WO2013046566A1 - 撮像レンズおよび撮像装置 - Google Patents

撮像レンズおよび撮像装置 Download PDF

Info

Publication number
WO2013046566A1
WO2013046566A1 PCT/JP2012/005784 JP2012005784W WO2013046566A1 WO 2013046566 A1 WO2013046566 A1 WO 2013046566A1 JP 2012005784 W JP2012005784 W JP 2012005784W WO 2013046566 A1 WO2013046566 A1 WO 2013046566A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
point
conditional expression
object side
Prior art date
Application number
PCT/JP2012/005784
Other languages
English (en)
French (fr)
Inventor
太郎 浅見
敏明 勝間
伊藤 徹
近藤 雅人
大友 涼子
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2013535859A priority Critical patent/JP5830104B2/ja
Priority to CN201290000847.4U priority patent/CN203930183U/zh
Publication of WO2013046566A1 publication Critical patent/WO2013046566A1/ja
Priority to US14/224,716 priority patent/US9019634B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present invention relates to an imaging lens and an imaging apparatus, and more specifically, to an in-vehicle camera, a mobile terminal camera, a monitoring camera, and the like using an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • an imaging element such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • the present invention relates to an imaging lens suitable for the imaging, and an imaging device including the imaging lens.
  • image sensors such as CCDs and CMOSs have been greatly reduced in size and pixels.
  • an image pickup apparatus body including these image pickup elements is also downsized, and an image pickup lens mounted thereon is required to be downsized in addition to good optical performance.
  • it is required to be compact and can be configured at low cost, and to have a wide angle and high performance.
  • Patent Documents 1 to 16 listed below disclose a six-lens lens system using a plastic aspheric lens that can be used in a camera equipped with a small CCD.
  • the lens systems described in Patent Documents 1, 2, 4, 8, 9, and 11 are advantageous in terms of chromatic aberration and sensitivity because of the use of a cemented lens. It is necessary to process, and the cost increases.
  • the lens system described in Patent Document 3 has a half angle of view of 40 ° or less, and the wide angle is insufficient for the wide angle problem as in the present invention.
  • the lens system described in Patent Document 10 is an anamorphic lens, it cannot be manufactured at low cost.
  • an object of the present invention is to provide an imaging lens capable of realizing a reduction in size, cost, wide angle, and high performance, and an imaging apparatus including the imaging lens.
  • the first imaging lens of the present invention includes, in order from the object side, a negative first lens, a negative second lens, a positive third lens, a positive fourth lens, and a negative fifth lens. Consisting essentially of six lenses with a positive sixth lens, The object side surface of the second lens is a concave surface; The object side surface of the third lens is a concave surface.
  • the second imaging lens of the present invention includes, in order from the object side, a negative first lens, a negative second lens, a positive third lens, a positive fourth lens, and a negative fifth lens. Consisting essentially of six lenses with a positive sixth lens, The object-side surface of the third lens has a negative power at the center, and has a shape having a stronger negative power than the center at the effective diameter end.
  • the third imaging lens of the present invention in order from the object side, a negative first lens, a negative second lens, a positive third lens, a positive fourth lens, a negative fifth lens, Consisting essentially of six lenses with a positive sixth lens,
  • the image side surface of the second lens has a negative power at the center, and the negative diameter is weaker than the center at the effective diameter end
  • the image-side surface of the third lens has a positive power at the center, and has a shape with a weak positive power at the effective diameter end as compared with the center.
  • Consisting essentially of six lenses means, in addition to six lenses, lenses having substantially no power, optical elements other than lenses such as an aperture and a cover glass, lens flanges, lens barrels, and image sensors It is meant to include those having a mechanism part such as a camera shake correction mechanism.
  • the first to third imaging lenses of the present invention substantially composed of six lenses, it is possible to obtain good optical performance and to reduce the number of lenses, thereby reducing the size and cost. It becomes possible to suppress.
  • the surface shape of a lens such as a convex surface, concave surface, flat surface, biconcave, meniscus, biconvex, plano-convex and plano-concave, and the sign of the refractive power of a lens such as a positive lens and a negative lens are non- Those that contain a spherical surface are considered in the paraxial region unless otherwise noted.
  • the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • conditional expressions (19) to (23) are satisfied.
  • it may have any one of the following conditional expressions (19) to (23), or may have a structure in which any two or more are combined.
  • D4 Air distance on the optical axis between the second lens and the third lens
  • D5 Center thickness of the third lens
  • R5 Curvature radius of the object side surface of the third lens
  • R3 Second lens Radius of curvature f23 of the object side surface: combined focal length of second lens and third lens f45: combined focal length of fourth lens and fifth lens
  • the imaging apparatus of the present invention is the first of the present invention described above. At least one of the third imaging lenses is provided.
  • the size and size of the lens system can be reduced. It is possible to achieve an imaging lens having high optical performance that can achieve cost reduction and widening of the angle, and that can correct various aberrations and obtain a good image up to the periphery of the imaging region.
  • the power arrangement in the entire system, the surface shape of the third lens, and the like are suitably set. Therefore, downsizing, cost reduction, and wide angle are set.
  • the third imaging lens of the present invention since the power arrangement in the entire system, the surface shapes of the second lens and the third lens, etc. are suitably set in a minimum of six lens systems, the size and size of the lens system can be reduced. It is possible to achieve an imaging lens having high optical performance that can achieve cost reduction and widening of the angle, and that can correct various aberrations and obtain a good image up to the periphery of the imaging region.
  • the image pickup apparatus of the present invention since the image pickup lens of the present invention is provided, the image pickup apparatus of the present invention can be configured with a small size and at a low cost.
  • FIG. 1 The figure which shows the structure and optical path of the imaging lens which concerns on one Embodiment of this invention.
  • the figure for demonstrating the surface shape etc. of a 2nd lens Sectional drawing which shows the lens structure of the imaging lens of Example 1 of this invention.
  • Sectional drawing which shows the lens structure of the imaging lens of Example 2 of this invention.
  • Sectional drawing which shows the lens structure of the imaging lens of Example 3 of this invention.
  • Sectional drawing which shows the lens structure of the imaging lens of Example 4 of this invention.
  • FIGS. 22A to 22D are graphs showing aberrations of the imaging lens according to Example 1 of the present invention.
  • FIGS. 23A to 23D are graphs showing aberrations of the imaging lens according to Example 2 of the present invention.
  • FIGS. 24A to 24D are graphs showing aberrations of the imaging lens according to Example 3 of the present invention.
  • 25 (A) to 25 (D) are graphs showing aberrations of the image pickup lens of Example 4 of the present invention.
  • 26 (A) to 26 (D) are graphs showing aberrations of the imaging lens according to Example 5 of the present invention.
  • FIGS. 27A to 27D are diagrams showing aberrations of the imaging lens according to Example 6 of the present invention.
  • 28A to 28D are graphs showing aberrations of the imaging lens according to Example 7 of the present invention.
  • FIGS. 29A to 29D are diagrams showing aberrations of the imaging lens according to the eighth embodiment of the present invention.
  • 30 (A) to 30 (D) are graphs showing aberrations of the imaging lens according to Example 9 of the present invention.
  • FIGS. 31A to 31D are graphs showing aberrations of the imaging lens according to Example 10 of the present invention.
  • FIGS. 32A to 32D are diagrams showing aberrations of the imaging lens according to the eleventh embodiment of the present invention.
  • 33A to 33D are diagrams showing aberrations of the imaging lens according to the twelfth embodiment of the present invention.
  • 34 (A) to 34 (D) are graphs showing aberrations of the imaging lens according to Example 13 of the present invention.
  • 35 (A) to 35 (D) are graphs showing aberrations of the imaging lens according to Example 14 of the present invention.
  • 36 (A) to 36 (D) are graphs showing aberrations of the image pickup lens of Example 15 of the present invention.
  • 37 (A) to 37 (D) are graphs showing aberrations of the imaging lens according to Example 16 of the present invention.
  • 38 (A) to 38 (D) are graphs showing aberrations of the imaging lens according to Example 17 of the present invention.
  • 39A to 39D are diagrams showing aberrations of the image pickup lens of Example 18 of the present invention.
  • 40 (A) to 40 (D) are aberration diagrams of the imaging lens of Example 19 of the present invention.
  • positioning of the vehicle-mounted imaging device which concerns on embodiment of this invention.
  • FIG. 1 is a diagram illustrating a configuration and an optical path of an imaging lens 1 according to an embodiment of the present invention.
  • the imaging lens 1 shown in FIG. 1 corresponds to an imaging lens according to Example 9 of the present invention described later.
  • the left side of the drawing is the object side
  • the right side is the image side
  • the axial light beam 2 from an object point at an infinite distance and off-axis light beams 3 and 4 at the full field angle 2 ⁇ are also shown. is there.
  • the imaging element 5 disposed on the image plane Sim including the image point Pim of the imaging lens 1 is also illustrated in consideration of the case where the imaging lens 1 is applied to the imaging apparatus.
  • the imaging device 5 converts an optical image formed by the imaging lens 1 into an electrical signal, and for example, a CCD image sensor or a CMOS image sensor can be used.
  • the imaging lens 1 When the imaging lens 1 is applied to an imaging apparatus, it is preferable to provide a cover glass, a low-pass filter, an infrared cut filter, or the like according to the configuration on the camera side on which the lens is mounted.
  • a cover glass a low-pass filter, an infrared cut filter, or the like according to the configuration on the camera side on which the lens is mounted.
  • An example is shown in which an assumed parallel plate-shaped optical member PP is disposed between a lens closest to the image side and the image sensor 5 (image plane Sim).
  • the imaging lens according to the first embodiment of the present invention includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, and a positive fourth lens L4. , A negative fifth lens L5 and a positive sixth lens L6.
  • an aperture stop St is disposed between the third lens L3 and the fourth lens L4. Note that the aperture stop St in FIG. 1 does not indicate the shape or size, but indicates the position on the optical axis Z. By disposing the aperture stop St between the third lens L3 and the fourth lens L4, the entire system can be reduced in size.
  • the aperture stop St is close to the object side, it is easy to reduce the outer diameter of the first lens L1, but if the aperture stop St is too close to the object side, the first lens L1 and the second lens L2 Separation of on-axis rays and off-axis rays becomes difficult, and correction of field curvature becomes difficult.
  • the aperture stop St By disposing the aperture stop St between the third lens L3 and the fourth lens L4, it becomes easy to correct the curvature of field while reducing the lens diameter.
  • This imaging lens is configured with a minimum number of 6 lenses, so that the cost can be reduced and the total length in the optical axis direction can be reduced.
  • the first lens L1 and the second lens L2, which are two lenses disposed on the object side are both negative lenses, so that it is easy to widen the angle of the entire lens system. Also, by arranging two negative lenses on the most object side, the negative power can be shared by the two lenses, and the incident light from a wide angle of view can be bent step by step. It can be corrected effectively.
  • the positive lens is also composed of the third lens L3, the fourth lens L4, and the sixth lens L6, so that the convergence function for forming an image on the image plane and the correction of each aberration required for the positive lens are performed. Can be shared by the three lenses, and can be corrected effectively.
  • the third lens L3 By using the third lens L3 as a positive lens, it is possible to favorably correct curvature of field.
  • the fourth lens L4 By using the fourth lens L4 as a positive lens and the fifth lens L5 as a negative lens, it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.
  • the sixth lens L6 By using the sixth lens L6 as a positive lens, it is possible to reduce the angle at which peripheral rays are incident on the imaging surface of the imaging lens, and to suppress shading.
  • the fourth lens L4 As a positive lens
  • the fifth lens L5 as a negative lens
  • the sixth lens L6 By using the fourth lens L4 as a positive lens, the fifth lens L5 as a negative lens, and the sixth lens L6 as a positive lens, it is possible to satisfactorily correct spherical aberration and curvature of field.
  • negative, negative, positive, positive, negative, and positive power arrangement in order from the object side, a lens system with a
  • the object side surface of the second lens L2 is a concave surface
  • the object side surface of the third lens L3 is a concave surface.
  • the imaging lens according to the second embodiment of the present invention includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, and a positive fourth lens L4. , A negative fifth lens L5 and a positive sixth lens L6.
  • This imaging lens is configured with a minimum number of 6 lenses, so that the cost can be reduced and the total length in the optical axis direction can be reduced.
  • the first lens L1 and the second lens L2, which are two lenses disposed on the object side are both negative lenses, so that it is easy to widen the angle of the entire lens system. Also, by arranging two negative lenses on the most object side, the negative power can be shared by the two lenses, and the incident light from a wide angle of view can be bent step by step. It can be corrected effectively.
  • the positive lens is also composed of the third lens L3, the fourth lens L4, and the sixth lens L6, so that the convergence function for forming an image on the image plane and the correction of each aberration required for the positive lens are performed. Can be shared by the three lenses, and can be corrected effectively.
  • the third lens L3 By using the third lens L3 as a positive lens, it is possible to favorably correct curvature of field.
  • the fourth lens L4 By using the fourth lens L4 as a positive lens and the fifth lens L5 as a negative lens, it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.
  • the sixth lens L6 By using the sixth lens L6 as a positive lens, it is possible to reduce the angle at which peripheral rays are incident on the imaging surface of the imaging lens, and to suppress shading.
  • the fourth lens L4 As a positive lens
  • the fifth lens L5 as a negative lens
  • the sixth lens L6 By using the fourth lens L4 as a positive lens, the fifth lens L5 as a negative lens, and the sixth lens L6 as a positive lens, it is possible to satisfactorily correct spherical aberration and curvature of field.
  • negative, negative, positive, positive, negative, and positive power arrangement in order from the object side, a lens system with a
  • the object-side surface of the third lens L3 has a negative power at the center, and the negative power is stronger than the center at the effective diameter end.
  • the surface on the object side of the third lens L3 has a positive power at the center and a shape with a stronger positive power than the center at the effective diameter end, thereby facilitating widening of the angle and the first lens. Since it becomes easy to separate the on-axis light beam and the off-axis light beam by the L1 and the second lens L2, it is easy to correct the field curvature and distortion. Details of the shape of the object side surface of the third lens L3 will be described later.
  • the imaging lens according to the third embodiment of the present invention includes, in order from the object side, a negative first lens L1, a negative second lens L2, a positive third lens L3, and a positive fourth lens L4. , A negative fifth lens L5 and a positive sixth lens L6.
  • This imaging lens is configured with a minimum number of 6 lenses, so that the cost can be reduced and the total length in the optical axis direction can be reduced.
  • the first lens L1 and the second lens L2, which are two lenses disposed on the object side are both negative lenses, so that it is easy to widen the angle of the entire lens system. Also, by arranging two negative lenses on the most object side, the negative power can be shared by the two lenses, and the incident light from a wide angle of view can be bent step by step. It can be corrected effectively.
  • the positive lens is also composed of the third lens L3, the fourth lens L4, and the sixth lens L6, so that the convergence function for forming an image on the image plane and the correction of each aberration required for the positive lens are performed. Can be shared by the three lenses, and can be corrected effectively.
  • the third lens L3 By using the third lens L3 as a positive lens, it is possible to favorably correct curvature of field.
  • the fourth lens L4 By using the fourth lens L4 as a positive lens and the fifth lens L5 as a negative lens, it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.
  • the sixth lens L6 By using the sixth lens L6 as a positive lens, it is possible to reduce the angle at which peripheral rays are incident on the imaging surface of the imaging lens, and to suppress shading.
  • the fourth lens L4 As a positive lens
  • the fifth lens L5 as a negative lens
  • the sixth lens L6 By using the fourth lens L4 as a positive lens, the fifth lens L5 as a negative lens, and the sixth lens L6 as a positive lens, it is possible to satisfactorily correct spherical aberration and curvature of field.
  • negative, negative, positive, positive, negative, and positive power arrangement in order from the object side, a lens system with a
  • the image-side surface of the second lens L2 has a negative power at the center, and the negative power is weaker than the center at the effective diameter end.
  • the surface on the image side of the third lens L3 has a positive power at the center, and has a shape with a weak positive power at the effective diameter end as compared with the center.
  • the image side surface of the third lens L3 has a positive power at the center and a shape with a weaker positive power than the center at the effective diameter end, so that coma aberration due to off-axis rays can be corrected well. Thus, the image quality at the periphery of the image can be improved. Details of the shape of the object side surfaces of the second lens L2 and the third lens L3 will be described later.
  • the imaging lens according to the first to third embodiments of the present invention may have any one of the following configurations, or may have a configuration combining any two or more.
  • f23 Composite focal length of the second lens L2 and the third lens L3 f: Focal length of the entire system
  • the lower limit of the conditional expression (22) it is possible to prevent the power of the second lens L2 from becoming too weak. And widening of the angle becomes easy.
  • the upper limit of conditional expression (22) it is possible to prevent the power of the third lens L3 from becoming weak, and it becomes easy to correct the chromatic aberration of magnification, or the power of the second lens L2 becomes too strong. This can be prevented, and the distortion can be easily corrected.
  • conditional expressions satisfy the conditions in which the upper limit is further added or the lower limit or the upper limit is changed as follows. Further, as a preferable aspect, a conditional expression configured by combining a lower limit change value and an upper limit change value described below may be satisfied. Although the example of a preferable conditional expression is described below as an example, the modification of the conditional expression is not limited to that described as an expression below, and may be a combination of the described changed values.
  • the upper limit of conditional expression (9) is preferably set to 13, which makes it easier to correct curvature of field and lateral chromatic aberration.
  • the upper limit of conditional expression (9) is more preferably 12, and even more preferably 10.
  • the lower limit of conditional expression (9) is preferably set to 5, and more preferably set to 5.5.
