WO2023189847A1 - ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ - Google Patents

ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ Download PDF

Info

Publication number
WO2023189847A1
WO2023189847A1 PCT/JP2023/010985 JP2023010985W WO2023189847A1 WO 2023189847 A1 WO2023189847 A1 WO 2023189847A1 JP 2023010985 W JP2023010985 W JP 2023010985W WO 2023189847 A1 WO2023189847 A1 WO 2023189847A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyvinyl acetal
acetal resin
resin composition
weight
Prior art date
Application number
PCT/JP2023/010985
Other languages
English (en)
French (fr)
Inventor
裕司 大東
和人 中村
玲 水守
伸一 奥野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202380014116.8A priority Critical patent/CN118139925A/zh
Publication of WO2023189847A1 publication Critical patent/WO2023189847A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to a polyvinyl acetal resin composition, a slurry composition in which inorganic fine particles are dispersed, and a multilayer ceramic capacitor.
  • multilayer ceramic capacitors are generally manufactured through the following steps. First, a plasticizer, a dispersant, etc. are added to a solution of a binder resin such as polyvinyl butyral resin or poly(meth)acrylic acid ester resin dissolved in an organic solvent, and then ceramic raw material powder is added and mixed using a bead mill, ball mill, etc. A ceramic slurry composition having a constant viscosity after being uniformly mixed by a device and defoamed is obtained.
  • a plasticizer, a dispersant, etc. are added to a solution of a binder resin such as polyvinyl butyral resin or poly(meth)acrylic acid ester resin dissolved in an organic solvent, and then ceramic raw material powder is added and mixed using a bead mill, ball mill, etc.
  • a ceramic slurry composition having a constant viscosity after being uniformly mixed by a device and defoamed is obtained.
  • This slurry composition is cast onto the surface of a support such as a polyethylene terephthalate film that has undergone mold release treatment or an SUS plate using a doctor blade, reverse roll coater, etc., and is heated to remove volatile components such as solvents. After this, the ceramic green sheet is peeled off from the support to obtain a ceramic green sheet. Next, on the obtained ceramic green sheets, a plurality of conductive pastes, which will become internal electrodes, are applied by screen printing and are alternately stacked and bonded under heat and pressure to produce a laminate.
  • a support such as a polyethylene terephthalate film that has undergone mold release treatment or an SUS plate using a doctor blade, reverse roll coater, etc.
  • Patent Document 1 describes a polyvinyl acetal resin suitable as a ceramic binder that has a predetermined degree of polymerization, content of vinyl ester units, and degree of acetalization, and has a portion acetalized by acetaldehyde and acetalized by butyraldehyde.
  • a polyvinyl acetal resin is described in which the molar ratio with the converted moiety is within a predetermined range.
  • Patent Document 2 describes a polyvinyl acetal resin having a predetermined degree of polymerization, content of vinyl ester units, and degree of acetalization, and having a specific structural unit.
  • the present disclosure (1) has a water content of 5.0% by weight or less, contains a polyvinyl acetal resin, carbon atoms, hydrogen atoms, and oxygen atoms, and the ratio of the number of oxygen atoms to the total number of atoms (number of oxygen atoms/total This is a polyvinyl acetal resin composition containing a compound A having a number of atoms) of 0.18 or more.
  • the present disclosure (2) is the polyvinyl acetal resin composition of the present disclosure (1), which contains 2.8 parts by weight or more and 20 parts by weight or less of the compound A based on 100 parts by weight of the polyvinyl acetal resin.
  • the solubility parameter value of polyvinyl acetal resin calculated by the Fedors method is S1
  • the solubility parameter of compound A is S2
  • the absolute value of the difference between S1 and S2 is 9.0 (cal/ cm 3 ) 0.5 or less
  • the polyvinyl acetal resin composition of the present disclosure (1) or (2) is a polyvinyl acetal resin composition in any combination with any of the present disclosures (1) to (3), in which the molecular weight of compound A is 90 or more and 450 or less.
  • the present disclosure (5) provides that the compound A is at least one selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2).
  • R 1 and R 3 represent a carboxyl group or a salt thereof
  • R 2 consists of a carbon atom, a hydrogen atom, or an oxygen atom that may be substituted with a single bond, a hydroxyl group, a carboxyl group, or a salt thereof.
  • R 4 and R 6 each independently represent a hydrogen atom, a hydroxyl group, an acetyl group, or an acetoxy group
  • R 5 is substituted with a hydroxyl group, an acetyl group, an acetoxy group, a carboxyl group, or a salt thereof.
  • R 2 is a linear alkylene group having 1 to 6 carbon atoms having at least one of a single bond, a hydroxyl group, a carboxyl group, or a salt thereof, or a hydroxyl group;
  • the polyvinyl acetal resin composition of the present disclosure (5) is a branched alkylene group having 3 to 6 carbon atoms and having at least one of a carboxyl group or a salt thereof.
  • R 5 is a linear alkylene group having 1 to 6 carbon atoms having at least one of a hydroxyl group, an acetyl group, an acetoxy group, a carboxyl group, or a salt thereof; , a branched alkylene group having 3 to 6 carbon atoms having at least one of an acetyl group, an acetoxy group, a carboxyl group, or a salt thereof, or a glycerin unit having a repeating number of 2 to 11, or (5) of the present disclosure or ( 6) is the polyvinyl acetal resin composition.
  • the present disclosure (8) provides the present disclosure (5) to (7), wherein the compound represented by formula (1) is at least one compound selected from the group consisting of tartaric acid, malic acid, citric acid, and salts thereof.
  • the compound represented by formula (1) is at least one compound selected from the group consisting of tartaric acid, malic acid, citric acid, and salts thereof.
  • ) is a polyvinyl acetal resin composition in any combination with any of the following.
  • the present disclosure (9) is a compound represented by formula (2), which is at least one compound selected from the group consisting of pentaerythritol and pentaerythritol tetraacetate.
  • a polyvinyl acetal resin composition of any combination of The present disclosure (10) provides any combination of the present disclosure (1) to (9), in which the Y value expressed by the following formula is 6.3 ⁇ 10 ⁇ 9 or more and 45.0 ⁇ 10 ⁇ 9 or less.
  • a combination polyvinyl acetal resin composition ((W A ⁇ M A ⁇ O R ) ⁇ (100-W W )) ⁇ (M PVB ⁇ M A ) ⁇ S 0.4 W A : Content of compound A relative to 100 parts by weight of polyvinyl acetal resin M A : Molecular weight of compound A O R : Ratio of the number of oxygen atoms to the total number of atoms in compound A (number of oxygen atoms/total number of atoms) W W : Moisture content of the polyvinyl acetal resin composition M PVB : Weight average molecular weight of the polyvinyl acetal resin S: When the solubility parameter value of the polyvinyl acetal resin calculated by the Fedors method is S1, and the solubility parameter of compound A is S2.
  • the present disclosure (11) is an inorganic fine particle dispersed slurry composition containing the polyvinyl acetal resin composition of any of the present disclosure (1) to (10), an organic solvent, and inorganic fine particles. It is.
  • the present disclosure (12) is the inorganic fine particle dispersion slurry composition of the present disclosure (11), which further contains a plasticizer.
  • the present disclosure (13) is the inorganic fine particle dispersion slurry composition of the present disclosure (11) or (12), wherein the inorganic fine particles are barium titanate powder or nickel powder.
  • the present disclosure (14) is a multilayer ceramic capacitor having a dielectric layer or an electrode layer formed using the inorganic fine particle dispersed slurry composition according to any one of the present disclosure (11) to (13). The present invention will be explained in detail below.
  • the polyvinyl acetal resin composition contains polyvinyl acetal resin.
  • the above polyvinyl acetal resin usually includes a structural unit having a hydroxyl group represented by the following formula (a-1), a constitutional unit having an acetyl group represented by the following formula (a-2), and a structural unit having the following formula (a-3). It has a structural unit having an acetal group represented by
  • R 1a represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, Examples include tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, and the like. Among these, methyl, ethyl, and propyl groups are preferred.
  • the content of the structural unit having a hydroxyl group represented by the above formula (a-1) in the polyvinyl acetal resin is preferably 18 mol% or more, and 20% by mole or more, since it can improve the toughness of the resin. More preferably mol % or more, and even more preferably 22 mol % or more. Moreover, since the solvent solubility can be further improved, the content is preferably 50 mol% or less, more preferably 39 mol% or less, and even more preferably 38 mol% or less.
  • the amount of hydroxyl groups is preferably 18 to 50 mol%, more preferably 20 to 39 mol%, even more preferably 22 to 38 mol%.
  • the amount of hydroxyl groups can be measured, for example, by NMR.
  • the content of the structural unit having an acetyl group represented by the above formula (a-2) in the polyvinyl acetal resin (hereinafter referred to as "acetyl group amount”) is 0.5 mol% or more because it can suppress increase in viscosity. It is preferably 0.6 mol% or more, more preferably 1 mol% or more. In addition, since the flexibility of the polyvinyl acetal resin does not increase too much and handling properties can be improved, the content is preferably 20 mol% or less, more preferably 16 mol% or less, and even more preferably 14 mol% or less.
  • the amount of acetyl groups is preferably 0.5 to 20 mol%, more preferably 0.6 to 16 mol%, and even more preferably 1 to 14 mol%. The amount of acetyl groups can be measured, for example, by NMR.
  • the content of the structural unit having an acetal group represented by the above formula (a-3) in the polyvinyl acetal resin (hereinafter referred to as "acetal group amount") is 45 mol% or more, since it can further improve the solubility in a solvent. is preferable, 47 mol% or more is more preferable, and even more preferably 49 mol% or more. Moreover, since the toughness of the resin can be improved, the content is preferably 80 mol% or less, more preferably 78 mol% or less, and even more preferably 76 mol% or less.
  • the amount of acetal groups is preferably 45 to 80 mol%, more preferably 47 to 78 mol%, even more preferably 49 to 76 mol%.
  • the amount of acetal groups can be measured, for example, by NMR.
  • the calculation method of the acetal group amount since the acetal group of polyvinyl acetal resin is obtained by acetalizing two hydroxyl groups of polyvinyl alcohol, the structural unit having an acetal group is calculated as two structural units having a hydroxyl group. A method of converting and counting can be adopted.
  • the polyvinyl acetal resin may have other structural units in addition to the structural units (a-1), (a-2), and (a-3) of the above formula.
  • Other structural units may include, for example, structural units having functional groups such as carboxyl groups, sulfonic acid groups, alkylene oxide groups, and amide groups, or ethylene units.
  • the structural units having a carboxyl group include the structural unit represented by the following formula (b-1), the structural unit represented by the following formula (b-2), and the structural unit represented by the following formula (b-3). Examples include units.
  • R 1b and R 2b each independently represent an alkylene group having 0 to 10 carbon atoms
  • X 1b and X 2b each independently represent a hydrogen atom, a metal atom, or a methyl group. represents.
  • the lower limit of the carbon number of the alkylene group represented by R 1b and R b2 is preferably 0, the upper limit is preferably 5, the lower limit is more preferably 1, and the upper limit is 3.
  • the number of carbon atoms in the alkylene group is more preferably 0 to 5, and even more preferably 1 to 3.
  • the above R 1b and R 2b may be the same or different, but preferably different. Moreover, it is preferable that at least one of them is a single bond.
  • alkylene group having 0 to 10 carbon atoms examples include a single bond, a linear alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, and a decamethylene group.
  • branched alkylene groups such as methylmethylene group, methylethylene group, 1-methylpentylene group, and 1,4-dimethylbutylene group
  • cyclic alkylene groups such as cyclopropylene group, cyclobutylene group, and cyclohexylene group.
  • single bonds linear alkylene groups such as methylene groups, ethylene groups, n-propylene groups, and n-butylene groups are preferred, and single bonds, methylene groups, and ethylene groups are more preferred.
  • X 1b and X 2b when at least one of X 1b and X 2b is a metal atom, examples of the metal atom include a sodium atom, a lithium atom, a potassium atom, and the like. Among these, a sodium atom is preferred.
  • the structural unit represented by the above formula (b-1) is preferably derived from an ⁇ -dicarboxy monomer.
  • ⁇ -dicarboxy monomers include dicarboxylic acids having radically polymerizable unsaturated double bonds such as methylene malonic acid, itaconic acid, 2-methylene glutaric acid, 2-methylene adipic acid, and 2-methylene sebacic acid; Examples include metal salts or methyl esters thereof. Among these, itaconic acid, its metal salt, or its methyl ester are preferably used.
  • the ⁇ -dicarboxy monomer refers to a monomer having two carboxyl groups at the ⁇ -position carbon.
  • R 3b , R 4b and R 5b each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 6b is an alkylene group having 0 to 10 carbon atoms.
  • X 3b represents a hydrogen atom, a metal atom, or a methyl group.
  • the preferable lower limit of the number of carbon atoms in the alkyl group represented by R 3b , R 4b and R 5b is 1, the preferable upper limit is 5, and the more preferable upper limit is 3.
  • the number of carbon atoms in the alkyl group is preferably 1 to 5, and even more preferably 1 to 3.
  • R 3b , R 4b , and R 5b may be the same or different, but the same is more preferable. Moreover, it is preferable that R 3b , R 4b and R 5b are hydrogen atoms.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, n-butyl group, n-pentyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Straight chain alkyl groups such as decyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, 2,2-dimethylpropyl group, 1,1,3,3-tetramethylbutyl group, Branched alkyl groups such as a 2-ethylhexyl group, cycloalkyl groups such as a cyclopropyl group, a cyclopropylmethyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • linear alkyl groups such as methyl
  • R 6b in the above formula (b-2) examples include those similar to those exemplified for R 1b and R 2b in the above formula (b-1), and among them, a single bond, a methylene group, an ethylene group, A linear alkylene group such as a trimethylene group or a tetramethylene group is preferable, a single bond, a methylene group or an ethylene group is more preferable, and a single bond is even more preferable.
  • X 3b is a metal atom
  • examples of the metal atom include a sodium atom, a lithium atom, a potassium atom, and the like. Among these, a sodium atom is preferred.
  • the structural unit represented by the above formula (b-2) is preferably derived from a monocarboxy monomer.
  • the monocarboxy monomer include monocarboxylic acids having radically polymerizable unsaturated double bonds such as acrylic acid, crotonic acid, methacrylic acid, and oleic acid, metal salts thereof, and methyl esters thereof.
  • crotonic acid, its metal salt, or its methyl ester are preferably used.
  • R 7b and R 9b each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 8b and R 10b represent an alkylene group having 0 to 10 carbon atoms
  • X 4b and X 5b represent a hydrogen atom, a metal atom, or a methyl group.
  • the lower limit of the number of carbon atoms in the alkyl group represented by R 7b and R 9b is preferably 1, the upper limit is preferably 5, and the upper limit is more preferably 3.
  • R 7b and R 9b may be the same or different, but the same is more preferable.
  • R 7b and R 9b in the above formula (b-3) include those similar to those exemplified for R 3b , R 4b and R 5b in the above formula (b-2), and among them, hydrogen Atoms are preferred.
  • R 8b and R 10b in the above formula (b-3) include those similar to those exemplified for R 1b and R 2b in the above formula (b-1), including single bonds, methylene
  • a linear alkylene group such as a group, an ethylene group, a trimethylene group, or a tetramethylene group is preferable, a single bond, a methylene group, or an ethylene group is more preferable, and a single bond is even more preferable.
  • X 4b and X 5b are metal atoms
  • examples of the metal atoms include sodium atom, lithium atom, potassium atom, and the like. Among these, a sodium atom is preferred.
  • Examples of the above-mentioned structural unit having a sulfonic acid group include a structural unit represented by the following formula (c).
  • R 1c represents an alkylene group having 0 to 10 carbon atoms
  • X 1c represents a hydrogen atom, a metal atom, or a methyl group.
  • R 1c in the above formula (c) examples include those similar to those exemplified for R 1b and R 2b in the above formula (b-1), and among them, a single bond, a methylene group, an ethylene group, Linear alkylene groups such as trimethylene group and tetramethylene group are preferred, single bonds, methylene groups and ethylene groups are more preferred, and single bonds and methylene groups are even more preferred.
  • X 1c is a metal atom
  • examples of the metal atom include a sodium atom, a lithium atom, a potassium atom, and the like. Among these, a sodium atom is preferred.
  • Examples of the above-mentioned structural unit having an alkylene oxide group include a structural unit represented by the following formula (d).
  • R d1 represents a group having an alkylene oxide group having 2 to 6 carbon atoms.
  • alkylene oxide group having 2 to 6 carbon atoms examples include ethylene oxide group, propylene oxide group, butylene oxide group, pentylene oxide group, and hexylene oxide group.
  • Examples of the structural unit having an alkylene oxide group represented by the above formula (d) include those having multiple ethylene oxide groups such as polyethylene glycol, those having a single ethylene oxide group, and those having different alkylene oxide groups. etc.
  • the above structural unit having an alkylene oxide group is a structural unit having an ethylene oxide group represented by the following formula (e-1), or an ethylene oxide group and a propylene oxide group represented by the following formula (e-2). It is preferable that it is a structural unit having the following.
  • the ethylene oxide group and the propylene oxide group may be arranged in either a block or random arrangement.
  • R e1 and R e2 represent a linking group or a single bond having at least one selected from the group consisting of C and O, and n 1 represents an integer.
  • the above R e1 is a linking group or a single bond having at least one selected from the group consisting of C and O.
  • the above R e1 is preferably an alkylene group having 1 to 10 carbon atoms, a carbonyl group, or an oxygen atom.
  • Examples of the above R e1 include a methylene group, an ethylene group, a carbonyl group, an ether group, an allyl ether group, and an amide group.
  • the above R e2 is a linking group or a single bond having at least one selected from the group consisting of C and O.
  • the above R e2 is preferably an alkylene group having 1 to 10 carbon atoms, a carbonyl group, or an oxygen atom.
  • R e2 examples include a methylene group, an ethylene group, a propylene group, a carbonyl group, and an ether group.
  • the integer n 1 which is the number of repeats of alkylene oxide, is not particularly limited, but is preferably from 2 to 70, more preferably from 5 to 50.
  • R e3 , R e4 and R e5 represent a linking group or a single bond having at least one selected from the group consisting of C and O, and n 2 and n 3 represent integers. represent.
  • R e3 , R e4 and R e5 include those exemplified as R e1 and R e2 in formula (e-1) above.
  • the integers n 2 and n 3 which are the repeating numbers of alkylene oxide, are not particularly limited, but it is preferable that n 2 is from 1 to 40, more preferably from 20 to 30.
  • n 3 is preferably from 1 to 40, more preferably from 20 to 30.
  • Examples of the structural unit having an amide group include a structural unit represented by the following formula (f).
  • R 1f represents an alkyl group having 1 to 10 carbon atoms.
