WO2019131369A1 - 広角レンズ - Google Patents

広角レンズ Download PDF

Info

Publication number
WO2019131369A1
WO2019131369A1 PCT/JP2018/046710 JP2018046710W WO2019131369A1 WO 2019131369 A1 WO2019131369 A1 WO 2019131369A1 JP 2018046710 W JP2018046710 W JP 2018046710W WO 2019131369 A1 WO2019131369 A1 WO 2019131369A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image side
wide
angle
object side
Prior art date
Application number
PCT/JP2018/046710
Other languages
English (en)
French (fr)
Inventor
陽介 神崎
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to CN201880081425.6A priority Critical patent/CN111492290B/zh
Priority to JP2019561567A priority patent/JP7201619B2/ja
Priority to US16/955,779 priority patent/US11567306B2/en
Publication of WO2019131369A1 publication Critical patent/WO2019131369A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to wide-angle lenses used in various imaging systems.
  • a lens configuration of six lenses in five groups has been proposed (see Patent Document 1).
  • the front group, the aperture stop, and the rear group are arranged in order from the object side to the image side, and in the front group, at least the first group from the object side to the image side.
  • the lens and the second lens are arranged in order.
  • the first lens is a negative meniscus lens whose lens surface on the image side is a concave surface
  • the second lens is a negative meniscus lens whose lens surface on the image side is a concave surface.
  • the concave lens surface on the image side of the first lens and the concave lens surface on the object side of the second lens face each other between the first lens and the second lens. ing. For this reason, multiple reflection is likely to occur between the lens surface of the first lens and the lens surface on the object side of the second lens, and ring-like ghosts are likely to occur due to such multiple reflection.
  • a front group, an aperture stop, and a rear group are disposed in order from the object side to the image side, and in the front group, from the object side to the image side Facing at least a first lens and a second lens
  • the first lens is a negative meniscus lens whose lens surface on the image side is a concave surface
  • the second lens is a lens surface on the image side Is a negative lens having a concave surface
  • the sag amount of the lens surface on the object side of the second lens is Sag 21 (mm)
  • the diameter of the lens surface on the object side of the second lens is D 21 (mm)
  • the sag amount Sag21 and the diameter D21 are the following conditional expressions: 0 ⁇
  • the absolute value of the ratio (Sag21 / (D21 / 2)) of the sag amount Sag21 of the lens surface on the object side of the second lens to the radius (D21 / 2) of the lens surface on the object side of the second lens is Since the lower limit (0) is exceeded, the object-side lens surface of the second lens does not become flat. Therefore, various aberrations can be properly corrected. Further, since the upper limit (0.125) is set to the absolute value of the ratio (Sag21 / (D21 / 2)), the concave surface with a large amount of sag and the convex surface with a large amount of sag between the first lens and the second lens Can be avoided.
  • an antireflective layer is provided on at least the lens surface on the image side of the first lens. According to this aspect, it is possible to suppress multiple reflection between the lens surface on the image side of the first lens and the lens surface on the object side of the second lens.
  • the lens surface on the image side of the first lens is provided with an antireflection layer having a reflectance of 1.5% or less in a wavelength range of 430 nm to 850 nm as the antireflection layer. It can be adopted.
  • the lens surface on the image side of the first lens is provided with an antireflection layer having a reflectance of 1.5% or less in a wide wavelength range up to the near infrared range, in addition to the normal visible range.
  • an antireflection layer is provided on the lens surface on the image side of the first lens, the film constituting the antireflection layer in the peripheral part Even if the film thickness of the above is smaller than the appropriate value, the antireflection layer performs appropriate reflection prevention for light in the long wavelength range. Therefore, the occurrence of ring-shaped red ghost can be suppressed.
  • the sag amount of the lens surface on the image side of the first lens is Sag12 (mm) and the diameter of the lens surface on the image side of the first lens is D12 (mm)
  • the sag amount Sag12 and the diameter D12 is the following conditional expression: 0.577 ⁇ Sag12 / (D12 / 2) ⁇ 1.733
  • fills can be employ
  • the ratio (Sag12 / (D12 / 2)) of the sag amount Sag12 of the lens surface on the image side of the first lens to the radius (D12 / 2) of the lens surface on the image side of the first lens has a lower limit (0) Because of the provision of .577), sufficient negative power can be secured. Therefore, various aberrations can be properly corrected even in the case of wide angle of view.
