WO2018135269A1 - 単焦点レンズ系、および、カメラ - Google Patents

単焦点レンズ系、および、カメラ Download PDF

Info

Publication number
WO2018135269A1
WO2018135269A1 PCT/JP2017/046902 JP2017046902W WO2018135269A1 WO 2018135269 A1 WO2018135269 A1 WO 2018135269A1 JP 2017046902 W JP2017046902 W JP 2017046902W WO 2018135269 A1 WO2018135269 A1 WO 2018135269A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens element
lens
single focus
image
power
Prior art date
Application number
PCT/JP2017/046902
Other languages
English (en)
French (fr)
Inventor
綾 池應
岩下 勉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780083641.XA priority Critical patent/CN110178068B/zh
Priority to EP17892933.7A priority patent/EP3572859A4/en
Priority to JP2018563252A priority patent/JP6837194B2/ja
Publication of WO2018135269A1 publication Critical patent/WO2018135269A1/ja
Priority to US16/451,149 priority patent/US11467374B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • This disclosure relates to a single focus lens system and a camera.
  • Patent Document 1 discloses a first lens having negative power in order from the object side to the image side, a second lens having negative power, a third lens having power, a fourth lens having positive power, and a positive power.
  • a wide-angle and small-sized imaging lens is disclosed which includes a fifth lens having, and a sixth lens having negative power.
  • the present disclosure provides a single focus lens system and a camera with good various aberrations.
  • the single focus lens system includes, in order from the object side to the image side, a first lens element having negative power, a second lens element having negative power, and a third lens element having positive power. , A fourth lens element having power, a fifth lens element having power, and a sixth lens element having positive power. At least one lens element out of the second lens element to the sixth lens element is made of glass. And the following conditional expression (1) is satisfied.
  • L1R2 radius of curvature of the image side surface of the first lens element
  • L2R1 radius of curvature of the object side surface of the second lens element
  • the camera according to the present disclosure includes a single focus lens system and an image sensor that images light collected by the single focus lens system.
  • the single focus lens system includes, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a negative power, a third lens element having a positive power, and a power.
  • At least one lens element out of the second lens element to the sixth lens element is made of glass. And the following conditional expression (1) is satisfied.
  • L1R2 radius of curvature of the image side surface of the first lens element
  • L2R1 radius of curvature of the object side surface of the second lens element
  • the present disclosure provides a single focus lens system having favorable various aberrations.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 1 in the infinite focus state.
  • FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the single focus lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 4 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 2 in the infinite focus state.
  • FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the single focus lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 6 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 3 in the infinite focus state.
  • FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 8 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 4 in the infinite focus state.
  • FIG. 9 is a lens arrangement diagram illustrating an infinitely focused state of the single focus lens system according to Embodiment 5 (Numerical Example 5).
  • FIG. 10 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 5 in the infinite focus state.
  • FIG. 10 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 5 in the infinite focus state.
  • FIG. 11 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 6 (Numerical Example 6).
  • FIG. 12 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 6 in the infinite focus state.
  • FIG. 13 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 7 (Numerical Example 7).
  • FIG. 14 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 7 in the infinite focus state.
  • FIG. 15 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 8 (Numerical Example 8).
  • FIG. 16 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 8 when the lens is in focus at infinity.
  • FIG. 17 is a lens arrangement diagram illustrating an infinitely focused state of a single focus lens system according to Embodiment 9 (Numerical Example 9).
  • FIG. 18 is a longitudinal aberration diagram of the single focus lens system according to Numerical Example 9 when the lens is in focus at infinity.
  • FIG. 19 is a schematic diagram of an in-vehicle camera provided with a single focus lens system according to the first embodiment.
  • FIG. 20 is a schematic view of an automobile provided with a vehicle-mounted camera at a rear position of the vehicle.
  • FIGS. 1, 3, 5, 7, 9, 11, 13, 15, and 17 are lens arrangement diagrams of the single focus lens systems according to Embodiments 1 to 9, respectively.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • the straight line described on the rightmost side represents the position of the image plane S, and a parallel plate CG is provided on the object side of the image plane S.
  • the aspect ratio is the same.
  • an air interval between two image lenses arranged adjacent to each other and spaced apart from each other and the image side surface of the object side lens facing each other and the object side surface of the image side lens is referred to as an air lens.
  • FIG. 1 shows a single focus lens system according to the first embodiment.
  • the single focus lens system according to Embodiment 1 has a first lens element L1 having a negative power, a second lens element L2 having a negative power, and a positive power in order from the object side to the image side.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a biconcave lens.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 3 shows a single focus lens system according to the second embodiment.
  • the single focus lens system according to Embodiment 2 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a biconcave lens.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 5 shows a single focus lens system according to the third embodiment.
  • the single focus lens system according to Embodiment 3 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a biconcave lens.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 7 shows a single focus lens system according to the fourth embodiment.
  • the single focus lens system according to Embodiment 4 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a biconcave lens.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 9 shows a single focus lens system according to the fifth embodiment.
  • the single focus lens system according to Embodiment 5 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a meniscus lens having a convex surface on the object side.
  • the fifth lens element L5 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 11 shows a single focus lens system according to the sixth embodiment.
  • the single focus lens system according to Embodiment 6 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a meniscus lens having a convex surface on the object side.
  • the fifth lens element L5 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the sixth lens element L6 is a biconvex lens.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 13 shows a single focus lens system according to the seventh embodiment.
  • the single focus lens system according to Embodiment 7 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having positive power, fifth lens element L5 having negative power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens made of glass and having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a meniscus lens made of glass and having a convex surface on the image side.
  • the third lens element L3 has an aspheric shape on the object-side concave surface and the image-side convex surface.
  • the fourth lens element L4 is a biconvex lens made of glass.
  • the fifth lens element L5 is a biconcave lens made of glass.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens made of glass.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fifth lens element L5 and the sixth lens element L6 are cemented lenses bonded with an adhesive or the like.
  • FIG. 15 shows a single focus lens system according to the eighth embodiment.
  • the single focus lens system according to Embodiment 8 has, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and positive power. Third lens element L3, aperture stop A, fourth lens element L4 having negative power, fifth lens element L5 having positive power, sixth lens element L6 having positive power, and parallel plate CG.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a biconvex lens.
  • the third lens element L3 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fourth lens element L4 is a meniscus lens having a convex surface on the object side.
  • the fourth lens element L4 has an aspheric shape on the concave surface on the image side.
  • the fifth lens element L5 is a biconvex lens.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side convex surfaces.
  • the sixth lens element L6 is a biconvex lens made of glass.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fourth lens element L4 and the fifth lens element L5 are cemented lenses bonded with an adhesive or the like.