  • R 1f in the above formula (f) examples include those similar to those exemplified for R 3b , R 4b and R 5b in the above formula (b-2), and among them, a hydrogen atom, a methyl group, Straight chain alkyl groups such as ethyl, propyl and n-butyl groups are preferred, and hydrogen atoms, methyl and ethyl groups are more preferred.
  • the content of the structural unit having the functional group in the polyvinyl acetal resin is preferably 0 mol% or more, more preferably 0.1 mol% or more, even more preferably 0.5 mol% or more, and preferably 5 mol% or less. , more preferably 3 mol% or less.
  • the content of the structural unit having the above functional group is preferably 0 to 5 mol%, more preferably 0.1 to 5 mol%, and even more preferably 0.5 to 3 mol%.
  • the content of the structural unit having the above-mentioned functional group can be measured by, for example, NMR.
  • Examples of the above ethylene unit include a structural unit represented by the following formula (g).
  • the content of the ethylene units (hereinafter also referred to as "ethylene content”) is preferably 1 mol% or more, more preferably 3 mol% or more, preferably 20 mol% or less, and 10 mol%. The following are more preferred.
  • the above ethylene content is preferably 1 to 20 mol%, more preferably 3 to 10 mol%.
  • the above ethylene content can be measured, for example, by NMR.
  • the ethylene content of the polyvinyl acetal resin means the apparent ethylene content of the entire polyvinyl acetal resin. That is, for example, when a polyvinyl acetal resin contains multiple resins having different ethylene contents, the ethylene content of the polyvinyl acetal resin is obtained by multiplying the ethylene content of each resin by the content ratio of that resin. It is determined by summing each value.
  • the ratio of the ethylene content to the hydroxyl group amount is preferably 0.01 or more, and preferably 1.0 or less.
  • the above ethylene content/hydroxyl group amount is preferably 0.01 to 1.0.
  • the average degree of polymerization of the polyvinyl acetal resin is preferably 300 or more, more preferably 600 or more, even more preferably 1,000 or more, particularly preferably 1,300 or more, since mechanical strength can be improved. Further, from the viewpoint of solvent solubility and viscosity, the molecular weight is preferably 10,000 or less, more preferably 8,000 or less, even more preferably 3,500 or less, and particularly preferably 3,000 or less. The average degree of polymerization is preferably 300 to 10,000, more preferably 600 to 8,000, even more preferably 1,000 to 3,500, and particularly preferably 1,300 to 3,000. Note that the above average degree of polymerization is the same as the average degree of polymerization of the raw material polyvinyl alcohol resin. The average degree of polymerization of the raw material polyvinyl alcohol resin can be measured in accordance with JIS K 6726.
  • the weight average molecular weight (Mw) of the polyvinyl acetal resin is preferably 80,000 or more, preferably 2,500,000 or less, more preferably 150,000 or more, more preferably 2,000,000 or less, and 250,000 or more. The above is more preferable, 875,000 or less is even more preferable, 300,000 or more is even more preferable, and 440,000 or less is even more preferable.
  • the weight average molecular weight (Mw) is preferably 80,000 to 2,500,000, more preferably 150,000 to 2,000,000, even more preferably 250,000 to 875,000, and even more preferably 300,000 to 440. ,000 is even more preferred.
  • weight average molecular weight (Mw) of the polyvinyl acetal resin By setting the weight average molecular weight (Mw) of the polyvinyl acetal resin to be at least the above-mentioned lower limit, mechanical strength can be improved, and by setting it to be below the above-mentioned upper limit, solvent solubility can be improved.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC) using a suitable standard (eg, a polystyrene standard). Examples of the column used to measure the Mw include TSKgel SuperHZM-H (manufactured by Tosoh).
  • the content of polyvinyl acetal resin in the polyvinyl acetal resin composition is preferably 80.0% by weight or more, more preferably 85.0% by weight or more, even more preferably 90.0% by weight or more, and 97.2% by weight or less. is preferable, 97.0% by weight or less is more preferable, and even more preferably 96.5% by weight or less.
  • the content of the polyvinyl acetal resin is preferably 80.0 to 97.2% by weight, more preferably 85.0 to 97.0% by weight, even more preferably 90.0 to 96.5% by weight.
  • the above polyvinyl acetal resin can usually be produced by acetalizing polyvinyl alcohol resin.
  • polyvinyl alcohol resin conventionally known polyvinyl alcohol resins such as resins produced by saponifying polyvinyl acetate resins with alkali, acid, aqueous ammonia, etc. can be used, for example.
  • the above-mentioned polyvinyl alcohol resin may be completely saponified, but it is not necessary to be completely saponified as long as there is at least one unit having a double hydroxyl group in the meso or racemo position at least at one location in the main chain. , partially saponified polyvinyl alcohol resin.
  • polyvinyl alcohol resin copolymers of vinyl alcohol and monomers that can be copolymerized with vinyl alcohol, such as ethylene-vinyl alcohol copolymer resins and partially saponified ethylene-vinyl alcohol copolymer resins, can also be used.
  • examples of the polyvinyl acetate resin include ethylene-vinyl acetate copolymer.
  • the degree of saponification of the polyvinyl alcohol resin is preferably 80 mol% or more, more preferably 84 mol% or more, even more preferably 88 mol% or more, preferably 99.5 mol% or less, and more preferably 99.4 mol% or less. It is preferably 99 mol% or less, and more preferably 99 mol% or less.
  • the saponification degree is preferably 80 to 99.5 mol%, more preferably 84 to 99.4 mol%, and even more preferably 88 to 99 mol%.
  • the acetalization can be carried out using a known method, and is preferably carried out in an aqueous solvent, in a mixed solvent of water and an organic solvent with which water is compatible, or in an organic solvent.
  • an organic solvent that is compatible with water for example, an alcohol-based organic solvent can be used.
  • the organic solvent include alcohol-based organic solvents, aromatic organic solvents, aliphatic ester-based solvents, ketone-based solvents, lower paraffinic solvents, ether-based solvents, amide-based solvents, amine-based solvents, and the like.
  • the alcoholic organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, and tert-butanol.
  • Examples of the aromatic organic solvent include xylene, toluene, ethylbenzene, methyl benzoate, and the like.
  • Examples of the aliphatic ester solvent include methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetoacetate, and ethyl acetoacetate.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, benzophenone, and acetophenone.
  • Examples of the lower paraffinic solvent include hexane, pentane, octane, cyclohexane, decane, and the like.
  • Examples of the ether solvent include diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, and the like.
  • Examples of the amide solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, acetanilide, and the like.
  • amine solvent examples include ammonia, trimethylamine, triethylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, aniline, N-methylaniline, N,N-dimethylaniline, and pyridine. These solvents can be used alone, or two or more solvents can be used as a mixture. Among these, ethanol, n-propanol, isopropanol, and tetrahydrofuran are particularly preferred from the viewpoint of solubility in the resin and ease of purification.
  • the acetalization is preferably performed in the presence of an acid catalyst.
  • the above acid catalysts are not particularly limited, and include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, carboxylic acids such as formic acid, acetic acid, and propionic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and paratoluenesulfonic acid. Examples include sulfonic acids such as acids.
  • These acid catalysts may be used alone or in combination of two or more kinds of compounds. Among these, hydrochloric acid, nitric acid, and sulfuric acid are preferred, and nitric acid is particularly preferred.
  • aldehyde used in the acetalization examples include aldehydes having a chain aliphatic group, a cyclic aliphatic group, or an aromatic group having 1 to 10 carbon atoms. As these aldehydes, conventionally known aldehydes can be used.
  • the aldehyde used in the acetalization reaction is not particularly limited, and examples thereof include aliphatic aldehydes, aromatic aldehydes, and the like.
  • Examples of the aliphatic aldehyde include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, n-hexylaldehyde, 2-ethylbutyraldehyde, 2-ethylhexylaldehyde, n-heptylaldehyde, n- Examples include octylaldehyde, n-nonylaldehyde, n-decylaldehyde, amylaldehyde and the like.
  • aromatic aldehyde examples include benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde, and the like. These aldehydes may be used alone or in combination of two or more.
  • aldehydes examples include formaldehyde, acetaldehyde, butyraldehyde, and 2-ethylhexylaldehyde, which have excellent acetalization reactivity and can provide a sufficient internal plasticizing effect to the resulting resin, resulting in good flexibility.
  • Preferred is n-nonylaldehyde.
  • formaldehyde, acetaldehyde, and butyraldehyde are more preferred because they yield an adhesive composition particularly excellent in impact resistance and adhesion to metals.
  • the amount of the aldehyde added can be appropriately set depending on the amount of acetal groups in the target polyvinyl acetal resin.
  • the polyvinyl acetal resin composition contains compound A.
  • the above compound A contains carbon atoms, hydrogen atoms, and oxygen atoms, and the ratio of the number of oxygen atoms to the total number of atoms (number of oxygen atoms/total number of atoms) is 0.18 or more. Further, the number of oxygen atoms/total number of atoms is preferably 0.19 or more, more preferably 0.30 or more, even more preferably 0.35 or more, preferably 0.90 or less, more preferably 0.70 or less, and 0. 60 or less is more preferable.
  • the number of oxygen atoms/total number of atoms is preferably 0.18 to 0.90, more preferably 0.19 to 0.70, even more preferably 0.30 to 0.70, and even more preferably 0.35 to 0.60. more preferred.
  • the thermal decomposition property of the polyvinyl acetal resin can be improved.
  • the molecular weight of the compound A is preferably 90 or more, more preferably 130 or more, even more preferably 150 or more, and 10 ,000 or less is preferable, 450 or less is more preferable, and even more preferably 400 or less.
  • the above molecular weight is preferably from 90 to 10,000, more preferably from 130 to 450, even more preferably from 150 to 400. Note that the above molecular weight is a calculated molecular weight.
  • solubility parameter value S1 of the polyvinyl acetal resin and the solubility parameter value S2 of the compound A calculated by the Fedors method may be adjusted as appropriate depending on the intended use.
  • the absolute value of the difference between S1 and S2 is preferably 9.0 (cal/cm 3 ) 0.5 or less, and 8.5 (cal/cm 3 ) 0 because it has the advantage of improving thermal decomposition. .5 or less is more preferable, and 5.5 (cal/cm 3 ) 0.5 or less is even more preferable.
  • the above compound A has the advantage of improving compatibility with polyvinyl acetal resin, and therefore at least one selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2). Preferably, there is one.
  • R 1 and R 3 represent a carboxyl group or a salt thereof
  • R 2 consists of a carbon atom, a hydrogen atom, and an oxygen atom that may be substituted with a single bond, a hydroxyl group, a carboxyl group, or a salt thereof
  • R 4 and R 6 each independently represent a hydrogen atom, a hydroxyl group, an acetyl group, or an acetoxy group
  • R 5 is substituted with a hydroxyl group, an acetyl group, an acetoxy group, a carboxyl group, or a salt thereof.
  • R 4 and R 6 may be the same or different, but preferably the same.
  • the above R 2 is preferably a single bond or a divalent hydrocarbon group which may be substituted with a hydroxyl group, a carboxyl group, or a salt thereof.
  • the above hydrocarbon group includes a linear alkylene group having 1 to 6 carbon atoms, a branched alkylene group having 3 to 6 carbon atoms, a linear alkenylene group having 2 to 6 carbon atoms, and a branched alkenylene group having 3 to 6 carbon atoms. , a cycloalkylene group having 3 to 6 carbon atoms, a cycloalkenylene group having 3 to 6 carbon atoms, an aromatic hydrocarbon group having 6 carbon atoms, and the like.
  • linear alkylene groups having 1 to 4 carbon atoms and branched alkylene groups having 3 to 4 carbon atoms are preferred, and linear alkylene groups having 1 to 3 carbon atoms are more preferred.
  • linear alkylene group having 1 to 6 carbon atoms examples include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, and the like.
  • Examples of the branched alkylene group having 3 to 6 carbon atoms include 1-methylethylene group, 2-methyltrimethylene group, 2-methyltetramethylene group, and 2-methylpentamethylene group.
  • linear alkenylene group having 2 to 6 carbon atoms examples include vinylene group, propenylene group, butenylene group, and hexenylene group.
  • Examples of branched alkenylene groups having 3 to 6 carbon atoms include isopropenylene group, 1-ethylethenylene group, 2-methylpropenylene group, 2,2-dimethylbutenylene group, 3-methyl-2-butenylene group, 3- Examples include ethyl-2-butenylene group.
  • Examples of the cycloalkylene group having 3 to 6 carbon atoms include a cyclopentylene group and a cyclohexylene group.
  • Examples of the cycloalkenylene group having 3 to 6 carbon atoms include a cyclopentenylene group, a 2,4-cyclopentadienylene group, and a cyclohexenylene group.
  • aromatic hydrocarbon group having 6 carbon atoms examples include 1,2-phenylene and the like.
  • R 2 is a linear alkylene group having 1 to 6 carbon atoms having at least one of a single bond, a hydroxyl group, a carboxyl group, or a salt thereof, or at least one of a hydroxyl group, a carboxyl group, or a salt thereof.
  • a branched alkylene group having 3 to 6 carbon atoms is preferable, and more specifically, a single bond, a methylene group, a trimethylene group, a hydroxymethylene group, a hydroxyethylene group, a 1,2-dihydroxyethylene group, a 2-hydroxy, -carboxytrimethylene group is preferred, and hydroxyethylene group, 1,2-dihydroxyethylene group, and 2-hydroxy,2-carboxytrimethylene group are more preferred.
  • R 5 examples include a divalent hydrocarbon group having at least one of a hydroxyl group, an acetyl group, an acetoxy group, a carboxyl group or a salt thereof, and an acetyl group, a divalent group having a glycerin unit, etc. It will be done. Examples of the above-mentioned hydrocarbon group include those listed as R 2 .
  • branched alkylene group having 3 to 5 carbon atoms and a divalent group having a glycerin unit having at least one of a hydroxyl group, an acetyl group, an acetoxy group, a carboxyl group or a salt thereof, and a divalent group having 3 to 5 carbon atoms are preferred. More preferred are branched alkylene groups and glycerin units having a repeating number of 2 to 11.
  • R 5 is preferably a 2,2-dihydroxymethyltrimethylene group, a 2,2-diacetoxymethyltrimethylene group, or a glycerin unit having a repeating number of 2 to 11.
  • the compound represented by the above formula (1) includes aliphatic hydroxy acids such as citric acid, malic acid, tartaric acid, tartronic acid, isocitric acid, and mevalonic acid, oxalic acid, malonic acid, fumaric acid,
  • aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, and suberic acid.
  • citric acid, malic acid, and tartaric acid are preferred.
  • Specific examples of the compound represented by the above formula (2) include pentaerythritol, pentaerythritol tetraacetate, glycerin, and polyglycerin having 2 to 11 glycerin units. Among them, pentaerythritol and pentaerythritol tetraacetate are preferred.
  • the content of the compound A in the polyvinyl acetal resin composition is preferably 2.8 parts by weight or more based on 100 parts by weight of the polyvinyl acetal resin, since it has the advantage of improving thermal decomposition properties. It is more preferably 0 parts by weight or more, and even more preferably 3.5 parts by weight or more. From the viewpoint of improving the solvent solubility of the polyvinyl acetal resin composition, the amount is preferably 20.0 parts by weight or less, more preferably 15.0 parts by weight or less, and even more preferably 10.0 parts by weight or less.
  • the content of the compound A is preferably 2.8 to 20.0 parts by weight, more preferably 3.0 to 15.0 parts by weight, and more preferably 3.5 to 10.0 parts by weight, based on 100 parts by weight of the polyvinyl acetal resin. More preferably 0 parts by weight.
  • the water content of the polyvinyl acetal resin composition is 5.0% by weight or less. When the water content is 5.0% by weight or less, the handleability and solvent solubility of the polyvinyl acetal resin composition can be improved.
  • the water content is preferably 0.01% by weight or more, more preferably 0.02% by weight or more, preferably 3.0% by weight or less, and more preferably 2.0% by weight or less.
  • the water content is preferably 0.01 to 5.0% by weight, more preferably 0.02 to 3.0% by weight, and even more preferably 0.02 to 2.0% by weight.
  • the above-mentioned water content means the content of water in the polyvinyl acetal resin composition, and can be measured by an infrared moisture meter or NMR. Further, the moisture content can be adjusted by the drying temperature and drying time after acetalization, and the drying temperature and drying time after mixing the polyvinyl acetal resin and compound A.
  • the polyvinyl acetal resin composition preferably has a Y value expressed by the following formula of 6.3 ⁇ 10 ⁇ 9 or more and 45.0 ⁇ 10 ⁇ 9 or less.
  • Y ((W A ⁇ M A ⁇ O R ) ⁇ (100-W W )) ⁇ (M PVB ⁇ M A ) ⁇ S 0.4 W A : Content of compound A relative to 100 parts by weight of polyvinyl acetal resin
  • M A Molecular weight of compound A O R : Ratio of the number of oxygen atoms to the total number of atoms in compound A (number of oxygen atoms/total number of atoms)
  • W W Moisture content M of the polyvinyl acetal resin composition
  • PVB Weight average molecular weight of the polyvinyl acetal resin S: When the solubility parameter value of the polyvinyl acetal resin calculated by the Fedors method is S1, and the solubility parameter of compound A is S2.
  • the above Y value is more preferably 9.0 ⁇ 10 ⁇ 9 or more, and more preferably 15.0 ⁇ 10 ⁇ 9 or less.
  • the above Y value is preferably 6.3 ⁇ 10 ⁇ 9 to 45.0 ⁇ 10 ⁇ 9 , more preferably 9.0 ⁇ 10 ⁇ 9 to 15.0 ⁇ 10 ⁇ 9 .
  • the polyvinyl acetal resin composition may contain components such as a dispersant, an antioxidant, a plasticizer, and a surfactant, as long as they do not impede the effects described above.
  • the above-mentioned compound A and other additives added as necessary are added to a polyvinyl acetal resin obtained by acetalizing polyvinyl alcohol with an aldehyde.
  • a method of adjusting the moisture content by adding, mixing, and drying can be mentioned.
  • Another method is to acetalize polyvinyl alcohol with an aldehyde in the presence of Compound A and dry it to adjust the water content.
  • the above compound A and other additives added as necessary are added and mixed to a polyvinyl acetal resin obtained by acetalizing polyvinyl alcohol with an aldehyde, and the water content is adjusted by drying. A method of doing so is preferred.
  • the above polyvinyl acetal resin composition can be suitably used in applications where ordinary polyvinyl acetal resin is used, such as ceramic molded bodies, metal pastes, heat-developable photosensitive materials, paints, inks, reflective sheets, etc.
  • a coating solution for manufacturing can be obtained.
  • adhesive compositions such as adhesives for display films, interlayer adhesives for ceramic laminates, liquid glues, solid glues, and the like.
  • An inorganic fine particle-dispersed slurry composition can be prepared by mixing the polyvinyl acetal resin composition, an organic solvent, and inorganic fine particles.
  • the organic solvent is not particularly limited as long as it can dissolve the polyvinyl acetal resin, and examples thereof include ketones such as acetone, methyl ethyl ketone, dipropyl ketone, and diisobutyl ketone.
  • ketones such as acetone, methyl ethyl ketone, dipropyl ketone, and diisobutyl ketone.
  • Other examples include alcohols such as methanol, ethanol, isopropanol and butanol, and aromatic hydrocarbons such as toluene and xylene.
  • esters such as 2-ethylhexyl acetate and 2-ethylhexyl butyrate.
  • Further examples include methyl cellosolve, ethyl cellosolve, butyl cellosolve, terpineol, dihydroterpineol, butyl cellosolve acetate, butyl carbitol acetate, terpineol acetate, dihydroterpineol acetate, and the like.