  • the upper limit (1.733) is provided to the ratio (Sag12 / (D12 / 2)), it is suppressed that the angle between the peripheral portion of the lens surface on the image side of the first lens and the tangent decreases excessively. Can.
  • the anti-reflection layer is provided on the lens surface on the image side of the first lens, it is possible to suppress the reduction in thickness of the film constituting the anti-reflection layer in the peripheral portion.
  • the first lens can be easily manufactured, the cost can be reduced.
  • the front group it is possible to adopt an aspect in which at least the first lens, the second lens, and the third lens are arranged in order from the most object side to the image side.
  • the third lens is a positive lens whose lens surface on the image side is a convex curved surface, and the sag amount of the lens surface on the object side of the third lens is Sag 31 (mm), and the object of the third lens is Assuming that the diameter of the lens surface on the side is D31 (mm), the sag amount Sag31 and the diameter D31 have the following conditional expression: 0 ⁇
  • fills can be employ
  • the absolute value of the ratio (Sag31 / (D31 / 2)) of the sag amount Sag31 of the lens surface on the object side of the third lens to the radius (D31 / 2) of the lens surface on the object side of the third lens is Since the lower limit (0) is exceeded, the object-side lens surface of the third lens does not become flat. Therefore, various aberrations can be properly corrected. In addition, since the upper limit (0.125) is provided for the absolute value of the ratio (Sag31 / (D31 / 2)), it is avoided that concave surfaces having large sag amounts face each other between the second lens and the third lens. can do.
  • the sag amount of the lens surface on the image side of the second lens is Sag 22 (mm) and the diameter of the lens surface on the image side of the second lens is D 22 (mm)
  • the sag amount Sag 22 and the diameter D22 has the following conditional expression 0.400 ⁇ Sag22 / (D22 / 2) ⁇ 1.733
  • fills can be employ
  • the ratio (Sag22 / (D22 / 2)) of the sag amount Sag22 of the lens surface on the image side of the second lens to the radius (D22 / 2) of the lens surface on the image side of the second lens has a lower limit (0) Because of the provision of (.400), sufficient negative power can be secured.
  • the upper limit (1.733) is provided to the ratio (Sag22 / (D22 / 2)), the angle between the peripheral portion of the lens surface on the image side of the second lens and the tangent line is prevented from being excessively small. Can. Therefore, since the second lens can be easily manufactured, the cost can be reduced.
  • the front group includes the first lens, the second lens, and the third lens disposed in order from the object side to the image side, and the rear group is from the object side to the image side
  • the third lens is a positive lens whose lens surface on the image side is a convex surface
  • the fourth lens is a lens on the image side.
  • the fifth lens is a negative lens whose lens surface on the image side is a concave surface
  • the sixth lens is a lens on the object side and a lens on the image side
  • the second lens, the third lens, the fifth lens, and the sixth lens are plastic lenses
  • the fourth lens is a glass lens
  • the second lens, the third lens, the fifth lens, and the sixth lens are plastic lenses.
  • the fifth lens and the sixth lens are It can be adopted a mode in which the lens surface on the object side of the fifth lens the image-side lens surface and the sixth lens constitute a bonded cemented lens.
  • the concave surface on the image side of the fifth lens and the convex surface on the object side of the sixth lens are cemented with each other on the image side with respect to the stop, chromatic aberration can be appropriately corrected.
  • the second lens, the third lens, the fifth lens, and the sixth lens are plastic lenses, cost reduction can be achieved.
  • the fourth lens is a glass lens, and the change in refractive index with temperature change is small. Therefore, the temperature characteristics of the wide-angle lens can be improved. Therefore, higher resolution can be realized over a wide temperature range.
  • the diameter of the lens surface refers to the optical effective diameter at the lens surface.
  • the effective diameter is the diameter of a circle consisting of the outermost point in the radial direction (the point farthest from the optical axis), considering the point of intersection of all the rays contributing to imaging and the lens surface.
  • “Sag amount (Sag)” means the light on the lens surface from the point on the optical axis L of the virtual reference surface at the outermost periphery of the effective diameter of the lens surface, when the virtual plane orthogonal to the optical axis is the virtual reference surface It is the distance to a point on the axis L.
  • the sag amount is a positive value
  • the point of the optical axis L in the virtual reference surface is located on the object side of the point on the optical axis L of the lens surface
  • the sag amount is a negative value.
  • the point of the optical axis L in the reference plane is located on the image side of the point on the optical axis L of the lens surface.
  • FIG. 1 is an explanatory view of a wide-angle lens 100 according to a first embodiment of the present invention.