  • conditional expressions (9-1), (9-2), and (9-3) are satisfied, for example.
  • the lower limit of conditional expression (19) is preferably 1.4, which facilitates correction of field curvature, distortion, and coma.
  • the lower limit of conditional expression (19) is preferably 1.7, and more preferably 1.9.
  • the upper limit of conditional expression (19) is preferably 5.5, which further facilitates downsizing.
  • the lower limit of conditional expression (19) is preferably 5.0, and more preferably 4.4.
  • the lower limit of conditional expression (20) is preferably ⁇ 0.9, which facilitates correction of chromatic aberration of magnification.
  • the lower limit of conditional expression (20) is preferably ⁇ 0.5, and more preferably ⁇ 0.2.
  • the lower limit of conditional expression (20) is preferably 0.5, and more preferably 0.2.
  • conditional expressions (20-1), (20-2), and (20-3) are satisfied, for example.
  • the lower limit of conditional expression (21) is preferably -2.5, which facilitates distortion correction. In order to further easily correct the distortion, the lower limit of the conditional expression (21) is preferably ⁇ 2.0, more preferably ⁇ 1.5.
  • conditional expression (21) it is preferable to set the upper limit of conditional expression (21) to 2.0, which further facilitates widening and downsizing.
  • the lower limit of conditional expression (21) is preferably 1.5, and more preferably 1.0.
  • conditional expressions (21-1), (21-2), and (21-3) are satisfied, for example.
  • the lower limit of conditional expression (22) is preferably -25, which facilitates widening of the angle.
  • the lower limit of conditional expression (22) is preferably ⁇ 20, and more preferably ⁇ 19.5.
  • the upper limit of conditional expression (22) is preferably ⁇ 4, which makes it easier to correct lateral chromatic aberration or distortion.
  • the lower limit of conditional expression (22) is preferably ⁇ 5, and more preferably ⁇ 5.5.
  • the lower limit of conditional expression (23) is preferably set to 3, which facilitates ensuring the back focus.
  • the lower limit of conditional expression (23) is preferably set to 4, more preferably 4.1.
  • the lower limit of conditional expression (23) is preferably 20 and more preferably 18.
  • conditional expressions (23-1), (23-2), and (23-3) are satisfied, for example.
  • the upper limit of conditional expression (24) is preferably 19.8. By setting the upper limit of conditional expression (24) to 19.8, the lens system can be further reduced in size. Furthermore, the upper limit of conditional expression (24) is more preferably 19.3, and even more preferably 19.0.
  • the lower limit of conditional expression (24) is 9.5. By setting the lower limit of conditional expression (24) to 9.5, widening of the angle is further facilitated. Furthermore, the lower limit of conditional expression (24) is preferably 10, and more preferably 10.2.
  • conditional expressions (24-1), (24-2), and (24-3) are satisfied, for example.
  • the upper limit of conditional expression (25) is preferably 2.95. By setting the upper limit of conditional expression (25) to 2.95, downsizing is further facilitated. For downsizing, the upper limit of conditional expression (25) is more preferably 2.9, more preferably 2.85, and even more preferably 2.3.
  • the lower limit of conditional expression (25) is preferably 1.5. By setting the lower limit of conditional expression (25) to 1.5, it becomes easier to secure the back focus.
  • the lower limit of conditional expression (25) is more preferably 1.8, and even more preferably 1.85.
  • the upper limit of conditional expression (26) is preferably 2.5, which makes it easier to widen the angle. Further, in order to facilitate widening the angle, the upper limit of conditional expression (26) is preferably 2.0, and more preferably 1.9.
  • the lower limit of conditional expression (26) is preferably set to 1.2, which makes distortion correction easier. Furthermore, the lower limit of conditional expression (26) is preferably 1.3, more preferably 1.4, and even more preferably 1.5.
  • conditional expressions (26-1), (26-2), and (26-3) are satisfied, for example.
  • the aperture stop is disposed between the third lens L3 and the fourth lens L4.
  • the entire system can be reduced in size.
  • the Abbe number of the material of the first lens L1, the second lens L2, the fourth lens L4, and the sixth lens L6 with respect to the d-line is preferably 40 or more, thereby suppressing the occurrence of chromatic aberration and good resolution performance. Can be obtained. Moreover, it is more preferable to set it as 47 or more.
  • the Abbe number of the material of the second lens L2 with respect to the d-line is 50 or more, thereby further suppressing the occurrence of chromatic aberration and obtaining good resolution performance. Moreover, it is more preferable to set it as 52 or more.
  • the Abbe number of the material of the sixth lens L6 with respect to the d-line is 50 or more, thereby further suppressing the occurrence of chromatic aberration and obtaining good resolution performance. Moreover, it is more preferable to set it as 52 or more.
  • the Abbe number of the material of the third lens L3 with respect to the d-line is 40 or less, so that the chromatic aberration of magnification can be corrected well. Further, it is more preferably 30 or less, further preferably 28 or less, and even more preferably 25 or less.
  • the Abbe number of the material of the fifth lens L5 with respect to the d-line is preferably 40 or less, which makes it possible to satisfactorily correct the lateral chromatic aberration. Further, it is more preferably 30 or less, further preferably 28 or less, still more preferably 25 or less, and even more preferably 20 or less.
  • ⁇ d1 / ⁇ d2 is preferably 0.7 or more. Occurrence of chromatic aberration can be suppressed and good resolution performance can be obtained. Furthermore, it is more preferable that it is 0.8 or more. In order to balance the Abbe numbers of the first lens L1 and the second lens L2 and suppress the occurrence of chromatic aberration, ⁇ d1 / ⁇ d2 is preferably 1.2 or less.
  • ⁇ d2 Abbe number of the material of the second lens L2 with respect to the d-line
  • ⁇ d3 Abbe number of the material of the third lens L3 with respect to the d-line
  • ⁇ d2 / ⁇ d3 is preferably 2.0 or more. It is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration.
  • ⁇ d1 / ⁇ d3 is preferably 1.4 or more. It becomes easy to satisfactorily correct axial chromatic aberration and lateral chromatic aberration. Furthermore, in order to satisfactorily correct axial chromatic aberration and lateral chromatic aberration, it is more preferably 1.5 or more.
  • the refractive index of the material of the first lens L1 with respect to the d-line is preferably 1.90 or less, which makes it easy to make the material of the first lens L1 inexpensive. Furthermore, by using a material having a low refractive index, a material having a large Abbe number can be selected, chromatic aberration can be easily corrected, and good resolution performance can be easily obtained. Further, in order to correct chromatic aberration satisfactorily, it is preferably 1.85 or less.
  • the refractive index of the material of the first lens L1 with respect to the d-line is preferably 1.60 or more. This makes it easy to increase the power of the first lens L1, facilitate widening of the angle, and distortion. Correction is easy. Further, in order to facilitate widening and distortion correction, it is more preferably 1.65 or more, and further preferably 1.70 or more.
  • the refractive index of the material of the second lens L2 with respect to the d-line is 1.70 or less, whereby the material of the second lens L2 can be made inexpensive. Furthermore, since the Abbe number becomes small in a material having a high refractive index, chromatic aberration becomes large, and it becomes difficult to obtain good resolution performance. In order to make the material of the second lens L2 inexpensive, it is more preferably 1.65 or less, and further preferably 1.60 or less.
  • the refractive index of the material of the second lens L2 with respect to the d-line is preferably 1.50 or more, which makes it easy to increase the power of the second lens L2 and easily correct distortion. Moreover, since it becomes easy to increase the power of the second lens L2, it is easy to reduce the size of the lens system.
  • the refractive index of the material of the third lens L3 with respect to the d-line is 1.75 or less, so that the material of the third lens L3 can be made inexpensive.
  • it is more preferably 1.70 or less, further preferably 1.68 or less, and even more preferably 1.65 or less.
  • the refractive index of the material of the third lens L3 with respect to the d-line is 1.50 or more, thereby increasing the refractive index of the material of the third lens L3 and increasing the power of the third lens L3. This facilitates correction of chromatic aberration of magnification and curvature of field.
  • it is more preferably 1.55 or more, and further preferably 1.60 or more.
  • the refractive index for the d-line of the material of the fourth lens is 1.80 or less, which makes it possible to make the material of the fourth lens L4 inexpensive. Further, since it becomes easy to select a material having a large Abbe number, it is easy to correct chromatic aberration, and good resolution performance can be obtained.
  • the refractive index of the material of the fourth lens L4 with respect to the d-line is 1.50 or more, thereby increasing the refractive index of the material of the fourth lens L4 and increasing the power of the fourth lens L4. It becomes easy.
  • the power of the fourth lens L4 it becomes easy to correct spherical aberration with the fourth lens L4, and it is easy to bend the light beam greatly with the fourth lens L4, so that the peripheral light beam enters the image sensor. It becomes easy to suppress the angle, and it becomes easy to suppress shading.
  • the refractive index of the material of the fifth lens L5 with respect to the d-line is 1.50 or more, thereby increasing the refractive index of the material of the fifth lens L5 and increasing the power of the fifth lens L5. It becomes easy. Further, since it becomes easy to select a material having a large Abbe number, it is easy to correct chromatic aberration, and good resolution performance can be obtained.
  • the refractive index of the material of the sixth lens L6 with respect to the d-line is 1.50 or more, thereby increasing the refractive index of the material of the sixth lens L6 and increasing the power of the sixth lens L6. Therefore, it becomes easy to correct the spherical aberration and to suppress the angle at which the light beam enters the image sensor, and to easily suppress the shading. It is preferable that the refractive index of the material of the sixth lens L6 with respect to the d-line is 1.70 or less. This makes it easy to select a material having a large Abbe number, so that correction of chromatic aberration is facilitated and good resolution is achieved. It becomes easy to obtain performance. In order to correct chromatic aberration, the refractive index of the material of the sixth lens L6 with respect to the d-line is preferably set to 1.60 or less.
  • the object-side surface of the second lens L2 is preferably an aspheric surface, which makes it easy to reduce the size and widen the lens system or to easily correct field curvature and distortion. It becomes.
  • the center and the effective diameter end both have positive power, and when the positive power between the center and the effective diameter end is compared, the effective diameter end is more positive than the center. It is preferable to use a shape with low power. By forming the object side surface of the second lens L2 in such a shape, it is easy to reduce the lens system and to widen the angle.
  • the “effective diameter of the surface” is a circle consisting of the outermost point in the radial direction (the point farthest from the optical axis) when the point where all the rays that contribute to image formation intersect with the lens surface is considered. It means the diameter, and “effective diameter end” means the outermost point.
  • the figure composed of the outermost points is a circle. However, in a system that is not rotationally symmetric, it may not be a circle.
  • the circle diameter may be considered as the effective diameter.
  • the lens surface i of each lens (i is a symbol representing the corresponding lens surface.
  • the object side surface of the second lens L2 is represented by 3
  • Xi is a certain point on the surface
  • Pi is the intersection of the normal and the optical axis at that point
  • ) be the absolute value
  • Pi be defined as the center of curvature at the point Xi.
  • the intersection of the i-th lens surface and the optical axis is defined as Qi.
  • the power at the point Xi is defined by whether the point Pi is on the object side or the image side with respect to the point Qi.
  • the point Pi On the object side surface, the point Pi is located on the image side from the point Qi is defined as positive power, and the case where the point Pi is located on the object side from the point Qi is defined as negative power.
  • the point Pi On the image side surface, the point Pi is defined as The case where the point is located on the object side from the point Qi is defined as positive power, and the case where the point Pi is located on the image side from the point Qi is defined as negative power.
  • FIG. 2 is an optical path diagram of the imaging lens 1 shown in FIG.
  • a point Q3 is the center of the object-side surface of the second lens L2, and is an intersection of the object-side surface of the second lens L2 and the optical axis Z.
  • the point X3 on the object side surface of the second lens L2 is at the effective diameter end, and the intersection of the outermost light ray 6 included in the off-axis light beam 3 and the object side surface of the second lens L2. It has become.
  • the point X3 is at the effective diameter end, but the point X3 is an arbitrary point on the surface on the second lens object side, and thus can be considered in the same manner at other points.
  • the intersection of the normal of the lens surface at the point X3 and the optical axis Z is a point P3 as shown in FIG. 2, and a line segment X3-P3 connecting the point X3 and the point P3 is a radius of curvature RX3 at the point X3.
  • of the line segment X3-P3 is defined as the absolute value
  • the radius of curvature at the point Q3, that is, the radius of curvature of the center of the object side surface of the second lens L2 is R3, and its absolute value is
  • the effective diameter end is compared with the center.
  • the shape having a weak positive power means that when the point X3 is the effective diameter end, the paraxial region including the point Q3 is a convex shape, the point P3 is closer to the image side than the point Q3, and the point X3 This means that the absolute value
  • the object side surface of the second lens L2 may have a shape having positive power at the center and negative power at the effective diameter end.
  • the “shape having positive power at the center and negative power at the effective diameter end” of the object side surface of the second lens L2 includes the point Q3 when the point X3 is the effective diameter end.
  • the paraxial region has a convex shape, and means that the point P3 is closer to the object side than the point Q3.
  • the object side surface of the second lens L2 has a negative power at the center and includes a portion having a positive power between the center and the effective diameter end.
  • a shape including a portion having a negative power at the center and a positive power between the center and the effective diameter end” of the object side surface of the second lens L2 is a paraxial region including the point Q3.
  • the object side surface of the second lens L2 may have a shape having a negative power at the center, a portion having a positive power between the center and the effective diameter end, and a negative power at the effective diameter end. .
  • the lens system can be downsized and widened, and at the same time, the curvature of field and distortion can be corrected well.
  • a shape including a portion having a negative power at the center and a positive power between the center and the effective diameter end” of the object side surface of the second lens L2 is a paraxial region including the point Q3.
  • the “shape having negative power at the effective diameter end” of the second lens L2 means a shape in which the point P3 is closer to the object side than the point Q3 when the point X3 is the effective diameter end. .
  • the object side surface of the second lens L2 has negative power at both the center and the effective diameter end. When comparing the negative power between the center and the effective diameter end, the effective diameter end is more negative than the center.
  • the shape may be weak. By forming the object side surface of the second lens L2 in such a shape, the lens system can be downsized and widened, and at the same time, the curvature of field can be corrected well.
  • a circle CQ3 centered on a point on the optical axis is drawn by a two-dot chain line with a radius
  • the circle CX3 is larger than the circle CQ3, and it is clearly indicated that
  • the image-side surface of the second lens L2 is preferably an aspherical surface, so that field curvature and distortion can be corrected well.
  • the image-side surface of the second lens L2 has negative power at the center and the effective diameter end as in the third embodiment of the present invention, and the negative power at the center and the effective diameter end is compared. In this case, it is preferable that the end of the effective diameter has a weaker negative power than the center.
  • the above shape of the image side surface of the second lens L2 can be considered as follows in the same manner as the shape of the object side surface of the second lens L2 described with reference to FIG.
  • the point X4 and the point P4 are connected.
  • the segment X4-P4 is defined as the radius of curvature at the point X4, and the length
  • the center and the effective diameter end have negative power on the image side surface of the second lens L2 and when the negative power between the center and the effective diameter end is compared, the effective diameter end is compared with the center.
  • the shape with weak negative power means that when the point X4 is the effective diameter end, the shape is concave in the paraxial region including the point Q4, the point P4 is closer to the image side than the point Q4, and the point X4 This means that the absolute value
  • the object side surface of the third lens L3 is preferably an aspherical surface.
  • the object side surface of the third lens L3 has negative power at both the center and the effective diameter end as in the second embodiment of the present invention, and negative power compared to the center at the effective diameter end. It is preferable to have a weak shape or a shape having negative power at the center and positive power at the effective diameter end. By setting the object side surface of the third lens L3 to have such a shape, coma can be favorably corrected.
  • the above shape of the object side surface of the third lens L3 can be considered as follows in the same manner as the shape of the object side surface of the second lens L2 described with reference to FIG.
  • the point X5 and the point P5 are connected.
  • the segment X5-P5 is defined as the radius of curvature at the point X5
  • of the segment connecting the point X5 and the point P5 is defined as the absolute value
  • the center and the effective diameter end both have negative power, and the effective diameter end has a weaker negative power than the center means that the point X5 is the effective diameter end.
  • a shape having a negative power at the center and a positive power at the effective diameter end is a concave shape in the paraxial region including the point Q5 when the point X5 is the effective diameter end.
  • a shape in which P5 is located on the image side from the point Q5 is meant.
  • the object side surface of the third lens L3 has negative power at both the center and the effective diameter end. When comparing the negative power between the center and the effective diameter end, the effective diameter end is negative compared to the center. It is good also as a shape with strong power. By forming the object side surface of the third lens L3 in such a shape, it is easy to widen the angle, and on-axis rays and off-axis rays can be separated by the first lens L1 and the second lens L2. This facilitates correction of field curvature and distortion.
  • the effective diameter end is negative compared to the center.
  • the shape with strong power is a concave shape in the paraxial region including the point Q5 when the point X5 is the effective diameter end, the point P5 is closer to the object side than the point Q5, and the point X5 This means that the absolute value
  • the paraxial region may be a plane on the object side surface of the third lens L3.
  • the image side surface of the third lens L3 is preferably an aspherical surface.
  • the image-side surface of the third lens L3 has positive power at the center and the effective diameter end as in the third embodiment of the present invention, and positive power at the effective diameter end compared to the center.
  • a weak shape is preferred.
  • the above shape of the image side surface of the third lens L3 can be considered as follows in the same manner as the shape of the object side surface of the second lens L2 described with reference to FIG.
  • the point X6 and the point P6 are connected.