  • FIG. 17 shows a single focus lens system according to the ninth embodiment.
  • the single focus lens system according to Embodiment 9 has a first lens element L1 having a negative power, a second lens element L2 having a negative power, and a positive power in order from the object side to the image side.
  • the first lens element L1 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 is a meniscus lens having a convex surface on the object side.
  • the second lens element L2 has an aspheric shape on the convex surface on the object side and the concave surface on the image side.
  • the third lens element L3 is a biconvex lens.
  • the third lens element L3 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fourth lens element L4 is a meniscus lens made of glass and having a convex surface on the object side.
  • the fourth lens element L4 has an aspheric shape on the concave surface on the image side.
  • the fifth lens element L5 is a biconvex lens made of glass.
  • the fifth lens element L5 has an aspheric shape on the object-side and image-side concave surfaces.
  • the sixth lens element L6 is a biconvex lens made of glass.
  • the sixth lens element L6 has an aspheric shape on the object-side and image-side convex surfaces.
  • the fourth lens element L4 and the fifth lens element L5 are cemented lenses bonded with an adhesive or the like.
  • the single focus lens system according to the present disclosure has negative power in order from the object side to the image side and from the object side to the image side.
  • At least one lens element among the second lens element L2 to the sixth lens element L6 is made of glass.
  • this lens configuration is referred to as a basic configuration of the embodiment.
  • L1R2 radius of curvature of the image side surface of the first lens element L1
  • L2R1 radius of curvature of the object side surface of the second lens element L2, It is.
  • Condition (1) is a condition for defining the shape factor of the air lens between the first lens element L1 and the second lens element. If the lower limit of the condition (1) is exceeded or the upper limit of the conditional expression (1) is exceeded, the spherical aberration of the light beam passing near the paraxial axis of the single focus lens system having the basic configuration increases, and the resolution performance deteriorates. I will invite you.
  • the above-described effects can be further achieved by satisfying one or both of the following conditions (1a) and (1b).
  • the single focus lens system can be further reduced in size.
  • condition (2) for example, in a single focus lens system having a basic configuration, it is desirable to satisfy the following condition (2), for example.
  • f3 focal length of the third lens element L3
  • L3th the thickness of the third lens element L3 in the optical axis direction, It is.
  • Condition (2) is a condition for defining the ratio between the focal length of the third lens element L3 and the thickness of the third lens element L3 in the optical axis direction. If the lower limit of the condition (2) is exceeded or the upper limit of the conditional expression (2) is exceeded, various aberrations, particularly axial chromatic aberration, cannot be sufficiently corrected, resulting in a decrease in resolution performance.
  • the above-described effects can be further achieved by satisfying one or both of the following conditions (2a) and (2b).
  • L4R2 radius of curvature of the image side surface of the fourth lens element
  • L5R1 radius of curvature of the object side surface of the fifth lens element L5, It is.
  • Condition (3) is a condition for defining the shape factor of the air lens between the fourth lens element L4 and the fifth lens element L5. If the lower limit of the condition (3) is exceeded or the upper limit of the conditional expression (3) is exceeded, various aberrations, particularly astigmatism, cannot be corrected sufficiently, resulting in a decrease in resolution performance.
  • the above-described effects can be further achieved by satisfying one or both of the following conditions (3a) and (3b).
  • L3R1 radius of curvature of the image side surface of the third lens element L3
  • L3R2 radius of curvature of the object side surface of the third lens element L3, It is.
  • Condition (4) is a condition for defining the shape factor of the third lens element L3. If the lower limit of the condition (4) is exceeded or the upper limit of the conditional expression (4) is exceeded, various aberrations, particularly coma aberration, cannot be corrected sufficiently, resulting in a decrease in resolution performance.
  • the above-described effects can be further achieved by satisfying one or both of the following conditions (4a) and (4b).
  • L5R1 radius of curvature of the image side surface of the fifth lens element L
  • L5R2 radius of curvature of the object side surface of the fifth lens element L5
  • Condition (5) is a condition for defining the shape factor of the fifth lens element L5. If the lower limit of the condition (5) is exceeded or the upper limit of the conditional expression (5) is exceeded, various aberrations, particularly astigmatism, cannot be corrected sufficiently, resulting in a decrease in resolution performance.
  • the above-described effects can be further achieved by satisfying one or both of the following conditions (5a) and (5b).
  • Condition (6) is a condition for defining the Abbe number of the sixth lens element L6. If the condition (6) is not satisfied, the Abbe number of the sixth lens element L6 becomes too small, and various aberrations, particularly lateral chromatic aberration, cannot be sufficiently corrected, resulting in a decrease in resolution performance.
  • Embodiment 10 camera
  • the camera provided with the single focus lens system according to Embodiment 1 will be described using an in-vehicle camera as an example.
  • any one of the single focus lens systems according to the second to ninth embodiments may be applied instead of the single focus lens system according to the first embodiment.
  • FIG. 19 is a schematic diagram of an in-vehicle camera provided with a single focus lens system according to the first embodiment.
  • the in-vehicle camera 100 includes a single focus lens system 201 that forms an optical image of an object, and an image sensor 202 that converts the optical image formed by the single focus lens system 201 into an electrical image signal. ing.
  • the image sensor 202 is disposed at the position of the image plane S in the single focus lens system according to Embodiment 1.
  • FIG. 20 is a schematic view of an automobile provided with the in-vehicle camera 100 at the rear side position of the vehicle 500.
  • the in-vehicle camera 100 is set in the vehicle 500 and used as a sensing camera or a view camera.
  • the image captured by the sensing camera is used to check the inter-vehicle distance from other vehicles.
  • An image captured by the view camera is displayed on a monitor inside the vehicle, and is used by the driver to confirm the front of the vehicle, the rear of the vehicle, the side of the vehicle, and the like.
  • the image signal obtained by the image sensor 202 is displayed on, for example, the display device 401 or the display device 402 located in the front of the vehicle 500.
  • the image signal is recorded in a memory as image data, for example.
  • the display device 401 is, for example, an electronic room mirror.
  • the display device 402 is, for example, a display device such as a navigation system or a front panel.
  • the vehicle 500 can display the rear image on the display device 401, the display device 402, or the like using the in-vehicle camera 100 having the single focus lens system 201. Therefore, a passenger such as a driver can visually recognize the rear portion of the vehicle 500.
  • the single focus lens system according to the present disclosure is effective as a lens system of a view camera, but can also be used as a lens system of a sensing camera.
  • the tenth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a lens element having substantially no power may be appropriately added to the single focus systems of Embodiments 1 to 9.
  • the aspherical shape of the lens elements included in the single focus systems of Embodiments 1 to 9 is not limited to polishing or molding.
  • a so-called replica lens (hybrid lens) formed by forming an aspheric surface of a coating on the surface of a spherical lens may be used.
  • Embodiments 1 to 9 of the present disclosure is applied to an in-vehicle camera that is a sensing camera or a view camera has been shown as Embodiment 10, but the single focus lens system according to the present disclosure Of course, it is also possible to apply to a surveillance camera, a web camera, etc. in a surveillance system.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • a n is an n-order aspheric coefficient.
  • Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the top.
  • the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line).
  • the vertical axis represents the image height
  • the solid line is the sagittal plane (indicated by s)
  • the broken line is the meridional plane (indicated by m).
  • w represents a half angle of view.
  • the vertical axis represents the image height
  • w represents the half angle of view
  • the present disclosure can be applied to a single focus lens system used for an in-vehicle camera, a surveillance camera, a web camera, and the like.
  • the present disclosure is useful in a single focus lens system used for a camera that requires high image quality, such as an in-vehicle camera.