  • Particularly preferred are alcohols, ketones, aromatic hydrocarbons, and mixed solvents thereof from the viewpoint of coating properties and drying properties.
  • a mixed solvent of ethanol and toluene and a mixed solvent of methyl ethyl ketone and toluene are more preferable.
  • the content of the above-mentioned organic solvent in the above-mentioned inorganic fine particle dispersed slurry composition is set depending on the type of polyvinyl acetal resin used, etc., and is not particularly limited, but if it is too small, kneading It is difficult to achieve the required solubility. Furthermore, if the amount is too large, the viscosity of the slurry composition may become too low, resulting in poor handling properties when producing ceramic green sheets. Therefore, the content of the organic solvent is preferably 20% by weight or more and 80% by weight or less.
  • the inorganic fine particle dispersed slurry composition contains inorganic fine particles.
  • the inorganic fine particles are not particularly limited, and examples thereof include ceramic powder, glass powder, metal fine particles, and the like.
  • the ceramic powder is not particularly limited, and includes powders of metal or nonmetal oxides, carbides, nitrides, borides, sulfides, etc. used in the production of ceramics. Specific examples include Li, K, Mg, B, Al, Si, Cu, Ca, Sr, Ba, Zn, Cd, Ga, In, Y, lanthanide, actinide, Ti, Zr, Hf, Bi, V, Nb. , Ta, W, Mn, Fe, Co, Ni, etc., oxides, carbides, nitrides, borides, sulfides, and the like. These ceramic powders may be used alone or as a mixture of two or more types.
  • barium titanate aluminum nitride (AlN), silicon nitride (Si3N4), silicon carbide (SiC), alumina (Al2O3), copper oxide (CuO), and spinel compounds, ferrite, zirconia, zircon, barium zirconate, Calcium zirconate, titanium oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, zinc titanate, lanthanum titanate, neodymium titanate, lead zirconate titanate, alumina nitride, silicon nitride, boron nitride, carbide Examples include boron, barium stannate, calcium stannate, magnesium silicate, mullite, steatite, cordierite, forsterite, and the like.
  • the above-mentioned glass powder is not particularly limited, and includes, for example, glass powder such as bismuth oxide glass, silicate glass, lead glass, zinc glass, boron glass, CaO-Al 2 O 3 -SiO 2 system, MgO-Al 2 O Examples include glass powders of various silicon oxides such as 3- SiO 2 series, LiO 2 -Al 2 O 3 -SiO 2 series, and the like.
  • R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn.
  • the metal fine particles are not particularly limited, and include, for example, powders made of copper, nickel, palladium, iron, platinum, gold, silver, aluminum, tungsten, alloys thereof, and the like. In addition to metal complexes, various carbon blacks, carbon nanotubes, etc. may also be used. ITO, FTO, niobium oxide, vanadium oxide, tungsten oxide, lanthanum strontium manganite, lanthanum strontium cobalt ferrite, yttrium-stabilized zirconia, gadolinium-doped ceria, nickel oxide, lanthanum chromite, and the like can also be used.
  • the content of the inorganic fine particles in the inorganic fine particle dispersed slurry composition is not particularly limited, but is preferably 10% by weight or more, more preferably 15% by weight or more, and preferably 90% by weight or less. It is preferably 85% by weight or less, and more preferably 85% by weight or less. By setting it as the said range, it can have sufficient viscosity and excellent coating property, and can also have excellent dispersibility of inorganic fine particles.
  • the content of the inorganic fine particles is preferably 10 to 90% by weight, more preferably 15 to 85% by weight.
  • the inorganic fine particle dispersed slurry composition contains a plasticizer.
  • the plasticizer include monomethyl adipate, di(butoxyethyl) adipate, dibutoxyethoxyethyl adipate, triethylene glycol bis(2-ethylhexanoate), triethylene glycol dihexanoate, Examples include triethyl acetyl citrate, tributyl cetyl citrate, dibutyl sebacate, butylated benzyl phthalate, diisononyl adipate, diisodecyl phthalate, tripropionine, pentaerythritol tetraacetate, di-2-ethylhexyl phthalate, triacetin, and the like.
  • triethylene glycol bis(2-ethylhexanoate), butylated benzyl phthalate, diisononyl adipate, diisodecyl phthalate, tripropionine, pentaerythritol tetraacetate, di-2-ethylhexyl phthalate, and the like are preferred.
  • the boiling point of the plasticizer is preferably 240°C or higher, and preferably lower than 390°C.
  • the boiling point By setting the boiling point to 240° C. or higher, it becomes easier to evaporate in the drying process, and it is possible to prevent it from remaining in the molded product. Further, by setting the temperature to be less than 390°C, generation of residual carbon can be prevented. Note that the above boiling point refers to the boiling point at normal pressure.
  • the content of the plasticizer in the inorganic fine particle dispersed slurry composition is not particularly limited, but is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and 3.0% by weight. It is preferably at most 2.5% by weight, more preferably at most 2.5% by weight.
  • the content of the plasticizer is preferably 0.1 to 3.0% by weight, more preferably 0.2 to 2.5% by weight. By keeping it within the above range, it is possible to reduce the firing residue of the plasticizer.
  • the fine particle dispersed slurry composition may contain other resins than the polyvinyl acetal resin composition, such as polyvinyl acetal resin, acrylic resin, and ethyl cellulose, as long as the above effects are not impaired.
  • the content of the polyvinyl acetal resin composition is 50% by weight or more based on the total binder resin.
  • the viscosity of the inorganic fine particle dispersed slurry composition is not particularly limited, but it is preferable that the viscosity is 0.1 Pa ⁇ s or more when measured at 20°C using a B-type viscometer with the probe rotation speed set at 5 rpm. , 100 Pa ⁇ s or less.
  • the viscosity is 0.1 Pa ⁇ s or more when measured at 20°C using a B-type viscometer with the probe rotation speed set at 5 rpm. , 100 Pa ⁇ s or less.
  • the method for producing the above-mentioned inorganic fine particle dispersed slurry composition is not particularly limited, and conventionally known stirring methods may be used. Examples include a method of stirring the organic solvent, plasticizer, and other components in a bead mill or the like.
  • An inorganic fine particle dispersed sheet can be produced by coating the above-mentioned inorganic fine particle dispersed slurry composition on a support film that has been subjected to a release treatment on one side, drying the organic solvent, and forming it into a sheet.
  • the thickness of the inorganic fine particle dispersed sheet is preferably 0.5 ⁇ m or more, and preferably 3 ⁇ m or less.
  • the support film used when manufacturing the inorganic fine particle dispersed sheet is preferably a resin film that has heat resistance and solvent resistance as well as flexibility. Due to the flexibility of the support film, the inorganic fine particle dispersed slurry composition can be applied to the surface of the support film using a roll coater, blade coater, etc., and the resulting inorganic fine particle dispersed sheet forming film is wound into a roll shape. It can be stored and supplied in this state.
  • the resin forming the support film examples include fluorine-containing resins such as polyethylene terephthalate, polyester, polyethylene, polypropylene, polystyrene, polyimide, polyvinyl alcohol, polyvinyl chloride, and polyfluoroethylene, nylon, and cellulose.
  • the thickness of the support film is, for example, preferably 20 ⁇ m or more, and preferably 100 ⁇ m or less.
  • the surface of the support film is subjected to a release treatment, so that the peeling operation of the support film can be easily performed in the transfer process.
  • a multilayer ceramic capacitor can be manufactured by using the above inorganic fine particle dispersed slurry composition and inorganic fine particle dispersed sheet for a dielectric green sheet and an electrode paste.
  • the method for manufacturing a multilayer ceramic capacitor preferably includes a step of printing and drying a conductive paste on the inorganic fine particle dispersed sheet to produce a dielectric sheet, and a step of laminating the dielectric sheets.
  • the conductive paste contains conductive powder.
  • the material of the conductive powder is not particularly limited as long as it is conductive, and examples thereof include nickel, palladium, platinum, gold, silver, copper, and alloys thereof. These conductive powders may be used alone or in combination of two or more.
  • binder resin and organic solvent used in the conductive paste those similar to those used in the inorganic fine particle dispersed slurry composition can be used.
  • the method for printing the conductive paste is not particularly limited, and examples thereof include screen printing, die coat printing, offset printing, gravure printing, inkjet printing, and the like.
  • a multilayer ceramic capacitor having a dielectric layer or an electrode layer formed using the above inorganic fine particle dispersed slurry composition is also one of the aspects of the present invention.
  • a polyvinyl acetal resin composition that is particularly excellent in thermal decomposition properties and can exhibit high solvent solubility. Furthermore, an inorganic fine particle dispersed slurry composition and a multilayer ceramic capacitor can be provided.
  • Example 1 Preparation of polyvinyl acetal hydrous resin PVB1 3000 g of pure water was added to 300 g of polyvinyl alcohol resin (average degree of polymerization 3,300, degree of saponification 99 mol%), and the mixture was stirred at 90° C. for 2 hours to dissolve. This solution was cooled to 40° C., and 200 g of hydrochloric acid with a concentration of 35% by weight and 160 g of n-butyraldehyde were added thereto to carry out an acetalization reaction to precipitate a reaction product. Thereafter, the reaction was completed by holding at 40° C.
  • polyvinyl acetal hydrous resin PVB1 The moisture content of the polyvinyl acetal hydrous resin PVB1 was measured with an infrared moisture meter and was found to be 60% by weight.
  • citric acid was added in an amount of 3.2 parts by weight per 100 parts by weight of the polyvinyl acetal resin component, mixed, and dried at 40°C for 48 hours to form a polyvinyl acetal resin. A composition was obtained.
  • the amount of acetal groups, the amount of acetyl groups, and the amount of hydroxyl groups were determined.
  • the content was as shown in Table 1.
  • the moisture content was measured using an infrared moisture meter (MX-50, manufactured by A&D Co., Ltd.). The moisture content was measured at a temperature of 125°C until the moisture content changed to 0.05%/min.
  • the citric acid content was measured by ion chromatography and was as shown in Table 1.
  • an ion chromatography system ICS900 manufactured by Thermo Fisher Scientific, column: Ionpac AS22 (4 ⁇ x 250 mm), detector: electrical conductivity meter
  • Example 2 A polyvinyl acetal resin composition was obtained in the same manner as in Example 1 except that tartaric acid was used instead of citric acid.
  • Example 3 A polyvinyl acetal resin composition was obtained in the same manner as in Example 1 except that malic acid was used instead of citric acid.
  • Example 1 A polyvinyl acetal resin composition was obtained in the same manner as in Example 1 except that citric acid was not added.
  • Example 2 A polyvinyl acetal resin composition was obtained in the same manner as in Example 1, except that tartaric acid was used instead of citric acid and the water content was adjusted to 6.5% by weight by drying at 40° C. for 26 hours.
  • Example 4 Preparation of polyvinyl acetal hydrous resin PVB2
  • a polyvinyl acetal hydrous resin PVB2 was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (average degree of polymerization 1,700, degree of saponification 99 mol%) was used.
  • a polyvinyl acetal resin composition was obtained in the same manner as in Example 1 except that the polyvinyl acetal hydrous resin PVB2 was used.
  • Example 5 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that tartaric acid was used instead of citric acid.
  • Example 6 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that malic acid was used instead of citric acid.
  • Example 7 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that pentaerythritol was used in place of citric acid.
  • Example 8 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that pentaerythritol tetraacetate was used in place of citric acid.
  • Example 9 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that 16 parts by weight of pentaerythritol tetraacetate was used in place of citric acid.
  • Example 10 Example 4 except that polyglycerin having an average repeating number n of glycerin units of 6 was used instead of citric acid, and the moisture content was adjusted to 1.0% by weight by drying at 40°C for 46 hours. A polyvinyl acetal resin composition was obtained in the same manner.
  • Example 11 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that oxalic acid was used in place of citric acid.
  • Example 12 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that tartronic acid was used in place of citric acid.
  • Example 13 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that malonic acid was used in place of citric acid.
  • Example 14 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that glutaric acid was used in place of citric acid.
  • Example 15 A polyvinyl acetal resin composition was obtained in the same manner as in Example 10 except that 2.5 parts by weight of polyglycerin was used.
  • Example 16 A polyvinyl acetal resin composition was obtained in the same manner as in Example 5 except that 25.0 parts by weight of tartaric acid was used.
  • Example 3 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4 except that citric acid was not added.
  • Example 4 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that 1.6 parts by weight of triethylene glycol di(2-ethylhexanoate) was used in place of citric acid.
  • the reaction part was cooled to room temperature to obtain a resin composition containing polyvinyl acetal resin PVB5.
  • the citric acid content in the obtained polyvinyl acetal resin composition was measured by ion chromatography, the citric acid content was 14 parts by weight with respect to 100 parts by weight of the polyvinyl acetal resin.
  • Example 6 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that tartaric acid was used instead of citric acid and the water content was adjusted to 20.0% by weight by drying at 40° C. for 10 hours.
  • Example 7 A polyvinyl acetal resin composition was obtained in the same manner as in Example 4, except that formamide was used instead of citric acid and the water content was adjusted to 1.2% by weight by drying at 40° C. for 42 hours.
  • Example 17 (Preparation of polyvinyl acetal hydrous resin PVB3) Polyvinyl acetal hydrous resin PVB3 was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (average degree of polymerization 800, degree of saponification 98.5 mol%) was used.
  • a polyvinyl acetal resin composition was obtained in the same manner as in Example 1 except that the polyvinyl acetal hydrous resin PVB3 was used.
  • Example 18 A polyvinyl acetal resin composition was obtained in the same manner as in Example 17 except that tartaric acid was used instead of citric acid.
  • Example 19 A polyvinyl acetal resin composition was obtained in the same manner as in Example 17 except that malic acid was used in place of citric acid.
  • Example 20 To polyvinyl acetal hydrous resin PVB3, 3.2 parts by weight of citric acid was added to 100 parts by weight of polyvinyl acetal resin, and the water content was adjusted to 4.0% by weight by drying at 40°C for 30 hours. A polyvinyl acetal resin composition was obtained.
  • Example 21 (Preparation of polyvinyl acetal hydrous resin PVB4)
  • Polyvinyl acetal resin PVB4 was prepared in the same manner as in Example 1, except that polyvinyl alcohol resin (average degree of polymerization 850, degree of saponification 94.8 mol%) was used, and 300 g of hydrochloric acid with a concentration of 35% by weight and 180 g of n-butyraldehyde were used. I got it.
  • Example 22 (Preparation of carboxylic acid-modified polyvinyl alcohol resin) 30 parts by weight of a vinyl acetate copolymer obtained by copolymerizing vinyl acetate and crotonic acid at a molar ratio of 99.88:0.12 in the presence of a radical polymerization initiator in a conventional manner is dissolved in 60 parts by weight of methanol. I let it happen. Next, 0.4 parts by weight of a 45% by weight aqueous sodium hydroxide solution was added and stirred for 1 hour, then neutralized with concentrated acetic acid, and the precipitated product was washed with methanol.
  • polyvinyl acetal hydrous resin PVB5 To the obtained polyvinyl acetal hydrous resin PVB5, tartaric acid was added in an amount of 3.2 parts by weight per 100 parts by weight of the polyvinyl acetal resin component, mixed, and then dried at 40°C for 28 hours to obtain a water content of 5.
  • a polyvinyl acetal resin composition was obtained by adjusting the content to .0% by weight.
  • Example 23 2900 g of pure water was added to 193 g of modified polyvinyl alcohol resin (average degree of polymerization 1,700, residual acetyl group amount 12 mol %, ethylene content 10 mol %), and the mixture was stirred at 90° C. for 2 hours to dissolve. This solution was cooled to 20° C., and 40 g of hydrochloric acid with a concentration of 35% by weight and 125 g of n-butyraldehyde were added thereto to carry out an acetalization reaction to precipitate a reaction product. Thereafter, the reaction was completed by holding at 30° C.
  • polyvinyl acetal hydrous resin PVB6 The moisture content of the polyvinyl acetal hydrous resin PVB6 was measured with an infrared moisture meter and was found to be 60% by weight.
  • polyvinyl acetal hydrous resin PVB6 tartaric acid was added in an amount of 3.2 parts by weight per 100 parts by weight of the polyvinyl acetal resin component, mixed, and then dried at 40°C for 46 hours to obtain a water content of 1.
  • a polyvinyl acetal resin composition was obtained by adjusting the content to .0% by weight.
  • Example 24 2900 g of pure water was added to 193 g of modified polyvinyl alcohol resin (average degree of polymerization 800, residual acetyl group amount 7 mol %, ethylene content 5 mol %), and the mixture was stirred at 90° C. for 2 hours to dissolve. This solution was cooled to 20° C., and 20 g of hydrochloric acid with a concentration of 35% by weight and 110 g of n-butyraldehyde were added thereto to carry out an acetalization reaction to precipitate a reaction product. Thereafter, the reaction was completed by holding at 30° C.
  • polyvinyl acetal hydrous resin PVB7 The moisture content of the polyvinyl acetal hydrous resin PVB7 was measured with an infrared moisture meter and was found to be 60% by weight.
  • Weight average molecular weight (Mw) The obtained polyvinyl acetal resin was dissolved in tetrahydrofuran at a concentration of 0.05% by weight, and measured using a GPC device HLC-8220 (manufactured by Tosoh Corporation). Based on the measurement results, a sample was prepared using a monodisperse polystyrene standard sample. The weight average molecular weight Mw was calculated using the molecular weight calibration curve obtained. Note that a column TSKgel SuperHZM-H (manufactured by Tosoh Corporation) was used as the column.
  • Examples 1 to 3 and Comparative Example 2 are WB (1) (Comparative Example 1), Examples 4 to 16 and Comparative Examples 4 to 7 are WB (2) (Comparative Example 3), and Example 17.
  • ⁇ 20 is WB (3) (Comparative Example 8)
  • Example 21 is WB (4) (Comparative Example 9)
  • Example 22 is WB (5) (Comparative Example 10)
  • Example 23 is WB (6) ( Comparative Example 11)
  • Example 24 used WB(7) (Comparative Example 12) for calculation.
  • a mixed solvent A having a weight ratio of ethanol and toluene of 1:9 and a mixed solvent B having a weight ratio of ethanol and toluene of 5:5 were prepared.
  • a polyvinyl acetal resin composition and a mixed solvent A, B, or C were mixed in a sealed glass container so that the polyvinyl acetal resin content was 9% by weight to prepare 30 g of a solution.
  • the solution was mixed for 5 hours using a hot stirrer so that the temperature reached 60°C, and the state of the solution immediately after mixing was visually confirmed and evaluated based on the following criteria.
  • C There is undissolved material or the solution is cloudy.
  • a polyvinyl acetal resin composition that is particularly excellent in thermal decomposition properties and can exhibit high solvent solubility. Furthermore, an inorganic fine particle dispersed slurry composition and a multilayer ceramic capacitor can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、熱分解性に特に優れるとともに、高い溶剤溶解性を発揮できるポリビニルアセタール樹脂組成物を提供する。また、無機微粒子分散スラリー組成物、積層セラミックコンデンサを提供する。 本発明は、含水率が5.0重量%以下であり、ポリビニルアセタール樹脂と、炭素原子、水素原子及び酸素原子を含み、全原子数に対する酸素原子数の割合(酸素原子数/全原子数)が0.18以上である化合物Aとを含有する、ポリビニルアセタール樹脂組成物である。