  • the line segment X6-P6 is defined as the radius of curvature at the point X6, and the length
  • the center and the effective diameter end both have positive power, and the effective diameter end has a weaker positive power than the center” means that the point X6 is the effective diameter end.
  • the point P6 is closer to the object side than the point Q6, and the absolute value
  • the image side surface of the third lens L3 may have a shape in which both the center and the effective diameter end have positive power, and the effective diameter end has a stronger positive power than the center.
  • the center and the effective diameter end both have positive power, and the effective diameter end has a stronger positive power than the center
  • the point X6 is the effective diameter end.
  • the point P6 is closer to the object side than the point Q6, and the absolute value
  • the object side surface of the sixth lens L6 be an aspherical surface. It is preferable that the object-side surface of the sixth lens L6 has a shape in which both the center and the effective diameter end have positive power, and the positive power is weaker at the effective diameter end than the center. By making the object side surface of the sixth lens L6 into such a shape, it becomes easy to favorably correct curvature of field and spherical aberration.
  • the shape of the object side surface of the sixth lens L6 can be considered as follows in the same manner as the shape of the object side surface of the second lens L2 described with reference to FIG.
  • the point X12 and the point P12 are connected.
  • the line segment X12-P12 is defined as the radius of curvature at the point X12
  • of the line segment connecting the point X12 and the point P12 is defined as the absolute value
  • the center and the effective diameter end both have positive power and the effective diameter end has a weaker positive power than the center means that the point X12 is the effective diameter end.
  • the image side surface of the sixth lens L6 is preferably an aspherical surface.
  • the image side surface of the sixth lens L6 has a positive power at both the center and the effective diameter end, and the effective diameter end has a weaker positive power than the center, or the center has a positive power and is effective.
  • a shape having negative power at the radial end is preferable.
  • the shape of the image side surface of the sixth lens L6 can be considered as follows in the same manner as the shape of the object side surface of the second lens L2 described with reference to FIG.
  • the point X13 and the point P13 are connected.
  • the line segment X13-P13 is the radius of curvature at the point X13
  • of the line segment connecting the point X13 and the point P13 is the absolute value
  • the above-mentioned image side surface of the sixth lens L6 has a positive power at both the center and the effective diameter end and a weaker positive power than the center at the effective diameter end.
  • the shape is convex in the paraxial region including the point Q13, the point P13 is closer to the object side than the point Q13, and the absolute value
  • a shape having a positive power at the center and a negative power at the effective diameter end is a convex shape in the paraxial region including the point Q13 when the point X13 is the effective diameter end. It means a shape in which P13 is on the image side with respect to the point Q13.
  • Each surface from the object-side surface of the second lens L2 to the image-side surface of the sixth lens L6 has an aspherical shape as described above, so that distortion is added in addition to spherical aberration, field curvature, and coma. Can be corrected well.
  • the second lens L2 is preferably a biconcave lens, which facilitates widening of the angle and also facilitates correction of field curvature, distortion, and spherical aberration.
  • the second lens L2 may be a meniscus lens having a convex surface directed toward the object side. This makes it easy to widen the angle and corrects distortion and curvature of field well.
  • the object-side surface of the third lens L3 is preferably a concave surface or a flat surface, which facilitates widening of the angle and separates the on-axis light beam and the peripheral light beam with the first lens L1 and the second lens L2. This makes it easy to correct field curvature and coma.
  • the image-side surface of the third lens L3 is preferably a convex surface, whereby the power of the third lens L3 can be made positive and the chromatic aberration of magnification can be corrected well. It becomes.
  • the third lens L3 is preferably a meniscus shape with a concave surface facing the object side or a plano-convex lens with a plane surface facing the object side. This makes it easy to reduce the lens system direction and reduce the image. It becomes possible to correct surface curvature and coma well.
  • the fourth lens L4 is preferably a biconvex lens, which makes it possible to satisfactorily correct spherical aberration and curvature of field. Further, by increasing the power of the fourth lens L4, it becomes easy to correct chromatic aberration with the fifth lens L5.
  • the fifth lens L5 is a biconcave lens or a planoconvex lens having a plane directed toward the image side, which makes it possible to favorably correct field curvature. Furthermore, it becomes easy to increase the power of the fifth lens L5, and it becomes easy to correct chromatic aberration with the fourth lens L4.
  • the fifth lens L5 may be a negative meniscus lens having a convex surface facing the image side, or a plano-concave lens having a flat surface facing the image side. This makes it easy to favorably correct coma and curvature of field. .
  • the sixth lens L6 is a biconvex lens, which makes it possible to suppress the angle at which light rays are incident on the image sensor and facilitate shading.
  • the sixth lens L6 may be a meniscus lens having a convex surface directed to the image side, which facilitates good correction of curvature of field.
  • the material of the first lens L1 is preferably glass.
  • the first lens L1 arranged closest to the object side is resistant to surface deterioration due to wind and rain, temperature change due to direct sunlight, Is required to use materials that are resistant to chemicals such as fats and oils, that is, water resistance, weather resistance, acid resistance, and chemical resistance, and that materials that are hard and hard to break are required. Sometimes. These requirements can be satisfied by using glass as the material.
  • a material having a Knoop hardness of 550 or more may be used as the material of the first lens L1.
  • the powder acid resistance is preferably class 4 or higher and the powder water resistance is class 3 or higher in the powder acid resistance and powder water resistance tests established by the Japan Optical Glass Industry Association. Is preferred. The higher the class, the better. Moreover, it is preferable that it is a class 3 or more in the detergent resistance of an ISO regulation.
  • the surface method weather resistance is preferably class 3 or higher.
  • an in-vehicle camera or a surveillance camera lens is exposed to ultraviolet rays from the sun for a long time, and therefore, it is preferable to use a material resistant to ultraviolet rays as a material used for this lens.
  • the one or both surfaces of the first lens L1 may be aspheric.
  • various aberrations can be corrected more satisfactorily.
  • a protective means for enhancing the strength, scratch resistance and chemical resistance may be applied to the object side surface of the first lens L1, and in this case, the material of the first lens L1 may be plastic.
  • Such protective means may be a hard coat or a water repellent coat.
  • the material is plastic.
  • plastic By using plastic as the material, it is possible to configure the lens system at a low cost and light weight, and when an aspheric surface is provided, the aspherical shape can be accurately produced, so that a good performance can be obtained.
  • a lens can be manufactured.
  • the material of the second lens L2 and the sixth lens L6 is preferably polyolefin.
  • Polyolefin has a low water absorption, a high transparency, a low birefringence, and a material with a large Abbe number.
  • polyolefin As the material of the second lens L2 and the sixth lens L6, it becomes possible to produce a lens with a small shape change due to water absorption, a high transmittance, and a small birefringence.
  • a material with a large Abbe number can be used, it is possible to suppress the occurrence of axial chromatic aberration and lateral chromatic aberration, and it is possible to manufacture a lens with high environmental resistance and good resolution performance.
  • the material of the third lens L3 is preferably polycarbonate.
  • Polycarbonate is characterized by a small Abbe number. By using polycarbonate for the third lens L3, it is possible to satisfactorily correct lateral chromatic aberration.
  • the material of the second lens L2 and the sixth lens L6 may be acrylic. Since acrylic is inexpensive, it is possible to make the lens system inexpensive by using acrylic.
  • the plastic is smaller than the wavelength of light.
  • a so-called nanocomposite material in which particles are mixed may be used.
  • At least one of the fourth lens L4 and the fifth lens L5 is made of glass.
  • glass As the material of the fourth lens L4, it is possible to suppress performance deterioration due to temperature changes.
  • the fifth lens L5 is made of glass, it is easy to select a material having a small Abbe number, and thus correction of chromatic aberration is facilitated.
  • a glass transition temperature (Tg) of 145 ° C. or higher is used as a material for at least one of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6, a glass transition temperature (Tg) of 145 ° C. or higher is used. It is preferable to use, more preferably 150 ° C. or higher. By using a material having a glass transition temperature of 150 ° C. or higher, a lens having good heat resistance can be manufactured.
  • a filter that cuts blue light from ultraviolet light or an IR (InfraRed) cut filter that cuts infrared light is inserted between the lens system and the imaging device 5. May be.
  • a coat having the same characteristics as the filter may be applied to the lens surface.
  • a material that absorbs ultraviolet light, blue light, infrared light, or the like may be used as a material of any lens.
  • FIG. 1 shows an example in which the optical member PP assuming various filters is arranged between the lens system and the image sensor 5. Instead, these various filters are arranged between the lenses. Also good. Or you may give the coat
  • the light shielding means 11 and 12 are provided outside the effective diameters of the image-side surfaces of the first lens L1 and the second lens L2.
  • the location where the light shielding means is provided is not limited to the example shown in FIG. 1, and may be arranged between other lenses or between the lenses.
  • a member such as a diaphragm that blocks the peripheral light beam may be disposed between the lenses so long as the peripheral light amount ratio has no practical problem.
  • a peripheral ray is a ray that passes through a peripheral portion of the entrance pupil of the optical system among rays from an object point outside the optical axis Z.
  • the lens system includes the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6. It is preferable to configure so that it consists of only 6 sheets. By configuring the lens system with only six lenses, the lens system can be made inexpensive.
  • the imaging apparatus includes the imaging lens according to the present embodiment, the imaging apparatus can be configured to be small and inexpensive, have a sufficiently wide angle of view, and obtain a good image with high resolution using the imaging element. be able to.
  • an imaging device including the imaging lens according to the present embodiment may be mounted on a vehicle as an in-vehicle camera, the back and the periphery of the vehicle may be captured by the in-vehicle camera, and an image acquired by the imaging may be displayed on the display device.
  • the captured image may be displayed on the display device of the car navigation system. It is necessary to install a dedicated display device in the car. However, the display device is expensive.
  • the image taken by the in-vehicle camera may be transmitted to the mobile phone by cable using a cable or the like, or may be transmitted to the mobile phone by radio such as infrared communication.
  • the mobile phone and the operating state of the car are linked so that when the car's gear enters the back or the winker is taken out, the image of the in-vehicle camera is automatically displayed on the display device of the mobile phone. May be.
  • the display device for displaying the image of the in-vehicle camera is not limited to a mobile phone, but may be a portable information terminal such as a PDA, a small personal computer, or a portable car navigation system.
  • FIGS. 3 to 21 [Numerical example of imaging lens]
  • the left side of the figure is the object side
  • the right side is the image side.
  • the aperture stop St, the optical member PP, and the image sensor 5 disposed on the image plane Sim are also illustrated. Yes.
  • the aperture stop St in each figure does not indicate the shape or size, but indicates the position on the optical axis Z.
  • the imaging lens according to the first embodiment of the present invention is the examples 1 to 3, 7 to 10, 19 and the imaging lens according to the second embodiment of the present invention is the examples 2, 7, 9, and 19.
  • the imaging lens according to the third embodiment of the present invention corresponds to Examples 1 to 3, 6, and 8 to 19.
  • Ri column indicates the radius of curvature of the i-th surface
  • Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface. The sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
  • the refractive index with respect to the d-line (wavelength: 587.6 nm) of the j-th (j 1, 2, 3,%) Optical element that sequentially increases toward the image side with the most object-side lens as the first.
  • the column of ⁇ dj indicates the Abbe number for the d-line of the jth optical element.
  • the basic lens data includes the aperture stop St and the optical member PP, and the word “St” is also written in the surface number column of the surface corresponding to the aperture stop St.
  • the surface number of the aspheric surface is marked with *, and the value of the paraxial curvature radius (center curvature radius) is shown as the curvature radius of the aspheric surface.
  • the aspheric data shows the surface number of the aspheric surface and the aspheric coefficient for each aspheric surface.
  • the numerical value “E ⁇ n” (n: integer) of the aspheric data means “ ⁇ 10 ⁇ n”, and “E + n” means “ ⁇ 10n”.
  • Zd Depth of aspheric surface (length of perpendicular drawn from a point on the aspherical surface of height Y to a plane perpendicular to the optical axis where the aspherical vertex contacts)
  • Y Height (distance from the optical axis to the lens surface)
  • C paraxial curvature KA
  • L is the distance on the optical axis Z from the object-side surface of the first lens L1 to the image plane Sim (the back focus component is the air conversion length)
  • Bf is from the image-side surface of the most image-side lens.
  • f is the focal length of the entire system
  • f1 is the focal length of the first lens L1
  • f2 is the focal length of the second lens L2.
  • f3 is the focal length of the third lens L3
  • f4 is the focal length of the fourth lens L4
  • f5 is the focal length of the fifth lens L5
  • f6 is the focal length of the sixth lens L6, and
  • f23 is the second lens L2 and the third lens.
  • the combined focal length between L3 and f45 is the combined focal length between the fourth lens L4 and the fifth lens L5.
  • Conditional expression (1) is (R8 + R9) / (R8-R9)
  • conditional expression (2) is D9 / f
  • conditional expression (3) is (R5 + R6) / (R5-R6)
  • conditional expression (4) is (R10 + R11) / (R10-R11)
  • conditional expression (5) is D4 / f
  • conditional expression (6) is ⁇ d3 + ⁇ d5
  • conditional expression (7) is
  • conditional expression (8) is
  • Conditional expression (9) is f3 / f
  • conditional expression (10) is f4 / f
  • conditional expression (11) is R2 / f
  • conditional expression (12) is R9 / f
  • conditional expression (13) is R1 / f
  • conditional expression (14) is f6 / f
  • conditional expression (15) is R13 / f
  • conditional expression (16) is f5 / f
  • conditional expression (17) is R4 / f
  • conditional expression (18) is R10 / f.
  • conditional expression (19) is (D4 + D5) / f
  • conditional expression (20) is f / R5
  • conditional expression (21) is f / R3
  • conditional expression (22) is f23 / f
  • condition Expression (23) is f45 / f
  • conditional expression (24) is L / f
  • conditional expression (25) is Bf / f
  • conditional expression (26) is (R1 + R2) / (R1-R2).
  • R1 radius of curvature of the object side surface of the first lens L1
  • R2 radius of curvature of the image side surface of the first lens L1
  • R3 radius of curvature of the object side surface of the second lens L2
  • R4 image of the second lens L2
  • Radius of curvature R5: curvature radius of the third lens object side surface
  • R6 curvature radius of the third lens image side surface
  • R8 curvature radius of the object side surface of the fourth lens L4
  • R9 fourth lens L4
  • D4 Air distance on the optical axis between the second lens L2 and the third lens L3
  • D5 Center thickness of the third lens L3
  • D9 Air distance on the optical axis between the fourth lens
  • the first lens L1, the fourth lens L4, and the fifth lens L5 are glass spherical lenses
  • the second lens L2, the third lens L3, and the sixth lens L6 are plastic aspheric surfaces. It is a lens.
  • 29 (A) to 29 (D) 30 (A) to 30 (D), 31 (A) to 31 (D), 32 (A) to 32 (D), FIG. 33 (A) to 33 (D), FIG. 34 (A) to FIG. 34 (D), FIG. 35 (A) to FIG. 35 (D), FIG. 36 (A) to FIG. 36 (D), FIG. A) to FIG. 37D, FIG. 38A to FIG. 38D, FIG. 39A to FIG. 39D, and FIG. 40A to FIG. 40D.
  • Example 1 the aberration diagram of Example 1 will be described as an example, but the same applies to the aberration diagrams of other Examples.
  • 22 (A), 22 (B), 22 (C), and 22 (D) are spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (magnification aberration) of the imaging lens according to Example 1, respectively.
  • the aberration diagram of chromatic aberration of magnification) is shown.
  • F in the spherical aberration diagram means F value
  • ⁇ in other aberration diagrams means half angle of view.
  • the distortion diagram shows the amount of deviation from the ideal image height of 2f ⁇ tan ( ⁇ / 2) using the focal length f and the angle of view ⁇ (variable treatment, 0 ⁇ ⁇ ⁇ ⁇ ) of the entire system.
  • Each aberration diagram shows aberration with d-line (587.56 nm) as a reference wavelength, but spherical aberration diagram shows F-line (wavelength 486.13 nm), C-line (wavelength 656.27 nm), and sine condition violation
  • the aberration for the quantity (denoted as SNC) is also shown, and the chromatic aberration diagram for the magnification shows the aberration for the F-line and C-line. Since the line type of the chromatic aberration diagram of magnification is the same as that of the spherical aberration diagram, the description is omitted.
  • the imaging lenses of Examples 1 to 19 are configured with as few as six lenses, and can be manufactured in a small size and at a low cost, and the total angle of view is about 178 to 208 degrees. A wide angle of view is achieved, the F-number is as small as 2.0, each aberration is corrected well, and the optical performance is good.
  • These imaging lenses can be suitably used for surveillance cameras, in-vehicle cameras for taking images of the front, side, rear, etc. of automobiles.
  • FIG. 41 shows a state in which an imaging apparatus including the imaging lens of the present embodiment is mounted on the automobile 100.
  • an automobile 100 includes an on-vehicle camera 101 for imaging a blind spot range on the side surface on the passenger seat side, an on-vehicle camera 102 for imaging a blind spot range on the rear side of the automobile 100, and a rear surface of a rearview mirror.
  • An in-vehicle camera 103 is attached and is used for photographing the same field of view as the driver.
  • the vehicle exterior camera 101, the vehicle exterior camera 102, and the vehicle interior camera 103 are imaging devices according to embodiments of the present invention, and convert an imaging lens according to an embodiment of the present invention and an optical image formed by the imaging lens into an electrical signal.
  • An image pickup device An image pickup device.
  • the outside cameras 101 and 102 and the inside camera 103 can also be configured to be small and inexpensive, have a wide angle of view, and have an imaging region peripheral portion. A good image can be obtained.
  • the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens component are not limited to the values shown in the above numerical examples, and can take other values.
  • all the lenses are made of a homogeneous material, but a gradient index lens may be used.
  • the present invention is not limited to this application, and for example, a mobile terminal camera or a surveillance camera The present invention can also be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】撮像レンズにおいて、小型化、低コスト化、広角化および高性能化が実現可能であり、さらには使用する撮像素子に制限をなくす。 【解決手段】撮像レンズ(1)は、物体側から順に、負の第1レンズ(L1)、負の第2レンズ(L2)、正の第3レンズ(L3)、正の第4レンズ(L4)、負の第5レンズ(L5)および正の第6レンズ(L6)との実質的に6枚のレンズからなる。第2レンズ(L2)の物体側の面が凹面であり、第3レンズ(L3)の物体側の面が凹面である。