Abstract

物体側から像側へと順に、負のパワーを有する第1レンズ素子(L1)と、負のパワーを有する第2レンズ素子(L2)と、正のパワーを有する第3レンズ素子(L3)と、パワーを有する第4レンズ素子(L4)と、パワーを有する第5レンズ素子(L5)と、正のパワーを有する第6レンズ素子(L6)と、で構成さる。第2レンズ素子(L2)から第6レンズ素子(L6)の少なくとも1つのレンズ素子はガラスからなる。そして、以下の条件式(1)を満足する。 0<(L1R2+L2R1)/(L1R2-L2R1)<100・・・(1) ここで、 L1R2:第1レンズ素子L1の像側の面の曲率半径、 L2R1:第2レンズ素子L2の物体側の面の曲率半径、 である。

Description

単焦点レンズ系、および、カメラ
 本開示は、単焦点レンズ系、カメラに関する。
 特許文献1は、物体側から像側へと順に負のパワーを有する第1レンズ、負のパワーを有する第2レンズ、パワーを有する第3レンズ、正のパワーを有する第4レンズ、正のパワーを有する第5レンズ、負のパワーを有する第6レンズからなる広角かつ小型な撮像レンズが開示されている。
特開2009-288300号公報
 本開示は、諸収差が良好な単焦点レンズ系、カメラを提供する。
 本開示における単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、負のパワーを有する第2レンズ素子と、正のパワーを有する第3レンズ素子と、パワーを有する第4レンズ素子と、パワーを有する第5レンズ素子と、正のパワーを有する第6レンズ素子と、で構成される。第2レンズ素子から第6レンズ素子のうち少なくとも1つのレンズ素子はガラスからなる。そして、以下の条件式(1)を満足する。
  0<(L1R2+L2R1)/(L1R2-L2R1)<100・・・(1)
 ここで、
  L1R2:第1レンズ素子の像側の面の曲率半径、
  L2R1:第2レンズ素子の物体側の面の曲率半径、
である。
 また、本開示におけるカメラは、単焦点レンズ系と、単焦点レンズ系で集光された光を撮像する撮像素子と、を備える。単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、負のパワーを有する第2レンズ素子と、正のパワーを有する第3レンズ素子と、パワーを有する第4レンズ素子と、パワーを有する第5レンズ素子と、正のパワーを有する第6レンズ素子と、で構成される。第2レンズ素子から第6レンズ素子のうち少なくとも1つのレンズ素子はガラスからなる。そして、以下の条件式(1)を満足する。
  0<(L1R2+L2R1)/(L1R2-L2R1)<100・・・(1)
 ここで、
  L1R2:第1レンズ素子の像側の面の曲率半径、
  L2R1:第2レンズ素子の物体側の面の曲率半径、
である。
 本開示は、諸収差が良好な単焦点レンズ系を提供する。
図1は実施の形態1(数値実施例1)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図2は数値実施例1に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図3は実施の形態2(数値実施例2)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図4は数値実施例2に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図5は実施の形態3(数値実施例3)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図6は数値実施例3に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図7は実施の形態4(数値実施例4)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図8は数値実施例4に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図9は実施の形態5(数値実施例5)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図10は数値実施例5に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図11は実施の形態6(数値実施例6)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図12は数値実施例6に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図13は実施の形態7(数値実施例7)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図14は数値実施例7に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図15は実施の形態8(数値実施例8)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図16は数値実施例8に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図17は実施の形態9(数値実施例9)に係る単焦点レンズ系の無限遠合焦状態を示すレンズ配置図である。 図18は数値実施例9に係る単焦点レンズ系の無限遠合焦状態の縦収差図である。 図19は実施の形態1に係る単焦点レンズ系を備えた車載カメラの概略図である。 図20は車載カメラを車両の後側位置に備えた自動車の概略図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1~9:単焦点レンズ系)
 図1、図3、図5、図7、図9、図11、図13、図15及び図17は、各々実施の形態1~9に係る単焦点レンズ系のレンズ配置図である。各図において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また、各図において、最も右側に記載された直線は、像面Sの位置を表しており、像面Sの物体側には、平行平板CGが設けられている。なお、各図において、縦横比は一致している。
 また、以降では、隣接し且つ互いに離間して配置される2つのレンズの、互いに対峙する物体側レンズの像側面と像側レンズの物体側面とで挟まれる空気間隔を空気レンズと称する。
 (実施の形態1)
 図1は、実施の形態1に係る単焦点レンズ系を表している。
 実施の形態1に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、両凹レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態2)
 図3は、実施の形態2に係る単焦点レンズ系を表している。
 実施の形態2に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、両凹レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態3)
 図5は、実施の形態3に係る単焦点レンズ系を表している。
 実施の形態3に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、両凹レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態4)
 図7は、実施の形態4に係る単焦点レンズ系を表している。
 実施の形態4に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、両凹レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態5)
 図9は、実施の形態5に係る単焦点レンズ系を表している。
 実施の形態5に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、物体側に凸面を有するメニスカスレンズである。第5レンズ素子L5は物体側の凸面及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態6)
 図11は、実施の形態6に係る単焦点レンズ系を表している。
 実施の形態6に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、物体側に凸面を有するメニスカスレンズである。第5レンズ素子L5は物体側の凸面及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態7)
 図13は、実施の形態7に係る単焦点レンズ系を表している。
 実施の形態7に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、正のパワーを有する第4レンズ素子L4と、負のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、ガラスからなる、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、ガラスからなる、像側に凸面を有するメニスカスレンズである。第3レンズ素子L3は物体側の凹面及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、両凸レンズである。