  • the wide-angle lens 100 includes a front group 110, an aperture stop 80, a rear group 120, and an infrared cut filter 81 arranged in order from the object side La to the image side Lb.
  • the front group 110 includes a first lens 10, a second lens 20, and a third lens 30 which are disposed most toward the image side Lb from the object side La.
  • the rear group 120 includes a fourth lens 40, a fifth lens 50, and a sixth lens 60 disposed from the object side La to the image side Lb.
  • a flat plate-like infrared cut filter 81, a translucent cover 82, and an imaging device 85 are disposed in order.
  • the first lens 10 is a negative meniscus lens (a meniscus lens having negative power) in which the lens surface 102 (second surface 2) on the image side Lb is a concave surface, and the lens surface 101 (first surface) on the object side La 1) is a convex surface.
  • the second lens 20 is a negative lens (a lens having negative power) in which the lens surface 22 (fourth surface 4) on the image side Lb is a concave surface, and the lens surface 21 (third surface 4) on the object side La. Is a concave surface.
  • the third lens 30 is a positive lens (lens having positive power) in which the lens surface 32 (sixth surface 6) on the image side Lb is a convex curved surface, and in the present embodiment, the third lens 30 has an object side La
  • the lens surface 31 (fifth surface 5) is a concave surface.
  • the fourth lens 40 is a positive lens (a lens having positive power) in which the lens surface 42 (ninth surface 9) on the image side Lb is a convex curved surface, and in the present embodiment, the fourth lens 40 has an object side La on the object side La.
  • the lens surface 41 (eighth surface 8) is a convex curved surface.
  • the fifth lens 50 is a negative lens (lens having negative power) in which the lens surface 52 (the eleventh surface 11) on the image side Lb is a concave surface, and in the present embodiment, on the object side La of the fifth lens 50.
  • the lens surface 51 (tenth surface 10) is a concave surface.
  • the sixth lens 60 is a biconvex lens in which the lens surface 61 on the object side La and the lens surface 62 (the twelfth surface 12) on the image side Lb are convexly curved, and has positive power.
  • the fifth lens 50 and the sixth lens 60 are cemented lenses in which the lens surface 52 on the image side Lb of the fifth lens 50 and the lens surface 61 on the object side La of the sixth lens 60 are bonded by an adhesive (not shown)
  • the lens surface 52 on the image side Lb of the fifth lens 50 and the lens surface 61 on the object side La of the sixth lens 60 constitute the eleventh surface 11.
  • the adhesive is preferably a material having elasticity even after curing.
  • the diaphragm 80 constitutes a seventh surface 7.
  • the surface 811 of the object side La of the infrared cut filter 81 constitutes a thirteenth surface 13, and the surface 812 of the image side Lb constitutes a fourteenth surface 14.
  • the surface 821 on the object side La of the cover 82 constitutes a fifteenth surface 15, and the surface 822 on the image side Lb constitutes a sixteenth surface 16.
  • the imaging surface of the imaging element 85 constitutes a seventeenth surface 17.
  • the second lens 20, the third lens 30, the fifth lens 50, and the sixth lens 60 are plastic lenses made of acrylic resin, polycarbonate, polyolefin, or the like. Therefore, cost reduction can be achieved. Even in this case, the first lens 10 and the fourth lens 40 are glass lenses.
  • the fourth lens adjacent to the stop 80 is a glass lens, and the change in refractive index with temperature change is small. Therefore, the temperature characteristics of the wide angle lens 100 can be improved. Therefore, higher resolution can be realized over a wide temperature range. Also. Since the first lens 10 disposed closest to the object side La is a glass lens, the first lens 10 is unlikely to be scratched or the like.
  • the lens surfaces 21 and 22 of the second lens 20, the lens surfaces 31 and 32 of the third lens 30, the lens surfaces 51 and 52 of the fifth lens 50, and the lens surfaces 61 and 62 of the sixth lens 60 It is aspheric.
  • the lens surfaces 101 and 102 of the first lens 10 and the lens surfaces 41 and 42 of the fourth lens 40 are spherical surfaces.
  • each lens of the wide-angle lens 100 of the present embodiment is as shown in Table 1.
  • Table 1 the following characteristics are shown as the characteristics of the wide-angle lens 100.
  • Effective focal length f0 of the entire lens system Total length d0 (Total Track) Image space for the entire lens system Maximum angle of view (Max. Field Angle)
  • Table 1 shows the following items of each surface.
  • the unit of radius of curvature, thickness and focal length is mm.