Description

撮像レンズおよび撮像装置
 本発明は、撮像レンズおよび撮像装置に関し、より詳しくは、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を用いた車載用カメラ、携帯端末用カメラ、監視カメラ等に使用されるのに好適な撮像レンズ、および該撮像レンズを備えた撮像装置に関するものである。
 CCDやCMOS等の撮像素子は近年非常に小型化および高画素化が進んでいる。それとともに、これら撮像素子を備えた撮像機器本体も小型化が進み、それに搭載される撮像レンズにも良好な光学性能に加え、小型化が求められている。一方、車載用カメラや監視カメラ等の用途では、小型化とともに、安価に構成可能で、広角で高性能であることが求められている。
 下記特許文献1~16には、小型のCCDが搭載されたカメラに使用可能で、プラスチック非球面レンズを用いた6枚構成のレンズ系が開示されている。
特開2005-221920号公報 特開2006-171597号公報 特開2006-349920号公報 特開2007-164079号公報 特開2007-249073号公報 特開2008-134494号公報 特開2010-243709号公報 特許第2599312号公報 米国特許明細書第7023628号 米国特許明細書第7768719号 米国特許明細書第7933078号 特開2010-160479号公報 特開2008-76716号公報 特開2009-92797号公報 特開2009-92798号公報 特開2010-009028号公報
 ところで、車載用カメラや監視カメラ等に搭載される撮像レンズに対する要求は年々厳しくなっており、さらなる小型化、低コスト化、広角化および高性能化が望まれている。
 ここで、特許文献1,2,4,8,9,11に記載されたレンズ系は、接合レンズを使用しているため色収差や感度の面で有利だが、使用条件によっては特殊な接合剤や加工をする必要がありコストアップとなる。特許文献3に記載されたレンズ系は、半画角が40°以下であり、本発明のような広角の課題に対しては広角化が不十分である。また、特許文献10に記載されたレンズ系は、アナモフィックレンズであるため、安価に作製することができない。
 本発明は、上記事情に鑑み、小型化、低コスト化、広角化および高性能化が実現可能な撮像レンズ、および該撮像レンズを備えた撮像装置を提供することを目的とするものである。
 本発明の第1の撮像レンズは、物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
 前記第2レンズの物体側の面が凹面であり、
 前記第3レンズの物体側の面が凹面であることを特徴とするものである。
 本発明の第2の撮像レンズは、物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
 前記第3レンズの物体側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが強い形状であることを特徴とするものである。
 本発明の第3の撮像レンズは、物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
 前記第2レンズの像側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状であり、
 前記第3レンズの像側の面が、中心で正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状であることを特徴とするものである。
 「実質的に6枚のレンズからなる」とは、6枚のレンズ以外に,実質的にパワーを持たないレンズ、絞りやカバーガラス等のレンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手ぶれ補正機構等の機構部分等を持つものも含むことを意味する。
 本発明の第1から第3の撮像レンズを実質的に6枚のレンズからなるものとすることで、良好な光学性能を得ることができるとともに、レンズ枚数を抑えることで、小型化とコストを抑えることが可能となる。
 なお、本発明においては、凸面、凹面、平面、両凹、メニスカス、両凸、平凸および平凹等といったレンズの面形状、正のレンズおよび負のレンズといったレンズの屈折力の符号は、非球面が含まれているものについてはとくに断りのない限り近軸領域で考えるものとする。また、本発明においては、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負とすることにする。
 上記本発明の第1から第3の撮像レンズにおいては、下記条件式(19)~(23)を満足することが好ましい。なお、好ましい態様としては、下記条件式(19)~(23)のいずれか1つの構成を有するものでもよく、あるいは任意の2つ以上を組み合わせた構成を有するものでもよい。
  1<(D4+D5)/f<6 … (19)
  -1<f/R5<1 … (20)
  -3<f/R3<3 … (21)
  -30<f23/f<-3 … (22)
  2<f45/f<25 … (23)
ただし、
D4:第2レンズと第3レンズとの光軸上の空気間隔
D5:第3レンズの中心厚
f:全系の焦点距離
R5:第3レンズの物体側の面の曲率半径
R3:第2レンズの物体側の面の曲率半径
f23:第2レンズおよび第3レンズの合成焦点距離
f45:第4レンズおよび第5レンズの合成焦点距離
 本発明の撮像装置は、上記記載の本発明の第1から第3の撮像レンズの少なくともいずれか1つを備えたことを特徴とするものである。
 本発明の第1の撮像レンズによれば、最小6枚のレンズ系において、全系におけるパワー配置、第2レンズおよび第3レンズの面形状等を好適に設定しているため、小型化、低コスト化および広角化を達成できるとともに、諸収差を良好に補正して、結像領域周辺部まで良好な像を得ることができる高い光学性能を有する撮像レンズを実現することができる。
 本発明の第2の撮像レンズによれば、最小6枚のレンズ系において、全系におけるパワー配置、第3レンズの面形状等を好適に設定しているため、小型化、低コスト化および広角化を達成できるとともに、諸収差を良好に補正して、結像領域周辺部まで良好な像を得ることができる高い光学性能を有する撮像レンズを実現することができる。
 本発明の第3の撮像レンズによれば、最小6枚のレンズ系において、全系におけるパワー配置、第2レンズおよび第3レンズの面形状等を好適に設定しているため、小型化、低コスト化および広角化を達成できるとともに、諸収差を良好に補正して、結像領域周辺部まで良好な像を得ることができる高い光学性能を有する撮像レンズを実現することができる。
 本発明の撮像装置によれば、本発明の撮像レンズを備えているため、小型で安価に構成でき、広い画角での撮影が可能であり、解像度の高い良好な像を得ることができる。
本発明の一実施形態に係る撮像レンズの構成と光路を示す図 第2レンズの面形状等を説明するための図 本発明の実施例1の撮像レンズのレンズ構成を示す断面図 本発明の実施例2の撮像レンズのレンズ構成を示す断面図 本発明の実施例3の撮像レンズのレンズ構成を示す断面図 本発明の実施例4の撮像レンズのレンズ構成を示す断面図 本発明の実施例5の撮像レンズのレンズ構成を示す断面図 本発明の実施例6の撮像レンズのレンズ構成を示す断面図 本発明の実施例7の撮像レンズのレンズ構成を示す断面図 本発明の実施例8の撮像レンズのレンズ構成を示す断面図 本発明の実施例9の撮像レンズのレンズ構成を示す断面図 本発明の実施例10の撮像レンズのレンズ構成を示す断面図 本発明の実施例11の撮像レンズのレンズ構成を示す断面図 本発明の実施例12の撮像レンズのレンズ構成を示す断面図 本発明の実施例13の撮像レンズのレンズ構成を示す断面図 本発明の実施例14の撮像レンズのレンズ構成を示す断面図 本発明の実施例15の撮像レンズのレンズ構成を示す断面図 本発明の実施例16の撮像レンズのレンズ構成を示す断面図 本発明の実施例17の撮像レンズのレンズ構成を示す断面図 本発明の実施例18の撮像レンズのレンズ構成を示す断面図 本発明の実施例19の撮像レンズのレンズ構成を示す断面図 図22(A)~図22(D)は本発明の実施例1の撮像レンズの各収差図 図23(A)~図23(D)は本発明の実施例2の撮像レンズの各収差図 図24(A)~図24(D)は本発明の実施例3の撮像レンズの各収差図 図25(A)~図25(D)は本発明の実施例4の撮像レンズの各収差図 図26(A)~図26(D)は本発明の実施例5の撮像レンズの各収差図 図27(A)~図27(D)は本発明の実施例6の撮像レンズの各収差図 図28(A)~図28(D)は本発明の実施例7の撮像レンズの各収差図 図29(A)~図29(D)は本発明の実施例8の撮像レンズの各収差図 図30(A)~図30(D)は本発明の実施例9の撮像レンズの各収差図 図31(A)~図31(D)は本発明の実施例10の撮像レンズの各収差図 図32(A)~図32(D)は本発明の実施例11の撮像レンズの各収差図 図33(A)~図33(D)は本発明の実施例12の撮像レンズの各収差図 図34(A)~図34(D)は本発明の実施例13の撮像レンズの各収差図 図35(A)~図35(D)は本発明の実施例14の撮像レンズの各収差図 図36(A)~図36(D)は本発明の実施例15の撮像レンズの各収差図 図37(A)~図37(D)は本発明の実施例16の撮像レンズの各収差図 図38(A)~図38(D)は本発明の実施例17の撮像レンズの各収差図 図39(A)~図39(D)は本発明の実施例18の撮像レンズの各収差図 図40(A)~図40(D)は本発明の実施例19の撮像レンズの各収差図 本発明の実施形態に係る車載用の撮像装置の配置を説明するための図
 以下、本発明の実施形態について図面を参照して詳細に説明する。
〔撮像レンズの実施形態〕
 まず、図1を参照しながら、本発明の実施形態に係る撮像レンズについて説明する。図1は、本発明の実施形態に係る撮像レンズ1の構成と光路を示す図である。なお、図1に示す撮像レンズ1は後述する本発明の実施例9に係る撮像レンズに対応するものである。
 図1では、図の左側が物体側、右側が像側であり、無限遠の距離にある物点からの軸上光束2、全画角2ωでの軸外光束3、4も併せて示してある。図1では、撮像レンズ1が撮像装置に適用される場合を考慮して、撮像レンズ1の像点Pimを含む像面Simに配置された撮像素子5も図示している。撮像素子5は、撮像レンズ1により形成される光学像を電気信号に変換するものであり、例えばCCDイメージセンサやCMOSイメージセンサ等を用いることができる。
 なお、撮像レンズ1を撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、カバーガラスや、ローパスフィルタまたは赤外線カットフィルタ等を設けることが好ましく、図1では、これらを想定した平行平板状の光学部材PPを最も像側のレンズと撮像素子5(像面Sim)との間に配置した例を示している。
 まず、本発明の第1の実施形態の構成について説明する。本発明の第1の実施形態に係る撮像レンズは、物体側から順に、負の第1レンズL1と、負の第2レンズL2と、正の第3レンズL3と、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6とを備える。図1に示す例では、第3レンズL3と第4レンズL4との間に開口絞りStが配置されている。なお、図1における開口絞りStは、形状や大きさを表すものではなく、光軸Z上の位置を示すものである。開口絞りStを第3レンズL3と第4レンズL4との間に配置することで、系全体を小型化することが可能となる。開口絞りStが物体側に近い位置にあると、第1レンズL1の外径を小さくすることが容易となるが、開口絞りStが物体側に近づきすぎると第1レンズL1および第2レンズL2で軸上光線と軸外光線との分離が難しくなり、像面湾曲の補正が困難となる。開口絞りStを第3レンズL3と第4レンズL4との間に配置することで、レンズ径を小型化しながら像面湾曲を補正することが容易となる。
 この撮像レンズは、最小6枚という少ないレンズ枚数で構成することで、低コスト化とともに光軸方向の全長の小型化を図ることができる。また、物体側に配置された2枚のレンズである第1レンズL1と第2レンズL2とをともに負のレンズとすることで、レンズ系全体を広角化することが容易となる。また、最も物体側に負のレンズを2枚並べることで、負のパワーを2枚のレンズで分担することができ、広い画角から入射する光線を段階的に曲げることができるため、ディストーションを効果的に補正することができる。正のレンズも第3レンズL3と第4レンズL4と第6レンズL6との3枚とすることで、像面で像を結ぶための収束作用および正のレンズに求められる各収差の補正をこれらの3枚のレンズで分担することができ、効果的に補正することができる。
 第3レンズL3を正のレンズとすることで、像面湾曲を良好に補正することが可能となる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズとすることで、軸上の色収差および倍率の色収差を良好に補正することが可能となる。第6レンズL6を正のレンズとすることで、周辺の光線が撮像レンズの結像面に入射する角度を小さくすることができ、シェーディングを抑えることができる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズ、第6レンズL6を正のレンズとすることで、球面収差および像面湾曲を良好に補正することが可能となる。物体側から順に、負、負、正、正、負、正のパワー配置とすることで、F値が小さなレンズ系においても、小型、広角で良好な解像性を持ったレンズ系を得ることが可能になる。
 また、第1の実施形態に係る撮像レンズは、第2レンズL2の物体側の面が凹面であり、第3レンズL3の物体側の面が凹面である。第2レンズL2の物体側の面を凹面とすることで、広角化が容易となる。第3レンズL3の物体側の面を凹面とすることで、広角化が容易となるとともに、第1レンズL1および第2レンズL2で軸上光線と周辺光線とを分離することが容易となる。
 次に、本発明の第2の実施形態の構成について説明する。本発明の第2の実施形態に係る撮像レンズは、物体側から順に、負の第1レンズL1と、負の第2レンズL2と、正の第3レンズL3と、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6とを備える。
 この撮像レンズは、最小6枚という少ないレンズ枚数で構成することで、低コスト化とともに光軸方向の全長の小型化を図ることができる。また、物体側に配置された2枚のレンズである第1レンズL1と第2レンズL2とをともに負のレンズとすることで、レンズ系全体を広角化することが容易となる。また、最も物体側に負のレンズを2枚並べることで、負のパワーを2枚のレンズで分担することができ、広い画角から入射する光線を段階的に曲げることができるため、ディストーションを効果的に補正することができる。正のレンズも第3レンズL3と第4レンズL4と第6レンズL6との3枚とすることで、像面で像を結ぶための収束作用および正のレンズに求められる各収差の補正をこれらの3枚のレンズで分担することができ、効果的に補正することができる。
 第3レンズL3を正のレンズとすることで、像面湾曲を良好に補正することが可能となる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズとすることで、軸上の色収差および倍率の色収差を良好に補正することが可能となる。第6レンズL6を正のレンズとすることで、周辺の光線が撮像レンズの結像面に入射する角度を小さくすることができ、シェーディングを抑えることができる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズ、第6レンズL6を正のレンズとすることで、球面収差および像面湾曲を良好に補正することが可能となる。物体側から順に、負、負、正、正、負、正のパワー配置とすることで、F値が小さなレンズ系においても、小型、広角で良好な解像性を持ったレンズ系を得ることが可能になる。
 また、第2の実施形態に係る撮像レンズは、第3レンズL3の物体側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが強い形状である。第3レンズL3の物体側の面を、中心で正のパワーを持ち、有効径端では中心と比較して正のパワーが強い形状とすることで、広角化が容易となるとともに、第1レンズL1および第2レンズL2で軸上光線と軸外光線を分離することが容易となるため像面湾曲およびディストーションの補正が容易となる。なお、第3レンズL3の物体側の面の形状の詳細については後述する。
 次に、本発明の第3の実施形態の構成について説明する。本発明の第3の実施形態に係る撮像レンズは、物体側から順に、負の第1レンズL1と、負の第2レンズL2と、正の第3レンズL3と、正の第4レンズL4と、負の第5レンズL5と、正の第6レンズL6とを備える。
 この撮像レンズは、最小6枚という少ないレンズ枚数で構成することで、低コスト化とともに光軸方向の全長の小型化を図ることができる。また、物体側に配置された2枚のレンズである第1レンズL1と第2レンズL2とをともに負のレンズとすることで、レンズ系全体を広角化することが容易となる。また、最も物体側に負のレンズを2枚並べることで、負のパワーを2枚のレンズで分担することができ、広い画角から入射する光線を段階的に曲げることができるため、ディストーションを効果的に補正することができる。正のレンズも第3レンズL3と第4レンズL4と第6レンズL6との3枚とすることで、像面で像を結ぶための収束作用および正のレンズに求められる各収差の補正をこれらの3枚のレンズで分担することができ、効果的に補正することができる。
 第3レンズL3を正のレンズとすることで、像面湾曲を良好に補正することが可能となる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズとすることで、軸上の色収差および倍率の色収差を良好に補正することが可能となる。第6レンズL6を正のレンズとすることで、周辺の光線が撮像レンズの結像面に入射する角度を小さくすることができ、シェーディングを抑えることができる。第4レンズL4を正のレンズ、第5レンズL5を負のレンズ、第6レンズL6を正のレンズとすることで、球面収差および像面湾曲を良好に補正することが可能となる。物体側から順に、負、負、正、正、負、正のパワー配置とすることで、F値が小さなレンズ系においても、小型、広角で良好な解像性を持ったレンズ系を得ることが可能になる。
 また、第3の実施形態に係る撮像レンズは、第2レンズL2の像側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状であり、第3レンズL3の像側の面が、中心で正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状である。第2レンズL2の像側の面を、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状とすることで、ディストーションの補正が容易となる。第3レンズL3の像側の面を、中心で正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状とすることで、軸外光線によるコマ収差を良好に補正して画像周辺部の画質を向上させることができる。なお、第2レンズL2および第3レンズL3の物体側の面の形状の詳細については後述する。
 次に、本発明の上記第1から第3の実施形態に係る撮像レンズが有することが好ましい構成を挙げて、その作用効果について説明する。なお、好ましい態様としては、以下のいずれか1つの構成を有するものでもよく、あるいは任意の2つ以上を組み合わせた構成を有するものでもよい。
 下記条件式(9)を満足することが好ましい。
  2<f3/f<12 … (9)
ただし、
f3:第3レンズL3の焦点距離
f:全系の焦点距離