 第5レンズ素子L5は、ガラスからなる、両凹レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、ガラスからなる、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第5レンズ素子L5と第6レンズ素子L6は接着剤などで接着される接合レンズである。
 (実施の形態8)
 図15は、実施の形態8に係る単焦点レンズ系を表している。
 実施の形態8に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、負のパワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、両凸レンズである。第3レンズ素子L3は物体側及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、物体側に凸面を有するメニスカスレンズである。第4レンズ素子L4は像側の凹面に非球面形状を有する。
 第5レンズ素子L5は、両凸レンズである。第5レンズ素子L5は物体側及び像側の凸面に非球面形状を有する。
 第6レンズ素子L6は、ガラスからなる、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4と第5レンズ素子L5は接着剤などで接着される接合レンズである。
 (実施の形態9)
 図17は、実施の形態9に係る単焦点レンズ系を表している。
 実施の形態9に係る単焦点レンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、開口絞りAと、負のパワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、平行平板CGと、を備える。
 各レンズ素子を説明する。
 第1レンズ素子L1は、物体側に凸面を有するメニスカスレンズである。
 第2レンズ素子L2は、物体側に凸面を有するメニスカスレンズである。第2レンズ素子L2は物体側の凸面及び像側の凹面に非球面形状を有する。
 第3レンズ素子L3は、両凸レンズである。第3レンズ素子L3は物体側及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4は、ガラスからなる、物体側に凸面を有するメニスカスレンズである。第4レンズ素子L4は像側の凹面に非球面形状を有する。
 第5レンズ素子L5は、ガラスからなる、両凸レンズである。第5レンズ素子L5は物体側及び像側の凹面に非球面形状を有する。
 第6レンズ素子L6は、ガラスからなる、両凸レンズである。第6レンズ素子L6は物体側及び像側の凸面に非球面形状を有する。
 第4レンズ素子L4と第5レンズ素子L5は接着剤などで接着される接合レンズである。
 (条件及び効果)
 以下、例えば実施の形態1~9に係る単焦点レンズ系のごとき単焦点レンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係る単焦点レンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足する単焦点レンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏する単焦点レンズ系を得ることも可能である。
 例えば実施の形態1~9に係る単焦点レンズ系のように、本開示における単焦点レンズ系は、物体側から像側へと順に、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3と、パワーを有する第4レンズ素子L4と、パワーを有する第5レンズ素子L5と、正のパワーを有する第6レンズ素子L6と、を備える。そして、第2レンズ素子L2から第6レンズ素子L6のうち少なくとも1つのレンズ素子はガラスからなる。
 以下、このレンズ構成を、実施の形態の基本構成という。
 そして、例えば基本構成を有する単焦点レンズ系において、以下の条件(1)を満足することが望ましい。
  0 <(L1R2+L2R1)/(L1R2-L2R1)<100・・・(1)
 ここで、
  L1R2:第1レンズ素子L1の像側の面の曲率半径、
  L2R1:第2レンズ素子L2の物体側の面の曲率半径、
である。
 条件(1)は、第1レンズ素子L1と第2レンズ素子の間にある空気レンズのシェイプファクターを規定するための条件である。条件(1)の下限を下回るか、または条件式(1)の上限を上回ると、基本構成を有する単焦点レンズ系の近軸付近を通る光線の球面収差が増大し、解像性能の低下を招いてしまう。
 好ましくは、以下の条件(1a)、条件(1b)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  1.5<(L1R2+L2R1)/(L1R2-L2R1)  ・・・(1a)
  (L1R2+L2R1)/(L1R2-L2R1)<30.0 ・・・(1b)
 より好ましくは、以下の条件(1c)、条件(1d)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  2.9<(L1R2+L2R1)/(L1R2-L2R1)  ・・・(1c)
  (L1R2+L2R1)/(L1R2-L2R1)<16.0 ・・・(1d)
 また、例えば基本構成を有する単焦点レンズ系において、第4レンズ素子L4は正のパワーを有し、第5レンズ素子L5は負のパワーを有するのが望ましい。
 このようにすれば、前述の効果に加え、単焦点レンズ系をさらに小型にすることができる。
 また、例えば基本構成を有する単焦点レンズ系において、例えば以下の条件(2)を満足することが望ましい。
  6.7 < f3/L3th < 30 ・・・(2)
 ここで、
  f3  :第3レンズ素子L3の焦点距離、
  L3th:第3レンズ素子L3の光軸方向の厚み、
である。
 条件(2)は、第3レンズ素子L3の焦点距離と第3レンズ素子L3の光軸方向の厚みとの比を規定するための条件である。条件(2)の下限を下回るか、または条件式(2)の上限を上回ると、諸収差、特に軸上色収差を十分に補正することができなくなるため、解像性能の低下を招いてしまう。
 好ましくは、以下の条件(2a)、(2b)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  7.0 < f3/L3th ・・・(2a)
  f3/L3th < 23  ・・・(2b)
 より好ましくは、以下の条件(2c)、条件(2d)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  7.3 < f3/L3th ・・・(2c)
  f3/L3th < 10  ・・・(2d)
 また、例えば基本構成を有する単焦点レンズ系において、例えば以下の条件(3)を満足することが望ましい。
  -1.8<(L4R2+L5R1)/(L4R2-L5R1)<5.9・・・(3)
 ここで、
  L4R2:第4レンズ素子L4の像側の面の曲率半径、
  L5R1:第5レンズ素子L5の物体側の面の曲率半径、
である。
 条件(3)は、第4レンズ素子L4と第5レンズ素子L5の間にある空気レンズのシェイプファクターを規定するための条件である。条件(3)の下限を下回るか、または条件式(3)の上限を上回ると、諸収差、特に非点収差を十分に補正することができなくなるため、解像性能の低下を招いてしまう。
 好ましくは、以下の条件(3a)、(3b)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  -1.6<(L4R2+L5R1)/(L4R2-L5R1) ・・・(3a)
  (L4R2+L5R1)/(L4R2-L5R1)<3.0  ・・・(3b)
 より好ましくは、以下の条件(3c)、条件(3d)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  -1.5<(L4R2+L5R1)/(L4R2-L5R1) ・・・(3c)
  (L4R2+L5R1)/(L4R2-L5R1)<0    ・・・(3d)
 また、例えば基本構成を有する単焦点レンズ系において、例えば以下の条件(4)を満足することが望ましい。
  8.8<(L3R1+L3R2)/(L3R1-L3R2)<130 ・・・(4)
 ここで、
  L3R1:第3レンズ素子L3の像側の面の曲率半径、
  L3R2:第3レンズ素子L3の物体側の面の曲率半径、
である。
 条件(4)は、第3レンズ素子L3のシェイプファクターを規定するための条件である。条件(4)の下限を下回るか、または条件式(4)の上限を上回ると、諸収差、特にコマ収差を十分に補正することができなくなるため、解像性能の低下を招いてしまう。
 好ましくは、以下の条件(4a)、(4b)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  9.0 < (L3R1+L3R2)/(L3R1-L3R2) ・・・(4a)
  (L3R1+L3R2)/(L3R1-L3R2) < 70  ・・・(4b)
 より好ましくは、以下の条件(4c)、条件(4d)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  10.0 < (L3R1+L3R2)/(L3R1-L3R2) ・・・(4c)