Description

ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ
本発明は、ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサに関する。
近年、種々の電子機器に搭載される電子部品の小型化、積層化が進んでおり、多層回路基板、積層コイル、積層セラミックコンデンサ等の積層型電子部品が広く使用されている。
なかでも、積層セラミックコンデンサは、一般に次のような工程を経て製造されている。
まず、ポリビニルブチラール樹脂やポリ(メタ)アクリル酸エステル系樹脂等のバインダー樹脂を有機溶剤に溶解した溶液に可塑剤、分散剤等を添加した後、セラミック原料粉末を加え、ビーズミル、ボールミル等の混合装置により均一に混合し、脱泡後に一定粘度を有するセラミックスラリー組成物を得る。このスラリー組成物をドクターブレード、リバースロールコーター等を用いて、離型処理したポリエチレンテレフタレートフィルム、又はSUSプレート等の支持体面に流延して、これを加熱等により、溶剤等の揮発分を溜去させた後、支持体から剥離してセラミックグリーンシートを得る。
次に、得られたセラミックグリーンシート上に、内部電極となる導電ペーストをスクリーン印刷により塗布したものを交互に複数枚積み重ね、加熱圧着して積層体を作製する。その後、積層体中に含まれるバインダー樹脂成分等を熱分解して除去する処理、いわゆる脱脂処理を行い、焼成して得られるセラミック焼結体の端面に外部電極を焼結する工程を経て積層セラミックコンデンサが得られる。
例えば、特許文献1には、セラミック・バインダーとして好適なポリビニルアセタール樹脂として、所定の重合度、ビニルエステル単位の含有率、アセタール化度を有し、アセトアルデヒドによりアセタール化された部分とブチルアルデヒドによってアセタール化された部分とのモル比が所定の範囲であるポリビニルアセタール樹脂が記載されている。
また、特許文献2には、所定の重合度、ビニルエステル単位の含有率、アセタール化度を有し、特定の構成単位を有するポリビニルアセタール樹脂が記載されている。
特開2011-236304号公報 国際公開第2012/023517号
しかしながら、バインダー樹脂としてポリビニルアセタール樹脂を用いる場合、シート強度は高くなるものの熱分解性が悪いため、バインダーの一部が分解焼失しないで焼結体内に残留炭化物として残留するという問題がある。
本発明は、熱分解性に特に優れるとともに、高い溶剤溶解性を発揮できるポリビニルアセタール樹脂組成物を提供することを目的とする。また、無機微粒子分散スラリー組成物、積層セラミックコンデンサを提供することを目的とする。
本開示(1)は、含水率が5.0重量%以下であり、ポリビニルアセタール樹脂と、炭素原子、水素原子及び酸素原子を含み、全原子数に対する酸素原子数の割合(酸素原子数/全原子数)が0.18以上である化合物Aとを含有する、ポリビニルアセタール樹脂組成物である。
本開示(2)は、ポリビニルアセタール樹脂100重量部に対して、化合物Aを2.8重量部以上20重量部以下含有する、本開示(1)のポリビニルアセタール樹脂組成物である。
本開示(3)は、Fedors法により算出されるポリビニルアセタール樹脂の溶解度パラメータ値をS1、化合物Aの溶解度パラメータをS2としたとき、S1とS2との差の絶対値が9.0(cal/cm0.5以下である、本開示(1)又は(2)のポリビニルアセタール樹脂組成物である。
本開示(4)は、化合物Aの分子量が90以上450以下である、本開示(1)~(3)のいずれかとの任意の組み合わせのポリビニルアセタール樹脂組成物である。
本開示(5)は、化合物Aは、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種である、本開示(1)~(4)のいずれかとの任意の組み合わせのポリビニルアセタール樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
式(1)中、R及びRはカルボキシル基又はその塩を表し、Rは単結合、水酸基及びカルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子又は酸素原子からなる2価の基を表す。
式(2)中、R及びRは、それぞれ独立して、水素原子、水酸基、アセチル基又はアセトキシ基を表し、Rは水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子及び酸素原子からなる2価の基を表す。
本開示(6)は、式(1)中、Rが単結合、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数1~6の直鎖状アルキレン基、若しくは、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~6の分岐アルキレン基である、本開示(5)のポリビニルアセタール樹脂組成物である。
本開示(7)は、式(2)中、Rが水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数1~6の直鎖状アルキレン基、水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~6の分岐アルキレン基、若しくは、繰り返し数2~11のグリセリン単位である、本開示(5)又は(6)のポリビニルアセタール樹脂組成物である。
本開示(8)は、式(1)で表される化合物が、酒石酸、リンゴ酸、クエン酸及びこれらの塩からなる群から選ばれる少なくとも1つの化合物である、本開示(5)~(7)の何れかとの任意の組み合わせのポリビニルアセタール樹脂組成物である。
本開示(9)は、式(2)で表される化合物が、ペンタエリスリトール及びペンタエリスリトールテトラアセテートからなる群から選ばれる少なくとも1つの化合物である、本開示(5)~(8)の何れかとの任意の組み合わせのポリビニルアセタール樹脂組成物である。
本開示(10)は、下記式で表されるY値が6.3×10-9以上45.0×10-9以下である、本開示(1)~(9)の何れかとの任意の組み合わせのポリビニルアセタール樹脂組成物である。
 Y=((W÷M×O)÷(100-W))÷(MPVB÷M)÷S0.4
 W:ポリビニルアセタール樹脂100重量部に対する化合物Aの含有量
 M:化合物Aの分子量
 O:化合物Aにおける全原子数に対する酸素原子数の割合(酸素原子数/全原子数)
 W:ポリビニルアセタール樹脂組成物の含水率
 MPVB:ポリビニルアセタール樹脂の重量平均分子量
 S:Fedors法により算出されるポリビニルアセタール樹脂の溶解度パラメータ値をS1、化合物Aの溶解度パラメータをS2としたときのS1とS2との差の絶対値
本開示(11)は、本開示(1)~(10)の何れかのポリビニルアセタール樹脂組成物、有機溶剤及び無機微粒子を含有する、無機微粒子分散スラリー組成物である。
本開示(12)は、更に、可塑剤を含有する、本開示(11)の無機微粒子分散スラリー組成物である。
本開示(13)は、無機微粒子がチタン酸バリウム粉末又はニッケル粉末である、本開示(11)又は(12)の無機微粒子分散スラリー組成物である。
本開示(14)は、本開示(11)~(13)の何れかの無機微粒子分散スラリー組成物を用いてなる誘電層又は電極層を有する、積層セラミックコンデンサである。
以下に本発明を詳述する。
本発明者らは、鋭意検討の結果、ポリビニルアセタール樹脂に対して、特定構造の化合物Aを添加するとともに、含水率を5重量%以下とした樹脂組成物とすることで、ポリビニルアセタール樹脂の熱分解性を高めることができ、更に、溶剤溶解性を向上できることを見出し、本発明を完成させるに至った。
上記ポリビニルアセタール樹脂組成物は、ポリビニルアセタール樹脂を含有する。
上記ポリビニルアセタール樹脂は、通常、下記式(a-1)で表される水酸基を有する構成単位、下記式(a-2)で表されるアセチル基を有する構成単位、下記式(a-3)で表されるアセタール基を有する構成単位を有する。
Figure JPOXMLDOC01-appb-C000003
上記式(a-3)中、R1aは水素原子又は炭素数1~20のアルキル基を表す。
上記炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基が好ましい。
上記ポリビニルアセタール樹脂における上記式(a-1)で表される水酸基を有する構成単位の含有量(以下「水酸基量」)は、樹脂の強靭性を向上できることから、18モル%以上が好ましく、20モル%以上がより好ましく、22モル%以上が更に好ましい。また、溶剤溶解性をより向上できることから、50モル%以下が好ましく、39モル%以下がより好ましく、38モル%以下が更に好ましい。上記水酸基量は、18~50モル%が好ましく、20~39モル%がより好ましく、22~38モル%が更に好ましい。
上記水酸基量は、例えば、NMRにより測定することができる。
上記ポリビニルアセタール樹脂における上記式(a-2)で表されるアセチル基を有する構成単位の含有量(以下「アセチル基量」)は、高粘度化を抑制できることから、0.5モル%以上が好ましく、0.6モル%以上がより好ましく、1モル%以上が更に好ましい。また、ポリビニルアセタール樹脂の柔軟性が上がりすぎることがなく、ハンドリング性を向上できることから、20モル%以下が好ましく、16モル%以下がより好ましく、14モル%以下が更に好ましい。上記アセチル基量は、0.5~20モル%が好ましく、0.6~16モル%がより好ましく、1~14モル%が更に好ましい。
上記アセチル基量は、例えば、NMRにより測定することができる。
上記ポリビニルアセタール樹脂における上記式(a-3)で表されるアセタール基を有する構成単位の含有量(以下「アセタール基量」)は、溶剤への溶解性をより向上できることから、45モル%以上が好ましく、47モル%以上がより好ましく、49モル%以上が更に好ましい。また、樹脂の強靭性を向上できることから、80モル%以下が好ましく、78モル%以下がより好ましく、76モル%以下が更に好ましい。
上記アセタール基量は、45~80モル%が好ましく、47~78モル%がより好ましく、49~76モル%が更に好ましい。
上記アセタール基量は、例えば、NMRにより測定することができる。
なお、アセタール基量の計算方法については、ポリビニルアセタール樹脂のアセタール基がポリビニルアルコールの2個の水酸基をアセタール化して得られることから、アセタール基を有する構成単位を水酸基を有する構成単位2個分として換算して数える方法を採用することができる。
上記ポリビニルアセタール樹脂は、上記式の(a-1)、(a-2)、(a-3)の構成単位に加えて、他の構成単位を有していても良い。他の構成単位としては、例えば、カルボキシル基、スルホン酸基、アルキレンオキサイド基、アミド基等の官能基を有する構成単位やエチレン単位を有していてもよい。
上記カルボキシル基を有する構成単位としては、下記式(b-1)で表される構成単位、下記式(b-2)で表される構成単位、下記式(b-3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
上記式(b-1)中、R1b及びR2bは、それぞれ独立し、炭素数0~10のアルキレン基を表し、X1b及びX2bは、それぞれ独立し、水素原子、金属原子又はメチル基を表す。
上記式(b-1)中、R1b及びRb2で表されるアルキレン基の炭素数の好ましい下限は0、好ましい上限は5、より好ましい下限は1、より好ましい上限は3である。上記アルキレン基の炭素数は、0~5がより好ましく、1~3が更に好ましい。
上記R1b及びR2bは、同一のものでもよく、異なるものでもよいが、異なるものが好ましい。また少なくとも何れかが単結合であることが好ましい。
上記炭素数0~10のアルキレン基としては、例えば、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等の直鎖状アルキレン基、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等の分岐アルキレン基、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基等の環状アルキレン基等が挙げられる。なかでも、単結合、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましい。
上記(b-1)中、X1b及びX2bのうち少なくとも何れかが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記式(b-1)で表される構成単位は、α-ジカルボキシモノマーに由来するものであることが好ましい。α-ジカルボキシモノマーとしては、例えば、メチレンマロン酸、イタコン酸、2-メチレングルタル酸、2-メチレンアジピン酸、2-メチレンセバシン酸等のラジカル重合性不飽和二重結合を有するジカルボン酸やその金属塩又はそのメチルエステルが挙げられる。なかでも、イタコン酸やその金属塩又はそのメチルエステルが好ましく用いられる。
なお、本明細書中、α-ジカルボキシモノマーとは、α位炭素に2つのカルボキシル基を有するモノマーを表す。
上記式(b-2)中、R3b、R4b及びR5bは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を表し、R6bは、炭素数0~10のアルキレン基を表し、X3bは、水素原子、金属原子又はメチル基を表す。
上記式(b-2)中、R3b、R4b及びR5bで表されるアルキル基の炭素数の好ましい下限は1、好ましい上限は5、より好ましい上限は3である。上記アルキル基の炭素数は1~5がより好ましく、1~3が更に好ましい。
3b、R4b、R5bは、同一のものでもよく、異なるものでもよいが、同一のものがより好ましい。また、R3b、R4b及びR5bは水素原子であることが好ましい。
上記炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、n-ペンチル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖状アルキル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、2,2-ジメチルプロピル基、1,1,3,3-テトラメチルブチル基、2-エチルヘキシル基等の分岐アルキル基、シクロプロピル基、シクロプロピルメチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基、n-ブチル基等の直鎖状アルキル基が好ましく、メチル基、エチル基がより好ましい。
上記式(b-2)中のR6bとしては、上記式(b-1)中のR1b及びR2bで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合が更に好ましい。
上記式(b-2)中、X3bが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記式(b-2)で表される構成単位はモノカルボキシモノマーに由来するものが好ましい。モノカルボキシモノマーとしては、例えば、アクリル酸、クロトン酸、メタクリル酸、オレイン酸等のラジカル重合性不飽和二重結合を有するモノカルボン酸やその金属塩又はそのメチルエステル等が挙げられる。なかでも、クロトン酸やその金属塩又はそのメチルエステルが好ましく用いられる。
上記式(b-3)中、R7b及びR9bは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を表し、R8b及びR10bは、炭素数0~10のアルキレン基を表し、X4b及びX5bは、水素原子、金属原子又はメチル基を表す。
上記式(b-3)中、R7b及びR9bで表されるアルキル基の炭素数の好ましい下限は1、好ましい上限は5、より好ましい上限は3である。
上記R7b及びR9bは、同一のものでもよく、異なるものでもよいが、同一のものがより好ましい。
上記式(b-3)中のR7b及びR9bとしては、上記式(b-2)中のR3b、R4b及びR5bで例示したものと同様のものが挙げられ、なかでも、水素原子が好ましい。
上記式(b-3)中のR8b及びR10bとしては、上記式(b-1)中のR1b及びR2bで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合が更に好ましい。
上記式(b-3)中、X4b及びX5bが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記スルホン酸基を有する構成単位としては、下記式(c)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
式(c)中、R1cは、炭素数0~10のアルキレン基を表し、X1cは、水素原子、金属原子又はメチル基を表す。