 条件式(9)の下限を満足することで、第3レンズL3のパワーが強くなりすぎてしまうのを防止でき、バックフォーカスの確保が容易となる。条件式(9)の上限を満足することで、第3レンズL3のパワーが弱くなりすぎてしまうのを防止でき、像面湾曲および倍率の色収差の補正が容易となる。
 下記条件式(19)を満足することが好ましい。
  1<(D4+D5)/f<6 … (19)
ただし、
D4:第2レンズL2と第3レンズL3との光軸上の空気間隔
D5:第3レンズL3の中心厚
f:全系の焦点距離
 条件式(19)の下限を満足することで、第2レンズL2と第3レンズL3との間隔、および第3レンズL3の中心厚が小さくなりすぎてしまうのを防止でき、第1レンズL1および第2レンズL2で軸上光線と軸外光線を分離することが容易となり、像面湾曲、ディストーションおよびコマ収差の補正が容易となる。条件式(19)の上限を満足することで、第2レンズL2と第3レンズL3との間隔、および第3レンズL3の中心厚が大きくなりすぎてしまうのを防止でき、レンズ全体を小型化することが容易となる。
 下記条件式(20)を満足することが好ましい。
  -1<f/R5<1 … (20)
ただし、
f:全系の焦点距離
R5:第3レンズL3の物体側の面の曲率半径
 条件式(20)の下限を下回ると、第3レンズL3の物体側の面が物体側に凹となり、その曲率半径が小さくなりすぎてしまい、第3レンズL3のパワーが弱くなり、倍率の色収差の補正が困難となる。条件式(20)の上限を上回ると、第3レンズL3の物体側の面が物体側に凸となり、その曲率半径が小さくなりすぎてしまい、第3レンズL3のパワーが強くなりすぎてしまい、倍率の色収差は良好に補正可能だが、像面湾曲の補正が困難となるとともに、バックフォーカスの確保も困難となる。
 下記条件式(21)を満足することが好ましい。
  -3<f/R3<3 … (21)
ただし、
f:全系の焦点距離
R3:第2レンズL2の物体側の面の曲率半径
 条件式(21)の下限を下回ると、第2レンズL2の物体側の面が物体側に凹面となり、その曲率半径が小さくなりすぎて、この面で光線が急激に曲げられてしまうためディストーションの補正が困難となる。条件式(21)の上限を上回ると、第2レンズL2の物体側の面が凸面となり、曲率半径が小さくなりすぎるため、第2レンズL2のパワーが弱くなり、広角化が困難となるか、レンズ系が大型化してしまう。
 下記条件式(22)を満足することが好ましい。
  -30<f23/f<-3 … (22)
ただし、
f23:第2レンズL2および第3レンズL3の合成焦点距離
f:全系の焦点距離
 条件式(22)の下限を満足することで、第2レンズL2のパワーが弱くなりすぎるのを防ぐことができ、広角化が容易となる。条件式(22)の上限を満足することで、第3レンズL3のパワーが弱くなるのを防止でき、倍率の色収差の補正が容易となるか、第2レンズL2のパワーが強くなりすぎるのを防止でき、ディストーションの補正が容易となる。
 下記条件式(23)を満足することが好ましい。
  2<f45/f<25 … (23)
ただし、
f45:第4レンズL4および第5レンズL5の合成焦点距離
f:全系の焦点距離
 条件式(23)の下限を下回ると、第4レンズL4および第5レンズL5の合成焦点距離が小さくなりすぎてしまい、バックフォーカスの確保が困難となる。条件式(23)の上限を上回ると、第4レンズL4および第5レンズL5の合成焦点距離が大きくなりすぎてしまい、軸上色収差および倍率の色収差を良好に補正することが困難となる。
 下記条件式(24)を満足することが好ましい。
  9<L/f<20 … (24)
ただし、
L:第1レンズの物体側の面から像面までの光軸上の距離(バックフォーカス分は空気換算長)
f:全系の焦点距離
 条件式(24)の上限を上回ると、広角化は容易に達成できるがレンズ系が大型化してしまう。条件式(24)の下限を下回ると、レンズ系は小型化することができるが、広角化を達成することが困難となる。
 下記条件式(25)を満足することが好ましい。
  1<Bf/f<3 … (25)
ただし、
Bf:最も像側のレンズの像側の面から像面までの光軸上の距離(空気換算長)
f:全系の焦点距離
 条件式(25)の上限を満足することで、レンズ系の小型化が容易となる。条件式(25)の下限を満足することで、バックフォーカスの確保が容易となり、レンズとセンサとの間に各種フィルタやカバーガラス等を配置することが容易となる。
 下記条件式(26)を満足することが好ましい。
  1.1≦(R1+R2)/(R1-R2)≦3.0 … (26)
ただし、
R1:第1レンズL1の物体側の面の曲率半径
R2:第1レンズL1の像側の面の曲率半径
 条件式(26)を満足することで、第1レンズL1を物体側に凸面を向けたメニスカスレンズとすることができる。第1レンズL1を物体側に凸面を向けたメニスカスレンズとすることで、180°を超える広角の光線をとらえることが可能となるとともに、ディストーションの補正も容易となる。条件式(26)の上限を満足することで、第1レンズL1の物体側の面と像側の面との曲率半径が近くなりすぎるのを防ぐことができ、第1レンズL1のパワーを強くすることが容易となるため広角化が容易となる。条件式(26)の下限を満足することで、第1レンズL1の物体側の面の曲率半径を小さくすることが容易となり、ディストーションの補正が容易となる。
 なお、上記の各条件式については、さらに以下のように上限を追加したり、下限または上限を変更したりしたものを満足することが好ましい。また、好ましい態様としては、以下に述べる下限の変更値と上限の変更値を組み合わせて構成される条件式を満足するものでもよい。下記に例として好ましい条件式の変更例を述べるが、条件式の変更例は下記に式として記載されたものに限定されず、記載された変更値を組み合わせたものとしてもよい。
 条件式(9)の上限は13とすることが好ましく、これにより像面湾曲および倍率の色収差の補正がより容易となる。像面湾曲および倍率の色収差の補正をさらに容易とするためには、条件式(9)の上限は12とすることがより好ましく、10とすることがさらに好ましい。
 条件式(9)の下限は4とすることが好ましく、これによりバックフォーカスの確保がさらに容易となる。バックフォーカスの確保をさらに容易とするためには、条件式(9)の下限は5とすることが好ましく、5.5とすることがより好ましい。
 上記より、例えば下記条件式(9-1)、(9-2)、(9-3)を満足することが好ましい。
  4<f3/f<13 … (9-1)
  5<f3/f<12 … (9-2)
  5.5<f3/f<10 … (9-3)
 条件式(19)の下限は1.4とすることが好ましく、これにより像面湾曲、ディストーションおよびコマ収差の補正が容易となる。像面湾曲、ディストーションおよびコマ収差の補正をさらに容易とするためには、条件式(19)の下限は1.7とすることが好ましく、1.9とすることがより好ましい。
 条件式(19)の上限は5.5とすることが好ましく、これにより小型化がさらに容易となる。小型化をさらに容易とするためには、条件式(19)の下限は5.0とすることが好ましく、4.4とすることがより好ましい。
 上記より、例えば下記条件式(19-1)、(19-2)、(19-3)を満足することが好ましい。
  1.4<(D4+D5)/f<5.5 … (19-1)
  1.7<(D4+D5)/f<5.0 … (19-2)
  1.9<(D4+D5)/f<4.4 … (19-3)
 条件式(20)の下限は-0.9とすることが好ましく、これにより倍率の色収差の補正が容易となる。倍率の色収差の補正をさらに容易とするためには、条件式(20)の下限は-0.5とすることが好ましく、-0.2とすることがより好ましい。
 条件式(20)の上限を0.9とすることが好ましく、これにより像面湾曲の補正がさらに容易となる。像面湾曲の補正をさらに容易とするためには、条件式(20)の下限は0.5とすることが好ましく、0.2とすることがより好ましい。
 上記より、例えば下記条件式(20-1)、(20-2)、(20-3)を満足することが好ましい。
  -0.9<f/R5<0.9 … (20-1)
  -0.5<f/R5<0.5 … (20-2)
  -0.2<f/R5<0.2 … (20-3)
 条件式(21)の下限は-2.5とすることが好ましく、これによりディストーションの補正が容易となる。ディストーションの補正をさらに容易とするためには、条件式(21)の下限は-2.0とすることが好ましく、-1.5とすることがより好ましい。
 条件式(21)の上限を2.0とすることが好ましく、これにより広角化と小型化がさらに容易となる。広角化と小型化をさらに容易とするためには、条件式(21)の下限は1.5とすることが好ましく、1.0とすることがより好ましい。
 上記より、例えば下記条件式(21-1)、(21-2)、(21-3)を満足することが好ましい。
  -2.5<f/R3<2.0 … (21-1)
  -2.0<f/R3<1.5 … (21-2)
  -1.5<f/R3<1.0 … (21-3)
 条件式(22)の下限は-25とすることが好ましく、これにより広角化が容易となる。広角化をさらに容易とするためには、条件式(22)の下限は-20とすることが好ましく、-19.5とすることがより好ましい。
 条件式(22)の上限を-4とすることが好ましく、これにより倍率の色収差もしくはディストーションの補正がさらに容易となる。倍率の色収差もしくはディストーションの補正をさらに容易とするためには、条件式(22)の下限は-5とすることが好ましく、-5.5とすることがより好ましい。
 上記より、例えば下記条件式(22-1)、(22-2)、(22-3)を満足することが好ましい。
  -25<f23/f<-4 … (22-1)
  -20<f23/f<-5 … (22-2)
  -19.5<f23/f<-5.5 … (22-3)
 条件式(23)の下限は3とすることが好ましく、これによりバックフォーカスの確保が容易となる。バックフォーカスの確保をさらに容易とするためには、条件式(23)の下限は4とすることが好ましく、4.1とすることがより好ましい。
 条件式(23)の上限を22とすることが好ましく、これにより軸上色収差および倍率の色収差の補正がさらに容易となる。軸上色収差および倍率の色収差の補正をさらに容易とするためには、条件式(23)の下限は20とすることが好ましく、18とすることがより好ましい。
 上記より、例えば下記条件式(23-1)、(23-2)、(23-3)を満足することが好ましい。
  3<f45/f<22 … (23-1)
  4<f45/f<20 … (23-2)
  4.1<f45/f<18 … (23-3)
 条件式(24)の上限は19.8とすることが好ましい。条件式(24)の上限を19.8とすることで、レンズ系の小型化がさらに容易となる。さらに、条件式(24)の上限は19.3とすることがより好ましく、19.0とすることがさらに好ましい。
 条件式(24)の下限は9.5とすることが好ましい。条件式(24)の下限を9.5とすることで、広角化がさらに容易となる。さらに、条件式(24)の下限は10とすることが好ましく、10.2とすることがより好ましい。
 上記より、例えば下記条件式(24-1)、(24-2)、(24-3)を満足することが好ましい。
  9.5<L/f<19.8 … (24-1)
  10<L/f<19.3 … (24-2)
  10.2<L/f<19.0 … (24-3)
 条件式(25)の上限は2.95とすることが好ましい。条件式(25)の上限を2.95とすることで、小型化がさらに容易となる。小型化のためには、条件式(25)の上限は2.9とすることがより好ましく、2.85とすることがより好ましく、2.3とすることがさらに好ましい。
 条件式(25)の下限は1.5とすることが好ましい。条件式(25)の下限を1.5とすることで、バックフォーカスの確保がより容易となる。条件式(25)の下限は1.8とすることがより好ましく、1.85とすることがさらに好ましい。
 上記より、例えば下記条件式(25-1)、(25-2)を満足することが好ましい。
  1.5<Bf/f<2.95 … (25-1)
  1.85<Bf/f<2.85 … (25-2)
 条件式(26)の上限は2.5とすることが好ましく、これにより広角化がさらに容易となる。さらに広角化を容易とするためには、条件式(26)の上限は2.0とすることが好ましく、1.9とすることがより好ましい。
 条件式(26)の下限は1.2とすることが好ましく、これによりディストーションの補正がさらに容易となる。さらに条件式(26)の下限は1.3とすることが好ましく、1.4とすることがより好ましく、1.5とすることがさらにより好ましい。
 上記より、例えば下記条件式(26-1)、(26-2)、(26-3)を満足することが好ましい。
  1.2≦(R1+R2)/(R1-R2)≦2.5 … (26-1)
  1.3≦(R1+R2)/(R1-R2)≦2.0 … (26-2)
  1.5≦(R1+R2)/(R1-R2)≦1.9 … (26-3)
 開口絞りは、第3レンズL3と第4レンズL4との間に配置されていることが好ましい。開口絞りを第3レンズL3と第4レンズL4との間に配置することで、系全体を小型化することが可能となる。開口絞りが物体側に近い位置にあると、第1レンズL1の外径を小さくすることが容易となるが、開口絞りが物体側に近づきすぎると第1レンズL1および第2レンズL2で軸上光線と軸外光線との分離が難しくなり、像面湾曲の補正が困難となる。開口絞りを第3レンズL3と第4レンズL4との間に配置することで、レンズ径を小型化しながら像面湾曲を補正することが容易となる。
 第1レンズL1、第2レンズL2、第4レンズL4および第6レンズL6の材質のd線に対するアッベ数を40以上とすることが好ましく、これにより、色収差の発生を抑え、良好な解像性能を得ることが可能となる。また、47以上とすることがより好ましい。
 第2レンズL2の材質のd線に対するアッベ数は50以上とすることが好ましく、これにより、色収差の発生をさらに抑え、良好な解像性能を得ることが可能となる。また、52以上とすることがより好ましい。
 第6レンズL6の材質のd線に対するアッベ数は50以上とすることが好ましく、これにより、色収差の発生をさらに抑え、良好な解像性能を得ることが可能となる。また、52以上とすることがより好ましい。
 第3レンズL3の材質のd線に対するアッベ数を40以下とすることが好ましく、これにより、倍率の色収差を良好に補正することが可能となる。また、30以下とすることがより好ましく、28以下とすることがさらに好ましく、25以下とすることがさらにより好ましい。
 第5レンズL5の材質のd線に対するアッベ数を40以下とすることが好ましく、これにより、倍率の色収差を良好に補正することが可能となる。また、30以下とすることがより好ましく、28以下とすることがさらに好ましく、25以下とすることがさらにより好ましく、20以下とすることがさらによりいっそう好ましい。
 第1レンズL1の材質のd線に対するアッベ数をνd1、第2レンズL2の材質のd線に対するアッベ数をνd2としたとき、νd1/νd2は0.7以上であることが好ましく、これにより、色収差の発生を抑え、良好な解像性能を得ることができる。さらに、0.8以上であることがより好ましい。第1レンズL1と第2レンズL2とのアッベ数のバランスをとり、色収差の発生を抑えるためには、νd1/νd2は1.2以下であることが好ましい。
 第2レンズL2の材質のd線に対するアッベ数をνd2、第3レンズL3の材質のd線に対するアッベ数をνd3としたとき、νd2/νd3は2.0以上であることが好ましく、これにより、軸上の色収差および倍率の色収差を良好に補正することが可能となる。
 第1レンズL1の材質のd線に対するアッベ数をνd1、第3レンズL3の材質のd線に対するアッベ数をνd3としたとき、νd1/νd3は1.4以上であることが好ましく、これにより、軸上の色収差および倍率色収差を良好に補正することが容易となる。さらに軸上の色収差および倍率色収差を良好に補正するためには、1.5以上であることがより好ましい。
 第1レンズL1の材質のd線に対するアッベ数をνd1、第3レンズL3の材質のd線に対するアッベ数をνd3としたとき、νd1/νd3は2.5以下であることが好ましく、これにより、第3レンズL3のアッベ数が小さくなりすぎてしまうのを防ぐことができ、第3レンズL3の材質を安価とすることが容易となるか、または第1レンズL1のアッベ数が大きくなりすぎてしまうのを防ぐことができるため、第1レンズL1の屈折率を大きくして、第1レンズL1のパワーを強くすることが容易となり、レンズ系の小型化およびディストーションの補正が容易となる。
 第1レンズL1の材質のd線に対する屈折率を1.90以下とすることが好ましく、これにより、第1レンズL1の材質を安価にすることが容易となる。さらに、屈折率の低い材質とすることで、アッベ数の大きい材質を選択することが可能となり、色収差の補正が容易となり、良好な解像性能を得ることが容易となる。さらに色収差を良好に補正するためには、1.85以下とすることが好ましい。
 第1レンズL1の材質のd線に対する屈折率を1.60以上とすることが好ましく、これにより、第1レンズL1のパワーを強くすることが容易となり、広角化が容易となるとともに、ディストーションの補正が容易となる。さらに広角化およびディストーションの補正を容易とするには1.65以上とすることがより好ましく、1.70以上とすることがさらに好ましい。
 第2レンズL2の材質のd線に対する屈折率を1.70以下とすることが好ましく、これにより、第2レンズL2の材質を安価にすることが可能となる。さらに、屈折率の高い材質ではアッベ数が小さくなってしまうため、色収差が大きくなってしまい、良好な解像性能を得ることが困難となる。第2レンズL2の材質を安価にするためには、1.65以下とすることがより好ましく、1.60以下とすることがさらに好ましい。
 第2レンズL2の材質のd線に対する屈折率を1.50以上とすることが好ましく、これにより、第2レンズL2のパワーを強くすることが容易となり、ディストーションの補正が容易となる。また、第2レンズL2のパワーを強くすることが容易となるため、レンズ系を小型化することが容易となる。
 第3レンズL3の材質のd線に対する屈折率を1.75以下とすることが好ましく、これにより、第3レンズL3の材質を安価にすることが可能となる。第3レンズL3の材質を安価にするためには、1.70以下とすることがより好ましく、1.68以下とすることがさらに好ましく、1.65以下とすることがさらにより好ましい。
 第3レンズL3の材質のd線に対する屈折率を1.50以上とすることが好ましく、これにより、第3レンズL3の材質の屈折率を高くし、第3レンズL3のパワーを強くすることが容易となり、倍率色収差および像面湾曲の補正が容易となる。第3レンズL3の屈折率を高くするためには、1.55以上とすることがより好ましく、1.60以上とすることがさらに好ましい。
 第4レンズの材質のd線に対する屈折率を1.80以下とすることが好ましく、これにより、第4レンズL4の材質を安価にすることが可能となる。また、アッベ数の大きい材質を選ぶことが容易となるため、色収差の補正が容易となり、良好な解像性能を得ることができる。
 第4レンズL4の材質のd線に対する屈折率を1.50以上とすることが好ましく、これにより、第4レンズL4の材質の屈折率を高くし、第4レンズL4のパワーを強くすることが容易となる。第4レンズL4のパワーを強くすることで、第4レンズL4で球面収差の補正が容易となるとともに、第4レンズL4で光線を大きく曲げることが容易となるため周辺光線が撮像素子へ入射する角度を抑えることが容易となり、シェーディングを抑えることが容易となる。