  (L3R1+L3R2)/(L3R1-L3R2) < 20   ・・・(4d)
 また、例えば基本構成を有する単焦点レンズ系において、例えば以下の条件(5)を満足することが望ましい。
  0.78<(L5R1+L5R2)/(L5R1-L5R2)<2.5・・・(5)
 ここで、
  L5R1:第5レンズ素子L5の像側の面の曲率半径、
  L5R2:第5レンズ素子L5の物体側の面の曲率半径、
である。
 条件(5)は、第5レンズ素子L5のシェイプファクターを規定するための条件である。条件(5)の下限を下回るか、または条件式(5)の上限を上回ると、諸収差、特に非点収差を十分に補正することができなくなるため、解像性能の低下を招いてしまう。
 好ましくは、以下の条件(5a)、(5b)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  0.80 < (L5R1+L5R2)/(L5R1-L5R2) ・・・(5a)
  (L5R1+L5R2)/(L5R1-L5R2) < 1.5  ・・・(5b)
 より好ましくは、以下の条件(5c)、条件(5d)のいずれか一方、または両方を満足することにより、前述の効果をさらに奏功させることができる。
  0.82 < (L5R1+L5R2)/(L5R1-L5R2) ・・・(5c)
  (L5R1+L5R2)/(L5R1-L5R2) < 1.2  ・・・(5d)
 また、例えば基本構成を有する単焦点レンズ系において、例えば以下の条件(6)を満足することが望ましい。
  νL6 > 45 ・・・(6)
 ここで、
  νL6:第6レンズ素子L6のアッベ数、
である。
 条件(6)は、第6レンズ素子L6のアッベ数を規定するための条件である。条件(6)を下回ると、第6レンズ素子L6のアッベ数が小さくなり過ぎるため、諸収差、特に倍率色収差を十分に補正することができなくなるため、解像性能の低下を招いてしまう。
 (実施の形態10:カメラ)
 実施の形態1に係る単焦点レンズ系を備えたカメラについて、車載カメラを例に挙げて説明する。なお、該車載カメラにおいて、実施の形態1に係る単焦点レンズ系の替わりに、実施の形態2~9に係る単焦点レンズ系のいずれか1つを適用してもよい。
 図19は、実施の形態1に係る単焦点レンズ系を備えた車載カメラの概略図である。
 車載カメラ100は、物体の光学的な像を形成する単焦点レンズ系201と、当該単焦点レンズ系201により形成された光学的な像を電気的な画像信号に変換する撮像素子202とを備えている。撮像素子202は、実施の形態1に係る単焦点レンズ系における像面Sの位置に配置されている。
 図20は、車載カメラ100を車両500の後側位置に備えた自動車の概略図である。
 車載カメラ100は、車両500に設定され、センシングカメラ又はビューカメラとして用いられる。センシングカメラで撮像した画像は、他の車両との車間距離等をチェックするために用いられる。ビューカメラで撮像した画像は、車内のモニタに表示され、運転者が車両前方や車両後方、および車両側方などを確認するために用いられる。
 撮像素子202によって得られた画像信号は、例えば、車両500の室内前方に位置する、表示装置401や表示装置402などに表示される。また、当該画像信号は、例えば、画像データとして、メモリに記録される。
 表示装置401は、例えば、電子ルームミラーなどである。
 表示装置402は、例えば、ナビゲーションシステムや、フロントパネルなどの表示装置である。
 これにより、車両500は、単焦点レンズ系201を有する車載カメラ100を用いて、後方の映像を、表示装置401や表示装置402などに表示することができる。そのため、運転手などの搭乗者は、車両500の後部を視認することができる。
 このように、本開示における単焦点レンズ系は、ビューカメラのレンズ系として有効であるが、センシングカメラのレンズ系として用いることもできる。
 以上のように、本出願において開示する技術の例示として、実施の形態10を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 実施の形態1~9の単焦点系に、実質的にパワーを有しないレンズ素子を適宜追加してもよい。
 実施の形態1~9の単焦点系が有するレンズ素子の非球面形状は、研磨加工やモールド成型に限らない。例えば、球面レンズの表面に被膜の非球面を形成させてなる、いわゆるレプリカレンズ(ハイブリッドレンズ)でもよい。
 なお、本開示における実施の形態1~9に係る単焦点レンズ系を、センシングカメラ又はビューカメラである車載カメラに適用した例を、実施の形態10として示したが、本開示における単焦点レンズ系は、例えば監視システムにおける監視カメラ、Webカメラ等に適用することも勿論可能である。
 (数値実施例)
 以下、実施の形態1~9に係る単焦点レンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。なお、表中「画角」とあるのは、対角半画角のことである。各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、νd(vdとも記す)はd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
 ここで、
 Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
 h:光軸からの高さ、
 r:頂点曲率半径、
 κ:円錐定数、
 A:n次の非球面係数
である。
 図2、図4、図6、図8、図10、図12、図14、図16および図18は、数値実施例1から9に係る単焦点レンズ系の無限遠合焦状態における縦収差図である。
 各縦収差図は、上側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。
 球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。
 非点収差図において、縦軸は像高を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。なお、wは半画角を示す。
 歪曲収差図において、縦軸は像高を表し、wは半画角を示す。
 ここで、ディストーションの実線は、Y=2f・tan(ω/2)を理想像高とした場合の収差を示している(Yは像高、fは全系の焦点距離)。
 (数値実施例1)
 数値実施例1の単焦点レンズ系は、図1に示した実施の形態1に対応する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (数値実施例2)
 数値実施例2の単焦点レンズ系は、図3に示した実施の形態2に対応する。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 (数値実施例3)
 数値実施例3の単焦点レンズ系は、図5に示した実施の形態3に対応する。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 (数値実施例4)
 数値実施例4の単焦点レンズ系は、図7に示した実施の形態4に対応する。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 (数値実施例5)
 数値実施例5の単焦点レンズ系は、図9に示した実施の形態5に対応する。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 (数値実施例6)
 数値実施例6の単焦点レンズ系は、図11に示した実施の形態6に対応する。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 (数値実施例7)
 数値実施例7の単焦点レンズ系は、図13に示した実施の形態7に対応する。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 (数値実施例8)
 数値実施例8の単焦点レンズ系は、図15に示した実施の形態8に対応する。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 (数値実施例9)
 数値実施例9の単焦点レンズ系は、図17に示した実施の形態9に対応する。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 (条件の対応値)
 以下の表に、各数値実施例の対応値を示す。
Figure JPOXMLDOC01-appb-T000038
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、車載カメラ、監視カメラ、Webカメラ等に用いる単焦点レンズ系に適用可能である。特に本開示は、車載カメラなど高画質化が求められているカメラに用いる単焦点レンズ系において有益である。
 L1  第1レンズ素子
 L2  第2レンズ素子
 L3  第3レンズ素子
 L4  第4レンズ素子
 L5  第5レンズ素子
 L6  第6レンズ素子
 CG  平行平板
 A   開口絞り
 S   像面
 100 車載カメラ
 201 単焦点レンズ系
 202 撮像素子
 401 表示装置
 402 表示装置
 500 車両