上記式(c)中のR1cとしては、上記式(b-1)中のR1b及びR2bで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合、メチレン基が更に好ましい。
上記式(c)中、X1cが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記アルキレンオキサイド基を有する構成単位としては、下記式(d)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
式(d)中、Rd1は、炭素数2~6のアルキレンオキサイド基を有する基を表す。
上記炭素数2~6のアルキレンオキサイド基としては、エチレンオキサイド基、プロピレンオキサイド基、ブチレンオキサイド基、ペンチレンオキサイド基、へキシレンオキサイド基が挙げられる。
上記式(d)で表されるアルキレンオキサイド基を有する構成単位としては、例えば、ポリエチレングリコール等の複数のエチレンオキサイド基を有するもの、エチレンオキサイド基を単独で有するもの、異なるアルキレンオキサイド基を有するもの等が挙げられる。
上記アルキレンオキサイド基を有する構成単位は、下記式(e-1)で表されるエチレンオキサイド基を有する構成単位、又は、下記式(e-2)で表されるエチレンオキサイド基とプロピレンオキサイド基とを有する構成単位であることが好ましい。エチレンオキサイド基とプロピレンオキサイド基は、ブロック又はランダムのどちらで配置していても良い。
Figure JPOXMLDOC01-appb-C000007
上記式(e-1)中、Re1及びRe2は、C及びOからなる群より選択される少なくとも1種を有する連結基又は単結合を表し、nは整数を表す。
上記Re1は、C及びOからなる群より選択される少なくとも1種を有する連結基又は単結合である。上記Re1は炭素数1~10のアルキレン基、カルボニル基、酸素原子が好ましい。上記Re1としては、例えば、メチレン基、エチレン基、カルボニル基、エーテル基、アリルエーテル基、アミド基等が挙げられる。
上記Re2は、C及びOからなる群より選択される少なくとも1種を有する連結基又は単結合である。上記Re2は炭素数1~10のアルキレン基、カルボニル基、酸素原子が好ましい。上記Re2としては、例えば、メチレン基、エチレン基、プロピレン基、カルボニル基、エーテル基等が挙げられる。
更に、アルキレンオキサイドの繰り返し数である整数nは特に限定されないが、2~70が好ましく、5~50がより好ましい。
上記式(e-2)中、Re3、Re4及びRe5は、C及びOからなる群より選択される少なくとも1種を有する連結基又は単結合を表し、n及びnは整数を表す。
上記Re3、Re4及びRe5としては、上記式(e-1)中のRe1及びRe2として例示したものと同様のものが挙げられる。
また、アルキレンオキサイドの繰り返し数である整数n、nは特に限定されないが、nが1~40であることが好ましく、20~30であることがより好ましい。また、nが1~40であることが好ましく、20~30であることがより好ましい。
上記アミド基を有する構成単位としては、下記式(f)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000008
上記式(f)中、R1fは、炭素数1~10のアルキル基を表す。
上記式(f)中のR1fとしては、上記式(b-2)中のR3b、R4b及びR5bで例示したものと同様のものが挙げられ、なかでも、水素原子、メチル基、エチル基、プロピル基、n-ブチル基等の直鎖状アルキル基が好ましく、水素原子、メチル基、エチル基がより好ましい。
上記ポリビニルアセタール樹脂における上記官能基を有する構成単位の含有量は、0モル%以上が好ましく、0.1モル%以上がより好ましく、0.5モル%以上が更に好ましく、5モル%以下が好ましく、3モル%以下がより好ましい。上記官能基を有する構成単位の含有量は、0~5モル%が好ましく、0.1~5モル%がより好ましく、0.5~3モル%が更に好ましい。
上記官能基を有する構成単位の含有量は、例えば、NMRにより測定することができる。
上記エチレン単位としては、下記式(g)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000009
上記ポリビニルアセタール樹脂において、上記エチレン単位の含有量(以下、「エチレン含有量」ともいう)は、1モル%以上が好ましく、3モル%以上がより好ましく、20モル%以下が好ましく、10モル%以下がより好ましい。上記エチレン含有量は、1~20モル%が好ましく、3~10モル%がより好ましい。
上記エチレン含有量は、例えば、NMRにより測定することができる。
また、本明細書中、ポリビニルアセタール樹脂のエチレン含有量とは、ポリビニルアセタール樹脂全体の見かけのエチレン含有量を意味する。即ち、例えば、ポリビニルアセタール樹脂が異なるエチレン含有量を有する複数の樹脂を含有する場合、ポリビニルアセタール樹脂のエチレン含有量は、各樹脂のエチレン含有量にその樹脂の含有比率を掛け合わせることにより得られる各値を、合計することにより求められる。
上記ポリビニルアセタール樹脂において、水酸基量に対するエチレン含有量の比(エチレン含有量/水酸基量)は、0.01以上が好ましく、1.0以下が好ましい。上記エチレン含有量/水酸基量は0.01~1.0が好ましい。
上記ポリビニルアセタール樹脂の平均重合度は、機械的強度を向上できることから、300以上が好ましく、600以上がより好ましく、1,000以上が更に好ましく、1,300以上が特に好ましい。また、溶剤溶解性や粘度の観点から、10,000以下が好ましく、8,000以下がより好ましく、3,500以下が更に好ましく、3,000以下が特に好ましい。上記平均重合度は、300~10,000が好ましく、600~8,000がより好ましく、1,000~3,500が更に好ましく、1,300~3,000が特に好ましい。
なお、上記平均重合度は、原料ポリビニルアルコール樹脂の平均重合度と同様である。原料ポリビニルアルコール樹脂の平均重合度は、JIS K 6726に準拠して測定することができる。
上記ポリビニルアセタール樹脂の重量平均分子量(Mw)は、80,000以上が好ましく、2,500,000以下が好ましく、150,000以上がより好ましく、2,000,000以下がより好ましく、250,000以上が更に好ましく、875,000以下が更に好ましく、300,000以上が更により好ましく、440,000以下が更により好ましい。上記重量平均分子量(Mw)は、80,000~2,500,000が好ましく、150,000~2,000,000がより好ましく、250,000~875,000が更に好ましく、300,000~440,000が更により好ましい。
ポリビニルアセタール樹脂の重量平均分子量(Mw)を上記下限以上にすることで機械的強度を向上でき、上記上限以下にすることで溶剤溶解性を向上できる。
上記重量平均分子量は、適切な標準(例えば、ポリスチレン標準)を用いたゲル浸透クロマトグラフィー(GPC)によって測定することができる。
上記Mwを測定する際に用いるカラムとしては、例えば、TSKgel SuperHZM-H(東ソー製)等が挙げられる。
上記ポリビニルアセタール樹脂組成物におけるポリビニルアセタール樹脂の含有量は、80.0重量%以上が好ましく、85.0重量%以上がより好ましく、90.0重量%以上が更に好ましく、97.2重量%以下が好ましく、97.0重量%以下がより好ましく、96.5重量%以下が更に好ましい。上記ポリビニルアセタール樹脂の含有量は、80.0~97.2重量%が好ましく、85.0~97.0重量%がより好ましく、90.0~96.5重量%が更に好ましい。
上記ポリビニルアセタール樹脂は、通常、ポリビニルアルコール樹脂をアセタール化することにより製造することができる。
上記ポリビニルアルコール樹脂としては、例えば、ポリ酢酸ビニル系樹脂をアルカリ、酸、アンモニア水等によりけん化することにより製造された樹脂等の従来公知のポリビニルアルコール樹脂を用いることができる。
上記ポリビニルアルコール樹脂は、完全けん化されていてもよいが、少なくとも主鎖の1カ所にメソ、ラセモ位に対して2連の水酸基を有するユニットが最低1ユニットあれば完全けん化されている必要はなく、部分けん化ポリビニルアルコール樹脂であってもよい。また、上記ポリビニルアルコール樹脂としては、エチレン-ビニルアルコール共重合体樹脂、部分けん化エチレン-ビニルアルコール共重合体樹脂等、ビニルアルコールと共重合可能なモノマーとビニルアルコールとの共重合体も用いることができる。
上記ポリ酢酸ビニル系樹脂は、例えば、エチレン-酢酸ビニル共重合体等が挙げられる。
上記ポリビニルアルコール樹脂のケン化度は、80モル%以上が好ましく、84モル%以上がより好ましく、88モル%以上が更に好ましく、99.5モル%以下が好ましく、99.4モル%以下がより好ましく、99モル%以下が更に好ましい。上記ケン化度は、80~99.5モル%が好ましく、84~99.4モル%がより好ましく、88~99モル%が更に好ましい。
上記アセタール化は、公知の方法を用いることができ、水溶媒中、水と水との相溶性のある有機溶媒との混合溶媒中、あるいは有機溶媒中で行うことが好ましい。
上記水との相溶性のある有機溶媒としては、例えば、アルコール系有機溶剤を用いることができる。
上記有機溶媒としては、例えば、アルコール系有機溶剤、芳香族有機溶剤、脂肪族エステル系溶剤、ケトン系溶剤、低級パラフィン系溶剤、エーテル系溶剤、アミド系溶剤、アミン系溶剤等が挙げられる。
上記アルコール系有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール等が挙げられる。
上記芳香族有機溶剤としては、例えば、キシレン、トルエン、エチルベンゼン、安息香酸メチル等が挙げられる。
上記脂肪族エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、アセト酢酸メチル、アセト酢酸エチル等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ベンゾフェノン、アセトフェノン等が挙げられる。
上記低級パラフィン系溶剤としては、ヘキサン、ペンタン、オクタン、シクロヘキサン、デカン等が挙げられる。
上記エーテル系溶剤としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル等が挙げられる。
上記アミド系溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトアニリド等が挙げられる。
上記アミン系溶剤としては、アンモニア、トリメチルアミン、トリエチルアミン、n-ブチルアミン、ジn-ブチルアミン、トリn-ブチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ピリジン等が挙げられる。
これらは、単体で用いることもできるし、2種以上の溶媒を混合で用いることもできる。これらのなかでも、樹脂に対する溶解性及び精製時の簡易性の観点から、エタノール、n-プロパノール、イソプロパノール、テトラヒドロフランが特に好ましい。
上記アセタール化は、酸触媒の存在下において行うことが好ましい。
上記酸触媒は特に限定されず、硫酸、塩酸、硝酸、リン酸等の鉱酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸が挙げられる。これらの酸触媒は、単独で用いられてもよく、2種以上の化合物を併用してもよい。なかでも、塩酸、硝酸、硫酸が好ましく、硝酸が特に好ましい。
上記アセタール化に用いられるアルデヒドとしては、炭素数1~10の鎖状脂肪族基、環状脂肪族基又は芳香族基を有するアルデヒドが挙げられる。これらのアルデヒドとしては、従来公知のアルデヒドを使用できる。上記アセタール化反応に用いられるアルデヒドは、特に限定されるものではなく、例えば、脂肪族アルデヒド、芳香族アルデヒド等が挙げられる。
上記脂肪族アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、アミルアルデヒド等が挙げられる。
上記芳香族アルデヒドとしては、ベンズアルデヒド、シンナムアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。
これらのアルデヒドは、1種を単独で使用してもよく、2種以上を併用してもよい。アルデヒドとしては、なかでも、アセタール化反応性に優れ、生成する樹脂に充分な内部可塑効果をもたらし、結果として良好な柔軟性を付与することができるホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ノニルアルデヒドが好ましい。また、耐衝撃性及び金属との接着性に特に優れる接着剤組成物を得られることから、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒドがより好ましい。
上記アルデヒドの添加量としては、目的とするポリビニルアセタール樹脂のアセタール基量にあわせて適宜設定することができる。
上記ポリビニルアセタール樹脂組成物は、化合物Aを含有する。
上記化合物Aは、炭素原子、水素原子及び酸素原子を含み、全原子数に対する酸素原子数の割合(酸素原子数/全原子数)が0.18以上である。
また、酸素原子数/全原子数は0.19以上が好ましく、0.30以上がより好ましく、0.35以上が更に好ましく、0.90以下が好ましく、0.70以下がより好ましく、0.60以下が更に好ましい。酸素原子数/全原子数は、0.18~0.90が好ましく、0.19~0.70がより好ましく、0.30~0.70が更に好ましく、0.35~0.60が更により好ましい。
上記化合物Aを含有することで、ポリビニルアセタール樹脂の熱分解性を向上できる。
上記化合物Aの分子量は、ポリビニルアセタール樹脂との相溶性を向上させる点や熱分解性を向上させるという利点があることから、90以上が好ましく、130以上がより好ましく、150以上が更に好ましく、10,000以下が好ましく、450以下がより好ましく、400以下が更に好ましい。上記分子量は、90~10,000が好ましく、130~450がより好ましく、150~400が更に好ましい。
なお、上記分子量は計算分子量である。
また、Fedors法により算出される上記ポリビニルアセタール樹脂の溶解度パラメータ値S1及び上記化合物Aの溶解度パラメータ値S2は使用用途に応じて適宜調整すればよい。S1とS2との差の絶対値は、熱分解性を向上させるという利点があることから、9.0(cal/cm0.5以下が好ましく、8.5(cal/cm0.5以下がより好ましく、5.5(cal/cm0.5以下が更に好ましい。
上記化合物Aは、ポリビニルアセタール樹脂との相溶性を向上させるという利点があることから、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1つであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
式(1)中、R及びRはカルボキシル基又はその塩を表し、Rは単結合、水酸基及びカルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子及び酸素原子からなる2価の基を表す。上記塩としては、リチウム塩、ナトリウム塩、カリウム塩等が挙げられる。
式(2)中、R及びRは、それぞれ独立して、水素原子、水酸基、アセチル基又はアセトキシ基を表し、Rは水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子及び酸素原子からなる2価の基を表す。R及びRは、同一のものでもよく、異なるものでもよいが、同一のものが好ましい。
上記Rは、単結合、又は、水酸基及びカルボキシル基又はその塩で置換されていてもよい2価の炭化水素基であることが好ましい。
上記炭化水素基としては、炭素数1~6の直鎖状アルキレン基、炭素数3~6の分岐アルキレン基、炭素数2~6の直鎖状アルケニレン基、炭素数3~6の分岐アルケニレン基、炭素数3~6のシクロアルキレン基、炭素数3~6のシクロアルケニレン基、炭素数6の芳香族炭化水素基等が挙げられる。
なかでも、炭素数1~4の直鎖状アルキレン基、炭素数3~4の分岐アルキレン基が好ましく、炭素数1~3の直鎖状アルキレン基がより好ましい。
炭素数1~6の直鎖状アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
炭素数3~6の分岐アルキレン基としては、1-メチルエチレン基、2-メチルトリメチレン基、2-メチルテトラメチレン基、2-メチルペンタメチレン基等が挙げられる。
炭素数2~6の直鎖状アルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ヘキセニレン基等が挙げられる。
炭素数3~6の分岐アルケニレン基としては、イソプロペニレン基、1-エチルエテニレン基、2-メチルプロペニレン基、2,2-ジメチルブテニレン基、3-メチル-2-ブテニレン基、3-エチル-2-ブテニレン基等が挙げられる。