 第5レンズL5の材質のd線に対する屈折率を1.50以上とすることが好ましく、これにより、第5レンズL5の材質の屈折率を高くし、第5レンズL5のパワーを強くすることが容易となる。また、アッベ数の大きい材質を選ぶことが容易となるため、色収差の補正が容易となり、良好な解像性能を得ることができる。第5レンズL5の材質の屈折率を高くするためには、1.55以上とすることがより好ましく、1.60以上とすることがさらに好ましく、1.8以上とすることがさらにより好ましく、1.9以上とすることがさらによりいっそう好ましい。
 第6レンズL6の材質のd線に対する屈折率を1.50以上とすることが好ましく、これにより、第6レンズL6の材質の屈折率を高くし、第6レンズL6のパワーを強くすることが容易となるため、球面収差の補正と光線が撮像素子へ入射する角度を抑えることが容易となり、シェーディングを抑えることが容易となる。第6レンズL6の材質のd線に対する屈折率を1.70以下とすることが好ましく、これによりアッベ数の大きい材質を選ぶことが容易となるため、色収差の補正が容易となり、良好な解像性能を得ることが容易となる。色収差の補正のためには、第6レンズL6の材質のd線に対する屈折率を1.60以下とすることが好ましい。
 第2レンズL2の物体側の面は非球面とすることが好ましく、これにより、レンズ系を小型化および広角化することが容易となるか、像面湾曲およびディストーションを良好に補正することが容易となる。第2レンズL2の物体側の面を、中心と有効径端とがともに正のパワーを持ち、中心と有効径端との正のパワーを比較した場合、有効径端では中心と比較して正のパワーが弱い形状とすることが好ましい。第2レンズL2の物体側の面をこのような形状とすることで、レンズ系の小型化と同時に、広角化が容易となる。
 なお、「面の有効径」とは、結像に寄与する全光線とレンズ面との交わる点を考えたとき、径方向における最も外側の点(最も光軸から離れた点)からなる円の直径を意味し、「有効径端」とは、この最も外側の点を意味するものとする。なお、光軸に対して回転対称の系においては、上記の最も外側の点からなる図形は円となるが、回転対称ではない系においては円とならない場合があり、そのような場合は、等価の円形を考えてその円の直径を有効径としてもよい。
 また、非球面の形状に関して、各レンズのレンズ面i(iは該当するレンズ面を表す記号である。例えば、第2レンズL2の物体側の面が3で表されるとき、第2レンズL2の物体側の面に関する以下の説明はi=3として考えることができる)上のある点をXiとして、その点での法線と光軸との交点をPiとするとき、Xi-Piの長さ(|Xi-Pi|)をXi点での曲率半径の絶対値|RXi|とし、Piをその点Xiでの曲率中心と定義する。また、第iレンズ面と光軸の交点をQiとする。このとき点Xiでのパワーは点Piが点Qiを基準として物体側、像側のいずれの側にあるかで定義する。物体側の面においては点Piが点Qiより像側にある場合を正のパワー、点Piが点Qiより物体側にある場合を負のパワーと定義し、像側の面においては点Piが点Qiより物体側にある場合を正のパワー、点Piが点Qiより像側にある場合を負のパワーと定義する。
 中心と点Xiとのパワーを比較する場合、中心の曲率半径(近軸の曲率半径)の絶対値と、点Xiでの曲率半径の絶対値|RXi|とを比較し、近軸の曲率半径絶対値より|RXi|が小さくなっている場合、中心と比較して点Xiのパワーは強くなっているものとする。逆に近軸の曲率半径絶対値より|RXi|が大きくなっている場合、中心と比較して点Xiのパワーは弱くなっているものとする。これは面が正のパワーである場合も負のパワーである場合も同様である。
 ここで、図2を参照しながら、上記の第2レンズL2の物体側の面の形状について説明する。図2は図1で示した撮像レンズ1の光路図である。図2において、点Q3は、第2レンズL2の物体側の面の中心であり、第2レンズL2の物体側の面と光軸Zとの交点である。また図2において、第2レンズL2の物体側の面上の点X3は有効径端にあり、軸外光束3に含まれる最も外側の光線6と第2レンズL2の物体側の面との交点となっている。図2では点X3は有効径端にあるが、点X3は第2レンズ物体側の面上の任意の点であるため、他の点でも同様に考えることができる。
 このとき、点X3でのレンズ面の法線と光軸Zとの交点を図2に示すように点P3とし、点X3と点P3を結ぶ線分X3-P3を点X3での曲率半径RX3と定義し、線分X3-P3の長さ|X3-P3|を曲率半径RX3の絶対値|RX3|と定義する。すなわち、|X3-P3|=|RX3|である。また、点Q3での曲率半径、すなわち、第2レンズL2の物体側の面の中心の曲率半径をR3とし、その絶対値を|R3|とする(図2では不図示)。
 上記の第2レンズL2の物体側の面の「中心と有効径端とがともに正のパワーを持ち、中心と有効径端との正のパワーを比較した場合、有効径端では中心と比較して正のパワーが弱い形状」とは、点X3を有効径端とした場合に、点Q3を含む近軸領域が凸形状であり、点P3が点Q3よりも像側にあり、点X3での曲率半径の絶対値|RX3|が点Q3での曲率半径の絶対値|R3|よりも大きい形状を意味する。
 第2レンズL2の物体側の面は、中心で正のパワーを持ち、有効径端では負のパワーを持つ形状としてもよい。第2レンズL2の物体側の面をこのような形状とすることで、レンズ系の小型化と同時に、広角化が容易となる。
 上記の第2レンズL2の物体側の面の「中心で正のパワーを持ち、有効径端では負のパワーを持つ形状」とは、点X3を有効径端とした場合に、点Q3を含む近軸領域が凸形状であり、点P3が点Q3よりも物体側にある形状を意味する。
 第2レンズL2の物体側の面は、中心で負のパワーを持ち、中心と有効径端の間に正のパワーとなる部分を含む形状であることが好ましい。第2レンズL2の物体側の面をこのような形状とすることで、レンズ系を小型化、広角化すると同時に、像面湾曲を良好に補正することが可能となる。
 上記の第2レンズL2の物体側の面の「中心で負のパワーを持ち、中心と有効径端との間に正のパワーとなる部分を含む形状」とは、点Q3を含む近軸領域が凹形状であり、中心と有効径端との間に、点P3が点Q3より像側にある点X3が存在する形状を意味する。
 第2レンズL2の物体側の面は、中心で負のパワーを持ち、中心と有効径端との間に正のパワーとなる部分を含み、有効径端では負のパワーを持つ形状としてもよい。第2レンズL2の物体側の面をこのような形状とすることで、レンズ系を小型化、広角化すると同時に像面湾曲およびディストーションを良好に補正することが可能となる。
 上記の第2レンズL2の物体側の面の「中心で負のパワーを持ち、中心と有効径端との間に正のパワーとなる部分を含む形状」とは、点Q3を含む近軸領域が凹形状であり、中心と有効径端との間に、点P3が点Q3より像側にある点X3が存在する形状を意味する。また、上記の第2レンズL2の「有効径端では負のパワーを持つ形状」とは、点X3を有効径端とした場合に、点P3が点Q3よりも物体側にある形状を意味する。
 第2レンズL2の物体側の面は、中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが弱い形状としてもよい。第2レンズL2の物体側の面をこのような形状とすることで、レンズ系を小型化、広角化すると同時に像面湾曲を良好に補正することが可能となる。
 上記の第2レンズL2の物体側の面の「中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが弱い形状」とは、点X3を有効径端とした場合に、点Q3を含む近軸領域が凹形状であり、点P3が点Q3よりも物体側にあり、点X3での曲率半径の絶対値|RX3|が点Q3での曲率半径の絶対値|R3|よりも大きい形状を意味する。
 ここで、図2では理解を助けるために、半径|R3|で点Q3を通り、光軸上の点を中心とする円CQ3を二点鎖線で描き、半径|RX3|で点X3を通り、光軸上の点を中心とする円CX3の一部を破線で描いている。円CX3の方が円CQ3よりも大きな円となっており、|R3|<|RX3|であることが明示されている。
 第2レンズL2の像側の面は非球面とすることが好ましく、これにより像面湾曲およびディストーションを良好に補正することができる。第2レンズL2の像側の面は、本発明の第3の実施形態のように、中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが弱い形状とすることが好ましい。第2レンズL2の像側の面をこのような形状とすることで、像面湾曲およびディストーションを良好に補正することが可能となる。
 第2レンズL2の像側の面の上記形状は、図2を用いて説明した第2レンズL2の物体側の面の形状と同様にして以下のように考えることができる。レンズ断面図において、第2レンズL2の像側の面上のある点をX4として、その点での法線と光軸Zとの交点を点P4とするとき、点X4と点P4とを結ぶ線分X4-P4を点X4での曲率半径とし、点X4と点P4とを結ぶ線分の長さ|X4-P4|を点X4での曲率半径の絶対値|RX4|とする。よって、|X4-P4|=|RX4|となる。また、第2レンズL2の像側の面と光軸Zとの交点、すなわち、第2レンズL2の像側の面の中心を点Q4とする。そして、点Q4での曲率半径の絶対値を|R4|とする。
 上記の第2レンズL2の像側の面の「中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが弱い形状」とは、点X4を有効径端とした場合に、点Q4を含む近軸領域で凹形状であり、点P4が点Q4より像側にあり、かつ、点X4での曲率半径の絶対値|RX4|が点Q4での曲率半径の絶対値|R4|よりも大きい形状を意味する。
 第3レンズL3の物体側の面は非球面とすることが好ましい。第3レンズL3の物体側の面は、本発明の第2の実施形態のように、中心と有効径端とがともに負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状、または中心で負のパワーを持ち、有効径端では正のパワーを持つ形状とすることが好ましい。第3レンズL3の物体側の面をこのような形状とすることで、コマ収差を良好に補正することが可能となる。
 第3レンズL3の物体側の面の上記形状は、図2を用いて説明した第2レンズL2の物体側の面の形状と同様にして以下のように考えることができる。レンズ断面図において、第3レンズL3の物体側の面上のある点をX5として、その点での法線と光軸Zとの交点を点P5とするとき、点X5と点P5とを結ぶ線分X5-P5を点X5での曲率半径とし、点X5と点P5とを結ぶ線分の長さ|X5-P5|を点X5での曲率半径の絶対値|RX5|とする。よって、|X5-P5|=|RX5|となる。また、第3レンズL3の物体側の面と光軸Zとの交点、すなわち、第3レンズL3の物体側の面の中心を点Q5とする。そして、点Q5での曲率半径の絶対値を|R5|とする。
 第3レンズL3の物体側の面の「中心と有効径端とがともに負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状」とは、点X5を有効径端とした場合に、点Q5を含む近軸領域で凹形状であり、点P5が点Q5より物体側にあり、かつ、点X5での曲率半径の絶対値|RX5|が点Q5での曲率半径の絶対値|R5|よりも大きい形状を意味する。
 また、「中心で負のパワーを持ち、有効径端では正のパワーを持つ形状」とは、点X5を有効径端とした場合に、点Q5を含む近軸領域で凹形状であり、点P5が点Q5より像側にある形状を意味する。
 第3レンズL3の物体側の面は、中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが強い形状としてもよい。第3レンズL3の物体側の面をこのような形状とすることで、広角化が容易となるとともに、第1レンズL1および第2レンズL2で軸上光線と軸外光線とを分離することが容易となるため、像面湾曲およびディストーションの補正が容易となる。
 第3レンズL3の物体側の面の「中心と有効径端とがともに負のパワーを持ち、中心と有効径端との負のパワーを比較した場合、有効径端では中心と比較して負のパワーが強い形状」とは、点X5を有効径端とした場合に、点Q5を含む近軸領域で凹形状であり、点P5が点Q5より物体側にあり、かつ、点X5での曲率半径の絶対値|RX5|が点Q5での曲率半径の絶対値|R5|よりも小さい形状を意味する。
 第3レンズL3の物体側の面においては、近軸領域を平面としてもよい。
 第3レンズL3の像側の面は非球面とすることが好ましい。第3レンズL3の像側の面は、本発明の第3の実施形態のように、中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状とすることが好ましい。第3レンズL3をこのような形状とすることで、軸外光線によるコマ収差を良好に補正して、画像周辺部の画質を向上させることができる。
 第3レンズL3の像側の面の上記形状は、図2を用いて説明した第2レンズL2の物体側の面の形状と同様にして以下のように考えることができる。レンズ断面図において、第3レンズL3の像側の面上のある点をX6として、その点での法線と光軸Zとの交点を点P6とするとき、点X6と点P6とを結ぶ線分X6-P6を点X6での曲率半径とし、点X6と点P6とを結ぶ線分の長さ|X6-P6|を点X6での曲率半径の絶対値|RX6|とする。よって、|X6-P6|=|RX6|となる。また、第3レンズL3の像側の面と光軸Zとの交点、すなわち、第3レンズL3の像側の面の中心を点Q6とする。そして、点Q6での曲率半径の絶対値を|R6|とする。
 第3レンズL3の像側の面の「中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状」とは、点X6を有効径端とした場合に、点Q6を含む近軸領域で凸形状であり、点P6が点Q6より物体側にあり、かつ、点X6での曲率半径の絶対値|RX6|が点Q6での曲率半径の絶対値|R6|よりも大きい形状を意味する。
 第3レンズL3の像側の面は、中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが強い形状としてもよい。第3レンズL3をこのような形状とすることで、球面収差および像面湾曲を良好に補正することが容易となる。
 第3レンズL3の像側の面の「中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが強い形状」とは、点X6を有効径端とした場合に、点Q6を含む近軸領域で凸形状であり、点P6が点Q6より物体側にあり、かつ、点X6での曲率半径の絶対値|RX6|が点Q6での曲率半径の絶対値|R6|よりも小さい形状を意味する。
 第6レンズL6の物体側の面は非球面とすることが好ましい。第6レンズL6の物体側の面は、中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状とすることが好ましい。第6レンズL6の物体側の面をこのような形状とすることで、像面湾曲および球面収差を良好に補正することが容易となる。
 第6レンズL6の物体側の面の上記形状は、図2を用いて説明した第2レンズL2の物体側の面の形状と同様にして以下のように考えることができる。レンズ断面図において、第6レンズL6の物体側の面上のある点をX12として、その点での法線と光軸Zとの交点を点P12とするとき、点X12と点P12とを結ぶ線分X12-P12を点X12での曲率半径とし、点X12と点P12とを結ぶ線分の長さ|X12-P12|を点X12での曲率半径の絶対値|RX12|とする。よって、|X12-P12|=|RX12|となる。また、第6レンズL6の物体側の面と光軸Zとの交点、すなわち、第6レンズL6の物体側の面の中心を点Q12とする。そして、点Q12での曲率半径の絶対値を|R12|とする。
 第6レンズL6の物体側の面の「中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状」とは、点X12を有効径端とした場合に、点Q12を含む近軸領域で凸形状であり、点P12が点Q12より像側にあり、かつ、点X12での曲率半径の絶対値|RX12|が点Q12での曲率半径の絶対値|R12|よりも大きい形状を意味する。
 第6レンズL6の像側の面は非球面とすることが好ましい。第6レンズL6の像側の面は中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状、もしくは中心が正のパワーを持ち、有効径端では負のパワーを持つ形状とすることが好ましい。第6レンズL6の像側の面をこのような形状とすることで、球面収差および像面湾曲を良好に補正することが可能となる。
 第6レンズL6の像側の面の上記形状は、図2を用いて説明した第2レンズL2の物体側の面の形状と同様にして以下のように考えることができる。レンズ断面図において、第6レンズL6の像側の面上のある点をX13として、その点での法線と光軸Zとの交点を点P13とするとき、点X13と点P13とを結ぶ線分X13-P13を点X13での曲率半径とし、点X13と点P13とを結ぶ線分の長さ|X13-P13|を点X13での曲率半径の絶対値|RX13|とする。よって、|X13-P13|=|RX13|となる。また、第6レンズL6の像側の面と光軸Zとの交点、すなわち、第6レンズL6の像側の面の中心を点Q13とする。そして、点Q13での曲率半径の絶対値を|R13|とする。
 上記の第6レンズL6の像側の面の「中心と有効径端とがともに正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状」とは、点X13を有効径端とした場合に、点Q13を含む近軸領域で凸形状であり、点P13が点Q13より物体側にあり、かつ、点X13での曲率半径の絶対値|RX13|が点Q13での曲率半径の絶対値|R13|よりも大きい形状を意味する。
 また、「中心が正のパワーを持ち、有効径端では負のパワーを持つ形状」とは、点X13を有効径端とした場合に、点Q13を含む近軸領域で凸形状であり、点P13が点Q13より像側にある形状を意味する。
 第2レンズL2の物体側の面から第6レンズL6の像側の面までの各面を、上記のような非球面形状とすることで、球面収差、像面湾曲およびコマ収差に加えてディストーションまで良好に補正することが可能となる。
 第1レンズL1は、物体側に凸面を向けたメニスカスレンズであることが好ましく、これにより、例えば180度を超えるような広角のレンズを作製することが可能となる。第1レンズL1が両凹レンズとなると、第1レンズL1のパワーを強くすることが容易となるため広角化は容易となるが、第1レンズL1で急激に光線が曲げられてしまうため、ディストーションの補正が困難となる。また、物体側の面を凹面とすると、周辺光線がレンズ面に入射する際の入射角が大きくなり、面への入射時の反射損失が大きくなるため周辺部が暗くなってしまう。また、入射角が180度を超える光線は入射することができなくなってしまう。そのため、広角でありながらディストーションの補正が容易とするためには、第1レンズL1は物体側に凸面を向けた正メニスカスレンズとすることが好ましい。
 第2レンズL2を両凹レンズとすることが好ましく、これにより、広角化が容易となるとともに、像面湾曲、ディストーションおよび球面収差の補正が容易となる。
 第2レンズL2を物体側に凸面を向けたメニスカスレンズとしてもよく、これにより、広角化が容易となるとともに、ディストーションおよび像面湾曲を良好に補正することが可能となる。
 第3レンズL3の物体側の面は凹面または平面であることが好ましく、これにより、広角化が容易となるとともに、第1レンズL1および第2レンズL2で軸上光線と周辺光線とを分離することが容易となり、像面湾曲およびコマ収差を良好に補正することが可能となる。
 第3レンズL3の像側の面は凸面であることが好ましく、これにより、第3レンズL3のパワーを正のパワー正のパワーとすることができ、倍率の色収差を良好に補正することが可能となる。
 第3レンズL3を物体側に凹面を向けたメニスカス形状または物体側に平面を向けた平凸レンズとすることが好ましく、これにより、レンズ系の系方向を小型化することが容易となるとともに、像面湾曲およびコマ収差を良好に補正することが可能となる。