Claims (7)

  1.  物体側から像側へと順に、
     負のパワーを有する第1レンズ素子と、
     負のパワーを有する第2レンズ素子と、
     正のパワーを有する第3レンズ素子と、
     パワーを有する第4レンズ素子と、
     パワーを有する第5レンズ素子と、
     正のパワーを有する第6レンズ素子と、
    で構成され、
     前記第2レンズ素子から前記第6レンズ素子のうち少なくとも1つのレンズ素子はガラスからなり、
     以下の条件(1)を満足する単焦点レンズ系:
      0<(L1R2+L2R1)/(L1R2-L2R1)<100・・・(1)
     ここで、
      L1R2:前記第1レンズ素子の像側の面の曲率半径、
      L2R1:前記第2レンズ素子の物体側の面の曲率半径、
    である。
  2.  物体側から像側へと順に、
     負のパワーを有する第1レンズ素子と、
     負のパワーを有する第2レンズ素子と、
     正のパワーを有する第3レンズ素子と、
     パワーを有する第4レンズ素子と、
     パワーを有する第5レンズ素子と、
     正のパワーを有する第6レンズ素子と、
    で構成され、
     前記第2レンズ素子から前記第6レンズ素子のうち少なくとも1つのレンズ素子はガラスからなり、
     以下の条件(2)を満足する単焦点レンズ系:
      6.7 < f3/L3th < 30 ・・・(2)
     ここで、
      f3  :前記第3レンズ素子の焦点距離、
      L3th:前記第3レンズ素子の光軸方向の厚み、
    である。
  3.  物体側から像側へと順に、
     負のパワーを有する第1レンズ素子と、
     負のパワーを有する第2レンズ素子と、
     正のパワーを有する第3レンズ素子と、
     パワーを有する第4レンズ素子と、
     パワーを有する第5レンズ素子と、
     正のパワーを有する第6レンズ素子と、
    で構成され、
     前記第2レンズ素子から前記第6レンズ素子のうち少なくとも1つのレンズ素子はガラスからなり、
     以下の条件(3)を満足する短焦点レンズ系:
      -1.8<(L4R2+L5R1)/(L4R2-L5R1)<5.9・・・(3)
     ここで、
      L4R2:前記第4レンズ素子の像側の面の曲率半径、
      L5R1:前記第5レンズ素子の物体側の面の曲率半径、
    である。
  4.  以下の条件式(4)を満足する、請求項1から3のいずれかに記載の単焦点レンズ系:
      8.8<(L3R1+L3R2)/(L3R1-L3R2)<130・・・(4)
     ここで、
      L3R1:前記第3レンズ素子の像側の面の曲率半径、
      L3R2:前記第3レンズ素子の物体側の面の曲率半径、
    である。
  5.  以下の条件式(5)を満足する、請求項1から3のいずれかに記載の単焦点レンズ系:
      0.78<(L5R1+L5R2)/(L5R1-L5R2)<2.5・・・(5)
     ここで、
      L5R1:前記第5レンズ素子の像側の面の曲率半径、
      L5R2:前記第5レンズ素子の物体側の面の曲率半径、
    である。
  6.  以下の条件式(6)を満足する、請求項1から3のいずれかに記載の単焦点レンズ系:
      νL6 > 45 ・・・(6)
     ここで、
      νL6:前記第6レンズ素子L6のアッベ数、
    である。
  7.  物体の光学的な像を形成する請求項1から3のいずれかの単焦点レンズ系と、
     前記単焦点レンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と、
    を備える、カメラ。
PCT/JP2017/046902 2017-01-20 2017-12-27 単焦点レンズ系、および、カメラ WO2018135269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780083641.XA CN110178068B (zh) 2017-01-20 2017-12-27 单焦点透镜系统及相机
EP17892933.7A EP3572859A4 (en) 2017-01-20 2017-12-27 FIXED FOCAL LENGTH LENS SYSTEM AND CAMERA
JP2018563252A JP6837194B2 (ja) 2017-01-20 2017-12-27 単焦点レンズ系、および、カメラ
US16/451,149 US11467374B2 (en) 2017-01-20 2019-06-25 Fixed focal length lens system and camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-008505 2017-01-20
JP2017008505 2017-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/451,149 Continuation US11467374B2 (en) 2017-01-20 2019-06-25 Fixed focal length lens system and camera

Publications (1)

Publication Number Publication Date
WO2018135269A1 true WO2018135269A1 (ja) 2018-07-26

Family

ID=62907909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046902 WO2018135269A1 (ja) 2017-01-20 2017-12-27 単焦点レンズ系、および、カメラ

Country Status (5)

Country Link
US (1) US11467374B2 (ja)
EP (1) EP3572859A4 (ja)
JP (1) JP6837194B2 (ja)
CN (1) CN110178068B (ja)
WO (1) WO2018135269A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718066B (zh) * 2020-05-29 2021-02-01 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
WO2022259420A1 (ja) * 2021-06-09 2022-12-15 オリンパスメディカルシステムズ株式会社 対物光学系、撮像装置及び内視鏡
JP7213438B1 (ja) 2022-04-28 2023-01-27 パナソニックIpマネジメント株式会社 撮像レンズ系、および、カメラ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709658B (zh) * 2017-10-25 2021-02-05 信泰光学(深圳)有限公司 摄像镜头