炭素数3~6のシクロアルキレン基としては、シクロペンチレン基、シクロヘキシレン基等が挙げられる。
炭素数3~6のシクロアルケニレン基としては、シクロペンテニレン基、2,4-シクロペンタジエニレン基、シクロヘキセニレン基等が挙げられる。
炭素数6の芳香族炭化水素基としては、1,2-フェニレン等が挙げられる。
としては、単結合、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数1~6の直鎖状アルキレン基、又は、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~6の分岐アルキレン基が好ましく、より具体的には、単結合、メチレン基、トリメチレン基、ヒドロキシメチレン基、ヒドロキシエチレン基、1,2-ジヒドロキシエチレン基、2-ヒドロキシ,2-カルボキシトリメチレン基が好ましく、ヒドロキシエチレン基、1,2-ジヒドロキシエチレン基、2-ヒドロキシ,2-カルボキシトリメチレン基がより好ましい。
また、上記Rとしては、水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩及びアセチル基のうちの少なくとも1つを有する2価の炭化水素基、グリセリン単位を有する2価の基等が挙げられる。上記炭化水素基としては、Rとして挙げられたものと同様のものが挙げられる。なかでも、水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~5の分岐アルキレン基、グリセリン単位を有する2価の基が好ましく、炭素数3~5の分岐アルキレン基、繰り返し数2~11のグリセリン単位がより好ましい。
としては、より具体的には、2,2-ジヒドロキシメチルトリメチレン基、2,2-ジアセトキシメチルトリメチレン基、繰り返し数2~11のグリセリン単位が好ましい。
上記式(1)で表される化合物としては、具体的には、クエン酸、リンゴ酸、酒石酸、タルトロン酸、イソクエン酸、メバロン酸等の脂肪族ヒドロキシ酸、シュウ酸、マロン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸等の脂肪族ジカルボン酸等が挙げられる。なかでも、クエン酸、リンゴ酸、酒石酸が好ましい。
上記式(2)で表される化合物としては、具体的には、ペンタエリスリトール、ペンタエリスリトールテトラアセテート、グリセリン、グリセリン単位を2~11有するポリグリセリン等が挙げられる。なかでも、ペンタエリスリトール、ペンタエリスリトールテトラアセテートが好ましい。
上記ポリビニルアセタール樹脂組成物における上記化合物Aの含有量は、熱分解性を向上させるという利点があることから、上記ポリビニルアセタール樹脂100重量部に対して、2.8重量部以上が好ましく、3.0重量部以上がより好ましく、3.5重量部以上が更に好ましい。ポリビニルアセタール樹脂組成物の溶剤溶解性を向上させる点から、20.0重量部以下が好ましく、15.0重量部以下がより好ましく、10.0重量部以下が更に好ましい。上記化合物Aの含有量は、上記ポリビニルアセタール樹脂100重量部に対して、2.8~20.0重量部が好ましく、3.0~15.0重量部がより好ましく、3.5~10.0重量部が更に好ましい。
上記ポリビニルアセタール樹脂組成物の含水率は、5.0重量%以下である。
含水率が5.0重量%以下であることにより、ポリビニルアセタール樹脂組成物の取扱性や溶剤溶解性を高めることができる。
上記含水率は、0.01重量%以上が好ましく、0.02重量%以上がより好ましく、3.0重量%以下が好ましく、2.0重量%以下がより好ましい。上記含水率は、0.01~5.0重量%が好ましく、0.02~3.0重量%がより好ましく、0.02~2.0重量%が更に好ましい。
上記含水率は、ポリビニルアセタール樹脂組成物中の水の含有量を意味し、赤外線水分計やNMRにより測定することができる。
また、上記含水率は、アセタール化後の乾燥温度、乾燥時間やポリビニルアセタール樹脂と化合物Aとを混合した後の乾燥温度、乾燥時間により調整することができる。
上記ポリビニルアセタール樹脂組成物は、下記式で表されるY値が6.3×10-9以上45.0×10-9以下であることが好ましい。
Y=((W÷M×O)÷(100-W))÷(MPVB÷M)÷S0.4
:ポリビニルアセタール樹脂100重量部に対する化合物Aの含有量
:化合物Aの分子量
:化合物Aにおける全原子数に対する酸素原子数の割合(酸素原子数/全原子数)
:ポリビニルアセタール樹脂組成物の含水率
PVB:ポリビニルアセタール樹脂の重量平均分子量
S:Fedors法により算出されるポリビニルアセタール樹脂の溶解度パラメータ値をS1、化合物Aの溶解度パラメータをS2としたときのS1とS2との差の絶対値
上記を満たすことにより、ポリビニルアセタール樹脂組成物の焼成残渣を少なくすることができる。
上記Y値は、9.0×10-9以上がより好ましく、15.0×10-9以下がより好ましい。上記Y値は、6.3×10-9~45.0×10-9が好ましく、9.0×10-9~15.0×10-9がより好ましい。
上記ポリビニルアセタール樹脂組成物は、上記効果を阻害しない限り、分散剤や酸化防止剤、可塑剤、界面活性剤等の成分を含有していてもよい。
上記ポリビニルアセタール樹脂組成物を製造する方法としては、例えば、ポリビニルアルコールをアルデヒドによってアセタール化して得られたポリビニルアセタール樹脂に対して、上記化合物A、及び、その他必要に応じて添加される添加剤を添加して混合し、乾燥により含水率を調整する方法が挙げられる。また、ポリビニルアルコールを化合物Aの存在下でアルデヒドによってアセタール化し乾燥して含水率を調整する方法が挙げられる。
なかでも、ポリビニルアルコールをアルデヒドによってアセタール化して得られたポリビニルアセタール樹脂に対して、上記化合物A、及び、その他必要に応じて添加される添加剤を添加して混合し、乾燥により含水率を調整する方法が好ましい。
上記ポリビニルアセタール樹脂組成物は、通常のポリビニルアセタール樹脂が使用されている用途に好適に用いることができ、例えば、セラミック成形体、金属ペースト、熱現像性感光材料、塗料、インキ、反射シート等を製造するための塗工溶液を得ることができる。また、ディスプレイ向けフィルム用接着剤、セラミック積層体の層間接着剤、液体のり、固形のり等の接着剤組成物に使用することができる。
上記ポリビニルアセタール樹脂組成物、有機溶剤及び無機微粒子を混合することで無機微粒子分散スラリー組成物を作製することができる。
上記有機溶剤としては特に限定されず、例えば、上記ポリビニルアセタール樹脂を溶解できるものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類が挙げられる。また、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類等が挙げられる。更に、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類等が挙げられる。また、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、テルピネオール、ジヒドロテルピネオール、ブチルセルソルブアセテート、ブチルカルビトールアセテート、テルピネオールアセテート、ジヒドロテルピネオールアセテート等が挙げられる。特に、アルコール類、ケトン類、芳香族炭化水素類及びこれらの混合溶剤が塗工性、乾燥性の面から見て好ましい。なかでも、エタノールとトルエンの混合溶剤やメチルエチルケトンとトルエンの混合溶剤がより好ましい。
上記無機微粒子分散スラリー組成物中の上記有機溶剤の含有量は、用いられるポリビニルアセタール樹脂の種類等によって設定されるものであって、特に限定されるものではないが、あまり少ないと、混錬に必要な溶解性を発揮しにくい。また、あまり多いと、スラリー組成物の粘度が低くなり過ぎてセラミックグリーンシートを作製する際のハンドリング性が悪くなることがある。このため、有機溶剤の含有量は好ましくは20重量%以上80重量%以下である。
上記無機微粒子分散スラリー組成物は、無機微粒子を含有する。
上記無機微粒子は特に限定されず、例えば、セラミック粉末、ガラス粉末、金属微粒子等が挙げられる。
上記セラミック粉末は特に限定されず、セラミックの製造に使用される金属又は非金属の酸化物、炭化物、窒化物、ホウ化物、又は硫化物等の粉末が挙げられる。その具体例として、Li、K、Mg、B、Al、Si、Cu、Ca、Sr、Ba、Zn、Cd、Ga、In、Y、ランタノイド、アクチノイド、Ti、Zr、Hf、Bi、V、Nb、Ta、W、Mn、Fe、Co、Ni等の酸化物、炭化物、窒化物、ホウ化物、硫化物等が挙げられる。これらのセラミック粉体は、単独で用いても、又は2種類以上の混合物として用いてもよい。
例えば、チタン酸バリウム、窒化アルミ(AlN)、窒化珪素(Si3N4)、炭化珪素(SiC)、アルミナ(Al2O3)、酸化銅(CuO)、及びスピネル系化合物、フェライト、ジルコニア、ジルコン、ジルコン酸バリウム、ジルコン酸カルシウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ランタン、チタン酸ネオジウム、チタン酸ジルコン鉛、窒化アルミナ、窒化ケイ素、窒化ホウ素、炭化ホウ素、錫酸バリウム、錫酸カルシウム、珪酸マグネシウム、ムライト、ステアタイト、コーディエライト、フォルステライト等が挙げられる。
上記ガラス粉末は特に限定されず、例えば、酸化ビスマスガラス、ケイ酸塩ガラス、鉛ガラス、亜鉛ガラス、ボロンガラス等のガラス粉末や、CaO-Al-SiO系、MgO-Al-SiO系、LiO-Al-SiO系等の各種ケイ素酸化物のガラス粉末等が挙げられる。
また、上記ガラス粉末として、SnO-B-P-Al混合物、PbO-B-SiO混合物、BaO-ZnO-B-SiO混合物、ZnO-Bi-B-SiO混合物、Bi-B-BaO-CuO混合物、Bi-ZnO-B-Al-SrO混合物、ZnO-Bi-B混合物、Bi-SiO混合物、P-NaO-CaO-BaO-Al-B混合物、P-SnO混合物、P-SnO-B混合物、P-SnO-SiO混合物、CuO-P-RO混合物、SiO-B-ZnO-NaO-LiO-NaF-V混合物、P-ZnO-SnO-RO-RO混合物、B-SiO-ZnO混合物、B-SiO-Al-ZrO混合物、SiO-B-ZnO-RO-RO混合物、SiO-B-Al-RO-RO混合物、SrO-ZnO-P混合物、SrO-ZnO-P混合物、BaO-ZnO-B-SiO混合物等も用いることができる。なお、Rは、Zn、Ba、Ca、Mg、Sr、Sn、Ni、Fe及びMnからなる群より選択される元素である。
特に、PbO-B-SiO混合物のガラス粉末や、鉛を含有しないBaO-ZnO-B-SiO混合物又はZnO-Bi-B-SiO混合物等の無鉛ガラス粉末が好ましい。
上記金属微粒子は特に限定されず、例えば、銅、ニッケル、パラジウム、鉄、白金、金、銀、アルミニウム、タングステンやこれらの合金等からなる粉末等が挙げられる。
また、金属錯体のほか、種々のカーボンブラック、カーボンナノチューブ等を使用してもよい。また、ITO、FTO、酸化ニオブ、酸化バナジウム、酸化タングステン、ランタンストロンチウムマンガナイト、ランタンストロンチウムコバルトフェライト、イットリウム安定化ジルコニア、ガドリニウムドープセリア、酸化ニッケル、ランタンクロマイト等も使用することができる。
上記無機微粒子分散スラリー組成物における上記無機微粒子の含有量としては特に限定されないが、10重量%以上であることが好ましく、15重量%以上であることがより好ましく、90重量%以下であることが好ましく、85重量%以下であることがより好ましい。上記範囲とすることで、充分な粘度を有し、優れた塗工性を有するものとでき、また、無機微粒子の分散性に優れるものとできる。上記無機微粒子の含有量は、10~90重量%が好ましく、15~85重量%がより好ましい。
上記無機微粒子分散スラリー組成物は、可塑剤を含有する。
上記可塑剤としては、例えば、例えば、アジピン酸モノメチル、アジピン酸ジ(ブトキシエチル)、アジピン酸ジブトキシエトキシエチル、トリエチレングリコールビス(2-エチルヘキサノエート)、トリエチレングリコールジヘキサノエート、アセチルクエン酸トリエチル、セチルクエン酸トリブチル、セバシン酸ジブチル、フタル酸ブチル化ベンジル、アジピン酸ジイソノニル、フタル酸ジイソデシル、トリプロピオニン、ペンタエリスリトールテトラアセテート、フタル酸ジ-2-エチルヘキシル、トリアセチン等が挙げられる。
なかでも、トリエチレングリコールビス(2-エチルヘキサノエート)、フタル酸ブチル化ベンジル、アジピン酸ジイソノニル、フタル酸ジイソデシル、トリプロピオニン、ペンタエリスリトールテトラアセテート、フタル酸ジ-2-エチルヘキシル等が好ましい。
上記可塑剤の沸点は240℃以上であることが好ましく、390℃未満であることが好ましい。上記沸点を240℃以上とすることで、乾燥工程で蒸発しやすくなり、成形体への残留を防止できる。また、390℃未満とすることで、残留炭素が生じることを防止できる。なお、上記沸点は、常圧での沸点をいう。
上記無機微粒子分散スラリー組成物における上記可塑剤の含有量は特に限定されないが、0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましく、3.0重量%以下であることが好ましく、2.5重量%以下であることがより好ましい。上記可塑剤の含有量は、0.1~3.0重量%が好ましく、0.2~2.5重量%がより好ましい。上記範囲内とすることで、可塑剤の焼成残渣を少なくすることができる。
上記微粒子分散スラリー組成物は、上記効果を損なわない範囲で、上記ポリビニルアセタール樹脂組成物以外のポリビニルアセタール樹脂や、アクリル樹脂、エチルセルロース等の他の樹脂を含有していてもよい。このような場合、全バインダー樹脂に対する上記ポリビニルアセタール樹脂組成物の含有量が50重量%以上であることが好ましい。
上記無機微粒子分散スラリー組成物の粘度は特に限定されないが、20℃においてB型粘度計を用いプローブ回転数を5rpmに設定して測定した場合の粘度が0.1Pa・s以上であることが好ましく、100Pa・s以下であることが好ましい。
上記粘度を0.1Pa・s以上とすることで、ダイコート印刷法等により塗工した後、得られる無機微粒子分散シートが所定の形状を維持することが可能となる。また、上記粘度を100Pa・s以下とすることで、ダイの塗出痕が消えない等の不具合を防止して、印刷性に優れるものとできる。
上記無機微粒子分散スラリー組成物を作製する方法は特に限定されず、従来公知の攪拌方法が挙げられ、具体的には、例えば、上記ポリビニルアセタール樹脂組成物、上記無機微粒子、必要に応じて添加される有機溶剤、可塑剤及びその他の成分をビーズミル等で攪拌する方法等が挙げられる。
上記無機微粒子分散スラリー組成物を、片面離型処理を施した支持フィルム上に塗工し、有機溶剤を乾燥させ、シート状に成形することで、無機微粒子分散シートを製造することができる。
上記無機微粒子分散シートは、厚みが0.5μm以上であることが好ましく、3μm以下であることが好ましい。
上記無機微粒子分散シートを製造する際に用いる支持フィルムは、耐熱性及び耐溶剤性を有するとともに可撓性を有する樹脂フィルムであることが好ましい。支持フィルムが可撓性を有することにより、ロールコーター、ブレードコーターなどによって支持フィルムの表面に無機微粒子分散スラリー組成物を塗布することができ、得られる無機微粒子分散シート形成フィルムをロール状に巻回した状態で保存し、供給することができる。
上記支持フィルムを形成する樹脂としては、例えばポリエチレンテレフタレート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリビニルアルコール、ポリ塩化ビニル、ポリフロロエチレン等の含フッ素樹脂、ナイロン、セルロース等が挙げられる。
上記支持フィルムの厚みは、例えば、20μm以上であることが好ましく、100μm以下であることが好ましい。
また、支持フィルムの表面には離型処理が施されていることが好ましく、これにより、転写工程において、支持フィルムの剥離操作を容易に行うことができる。
また、上記無機微粒子分散スラリー組成物、無機微粒子分散シートを、誘電体グリーンシート、電極ペーストに用いることで積層セラミックコンデンサを製造することができる。
上記積層セラミックコンデンサの製造方法は、上記無機微粒子分散シートに導電ペーストを印刷、乾燥して、誘電体シートを作製する工程、及び、前記誘電体シートを積層する工程を有することが好ましい。
上記導電ペーストは、導電粉末を含有するものである。
上記導電粉末の材質は、導電性を有する材質であれば特に限定されず、例えば、ニッケル、パラジウム、白金、金、銀、銅及びこれらの合金等が挙げられる。これらの導電粉末は、単独で用いてもよく、2種以上を併用してもよい。
上記導電ペーストに使用されるバインダー樹脂、有機溶剤としては、上記無機微粒子分散スラリー組成物と同様のものを用いることができる。