 第4レンズL4を両凸レンズとすることが好ましく、これにより、球面収差および像面湾曲を良好に補正することが可能となる。さらに第4レンズL4のパワーを強くすることで、第5レンズL5との間で色収差の補正が容易となる。
 第5レンズL5を両凹レンズまたは像側に平面を向けた平凸レンズとすることが好ましく、これにより、像面湾曲を良好に補正することが可能となる。さらに第5レンズL5のパワーを強くすることが容易となり、第4レンズL4との間で色収差の補正が容易となる。
 第5レンズL5を像側に凸面を向けた負のメニスカスレンズ、もしくは像側に平面を向けた平凹レンズとしてもよく、これにより、コマ収差および像面湾曲を良好に補正することが容易となる。
 第6レンズL6を両凸レンズとすることが好ましく、これにより、光線が撮像素子へ入射する角度を抑えることが可能となり、シェーディングを抑えることが容易となる。
 第6レンズL6を像側に凸面を向けたメニスカスレンズとしてもよく、これにより、像面湾曲を良好に補正することが容易となる。
 第1レンズL1の材質はガラスであることが好ましい。撮像レンズが例えば車載用カメラや監視カメラ用等の厳しい環境において使用される場合には、最も物体側に配置される第1レンズL1は、風雨による表面劣化、直射日光による温度変化に強く、さらには油脂・洗剤等の化学薬品に強い材質、すなわち耐水性、耐候性、耐酸性および耐薬品性等が高い材質を用いることが要望され、また、堅く、割れにくい材質を用いることが要望されることがある。材質をガラスとすることで、これらの要望を満たすことが可能となる。また、第1レンズL1の材質として、透明なセラミックスを用いてもよい。また、第1レンズL1の材質として、ヌープ硬さが550以上の材質を用いてもよい。また、第1レンズL1の材質として、日本光学硝子工業会制定の粉末耐酸性、粉末耐水性試験において、粉末耐酸性がクラス4以上であることが好ましく、粉末耐水性がクラス3以上であることが好ましい。なお、クラスは高いほど好ましい。また、ISO規定の耐洗剤性においてクラス3以上であることが好ましい。表面法耐候性においてクラス3以上であることが好ましい。また、例えば車載カメラや監視カメラ用レンズは太陽からの紫外線に長期間晒されるため、このレンズに用いられる材質として紫外線に強い材質を用いることが好ましい。
 第1レンズL1の片側の面もしくは両側の面を非球面としてもよい。第1レンズL1をガラス非球面レンズとすることで、諸収差をさらに良好に補正することが可能となる。
 なお、第1レンズL1の物体側の面に、強度、耐傷性および耐薬品性を高めるための保護手段を施してもよく、その場合には、第1レンズL1の材質をプラスチックとしてもよい。このような保護手段は、ハードコートであってもよく、撥水コートであってもよい。
 第2レンズL2、第3レンズL3および第6レンズL6のいずれか、あるいはこれらのうちの任意の複数の組み合わせにおいて、その材質をプラスチックとすることが好ましい。材質をプラスチックとすることで、レンズ系を安価で軽量に構成することが可能となるとともに、非球面を設けた場合には、非球面形状を正確に作製することができるため、良好な性能のレンズを作製することが可能となる。
 第4レンズL4および第5レンズL5の少なくとも一方の材質をプラスチックとしてもよい。材質をプラスチックとすることで、レンズ系を安価で軽量に構成することが可能となるとともに、非球面を設けた場合には、非球面形状を正確に作製することができるため、良好な性能のレンズを作製することが可能となる。
 第2レンズL2および第6レンズL6の材質は、ポリオレフィンであることが好ましい。ポリオレフィンは吸水率が低く、透明度が高く、複屈折が小さく、アッベ数の大きい材質を作製することが可能となる。第2レンズL2および第6レンズL6の材質をポリオレフィンとすることで、吸水による形状変更が小さく、透過率が高く、複屈折の小さいレンズを作製することが可能となる。さらにアッベ数が大きい材質とすることができるため、軸上の色収差、倍率色収差の発生を抑えることができ、耐環境性の高い良好な解像性能のレンズを作製することが可能となる。
 第3レンズL3の材質はポリカーボネイトであることが好ましい。ポリカーボネイトはアッベ数が小さいという特徴がある。第3レンズL3にポリカーボネイトを使用することで、倍率色収差を良好に補正することが可能となる。
 第2レンズL2および第6レンズL6の材質をアクリルとしてもよい。アクリルは安価であるためアクリルを用いることで、レンズ系を安価にすることが可能となる。
 第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5および第6レンズL6の少なくともいずれか1つにプラスチック材質を用いた場合は、その材質として、プラスチックに光の波長より小さな粒子を混合させたいわゆるナノコンポジット材料を用いてもよい。
 第2レンズL2、第3レンズL3および第6レンズL6のいずれか、あるいはこれらのうちの任意の複数の組み合わせにおいて、その材質をガラスとしてもよい。材質をガラスとすることで、温度変化による性能劣化を抑制することが可能となる。
 第4レンズL4および第5レンズL5の少なくとも一方の材質をガラスとすることが好ましい。第4レンズL4の材質をガラスとすることで、温度変化による性能劣化を抑制することが可能となる。また、第5レンズL5の材質をガラスとすることで、アッベ数の小さい材質を選ぶことが容易となるため、色収差の補正が容易となる。
 第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5および第6レンズL6の少なくともいずれか1つの材質としてガラス転移温度(Tg)が145℃以上のものを用いることが好ましく、さらに好ましくは、150℃以上であることが好ましい。ガラス転移温度が150℃以上の材質を使用することで、耐熱性のよいレンズを作製することが可能となる。
 なお、撮像レンズ1の用途に応じて、レンズ系と撮像素子5との間に紫外光から青色光をカットするようなフィルタ、または赤外光をカットするようなIR(InfraRed)カットフィルタを挿入してもよい。上記フィルタと同様の特性を持つコートをレンズ面に塗布してもよい。またはいずれかのレンズの材質として紫外光や青色光、赤外光などを吸収する材質を用いてもよい。
 図1では、レンズ系と撮像素子5との間に各種フィルタ等を想定した光学部材PPを配置した例を示しているが、この代わりに、各レンズの間にこれらの各種フィルタを配置してもよい。あるいは、撮像レンズが有するいずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
 なお、各レンズ間の有効径外を通過する光束は、迷光となって像面に達し、ゴーストとなるおそれがあるため、必要に応じて、この迷光を遮光する遮光手段を設けることが好ましい。この遮光手段としては、例えばレンズの有効径外の部分に不透明な塗料を施したり、不透明な板材を設けたりしてもよい。または迷光となる光束の光路に不透明な板材を設けて遮光手段としてもよい。あるいは、最も物体側のレンズのさらに物体側に迷光を遮断するフードのようなものを配置してもよい。一例として、図1では、第1レンズL1および第2レンズL2それぞれの像側の面の有効径外に遮光手段11,12を設けた例を示している。なお、遮光手段を設ける箇所は図1に示す例に限定されず、他のレンズや、レンズ間に配置してもよい。
 さらに、各レンズの間に周辺光量比が実用上問題のない範囲で周辺光線を遮断する絞り等の部材を配置してもよい。周辺光線とは、光軸Z外の物点からの光線のうち、光学系の入射瞳の周辺部分を通る光線のことである。このように周辺光線を遮断する部材を配置することにより、結像領域周辺部の画質を向上させることができる。また、この部材でゴーストを発生させる光を遮断することにより、ゴーストを低減することが可能となる。
 また、第1から第3の実施形態に係る撮像レンズにおいては、レンズ系が、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5および第6レンズL6の6枚のみからなるように構成することが好ましい。レンズ系を6枚のレンズのみで構成することで、レンズ系を安価にすることが可能となる。
 本実施形態に係る撮像装置は、本実施形態に係る撮像レンズを備えているため、小型で安価に構成でき、十分広い画角を有し、撮像素子を用いて解像度の高い良好な像を得ることができる。
 なお、第1から第3の実施形態に係る撮像レンズを備えた撮像装置で撮影した画像を携帯電話に表示するようにしてもよい。例えば本実施形態の撮像レンズを備えた撮影装置を車載カメラとして自動車に搭載し、自動車の背後や周辺を車載カメラにより撮影し、撮影により取得した画像を表示装置に表示する場合がある。このような場合、カーナビゲーションシステム(以下カーナビとする)が搭載されている自動車においては、撮影した画像はカーナビの表示装置に表示すればよいが、カーナビが搭載されていない場合、液晶ディスプレイ等の専用の表示装置を自動車に設置する必要がある。しかしながら、表示装置は高価である。一方、近年の携帯電話は、動画やWebの閲覧が可能になる等、高性能な表示装置が搭載されている。携帯電話を車載カメラ用の表示装置として用いることで、カーナビが搭載されていない自動車に関しても、専用の表示装置を搭載する必要が無くなり、その結果、安価に車載カメラを搭載することが可能となる。
 ここで、車載カメラが撮影した画像は、ケーブル等を用いて有線にて携帯電話に送信してもよく、赤外線通信等の無線により携帯電話に送信してもよい。また、携帯電話等と自動車の作動状態とを連動させ、自動車のギアがバックに入ったり、ウインカー等を出したりした際に、自動で携帯電話の表示装置に車載カメラの画像を表示するようにしてもよい。
 なお、車載カメラの画像を表示する表示装置としては、携帯電話のみならず、PDA等の携帯情報端末でもよく、小型のパソコンでもよく、あるいは持ち歩き可能な小型のカーナビでもよい。
〔撮像レンズの数値実施例〕
 次に、本発明の撮像レンズの数値実施例について説明する。実施例1~実施例19の撮像レンズのレンズ断面図をそれぞれ図3~図21に示す。図3~図21において、図の左側が物体側、右側が像側であり、図1と同様、開口絞りSt、光学部材PP、像面Simに配置された撮像素子5も併せて図示している。各図の開口絞りStは形状や大きさを表すものではなく、光軸Z上の位置を示すものである。各実施例において、レンズ断面図の符号Ri、Di(i=1、2、3、…)は以下に説明するレンズデータのRi、Diと対応している。
 なお、本発明の第1の実施形態に係る撮像レンズは実施例1~3,7~10,19に、本発明の第2の実施形態に係る撮像レンズは実施例2,7,9,19に、本発明の第3の実施形態に係る撮像レンズは実施例1~3,6,8~19に対応する。
 表1~表19にそれぞれ実施例1~実施例19の撮像レンズのレンズデータを示す。各表の(A)には基本レンズデータを、(B)には各種データを、(C)には非球面データを示している。
 基本レンズデータにおいて、Siの欄は最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄はi番目の面の曲率半径を示し、Diの欄はi番目の面とi+1番目の面との光軸Z上の面間隔を示している。なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。また、Ndjの欄は最も物体側のレンズを1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄はj番目の光学要素のd線に対するアッベ数を示している。なお、基本レンズデータには、開口絞りStおよび光学部材PPも含めて示しており、開口絞りStに相当する面の面番号の欄には、(St)という語句を併せて記載している。
 基本レンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸曲率半径(中心の曲率半径)の数値を示している。非球面データには、非球面の面番号と、各非球面に関する非球面係数を示す。非球面データの数値の「E-n」(n:整数)は「×10-n」を意味し、「E+n」は「×10n」を意味する。なお、非球面係数は、以下の式で表される非球面式における各係数KA、RBm(m=3、4、5、…20)の値である。
Figure JPOXMLDOC01-appb-M000001
Zd:非球面深さ(高さYの非球面上の点から、非球面頂点が接する光軸に垂直な平面に
   下ろした垂線の長さ)
Y:高さ(光軸からのレンズ面までの距離)
C:近軸曲率
KA、RBm:非球面係数(m=3、4、5、…20)
 各種データにおいて、Lは第1レンズL1の物体側の面から像面Simまでの光軸Z上の距離(バックフォーカス分は空気換算長)、Bfは最も像側のレンズの像側の面から像面Simまでの光軸Z上の距離(バックフォーカスに相当、空気換算長)、fは全系の焦点距離、f1は第1レンズL1の焦点距離、f2は第2レンズL2の焦点距離、f3は第3レンズL3の焦点距離、f4は第4レンズL4の焦点距離、f5は第5レンズL5の焦点距離、f6は第6レンズL6の焦点距離、f23は第2レンズL2と第3レンズL3との合成焦点距離、f45は第4レンズL4と第5レンズL5との合成焦点距離である。
 また、表20、21に各実施例の条件式に対応する値を一括して示す。なお、条件式(1)は(R8+R9)/(R8-R9)、条件式(2)はD9/f、条件式(3)は(R5+R6)/(R5-R6)、条件式(4)は(R10+R11)/(R10-R11)、条件式(5)はD4/f、条件式(6)はνd3+νd5、条件式(7)は|f1/f|、条件式(8)は|f2/f|、条件式(9)はf3/f、条件式(10)はf4/f、条件式(11)はR2/f、条件式(12)はR9/f、条件式(13)はR1/f、条件式(14)はf6/f、条件式(15)はR13/f、条件式(16)はf5/f、条件式(17)はR4/f、条件式(18)はR10/f、条件式(19)は(D4+D5)/f、条件式(20)はf/R5、条件式(21)はf/R3、条件式(22)はf23/f、条件式(23)はf45/f、条件式(24)はL/f、条件式(25)はBf/f、条件式(26)は(R1+R2)/(R1-R2)である。
ただし、
R1:第1レンズL1の物体側の面の曲率半径
R2:第1レンズL1の像側の面の曲率半径
R3:第2レンズL2の物体側の面の曲率半径
R4:第2レンズL2の像側の面の曲率半径
R5:第3レンズ物体側の面の曲率半径
R6:第3レンズ像側の面の曲率半径
R8:第4レンズL4の物体側の面の曲率半径
R9:第4レンズL4の像側の面の曲率半径
R10:第5レンズL5の物体側の面の曲率半径
R11:第5レンズL5の像側の面の曲率半径
R13:第6レンズL6の像側の面の曲率半径
D4:第2レンズL2と第3レンズL3との光軸上の空気間隔
D5:第3レンズL3の中心厚
D9:第4レンズL4と第5レンズL5との光軸上の空気間隔
νd3:第3レンズL3の材質のd線に対するアッベ数
νd5:第5レンズL5の材質のd線に対するアッベ数
f:全系の焦点距離
f1:第1レンズL1の焦点距離
f2:第2レンズL2の焦点距離
f3:第3レンズL3の焦点距離
f4:第4レンズL4の焦点距離
f5:第5レンズL5の焦点距離
f6:第6レンズL6の焦点距離
f23:第2レンズL2および第3レンズL3の合成焦点距離
f45:第4レンズL4および第5レンズL5の合成焦点距離
L:第1レンズの物体側の面から像面までの光軸上の距離(バックフォーカス分は空気換算長)
Bf:最も像側のレンズの像側の面から像面までの光軸上の距離(空気換算長)
 各数値の単位として、長さについては「mm」を用いているが、これは一例であり、光学系は比例拡大または比例縮小しても使用可能なため、他の適当な単位を用いることもできる。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021
 上記実施例1~19の撮像レンズにおいて、第1レンズL1、第4レンズL4および第5レンズL5はガラス球面レンズであり、第2レンズL2、第3レンズL3および第6レンズL6はプラスチック非球面レンズである。
 上記実施例1~19に係る撮像レンズの各収差図をそれぞれ、図22(A)~図22(D)、図23(A)~図23(D)、図24(A)~図24(D)、図25(A)~図25(D)、図26(A)~図26(D)、図27(A)~図27(D)、図28(A)~図28(D)、図29(A)~図29(D)、図30(A)~図30(D)、図31(A)~図31(D)、図32(A)~図32(D)、図33(A)~図33(D)、図34(A)~図34(D)、図35(A)~図35(D)、図36(A)~図36(D)、図37(A)~図37(D)、図38(A)~図38(D)、図39(A)~図39(D)、図40(A)~図40(D)に示す。
 ここでは、実施例1の収差図を例にとり説明するが、他の実施例の収差図についても同様である。図22(A)、図22(B)、図22(C)および図22(D)はそれぞれ、実施例1に係る撮像レンズの球面収差、非点収差、ディストーション(歪曲収差)および倍率色収差(倍率の色収差)の収差図を示す。球面収差図のFはF値を意味し、その他の収差図のωは半画角を意味する。ディストーションの図は、全系の焦点距離f、画角φ(変数扱い、0≦φ≦ω)を用いて、理想像高を2f×tan(φ/2)とし、それからのずれ量を示す。各収差図には、d線(587.56nm)を基準波長とした収差を示すが、球面収差図には、F線(波長486.13nm)、C線(波長656.27nm)、正弦条件違反量(SNCと表記)についての収差も示し、倍率色収差図にはF線、C線についての収差を示す。倍率色収差図の線種は球面収差図のものと同じであるため、その表記を省略している。
 以上のデータから分かるように、実施例1~19の撮像レンズは、6枚という少ないレンズ枚数で構成され、小型で安価に作製可能である上、全画角が約178~208度と非常に広い画角を達成し、Fナンバーが2.0と小さく、各収差が良好に補正されて良好な光学性能を有する。これらの撮像レンズは、監視カメラや、自動車の前方、側方、後方などの映像を撮影するための車載用カメラ等に好適に使用可能である。
〔撮像装置の実施形態〕
 図41に使用例として、自動車100に本実施形態の撮像レンズを備えた撮像装置を搭載した様子を示す。図41において、自動車100は、その助手席側の側面の死角範囲を撮像するための車外カメラ101と、自動車100の後側の死角範囲を撮像するための車外カメラ102と、ルームミラーの背面に取り付けられ、ドライバーと同じ視野範囲を撮影するための車内カメラ103とを備えている。車外カメラ101と車外カメラ102と車内カメラ103とは、本発明の実施形態に係る撮像装置であり、本発明の実施例の撮像レンズと、該撮像レンズにより形成される光学像を電気信号に変換する撮像素子とを備えている。
 本発明の実施例に係る撮像レンズは、上述した長所を有するものであるから、車外カメラ101、102および車内カメラ103も小型で安価に構成でき、広い画角を有し、結像領域周辺部まで良好な映像を得ることができる。
 以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率およびアッベ数の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
 なお、上記した実施例では全てのレンズを均質な材料により構成しているが、屈折率分布型のレンズを用いてもよい。また、上記した実施例では第2レンズL2~第6レンズL6を非球面が施された屈折型レンズにより構成しているものがあるが、1つの面もしくは複数の面に回折光学素子を形成してもよい。
 また、撮像装置の実施形態では、本発明を車載用カメラに適用した例について図を示して説明したが、本発明はこの用途に限定されるものではなく、例えば、携帯端末用カメラや監視カメラ等にも適用可能である。

