の組成比率は、バインダー樹脂(A)が3質量%、ニッケル粉末が50質量%、チタン酸バリウムが10質量%、その他が有機溶剤となるよう調製した。なお、エチルセルロース(ダウケミカル社製、STD-45)の溶解度パラメーターは、前記評価方法「2.溶解度パラメーターの決定」に記載された方法に従って算出したところ、10.3(J/cm1/2であった。
<塗工シートの作製>
 製造例1で得られたグリーンシートGS-1を10cm×10cmの大きさの正方形に切断し、前記評価方法「4-1.セラミックグリーンシートの接着性評価」に記載の方法に従って、大気圧プラズマ処理を施した。大気圧プラズマ処理が施された面に、上述した導電ペーストをスクリーン印刷機(ニューロング精密工業株式会社製DP-320)によってスクリーン印刷し、120℃で1時間乾燥させることにより、10mm角、ペースト間距離(余白)2.5mm、膜厚2μmの導電ペーストの乾燥膜を形成することにより、塗工シートTS-1を得た。
(作製例2)
 撹拌機、冷却器、温度計、湯浴および窒素ガス導入口を備えた2Lセパラブルフラスコに、PVB-4とジヒドロターピニルアセテートとを加え、さらにアジピン酸ビス(2-ブトキシエチル)を100質量部のPVB-4に対して20質量部となるように添加し、80℃の温度で4時間撹拌して組成物(4)を得た。
 組成物(3)に代えて、ここで得られた組成物(4)を用いたこと以外は、作製例1と同様の方法で導電ペースト(スラリー組成物)を作製した。次いで、得られた導電ペーストを用い、GS-Dの上に塗工した以外は作製例1と同様の方法で塗工し、塗工シートTS-2を得た。
(作製例3)
 PVB-4に代えて、エチルセルロース(ダウケミカル社製、STD-45)100質量部を用いたこと以外は、作製例2と同様の方法で、組成物(5)および導電ペーストを製造した。得られた導電ペーストを用いた以外は、作製例2と同様の方法で塗工シートTS-3を得た。
(作製例4)
 100質量部のPVB-4に代えて、50質量部のPVB-4および50質量部のエチルセルロース(ダウケミカル社製、STD-200)を用いたこと以外は、作製例2と同様の方法で、組成物(6)および導電ペーストを製造した。得られた導電ペーストを用いた以外は、作製例2と同様の方法で塗工シートTS-4を得た。
(作製例5)
 PVB-4に代えて、エチルセルロース(ダウケミカル社製、STD-45)100質量部を用い、さらにアジピン酸ビス(2-ブトキシエチル)に代えて、トリエチレングリコールジ2-エチルヘキサノエート20質量部を用いたこと以外は、作製例2と同様の方法で、組成物(7)および導電ペーストを製造した。得られた導電ペーストを用いた以外は、作製例2と同様の方法で塗工シートTS-5を得た。
 塗工シートTS-2~TS-5の作製で用いた導電ペーストにおいて、バインダー樹脂(A)および有機化合物(B)の溶解度パラメーター(SP値)、ならびにその差(|ΔSP|)を、前記評価方法「2.溶解度パラメーターの決定」に記載された方法に従って各溶解度パラメーターを測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012
[実施例]
(実施例1~22)
 グリーンシートGS-1~GS-22のそれぞれについて、該グリーンシート作製前のセラミックスラリーの保存安定性、該グリーンシートのクラック評価、該グリーンシートの圧着時の寸法安定性、該グリーンシートの接着性および該グリーンシートを用いて得られる焼成体のデラミネーションについて、前記評価方法に記載された方法に従って評価を行った。評価結果を表5に示す。
(実施例23)
 GS-1に大気圧プラズマ処理を実施せずに圧着時の接着性評価を行ったこと以外は、実施例1と同様に評価を行った。評価結果を表5に示す。
(実施例24)
 導電ペーストを塗工した面を大気圧プラズマ処理した塗工シートTS-1と、大気圧プラズマ処理していない塗工シートTS-1を積層したこと以外は、実施例1と同様の方法で、熱圧着試験を行い、接着性を評価した。このとき、大気圧プラズマ処理した面が、他の塗工シートTS-1の大気圧プラズマ処理していない表面(導電ペーストが塗工されていない面)に接するように積層した。また、得られた積層体TS-1について、実施例1と同様の方法で、クラック評価、寸法安定性、焼成体のデラミネーションの評価を行った。評価結果を表5に示す。
[比較例]
(比較例1~10)
 グリーンシートGS-A~GS-Jのそれぞれについて、該グリーンシート作製前のセラミックスラリーの保存安定性、該グリーンシートの圧着時の寸法安定性、該グリーンシートの接着性および該グリーンシートを用いて得られる焼成体のデラミネーションについて、前記評価方法に記載された方法に従って評価を行った。評価結果を表6に示す。
(実施例25~27)
 塗工シートTS-2~TS-4について、導電ペーストのスラリー保存安定性、該塗工シートのクラック評価、該塗工シートの圧着時の寸法安定性、該塗工シートの接着性および、該塗工シートを用いて得られる焼成体のデラミネーションについて、前記評価方法に記載された方法に従って評価を行った。評価結果を表7に示す。
(比較例11)
 塗工シートTS-5について、導電ペーストのスラリー保存安定性、TS-5のクラック評価、TS-5の圧着時の寸法安定性、TS-5の接着性およびTS-5を用いて得られる焼成体のデラミネーションについて、前記評価方法の通りに評価を行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Claims (12)