上記導電ペーストを印刷する方法は特に限定されず、例えば、スクリーン印刷法、ダイコート印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等が挙げられる。
上記積層セラミックコンデンサの製造方法では、上記導電ペーストを印刷した誘電体シートを積層し、脱脂、焼成後、外部電極を設置することで誘電層及び電極層を有する積層セラミックコンデンサが得られる。
上記無機微粒子分散スラリー組成物を用いてなる誘電層又は電極層を有する積層セラミックコンデンサもまた本発明の1つである。
本発明によれば、熱分解性に特に優れるとともに、高い溶剤溶解性を発揮できるポリビニルアセタール樹脂組成物を提供できる。また、無機微粒子分散スラリー組成物、積層セラミックコンデンサを提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
(ポリビニルアセタール含水樹脂PVB1の調製)
ポリビニルアルコール樹脂(平均重合度3,300、ケン化度99モル%)300gに純水3000gを加え、90℃で2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸200gとn-ブチルアルデヒド160gとを添加してアセタール化反応を行い、反応生成物を析出させた。その後、40℃で3時間保持して反応を完了させ、常法により中和、水洗、脱水を行い、ポリビニルアセタール含水樹脂PVB1を得た。ポリビニルアセタール含水樹脂PVB1の赤外線水分計で含水率を測定すると60重量%であった。
(ポリビニルアセタール樹脂組成物の調製)
得られたポリビニルアセタール含水樹脂PVB1に対し、ポリビニルアセタール樹脂成分100重量部に対してクエン酸を3.2重量部になるように添加して混合後、40℃で48時間乾燥し、ポリビニルアセタール樹脂組成物を得た。
得られたポリビニルアセタール樹脂組成物をDMSO-D(ジメチルスルホキサイド)に溶解し、H-NMR(核磁気共鳴スペクトル)を用いて分析したところ、アセタール基量、アセチル基量、水酸基量の含有量は表1の通りであった。
また、赤外線水分計(エー・アンド・デイ社製、MX-50)により含水率を測定した。なお、含水率の測定は、水分率の変化が0.05%/minになるまで温度125℃の条件で実施した。
イオンクロマトグラフィーによりクエン酸含有量を測定したところ、表1の通りであった。なお、測定機器としては、イオンクロマトグラフィーシステムICS900(Thermo Fisher Scientific社製、カラム:Ionpac AS22(4φ×250mm)、検出器:電気伝導度計)を用いた。
(実施例2)
クエン酸に代えて酒石酸を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例3)
クエン酸に代えてリンゴ酸を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例1)
クエン酸を添加しなかった以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例2)
クエン酸に代えて酒石酸を用い、40℃で26時間乾燥することにより含水率を6.5重量%となるように調整した以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例4)
(ポリビニルアセタール含水樹脂PVB2の調製)
ポリビニルアルコール樹脂(平均重合度1,700、ケン化度99モル%)を用いた以外は実施例1と同様にしてポリビニルアセタール含水樹脂PVB2を得た。
ポリビニルアセタール含水樹脂PVB2を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例5)
クエン酸に代えて酒石酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例6)
クエン酸に代えてリンゴ酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例7)
クエン酸に代えてペンタエリスリトールを用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例8)
クエン酸に代えてペンタエリスリトールテトラアセテートを用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例9)
クエン酸に代えてペンタエリスリトールテトラアセテート16重量部を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例10)
クエン酸に代えてグリセリン単位の平均繰り返し数nが6であるポリグリセリンを用い、40℃で46時間乾燥することにより含水率を1.0重量%となるように調整した以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例11)
クエン酸に代えてシュウ酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例12)
クエン酸に代えてタルトロン酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例13)
クエン酸に代えてマロン酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例14)
クエン酸に代えてグルタル酸を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例15)
ポリグリセリン2.5重量部を用いた以外は実施例10と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例16)
酒石酸25.0重量部を用いた以外は実施例5と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例3)
クエン酸を添加しなかった以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例4)
クエン酸に代えてトリエチレングリコールジ(2-エチルヘキサノエート)1.6重量部を用いた以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例5)
反応容器内で粉末状のポリビニルアルコール樹脂(平均重合度1,700、ケン化度99モル%)5gに水50gを加えて加熱攪拌し、ポリビニルアルコール水溶液を得た。得られたポリビニルアルコール水溶液55gにクエン酸1.0gを加え、n-ブチルアルデヒド4.8gを加えた。反応容器に二酸化炭素を注入し、容器内温度を130℃に調整し、圧力調整弁を用いて容器内圧を2.0MPaに調整した。130℃で2時間攪拌しながら反応を行った後、反応部を室温まで冷却し、ポリビニルアセタール樹脂PVB5を含有する樹脂組成物を得た。
なお、得られたポリビニルアセタール樹脂組成物中のクエン酸含有量をイオンクロマトグラフィーにより測定したところ、ポリビニルアセタール樹脂100重量部に対してクエン酸含有量は14重量部であった。
(比較例6)
クエン酸に代えて酒石酸を用い、40℃で10時間乾燥することにより含水率を20.0重量%となるように調整した以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(比較例7)
クエン酸に代えてホルムアミドを用い、40℃で42時間乾燥することにより含水率を1.2重量%となるように調整した以外は実施例4と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例17)
(ポリビニルアセタール含水樹脂PVB3の調製)
ポリビニルアルコール樹脂(平均重合度800、ケン化度98.5モル%)を用いた以外は実施例1と同様にしてポリビニルアセタール含水樹脂PVB3を得た。
ポリビニルアセタール含水樹脂PVB3を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例18)
クエン酸に代えて酒石酸を用いた以外は実施例17と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例19)
クエン酸に代えてリンゴ酸を用いた以外は実施例17と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例20)
ポリビニルアセタール含水樹脂PVB3に対し、ポリビニルアセタール樹脂100重量部に対してクエン酸3.2重量部を添加し、40℃で30時間乾燥することにより含水率4.0重量%となるように調整して、ポリビニルアセタール樹脂組成物を得た。
(比較例8)
クエン酸を添加しなかった以外は実施例17と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例21)
(ポリビニルアセタール含水樹脂PVB4の調製)
ポリビニルアルコール樹脂(平均重合度850、ケン化度94.8モル%)を用い、濃度35重量%の塩酸300gとn-ブチルアルデヒド180gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂PVB4を得た。
ポリビニルアセタール含水樹脂PVB4に対し、ポリビニルアセタール樹脂100重量部に対して酒石酸3.2重量部を添加し、40℃で48時間乾燥することにより含水率1.0重量%となるように調整して、ポリビニルアセタール樹脂組成物を得た。
(比較例9)
酒石酸を添加しなかった以外は実施例21と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例22)
(カルボン酸変性ポリビニルアルコール樹脂の作製)
酢酸ビニル及びクロトン酸をモル比99.88:0.12としてラジカル重合開始剤の存在下、常法により共重合させることにより得られた酢酸ビニル共重合体30重量部をメタノール60重量部に溶解させた。次いで、45重量%水酸化ナトリウム水溶液0.4重量部を加えて1時間攪拌した後、濃酢酸で中和し、析出した生成物をメタノールで洗浄した。これにより、式(b-2)で表される構成単位(式(b-2)中、R3bがメチル基、R4bが水素原子、R5bが水素原子、R6bが単結合、X3bが水素原子)を有するカルボン酸変性ポリビニルアルコール樹脂を得た。JIS K6726に基づいて測定した結果、残存アセチル基量は5.5モル%、平均重合度は800であった。また、FT-IRにて測定した結果、カルボキシル基を有する構成単位の含有量(カルボキシル基量)は0.1モル%であった。
得られたカルボン酸変性ポリビニルアルコール樹脂300gに純水3000gを加え、90℃で2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸270gとn-ブチルアルデヒド240gとを添加してアセタール化反応を行い、反応生成物を析出させた。その後、40℃で3時間保持して反応を完了させ、常法により中和、水洗、脱水を行い、ポリビニルアセタール含水樹脂PVB5を得た。ポリビニルアセタール含水樹脂PVB5の赤外線水分計で含水率を測定すると60重量%であった。
得られたポリビニルアセタール含水樹脂PVB5に対し、ポリビニルアセタール樹脂成分100重量部に対して酒石酸を3.2重量部になるように添加して混合後、40℃で28時間乾燥して、含水率5.0重量%となるように調整して、ポリビニルアセタール樹脂組成物を得た。
(比較例10)
酒石酸を添加しなかった以外は実施例22と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例23)
変性ポリビニルアルコール樹脂(平均重合度1,700、残存アセチル基量12モル%、エチレン含有量10モル%)193gに純水2900gを加え、90℃で2時間攪拌し溶解させた。この溶液を20℃に冷却し、これに濃度35重量%の塩酸40gとn-ブチルアルデヒド125gとを添加してアセタール化反応を行い、反応生成物を析出させた。その後、30℃で5時間保持して反応を完了させ、常法により中和、水洗、脱水を行い、ポリビニルアセタール含水樹脂PVB6を得た。ポリビニルアセタール含水樹脂PVB6の赤外線水分計で含水率を測定すると60重量%であった。
得られたポリビニルアセタール含水樹脂PVB6に対し、ポリビニルアセタール樹脂成分100重量部に対して酒石酸を3.2重量部になるように添加して混合後、40℃で46時間乾燥して、含水率1.0重量%となるように調整して、ポリビニルアセタール樹脂組成物を得た。
(比較例11)
酒石酸を添加しなかった以外は実施例23と同様にしてポリビニルアセタール樹脂組成物を得た。
(実施例24)
変性ポリビニルアルコール樹脂(平均重合度800、残存アセチル基量7モル%、エチレン含有量5モル%)193gに純水2900gを加え、90℃で2時間攪拌し溶解させた。この溶液を20℃に冷却し、これに濃度35重量%の塩酸20gとn-ブチルアルデヒド110gとを添加してアセタール化反応を行い、反応生成物を析出させた。その後、30℃で5時間保持して反応を完了させ、常法により中和、水洗、脱水を行い、ポリビニルアセタール含水樹脂PVB7を得た。ポリビニルアセタール含水樹脂PVB7の赤外線水分計で含水率を測定すると60重量%であった。
得られたポリビニルアセタール含水樹脂PVB7に対し、ポリビニルアセタール樹脂成分100重量部に対して酒石酸を3.2重量部になるように添加して混合後、40℃で28時間乾燥して、含水率5.0重量%となるように調整して、ポリビニルアセタール樹脂組成物を得た。
(比較例12)
酒石酸を添加しなかった以外は実施例24と同様にしてポリビニルアセタール樹脂組成物を得た。
<評価>
得られたポリビニルアセタール樹脂組成物について以下の評価を行った。結果を表1~5に示した。
(1)重量平均分子量(Mw)
得られたポリビニルアセタール樹脂をテトラヒドロフランに0.05重量%の濃度で溶解させ、GPC装置HLC-8220(東ソー社製)にて測定を行い、得られた測定結果から、単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して、重量平均分子量Mwを算出した。なお、カラムとして、カラムTSKgel SuperHZM-H(東ソー社製)を用いた。
(2)残留量
ポリビニルアセタール樹脂組成物を、真空乾燥機を用いて60℃で2時間乾燥後、アルミナパンに8.0000mg計量し、TG/DTA(ティー・エイ・インスツルメント・ジャパン株式会社製、SDT-Q600)を用いて、常温から800℃まで10℃/分で昇温し、800℃で30分保持し、常温まで冷却後、アルミナパンを精密天秤(株式会社エー・アンド・デイ製、BA-6TE)で計量し、昇温前のアルミナパンの重量を差し引いた値を、残留量Wとした。
(3)減少率
比較例1、比較例3、比較例8~12で得られたポリビニルアセタール樹脂組成物を、真空乾燥機を用いて60℃で2時間乾燥後、アルミナパンに8.0000mg計量し、TG/DTA(ティー・エイ・インスツルメント・ジャパン株式会社製、SDT-Q600)を用いて、常温から800℃まで10℃/分で昇温し、800℃で30分保持し、常温まで冷却後、アルミナパンを精密天秤(株式会社エー・アンド・デイ製、BA-6TE)で計量し、昇温前のアルミナパンの重量を差し引いた値を、それぞれWB(1)、WB(2)、WB(3)、WB(4)、WB(5)、WB(6)及びWB(7)とした。上記で測定した各実施例の残留量をWAとし、次の計算式を用いて減少率を算出した。
(WB―WA)×100/WB
なお、WBとして、実施例1~3、比較例2はWB(1)(比較例1)、実施例4~16、比較例4~7はWB(2)(比較例3)、実施例17~20はWB(3)(比較例8)、実施例21はWB(4)(比較例9)、実施例22はWB(5)(比較例10)、実施例23はWB(6)(比較例11)、実施例24はWB(7)(比較例12)を計算に用いた。
(4)溶剤溶解性
エタノールとトルエンとの重量比率が1:9である混合溶媒A、エタノールとトルエンとの重量比率が5:5である混合溶媒Bを準備した。密閉ガラス容器に、ポリビニルアセタール樹脂が9重量%になるように、ポリビニルアセタール樹脂組成物及び混合溶媒A、B又はCを配合し、30gの溶液を準備した。溶液が60℃になるようにホットスターラーを用いて、5時間混合し、混合直後の溶液状態を目視で確認し、次の基準で評価した。
A:溶け残りが無く、溶液が透明である。
B:溶け残りがなく、溶液が青みがかっている。
C:溶け残りがある、又は、溶液が白濁している。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
本発明によれば、熱分解性に特に優れるとともに、高い溶剤溶解性を発揮できるポリビニルアセタール樹脂組成物を提供できる。また、無機微粒子分散スラリー組成物、積層セラミックコンデンサを提供できる。