  • the curvature radius is a positive value
  • the convex surface or image with the lens surface protruding toward the image side When the concave surface is concave toward the side, the radius of curvature is a negative value.
  • Table 1 also shows aspheric coefficients A4, A6, A8, A10,...
  • equation 1 the shape of the aspheric surface is expressed by the following equation (Equation 1).
  • the amount of sag axis in the direction of the optical axis
  • the height in the direction perpendicular to the optical axis (light height) is r
  • the conical coefficient is k
  • the reciprocal of the radius of curvature is c.
  • the focal length f0 of the entire lens system is 0.914 mm, and the distance from the lens surface 101 of the object side La of the first lens 10 to the imaging device 85 One total length is 12.302 mm, the F number of the entire lens system is 2.0, and the maximum angle of view is 215 deg.
  • FIG. 2 is an explanatory view showing the spherical aberration of the wide angle lens 100 shown in FIG.
  • FIG. 3 is an explanatory view showing the magnification chromatic aberration of the wide-angle lens 100 shown in FIG. 1, and shows the magnification chromatic aberration at the maximum angle of view (107.3998 deg / half angle).
  • FIG. 4 is an explanatory view showing astigmatism and distortion of the wide-angle lens 100 shown in FIG.
  • FIG. 2 FIG. 3, and FIG. 4
  • V, B, G, O, and R are attached
  • S is added to the characteristic in the sagittal direction
  • T is added to the characteristic in the tangential direction.
  • the distortion shown in FIG. 4 indicates the change ratio of the image in the central portion and the peripheral portion of the imaging, and the smaller the absolute value of the numerical value representing the distortion, the more accurate the lens.
  • spherical aberration, lateral chromatic aberration, and astigmatism (distortion) are corrected to appropriate levels.
  • Table 2 shows numerical values corresponding to the conditional expressions described below, and FIG. 2 also shows numerical values of the modification of the first embodiment and the second and third embodiments which will be described later. The values shown in Table 2 have been rounded by rounding.
  • the sag amount of the lens surface 102 of the first lens 10 is Sag12 (mm) and the diameter of the lens surface 102 of the first lens 10 is D12 (mm)
  • the sag amount Sag12 And the diameter D12 is the following conditional expression (1) 0.577 ⁇ Sag12 / (D12 / 2) ⁇ 1.733 ⁇ ⁇ Conditional expression (1)
  • the ratio (Sag12 / (D12 / 2)) is 0.646, which satisfies the conditional expression (1).
  • the ratio (Sag12 / (D12 / 2)) exceeds the lower limit (0.577), sufficient negative power can be secured. In addition, various aberrations can be properly corrected even in the case of wide angle of view.
  • the upper limit (1.733) is provided to the ratio (Sag12 / (D12 / 2))
  • the first lens 10 can be easily manufactured, the cost can be reduced.
  • the sag amount of the lens surface 21 of the second lens 20 is Sag 21 (mm) and the diameter of the lens surface 21 of the second lens 20 is D 21 (mm)
  • the sag amount Sag 21 and the diameter D 21 satisfy the following conditional expressions 2) 0 ⁇
  • the lens surface 21 of the second lens 20 does not become flat. Therefore, various aberrations can be properly corrected.
  • the upper limit (0.125) is set to the absolute value of the ratio (Sag21 / (D21 / 2))
  • the concave amount and the sag amount are large between the first lens 10 and the second lens 20. It is possible to prevent the convex surface from facing. Therefore, multiple reflection between the lens surface 102 of the first lens 10 and the lens surface 21 of the second lens 20 can be suppressed.
  • the sag amount of the lens surface 31 of the third lens 30 is Sag 31 (mm) and the diameter of the lens surface 31 of the third lens 30 is D 31 (mm)
  • the sag amount Sag31 is -0.097 mm, and D21 is 2.354 mm. Therefore, the absolute value of the ratio (Sag31 / (D31 / 2)) is 0.082, which satisfies the conditional expression (3).
  • the lens surface 31 of the third lens 30 does not become flat. Therefore, various aberrations can be properly corrected. Further, since the upper limit (0.125) is provided to the absolute value of the ratio (Sag31 / (D31 / 2)), concave surfaces having a large amount of sag face each other between the second lens 20 and the third lens 30. Can be avoided.
  • the sag amount of the lens surface 22 of the second lens 20 is Sag 22 (mm) and the diameter of the lens surface 22 of the second lens 20 is D 22 (mm)
  • the sag amount Sag 22 and the diameter D 22 satisfy the following conditional expressions 4) 0.400 ⁇ Sag22 / (D22 / 2) ⁇ 1.733 ⁇ Conditional expression (4) Meet.