  1.  分子内に水酸基を有するバインダー樹脂(A)、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    およびRは、それぞれ独立して、エーテル結合を少なくとも一つ有する有機基を表し、
    は、炭素数1~20の分岐を有してもよいアルキレン基を表し、
    は、炭素数1~4の分岐を有してもよいアルキレン基を表し、
    mは0~5の整数を表す]
    で表される有機化合物(B)、有機溶剤(C)および無機化合物(D)を含有してなるスラリー組成物であって、
     バインダー樹脂(A)と有機化合物(B)との溶解度パラメーターの差|ΔSP|が2.1(J/cm1/2以下である、スラリー組成物。
  2.  バインダー樹脂(A)100質量部に対して、有機化合物(B)を1~60質量部含有する、請求項1に記載のスラリー組成物。
  3.  バインダー樹脂(A)は、ポリビニルアセタール、エチルセルロース、および水酸基を有する(メタ)アクリル樹脂からなる群から選ばれる少なくとも1種を含む、請求項1または2に記載のスラリー組成物。
  4.  バインダー樹脂(A)はポリビニルアセタールを含み、
     該ポリビニルアセタールは、アセタール化度が50~85モル%であり、ビニルエステル単量体単位の含有量が0.1~20モル%であり、粘度平均重合度が200~5000である、請求項1~3のいずれかに記載のスラリー組成物。
  5.  無機化合物(D)はセラミック粉体である、請求項1~4のいずれかに記載のスラリー組成物。
  6.  セラミック粉体100質量部に対して、有機溶剤(C)を2~200質量部含有する、請求項5に記載のスラリー組成物。
  7.  少なくとも1層の、請求項5または6に記載のスラリー組成物の乾燥膜からなるセラミックグリーンシート。
  8.  無機化合物(D)は導電粉末である、請求項1~4のいずれかに記載のスラリー組成物。
  9.  導電粉末100質量部に対して、バインダー樹脂(A)を1~50質量部含有する、請求項8に記載のスラリー組成物。
  10.  導電粉末100質量部に対して、有機溶剤(C)を5~600質量部含有する、請求項8または9に記載のスラリー組成物。
  11.  請求項7に記載のセラミックグリーンシートの少なくとも一方の面に、少なくとも1層の導電ペーストの乾燥膜が配置されてなる塗工シート。
  12.  少なくとも1層の、請求項8~10のいずれかに記載のスラリー組成物の乾燥膜が、セラミックグリーンシートの少なくとも一方の面に配置されてなる塗工シート。
PCT/JP2018/001816 2017-01-25 2018-01-22 スラリー組成物、セラミックグリーンシートおよび塗工シート WO2018139405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006024.4A CN110168021B (zh) 2017-01-25 2018-01-22 浆料组合物、陶瓷生片和涂覆片
JP2018564556A JP6666479B2 (ja) 2017-01-25 2018-01-22 スラリー組成物、セラミックグリーンシートおよび塗工シート
KR1020197021441A KR102473252B1 (ko) 2017-01-25 2018-01-22 슬러리 조성물, 세라믹 그린 시트 및 도공 시트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017011534 2017-01-25
JP2017-011534 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018139405A1 true WO2018139405A1 (ja) 2018-08-02