Claims (14)

  1. 含水率が5.0重量%以下であり、
    ポリビニルアセタール樹脂と、炭素原子、水素原子及び酸素原子を含み、全原子数に対する酸素原子数の割合(酸素原子数/全原子数)が0.18以上である化合物Aとを含有する、ポリビニルアセタール樹脂組成物。
  2. ポリビニルアセタール樹脂100重量部に対して、化合物Aを2.8重量部以上20重量部以下含有する、請求項1に記載のポリビニルアセタール樹脂組成物。
  3. Fedors法により算出されるポリビニルアセタール樹脂の溶解度パラメータ値をS1、化合物Aの溶解度パラメータをS2としたとき、S1とS2との差の絶対値が9.0(cal/cm0.5以下である、請求項1又は2に記載のポリビニルアセタール樹脂組成物。
  4. 化合物Aの分子量が90以上450以下である、請求項1~3の何れかに記載のポリビニルアセタール樹脂組成物。
  5. 化合物Aは、下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種である、請求項1~4の何れかに記載のポリビニルアセタール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R及びRはカルボキシル基又はその塩を表し、Rは単結合、水酸基及びカルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子及び酸素原子からなる2価の基を表す。
    式(2)中、R及びRは、それぞれ独立して、水素原子、水酸基、アセチル基又はアセトキシ基を表し、Rは水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩で置換されていてもよい炭素原子、水素原子及び酸素原子からなる2価の基を表す。
  6. 式(1)中、Rが単結合、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数1~6の直鎖状アルキレン基、若しくは、水酸基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~6の分岐アルキレン基である、請求項5に記載のポリビニルアセタール樹脂組成物。
  7. 式(2)中、Rが水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数1~6の直鎖状アルキレン基、水酸基、アセチル基、アセトキシ基、カルボキシル基又はその塩のうちの少なくとも1つを有する炭素数3~6の分岐アルキレン基、若しくは、繰り返し数2~11のグリセリン単位である、請求項5又は6に記載のポリビニルアセタール樹脂組成物。
  8. 式(1)で表される化合物が、酒石酸、リンゴ酸、クエン酸及びこれらの塩からなる群から選ばれる少なくとも1つの化合物である、請求項5~7の何れかに記載のポリビニルアセタール樹脂組成物。
  9. 式(2)で表される化合物が、ペンタエリスリトール及びペンタエリスリトールテトラアセテートからなる群から選ばれる少なくとも1つの化合物である、請求項5~8の何れかに記載のポリビニルアセタール樹脂組成物。
  10. 下記式で表されるY値が6.3×10-9以上45.0×10-9以下である、請求項1~9の何れかに記載のポリビニルアセタール樹脂組成物。
     Y=((W÷M×O)÷(100-W))÷(MPVB÷M)÷S0.4
     W:ポリビニルアセタール樹脂100重量部に対する化合物Aの含有量
     M:化合物Aの分子量
     O:化合物Aにおける全原子数に対する酸素原子数の割合(酸素原子数/全原子数)
     W:ポリビニルアセタール樹脂組成物の含水率
     MPVB:ポリビニルアセタール樹脂の重量平均分子量
     S:Fedors法により算出されるポリビニルアセタール樹脂の溶解度パラメータ値をS1、化合物Aの溶解度パラメータをS2としたときのS1とS2との差の絶対値
  11. 請求項1~10の何れかに記載のポリビニルアセタール樹脂組成物、有機溶剤及び無機微粒子を含有する、無機微粒子分散スラリー組成物。
  12. 更に、可塑剤を含有する、請求項11に記載の無機微粒子分散スラリー組成物。
  13. 無機微粒子がチタン酸バリウム粉末又はニッケル粉末である、請求項11又は12に記載の無機微粒子分散スラリー組成物。
  14. 請求項11~13の何れかに記載の無機微粒子分散スラリー組成物を用いてなる誘電層又は電極層を有する、積層セラミックコンデンサ。
PCT/JP2023/010985 2022-03-29 2023-03-20 ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ WO2023189847A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014116.8A CN118139925A (zh) 2022-03-29 2023-03-20 聚乙烯醇缩醛树脂组合物、无机微粒分散浆料组合物及层叠陶瓷电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053588 2022-03-29
JP2022053588 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189847A1 true WO2023189847A1 (ja) 2023-10-05

Family

ID=88201286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010985 WO2023189847A1 (ja) 2022-03-29 2023-03-20 ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ

Country Status (3)

Country Link
CN (1) CN118139925A (ja)
TW (1) TW202402834A (ja)
WO (1) WO2023189847A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132798A (ja) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd 電極接続用接着剤とその製造方法
JP2011219349A (ja) * 2010-03-24 2011-11-04 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2011219350A (ja) * 2010-03-24 2011-11-04 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2011231000A (ja) * 2010-04-08 2011-11-17 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2022014285A (ja) * 2020-07-06 2022-01-19 積水化学工業株式会社 スラリー組成物及びセラミック焼結体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132798A (ja) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd 電極接続用接着剤とその製造方法
JP2011219349A (ja) * 2010-03-24 2011-11-04 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2011219350A (ja) * 2010-03-24 2011-11-04 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2011231000A (ja) * 2010-04-08 2011-11-17 Sekisui Chem Co Ltd スラリー組成物の製造方法
JP2022014285A (ja) * 2020-07-06 2022-01-19 積水化学工業株式会社 スラリー組成物及びセラミック焼結体の製造方法

Also Published As

Publication number Publication date
CN118139925A (zh) 2024-06-04
TW202402834A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
TWI504613B (zh) A polyvinyl acetal resin, a slurry composition thereof, a green sheet and a laminated ceramic capacitor
JP5255390B2 (ja) 樹脂組成物
KR101925479B1 (ko) 슬러리 조성물, 세라믹 그린 시트 및 적층 세라믹 콘덴서
JP6666479B2 (ja) スラリー組成物、セラミックグリーンシートおよび塗工シート
JP5750507B2 (ja) アルキル変性ビニルアセタール系重合体及び組成物
JP5965808B2 (ja) ペースト及び積層セラミックコンデンサ
TW201144254A (en) Slurry composition for ceramic green sheet, ceramic green sheet, and multilayer ceramic capacitor
WO2012115223A1 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体及びそれを含有する組成物
JP6239841B2 (ja) セラミックグリーンシート用スラリー組成物
JP5224722B2 (ja) 樹脂組成物、導電ペースト及びセラミックペースト
JP7060351B2 (ja) ポリビニルアセタール樹脂組成物
JP2012216488A (ja) 導電ペースト
JP5824388B2 (ja) 導電ペースト
JP5462700B2 (ja) セラミックグリーンシート用ポリビニルアセタール樹脂、スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
WO2023189847A1 (ja) ポリビニルアセタール樹脂組成物、無機微粒子分散スラリー組成物及び積層セラミックコンデンサ
JP5809505B2 (ja) 導電ペースト
JP6732588B2 (ja) 無機化合物分散用剤、スラリー組成物、セラミックグリーンシート、導電ペーストおよび塗工シート
CN113874962B (zh) 导电糊剂
JP2023147266A (ja) セラミックグリーンシート用樹脂組成物、セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
WO2023189845A1 (ja) セラミックグリーンシート用樹脂組成物
JP7432051B1 (ja) ポリビニルアセタール樹脂及びセラミックグリーンシート用樹脂組成物
JP2012072256A (ja) エポキシ変性ポリビニルアセタール樹脂、セラミックスラリー及びセラミックグリーンシート
JP2006210256A (ja) 塗工ペースト用ビヒクル及び塗工ペースト
JP2024081100A (ja) ポリビニルアセタール樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521774

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779863

Country of ref document: EP

Kind code of ref document: A1