TWI670516B (zh) * 2018-06-13 2019-09-01 大立光電股份有限公司 攝影光學鏡頭、取像裝置及電子裝置
CN109407279B (zh) * 2018-12-12 2021-09-14 江西联创电子有限公司 广角镜头及成像设备
CN111367047A (zh) * 2020-03-31 2020-07-03 玉晶光电(厦门)有限公司 光学成像镜头
US11391925B2 (en) 2020-04-26 2022-07-19 Young Optics Inc. Optical lens
CN113625419B (zh) * 2020-05-07 2023-11-03 宁波舜宇车载光学技术有限公司 光学镜头及包括该光学镜头的成像设备
DE102020115494B3 (de) * 2020-05-19 2021-04-22 Jenoptik Optical Systems Gmbh Objektiv, Verwendung eınes Objektivs, Messsystem mit einem Objektiv sowie Verwendung einer biasphärischen Kunststofflinse in einem Objektiv
TWI784660B (zh) * 2021-08-09 2022-11-21 今國光學工業股份有限公司 六片式光學鏡頭模組

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210914A (ja) * 1988-02-19 1989-08-24 Olympus Optical Co Ltd 変倍レンズ
JPH02220015A (ja) * 1989-02-22 1990-09-03 Matsushita Electric Ind Co Ltd 精密投影光学系
JPH08160296A (ja) * 1994-12-01 1996-06-21 Olympus Optical Co Ltd 撮像系
JP2002055277A (ja) * 2000-08-11 2002-02-20 Nikon Corp リレー結像光学系、および該光学系を備えた照明光学装置並びに露光装置
JP2004245982A (ja) * 2003-02-13 2004-09-02 Minolta Co Ltd 撮像レンズ装置およびそれを備えた電子機器
JP2006309076A (ja) * 2005-05-02 2006-11-09 Ricoh Opt Ind Co Ltd 投射用レンズおよびプロジェクタ装置
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2009288300A (ja) 2008-05-27 2009-12-10 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2010009028A (ja) * 2008-05-27 2010-01-14 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2011221055A (ja) * 2010-04-02 2011-11-04 Fujifilm Corp 投写レンズおよびこれを用いた投写型表示装置
JP2014134563A (ja) * 2013-01-08 2014-07-24 Ricoh Co Ltd 結像レンズ、画像読取装置及び画像形成装置
JP2016031531A (ja) * 2014-07-29 2016-03-07 玉晶光電股▲ふん▼有限公司 撮像レンズおよびそれを備えた電子機器
JP2016057562A (ja) * 2014-09-12 2016-04-21 日本電産サンキョー株式会社 広角レンズ
US20160252709A1 (en) * 2015-02-26 2016-09-01 Largan Precision Co., Ltd. Lens system, image capturing unit and electronic device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127845A (ja) 1974-09-03 1976-03-09 Koki Kk Handazukesochi
JPS51129224A (en) * 1975-05-02 1976-11-10 Nippon Kogaku Kk <Nikon> Wide angle lens
JPS59165014A (ja) * 1983-03-10 1984-09-18 Asahi Optical Co Ltd バツクフオ−カスの長い高解像力集光レンズ光学系
US4999007A (en) 1988-01-28 1991-03-12 Olympus Optical Co., Ltd. Vari-focal lens system
DE68916451T2 (de) 1988-03-11 1994-11-17 Matsushita Electric Ind Co Ltd Optisches Projektionssystem.
JP2808815B2 (ja) * 1990-04-19 1998-10-08 株式会社ニコン 内部合焦式望遠ズームレンズ
US5841590A (en) * 1996-08-27 1998-11-24 Nikon Corporation Aberration controllable optical system
US7957074B2 (en) 2008-05-27 2011-06-07 Fujinon Corporation Imaging lens system and imaging apparatus using the imaging lens system
JP2009300797A (ja) * 2008-06-13 2009-12-24 Fujinon Corp 撮像レンズ及びカプセル型内視鏡
JP2010160198A (ja) * 2009-01-06 2010-07-22 Sony Corp ズームレンズ及び撮像装置
WO2013046566A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 撮像レンズおよび撮像装置
TWI449944B (zh) * 2012-07-24 2014-08-21 Largan Precision Co Ltd 廣視角光學鏡頭組
TWM472853U (zh) * 2013-09-16 2014-02-21 Kinko Optical Co Ltd 五片式廣角鏡頭
JP2015190999A (ja) 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
CN105866930B (zh) * 2016-06-21 2018-07-06 中山联合光电科技股份有限公司 一种高清镜头