  • the sag amount Sag22 is 0.837 mm
  • the diameter D22 is 2.495 mm. Therefore, the ratio (Sag22 / (D22 / 2)) is 0.671, which satisfies the conditional expression (4).
  • the ratio (Sag22 / (D22 / 2)) exceeds the lower limit (0.400), sufficient negative power can be secured. Therefore, various aberrations can be properly corrected.
  • the upper limit (1.733) is provided to the ratio (Sag22 / (D22 / 2)), it is suppressed that the angle formed by the peripheral portion of the lens surface 22 of the second lens 20 with the tangent becomes excessively small. it can. Therefore, since the second lens 20 can be easily manufactured, the cost can be reduced.
  • the combined focal length of the first lens 10 and the second lens 20 is f12 (mm), and the combined focal length of the third lens 30, the fourth lens 40, the fifth lens 50, and the sixth lens 60 is f3456 (mm)
  • the combined focal lengths f12 and f3456 are conditional expressions (5) below. 0.1 ⁇
  • the absolute value of the ratio (f12 / f3456) is less than the upper limit (1), it is possible to prevent the positive power from becoming too strong. Therefore, coma and astigmatism can be properly corrected.
  • the absolute value of the ratio (f12 / f3456) exceeds the lower limit (0.1), it is possible to suppress that the negative power becomes too strong. Accordingly, an increase in the overall length of the lens system can be avoided. Therefore, the wide-angle lens 100 can be miniaturized.
  • the combined focal length f12 and the focal length f0 of the entire lens system are conditional expressions (6) below: 0.5 ⁇
  • the absolute value of the ratio (f12 / f0) exceeds the lower limit (0.5), it is possible to suppress field curvature.
  • the absolute value of the ratio (f12 / f0) is less than the upper limit (2.5), the viewing angle can be increased.
  • the combined focal length f 456 and the focal length f 0 of the entire lens system are conditional expression (7) below 2 ⁇ f456 / f0 ⁇ 4 ⁇ ⁇ Conditional expression (7) Meet. More specifically, the combined focal length f 456 and the overall focal length f 0 of the lens system are 3.456 mm and 0.914 mm, respectively. Accordingly, the ratio f456 / f0 is 3.78, which satisfies the conditional expression (7).
  • the ratio (f456 / f0) exceeds the lower limit (2), the power of the rear group 120 including the fourth lens 40, the fifth lens 50, and the sixth lens can be prevented from becoming too strong. Therefore, correction of each aberration, particularly chromatic aberration can be performed better, and higher optical performance can be realized. Further, since the ratio (f456 / f0) is less than the upper limit (4), it is possible to prevent the lens diameter from becoming too large, and to prevent the overall length of the entire lens system from being long. Therefore, the wide-angle lens can be miniaturized.
  • the total length d0 and the focal length f0 of the whole lens system are conditional expression (8) below 10 ⁇ d0 / f0 ⁇ 18 ⁇ ⁇ Conditional expression (8) Meet. More specifically, the total length d0 and the focal length f0 of the entire lens system are 12.302 mm and 0.914 mm, respectively. Therefore, d0 / f0 is 13.46, which satisfies the conditional expression (8).
  • the ratio (d0 / f0) exceeds the lower limit (10), spherical aberration and distortion can be properly corrected. Further, since the ratio (d0 / f0) is less than the upper limit (18), it is possible to prevent the lens diameter from becoming too large, and to prevent the overall length of the entire lens system from being long. Therefore, the wide-angle lens can be miniaturized.
  • the refractive index n1 of the first lens 10 is the following conditional expression (9) 1.7 ⁇ n1 ⁇ ⁇ Conditional expression (9) Meet. More specifically, the refractive index n1 of the first lens 10 is 1.876. Therefore, the conditional expression (9) is satisfied.
  • the refractive index n1 of the first lens 10 exceeds 1.7, the outer diameter of the first lens 10 can be reduced. Therefore, the wide-angle lens 100 can be miniaturized. Further, the amount of sag of the lens surface 21 of the second lens 20 can be made smaller (shallow), and multiple reflection between the lens surface 102 of the first lens 10 and the lens surface 21 of the second lens 20 can be suppressed. be able to. Therefore, it is possible to suppress the generation of ring-shaped ghost due to the multiple reflection between the lens surface 102 of the first lens 10 and the lens surface 21 of the second lens 20.