Family

ID=62978323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001816 WO2018139405A1 (ja) 2017-01-25 2018-01-22 スラリー組成物、セラミックグリーンシートおよび塗工シート

Country Status (5)

Country Link
JP (1) JP6666479B2 (ja)
KR (1) KR102473252B1 (ja)
CN (1) CN110168021B (ja)
TW (1) TWI738958B (ja)
WO (1) WO2018139405A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178042A (ja) * 2018-03-30 2019-10-17 株式会社トクヤマ 窒化アルミニウムグリーンシート
JPWO2020183635A1 (ja) * 2019-03-13 2020-09-17
JP2022509403A (ja) * 2018-10-30 2022-01-20 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング セラミックスラリー組成物および積層セラミック部品を製造する方法
WO2023189845A1 (ja) * 2022-03-29 2023-10-05 積水化学工業株式会社 セラミックグリーンシート用樹脂組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200250A (en) * 1981-06-01 1982-12-08 Sekisui Chem Co Ltd Interlay film for sandwich galss
JPS5832044A (ja) * 1981-08-14 1983-02-24 Sekisui Chem Co Ltd 合せガラス用中間膜の積み重ね体
JPS59213750A (ja) * 1983-05-18 1984-12-03 Sekisui Chem Co Ltd ポリビニルブチラ−ル樹脂組成物
JPS6020954A (ja) * 1983-07-13 1985-02-02 Unitika Ltd ポリエステル組成物
JP2004143132A (ja) * 2002-10-24 2004-05-20 Chang Chun Petrochemical Co Ltd ジカルボン酸ジエステル化合物、および該化合物を含有するポリビニルブチラール樹脂組成物
JP2006057070A (ja) * 2004-07-21 2006-03-02 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂用可塑剤及びそれを用いたペースト
WO2012008582A1 (ja) * 2010-07-16 2012-01-19 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2017127856A (ja) * 2015-07-28 2017-07-27 株式会社クラレ 無機化合物分散用剤、スラリー組成物、セラミックグリーンシート、導電ペーストおよび塗工シート

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739237B2 (ja) 1999-10-06 2006-01-25 積水化学工業株式会社 セラミックスラリー及びこれを用いたグリーンシート
JP2003095750A (ja) 2001-09-21 2003-04-03 Matsushita Electric Ind Co Ltd 積層セラミック部品の製造方法、及びそれに用いるグリーンシートとキャリアフィルム
JP4183573B2 (ja) 2003-06-26 2008-11-19 積水化学工業株式会社 導電ペースト用バインダー樹脂及び導電ペースト
JP4813779B2 (ja) 2004-07-21 2011-11-09 積水化学工業株式会社 セラミックペースト、導電ペースト及び誘電ペースト
CN103467897B (zh) * 2009-08-07 2017-04-12 可乐丽股份有限公司 聚乙烯醇缩醛组合物、层叠体及其用途
EP2336198A1 (de) * 2009-12-18 2011-06-22 Kuraray Europe GmbH Polyvinylacetal mit hoher Fließfähigkeit und hiermit hergestellte weichmacherhaltige Folie
KR101492549B1 (ko) * 2010-03-31 2015-02-12 가부시키가이샤 구라레 폴리비닐아세탈 필름 및 그의 용도
EP3381680A1 (en) * 2010-09-30 2018-10-03 Sekisui Chemical Co., Ltd. Laminated glass interlayer and laminated glass
TWI637994B (zh) * 2014-02-17 2018-10-11 可樂麗股份有限公司 陶瓷成形用或導電糊用黏合劑、及彼等之用途、以及陶瓷胚片及塗敷片、及彼等之製造方法
WO2018021439A1 (ja) * 2016-07-28 2018-02-01 株式会社クラレ セラミックグリーンシートおよび塗工シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200250A (en) * 1981-06-01 1982-12-08 Sekisui Chem Co Ltd Interlay film for sandwich galss
JPS5832044A (ja) * 1981-08-14 1983-02-24 Sekisui Chem Co Ltd 合せガラス用中間膜の積み重ね体
JPS59213750A (ja) * 1983-05-18 1984-12-03 Sekisui Chem Co Ltd ポリビニルブチラ−ル樹脂組成物
JPS6020954A (ja) * 1983-07-13 1985-02-02 Unitika Ltd ポリエステル組成物
JP2004143132A (ja) * 2002-10-24 2004-05-20 Chang Chun Petrochemical Co Ltd ジカルボン酸ジエステル化合物、および該化合物を含有するポリビニルブチラール樹脂組成物
JP2006057070A (ja) * 2004-07-21 2006-03-02 Sekisui Chem Co Ltd ポリビニルアセタール系樹脂用可塑剤及びそれを用いたペースト
WO2012008582A1 (ja) * 2010-07-16 2012-01-19 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
JP2017127856A (ja) * 2015-07-28 2017-07-27 株式会社クラレ 無機化合物分散用剤、スラリー組成物、セラミックグリーンシート、導電ペーストおよび塗工シート