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210914A (ja) * 1988-02-19 1989-08-24 Olympus Optical Co Ltd 変倍レンズ
JPH02220015A (ja) * 1989-02-22 1990-09-03 Matsushita Electric Ind Co Ltd 精密投影光学系
JPH08160296A (ja) * 1994-12-01 1996-06-21 Olympus Optical Co Ltd 撮像系
JP2002055277A (ja) * 2000-08-11 2002-02-20 Nikon Corp リレー結像光学系、および該光学系を備えた照明光学装置並びに露光装置
JP2004245982A (ja) * 2003-02-13 2004-09-02 Minolta Co Ltd 撮像レンズ装置およびそれを備えた電子機器
JP2006309076A (ja) * 2005-05-02 2006-11-09 Ricoh Opt Ind Co Ltd 投射用レンズおよびプロジェクタ装置
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2009288300A (ja) 2008-05-27 2009-12-10 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2010009028A (ja) * 2008-05-27 2010-01-14 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置
JP2011221055A (ja) * 2010-04-02 2011-11-04 Fujifilm Corp 投写レンズおよびこれを用いた投写型表示装置
JP2014134563A (ja) * 2013-01-08 2014-07-24 Ricoh Co Ltd 結像レンズ、画像読取装置及び画像形成装置
JP2016031531A (ja) * 2014-07-29 2016-03-07 玉晶光電股▲ふん▼有限公司 撮像レンズおよびそれを備えた電子機器
JP2016057562A (ja) * 2014-09-12 2016-04-21 日本電産サンキョー株式会社 広角レンズ
US20160252709A1 (en) * 2015-02-26 2016-09-01 Largan Precision Co., Ltd. Lens system, image capturing unit and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718066B (zh) * 2020-05-29 2021-02-01 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
WO2022259420A1 (ja) * 2021-06-09 2022-12-15 オリンパスメディカルシステムズ株式会社 対物光学系、撮像装置及び内視鏡
JP7213438B1 (ja) 2022-04-28 2023-01-27 パナソニックIpマネジメント株式会社 撮像レンズ系、および、カメラ
JP2023163268A (ja) * 2022-04-28 2023-11-10 パナソニックIpマネジメント株式会社 撮像レンズ系、および、カメラ

Also Published As

Publication number Publication date
CN110178068A (zh) 2019-08-27
EP3572859A1 (en) 2019-11-27
CN110178068B (zh) 2022-02-01
JPWO2018135269A1 (ja) 2019-11-07
US20190310442A1 (en) 2019-10-10
JP6837194B2 (ja) 2021-03-03
US11467374B2 (en) 2022-10-11
EP3572859A4 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018135269A1 (ja) 単焦点レンズ系、および、カメラ
JP7245977B2 (ja) 単焦点レンズ系、および、カメラ
CN106959505B (zh) 成像透镜及摄像装置
JP6740904B2 (ja) 撮像レンズおよび撮像装置
US9939610B2 (en) Single focal length lens system, camera, and automobile
JP6449083B2 (ja) 撮像レンズ系及び撮像装置
JP2018136476A (ja) 撮像レンズおよび撮像装置
CN105705980B (zh) 单焦点透镜系统、摄像机以及汽车
JP6941456B2 (ja) 撮像レンズおよび撮像装置
JP6619968B2 (ja) 撮像レンズおよび撮像装置
JP2014164287A (ja) 撮像レンズ
US8223245B2 (en) Imaging lens and image pickup apparatus
JP2010014855A (ja) 撮像レンズおよび撮像装置
WO2014030334A1 (ja) 撮像レンズおよびこれを備えた撮像装置
JP2018116076A (ja) 撮像レンズおよび撮像装置
JP2018049188A (ja) 撮像レンズおよび撮像装置
JP6775112B2 (ja) 撮像レンズ系、および、カメラ
WO2017086052A1 (ja) 撮像レンズ
JP2018013579A (ja) 撮像レンズおよび撮像装置
JP2008102500A (ja) 撮像レンズ及びこれを備えたカメラ装置
JP6663222B2 (ja) 撮像レンズおよび撮像装置
CN107544128B (zh) 成像透镜及摄像装置
JP6619970B2 (ja) 撮像レンズおよび撮像装置
JP6619969B2 (ja) 撮像レンズおよび撮像装置
JP2019035989A (ja) 撮像レンズ系及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892933

Country of ref document: EP

Effective date: 20190820