Claims (20)

  1.  物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
     前記第2レンズの物体側の面が凹面であり、
     前記第3レンズの物体側の面が凹面であることを特徴とする撮像レンズ。
  2.  物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
     前記第3レンズの物体側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが強い形状であることを特徴とする撮像レンズ。
  3.  物体側から順に、負の第1レンズと、負の第2レンズと、正の第3レンズと、正の第4レンズと、負の第5レンズと、正の第6レンズとの実質的に6枚のレンズからなり、
     前記第2レンズの像側の面が、中心で負のパワーを持ち、有効径端では中心と比較して負のパワーが弱い形状であり、
     前記第3レンズの像側の面が、中心で正のパワーを持ち、有効径端では中心と比較して正のパワーが弱い形状であることを特徴とする撮像レンズ。
  4.  下記条件式(19)を満足することを特徴とする請求項1から3のいずれか1項記載の撮像レンズ。
      1<(D4+D5)/f<6 … (19)
    ただし、
    D4:前記第2レンズと前記第3レンズとの光軸上の空気間隔
    D5:前記第3レンズの中心厚
    f:全系の焦点距離
  5.  下記条件式(19-1)を満足することを特徴とする請求項4記載の撮像レンズ。
      1.4<(D4+D5)/f<5.5 … (19-1)
    ただし、
    D4:前記第2レンズと前記第3レンズとの光軸上の空気間隔
    D5:前記第3レンズの中心厚
    f:全系の焦点距離
  6.  下記条件式(19-3)を満足することを特徴とする請求項4記載の撮像レンズ。
      1.9<(D4+D5)/f<4.4 … (19-3)
    ただし、
    D4:前記第2レンズと前記第3レンズとの光軸上の空気間隔
    D5:前記第3レンズの中心厚
    f:全系の焦点距離
  7.  下記条件式(20)を満足することを特徴とする請求項1から6のいずれか1項記載の撮像レンズ。
      -1<f/R5<1 … (20)
    ただし、
    f:全系の焦点距離
    R5:前記第3レンズの物体側の面の曲率半径
  8.  下記条件式(20-2)を満足することを特徴とする請求項7記載の撮像レンズ。
      -0.5<f/R5<0.5 … (20-2)
    ただし、
    f:全系の焦点距離
    R5:前記第3レンズの物体側の面の曲率半径
  9.  下記条件式(20-3)を満足することを特徴とする請求項7記載の撮像レンズ。
      -0.2<f/R5<0.2 … (20-3)
    ただし、
    f:全系の焦点距離
    R5:前記第3レンズの物体側の面の曲率半径
  10.  下記条件式(21)を満足することを特徴とする請求項1から9のいずれか1項記載の撮像レンズ。
      -3<f/R3<3 … (21)
    ただし、
    f:全系の焦点距離
    R3:前記第2レンズの物体側の面の曲率半径
  11.  下記条件式(21-2)を満足することを特徴とする請求項10記載の撮像レンズ。
     -2.0<f/R3<1.5 … (21-2)
    ただし、
    f:全系の焦点距離
    R3:前記第2レンズの物体側の面の曲率半径
  12.  下記条件式(21-3)を満足することを特徴とする請求項10記載の撮像レンズ。
      -1.5<f/R3<1.0 … (21-3)
    ただし、
    f:全系の焦点距離
    R3:前記第2レンズの物体側の面の曲率半径
  13.  下記条件式(22)を満足することを特徴とする請求項1から12のいずれか1項記載の撮像レンズ。
      -30<f23/f<-3 … (22)
    ただし、
    f23:前記第2レンズおよび前記第3レンズの合成焦点距離
    f:全系の焦点距離
  14.  下記条件式(22-1)を満足することを特徴とする請求項13記載の撮像レンズ。
      -25<f23/f<-4 … (22-1)
    ただし、
    f23:前記第2レンズおよび前記第3レンズの合成焦点距離
    f:全系の焦点距離
  15.  下記条件式(22-2)を満足することを特徴とする請求項13記載の撮像レンズ。
      -20<f23/f<-5 … (22-2)
    ただし、
    f23:前記第2レンズおよび前記第3レンズの合成焦点距離
    f:全系の焦点距離
  16.  下記条件式(23)を満足することを特徴とする請求項1から15のいずれか1項記載の撮像レンズ。
      2<f45/f<25 … (23)
    ただし、
    f45:前記第4レンズおよび前記第5レンズの合成焦点距離
    f:全系の焦点距離
  17.  下記条件式(23-1)を満足することを特徴とする請求項16記載の撮像レンズ。
      3<f45/f<22 … (23-1)
    ただし、
    f45:前記第4レンズおよび前記第5レンズの合成焦点距離
    f:全系の焦点距離
  18.  下記条件式(23-2)を満足することを特徴とする請求項16記載の撮像レンズ。
      4<f45/f<20 … (23-2)
    ただし、
    f45:前記第4レンズおよび前記第5レンズの合成焦点距離
    f:全系の焦点距離
  19.  前記第3レンズと前記第4レンズとの間に絞りが配置されていることを特徴とする請求項1から18のいずれか1項記載の撮像レンズ。
  20.  請求項1から19のいずれか1項記載の撮像レンズを搭載した撮像装置。
PCT/JP2012/005784 2011-09-29 2012-09-12 撮像レンズおよび撮像装置 WO2013046566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013535859A JP5830104B2 (ja) 2011-09-29 2012-09-12 撮像レンズおよび撮像装置
CN201290000847.4U CN203930183U (zh) 2011-09-29 2012-09-12 成像镜头和成像设备
US14/224,716 US9019634B2 (en) 2011-09-29 2014-03-25 Imaging lens and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213851 2011-09-29
JP2011-213851 2011-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/224,716 Continuation US9019634B2 (en) 2011-09-29 2014-03-25 Imaging lens and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2013046566A1 true WO2013046566A1 (ja) 2013-04-04

Family

ID=47994655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005784 WO2013046566A1 (ja) 2011-09-29 2012-09-12 撮像レンズおよび撮像装置

Country Status (4)

Country Link
US (1) US9019634B2 (ja)
JP (1) JP5830104B2 (ja)
CN (1) CN203930183U (ja)
WO (1) WO2013046566A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579586B (zh) * 2015-05-21 2017-04-21 先進光電科技股份有限公司 光學成像系統
TWI585485B (zh) * 2015-05-19 2017-06-01 先進光電科技股份有限公司 光學成像系統
JP2018004724A (ja) * 2016-06-28 2018-01-11 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2020508469A (ja) * 2017-02-03 2020-03-19 ガマヤ エスエイ 広角コンピュータ撮像分光法および装置
CN111538143A (zh) * 2020-05-29 2020-08-14 宁波锦辉光学科技有限公司 一种车载镜头
CN114047596A (zh) * 2021-10-25 2022-02-15 福建福光股份有限公司 一种车内监控光学镜头
US11899184B2 (en) 2014-01-17 2024-02-13 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and vehicle photographing terminal

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203773132U (zh) * 2011-09-29 2014-08-13 富士胶片株式会社 成像镜头和成像设备
KR102004798B1 (ko) * 2014-11-18 2019-10-01 삼성전기주식회사 렌즈 모듈
JP6388853B2 (ja) * 2015-07-10 2018-09-12 富士フイルム株式会社 撮像レンズおよび撮像装置
CN106468824B (zh) * 2015-08-21 2019-02-12 信泰光学(深圳)有限公司 广角光学镜头
US10353173B2 (en) 2015-12-23 2019-07-16 6115187 Canada, Inc. Miniature wide-angle imaging lens
US10551598B2 (en) * 2016-01-06 2020-02-04 Panavision International, L.P. Anamorphic photography for digital imagers
CN107703604A (zh) * 2016-08-09 2018-02-16 中强光电股份有限公司 光学镜头
CN108121050B (zh) * 2016-11-28 2019-12-27 信泰光学(深圳)有限公司 成像镜头
TWI690725B (zh) * 2016-11-28 2020-04-11 大陸商信泰光學(深圳)有限公司 成像鏡頭(十六)
CN110178068B (zh) * 2017-01-20 2022-02-01 松下知识产权经营株式会社 单焦点透镜系统及相机
TWI613482B (zh) * 2017-01-25 2018-02-01 大立光電股份有限公司 光學影像鏡片系統組、取像裝置及電子裝置
CN107450156B (zh) * 2017-05-23 2020-06-12 玉晶光电(厦门)有限公司 光学成像镜头
TWI656376B (zh) 2017-08-30 2019-04-11 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置
CN109507782B (zh) * 2017-09-15 2021-05-11 信泰光学(深圳)有限公司 成像镜头
WO2019131369A1 (ja) 2017-12-26 2019-07-04 日本電産サンキョー株式会社 広角レンズ
US10613299B2 (en) * 2017-12-29 2020-04-07 AAC Technologies Pte. Ltd. Camera optical lens
JP6529627B1 (ja) * 2018-01-23 2019-06-12 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN108445609B (zh) 2018-06-05 2019-10-22 浙江舜宇光学有限公司 摄像透镜组
CN111367057A (zh) * 2020-04-30 2020-07-03 天津欧菲光电有限公司 光学系统、摄像模组、电子设备及汽车
TWI808581B (zh) * 2021-12-27 2023-07-11 大陸商信泰光學(深圳)有限公司 成像鏡頭(六十四)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267212A (ja) * 1991-02-21 1992-09-22 Copal Co Ltd 超広角レンズ
JP2005221920A (ja) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc 超広角光学系
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2008076716A (ja) * 2006-09-21 2008-04-03 Fujinon Corp 広角撮像レンズ、撮像装置、およびカメラモジュール
WO2009041382A1 (ja) * 2007-09-28 2009-04-02 Konica Minolta Opto, Inc. 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
JP2010160479A (ja) * 2008-12-10 2010-07-22 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187157A (ja) * 1998-12-22 2000-07-04 Minolta Co Ltd ズームレンズ及び撮像装置
JP2006171597A (ja) 2004-12-20 2006-06-29 Matsushita Electric Ind Co Ltd 広角レンズ
US7023628B1 (en) 2005-04-05 2006-04-04 Alex Ning Compact fisheye objective lens
JP2006349920A (ja) 2005-06-15 2006-12-28 Ricoh Co Ltd 撮影光学系、撮影レンズユニット、カメラおよび携帯情報端末装置
JP4929770B2 (ja) 2006-03-17 2012-05-09 ソニー株式会社 レンズユニット
JP2008134494A (ja) 2006-11-29 2008-06-12 Topcon Corp 超広角光学系、撮像レンズ装置
KR100930167B1 (ko) 2007-09-19 2009-12-07 삼성전기주식회사 초광각 광학계
JP2009092798A (ja) 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
JP5042767B2 (ja) 2007-10-05 2012-10-03 富士フイルム株式会社 撮像レンズおよび撮像装置
KR100961124B1 (ko) 2008-04-04 2010-06-07 삼성전기주식회사 초광각 광학계
CN201314970Y (zh) 2008-05-27 2009-09-23 富士能株式会社 摄像透镜及使用此摄像透镜的摄像装置
JP5253997B2 (ja) * 2008-12-26 2013-07-31 富士フイルム株式会社 変倍光学系および撮像装置
JP5272858B2 (ja) 2009-04-03 2013-08-28 株式会社リコー 広角レンズおよび撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267212A (ja) * 1991-02-21 1992-09-22 Copal Co Ltd 超広角レンズ
JP2005221920A (ja) * 2004-02-09 2005-08-18 Konica Minolta Opto Inc 超広角光学系
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2008076716A (ja) * 2006-09-21 2008-04-03 Fujinon Corp 広角撮像レンズ、撮像装置、およびカメラモジュール
WO2009041382A1 (ja) * 2007-09-28 2009-04-02 Konica Minolta Opto, Inc. 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
JP2010160479A (ja) * 2008-12-10 2010-07-22 Fujinon Corp 撮像レンズおよびこの撮像レンズを用いた撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899184B2 (en) 2014-01-17 2024-02-13 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and vehicle photographing terminal
TWI585485B (zh) * 2015-05-19 2017-06-01 先進光電科技股份有限公司 光學成像系統
TWI579586B (zh) * 2015-05-21 2017-04-21 先進光電科技股份有限公司 光學成像系統
JP2018004724A (ja) * 2016-06-28 2018-01-11 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2020508469A (ja) * 2017-02-03 2020-03-19 ガマヤ エスエイ 広角コンピュータ撮像分光法および装置
CN111538143A (zh) * 2020-05-29 2020-08-14 宁波锦辉光学科技有限公司 一种车载镜头
CN114047596A (zh) * 2021-10-25 2022-02-15 福建福光股份有限公司 一种车内监控光学镜头

Also Published As

Publication number Publication date
CN203930183U (zh) 2014-11-05
JPWO2013046566A1 (ja) 2015-03-26
US9019634B2 (en) 2015-04-28
US20140204477A1 (en) 2014-07-24
JP5830104B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5795379B2 (ja) 撮像レンズおよび撮像装置
JP5830104B2 (ja) 撮像レンズおよび撮像装置
JP5847829B2 (ja) 撮像レンズおよび撮像装置
JP2013073156A (ja) 撮像レンズおよび撮像装置
JP5650082B2 (ja) 撮像レンズおよび撮像装置
JP5486408B2 (ja) 撮像レンズおよび撮像装置
WO2014141347A1 (ja) 撮像レンズおよび撮像装置
JP2013073157A (ja) 撮像レンズおよび撮像装置
JP2013073164A (ja) 撮像レンズおよび撮像装置
JP5633937B2 (ja) 撮像レンズおよび撮像装置
JP2013073165A (ja) 撮像レンズおよび撮像装置
JP2013073155A (ja) 撮像レンズおよび撮像装置
JP5667025B2 (ja) 撮像レンズおよび撮像装置
JP5629250B2 (ja) 撮像レンズおよび撮像装置
JP5650080B2 (ja) 撮像レンズおよび撮像装置
JP2013073162A (ja) 撮像レンズおよび撮像装置
JP2013073145A (ja) 撮像レンズおよび撮像装置
JP5629251B2 (ja) 撮像レンズおよび撮像装置
JP2013073167A (ja) 撮像レンズおよび撮像装置
JP2013073163A (ja) 撮像レンズおよび撮像装置
JP2013073166A (ja) 撮像レンズおよび撮像装置
JP2013073160A (ja) 撮像レンズおよび撮像装置
JP5638495B2 (ja) 撮像レンズおよび撮像装置
JP5650081B2 (ja) 撮像レンズおよび撮像装置
JP2013073154A (ja) 撮像レンズおよび撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000847.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835363

Country of ref document: EP

Kind code of ref document: A1