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178042A (ja) * 2018-03-30 2019-10-17 株式会社トクヤマ 窒化アルミニウムグリーンシート
JP6991917B2 (ja) 2018-03-30 2022-01-13 株式会社トクヤマ 窒化アルミニウムグリーンシート
JP2022509403A (ja) * 2018-10-30 2022-01-20 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング セラミックスラリー組成物および積層セラミック部品を製造する方法
JPWO2020183635A1 (ja) * 2019-03-13 2020-09-17
WO2020183635A1 (ja) * 2019-03-13 2020-09-17 互応化学工業株式会社 焼成用スラリー組成物、グリーンシート、グリーンシートの製造方法、焼結体の製造方法、及び積層セラミックコンデンサの製造方法
JP7227631B2 (ja) 2019-03-13 2023-02-22 互応化学工業株式会社 焼成用スラリー組成物、グリーンシート、グリーンシートの製造方法、焼結体の製造方法、及び積層セラミックコンデンサの製造方法
WO2023189845A1 (ja) * 2022-03-29 2023-10-05 積水化学工業株式会社 セラミックグリーンシート用樹脂組成物

Also Published As

Publication number Publication date
CN110168021B (zh) 2022-03-15
JP6666479B2 (ja) 2020-03-13
KR102473252B1 (ko) 2022-12-05
TW201833056A (zh) 2018-09-16
CN110168021A (zh) 2019-08-23
TWI738958B (zh) 2021-09-11
JPWO2018139405A1 (ja) 2019-11-07
KR20190111029A (ko) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6666479B2 (ja) スラリー組成物、セラミックグリーンシートおよび塗工シート
TWI504613B (zh) A polyvinyl acetal resin, a slurry composition thereof, a green sheet and a laminated ceramic capacitor
JP5900706B2 (ja) セラミック成形用又は導電ペースト用のバインダー、及びそれらの用途
JP5913339B2 (ja) スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
JPWO2011092963A1 (ja) セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP2008285589A (ja) 樹脂組成物、導電ペースト及びセラミックペースト
WO2004067475A1 (ja) グリーンシート用塗料とその製造方法、グリーンシートとその製造方法、及び電子部品の製造方法
WO2018021439A1 (ja) セラミックグリーンシートおよび塗工シート
WO2011102197A1 (ja) セラミックグリーンシート用ポリビニルアセタール樹脂、およびその製造方法、スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP6437270B2 (ja) ビニルアセタール系重合体樹脂組成物並びにそれを用いたフィルム、セラミックグリーンシート及び積層体
TW202134293A (zh) 聚乙烯縮醛樹脂
JP2012216488A (ja) 導電ペースト
JP6732588B2 (ja) 無機化合物分散用剤、スラリー組成物、セラミックグリーンシート、導電ペーストおよび塗工シート
JP2006299030A (ja) 塗工ペースト用ビヒクル及び塗工ペースト
TW202102554A (zh) 陶瓷生片用樹脂組成物、陶瓷生片及積層陶瓷電容器
JP4145263B2 (ja) 導電ペースト
JP2021055085A (ja) ポリビニルアセタール樹脂
CN113874962A (zh) 导电糊剂
JP5462700B2 (ja) セラミックグリーンシート用ポリビニルアセタール樹脂、スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP4669685B2 (ja) スクリーン印刷用ペースト
JP7432051B1 (ja) ポリビニルアセタール樹脂及びセラミックグリーンシート用樹脂組成物
JP2006210256A (ja) 塗工ペースト用ビヒクル及び塗工ペースト
WO2023189847A1 (ja) ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ
TW202410073A (zh) 導電性糊料、電子零件及積層陶瓷電容器
JP2023147266A (ja) セラミックグリーンシート用樹脂組成物、セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745062

Country of ref document: EP

Kind code of ref document: A1