  • FIG. 5 is an explanatory view showing the reflectance characteristic of the antireflection layer provided on the lens surface 102 on the image side Lb of the first lens 10 shown in FIG.
  • the anti-reflection layer 19 is formed at least on the surface of the lens 12 on the image side Lb of the first lens 10, and the anti-reflection layer 19 has the reflectance characteristic indicated by the dotted line L2 in FIG. . Therefore, it is possible to suppress multiple reflection between the lens surface 102 of the first lens 10 and the lens surface 21 of the second lens 20, and to suppress the generation of ring-shaped ghost due to the multiple reflection. it can.
  • an antireflection layer 18 having a reflectance characteristic indicated by a solid line L1 in FIG. 5 in place of the antireflection layer 19 on the lens 12 surface on the image side Lb of the first lens 10.
  • the reflection preventing layer 18 has a reflectance of 1.5% or less in a wavelength range of 430 nm to 850 nm.
  • the antireflective layer 18 is made of a dielectric multilayer film.
  • the antireflective layer 19 is composed of a dielectric multilayer film or a single coating layer.
  • the antireflection layer 18 has a reflectance of 1.5% or less in a wide wavelength range up to the near infrared range in addition to the normal visible range. Therefore, the angle between the tangent to the peripheral portion of the lens surface 102 and the optical axis L decreases, and the film thickness of the film constituting the anti-reflection layer 18 becomes thinner than the appropriate value in the peripheral portion of the lens surface 102 Also, the anti-reflection layer 18 performs appropriate anti-reflection on light in the long wavelength range. Therefore, since multiple reflection between the lens surface 102 of the first lens 10 and the lens surface 21 of the second lens 20 can be suppressed, the generation of a ring-shaped red ghost can be suppressed.
  • the reflection preventing layers 18 and 19 are compared, the number of laminated layers of the dielectric layers is larger than that of a general reflection preventing layer 19. Therefore, forming the antireflective layer 18 only on the lens surface 102 of the first lens 10, and forming the antireflective layer 19 on the other lens surfaces such as the lens surface 101 of the first lens 10 reduces the cost. be able to.
  • Embodiment 1 Modification of Embodiment 1
  • the basic configuration of the wide-angle lens 100 is substantially the same as that of Embodiment 1 shown in FIG. Therefore, the lens configuration of this example will be described based on FIG. 1 referred to in the first embodiment.
  • the wide-angle lens 100 also has a front group 110, an aperture stop 80, a rear group 120, and an infrared cut filter arranged in order from the object side La to the image side Lb as in the first embodiment. It has 81.
  • the front group 110 includes a first lens 10, a second lens 20, and a third lens 30 which are disposed most toward the image side Lb from the object side La.
  • the rear group 120 includes a fourth lens 40, a fifth lens 50, and a sixth lens 60 disposed from the object side La to the image side Lb.
  • a flat plate-like infrared cut filter 81, a translucent cover 82, and an imaging device 85 are disposed in order.
  • each lens of the wide-angle lens 100 of the present embodiment is as shown in Table 3.
  • the focal length f0 of the entire lens system is 0.914 mm
  • the total length which is the distance from the lens surface 101 of the first lens 10 to the imaging device 85 is 12.301 mm.
  • the entire f-number is 2.0
  • the maximum angle of view is 215 deg.
  • the spherical aberration, the magnification chromatic aberration, and the astigmatism (distortion) are equivalent to those in FIGS. 2 to 4 referred to in Embodiment 1, and are corrected to appropriate levels.
  • the sag amount Sag12 and the diameter D12 of the lens surface 102 of the first lens 10 are 1.555 mm and 4.801 mm, respectively. Therefore, the ratio (Sag12 / (D12 / 2)) is 0.648, which satisfies the conditional expression (1).
  • the sag amount Sag 21 of the lens surface 21 of the second lens 20 and the diameter D 21 are 0.199 mm and 4.801 mm, respectively. Therefore, the absolute value of the ratio (Sag21 / (D21 / 2)) is 0.083, which satisfies the conditional expression (2).
  • the sag amount Sag 31 of the lens surface 31 of the third lens 30 and the diameter D 31 are ⁇ 0.098 mm and 2.362 mm, respectively. Therefore, the absolute value of the ratio (Sag31 / (D31 / 2)) is 0.083, which satisfies the conditional expression (3).
  • the sag amount Sag22 and the diameter D22 of the lens surface 22 of the second lens 20 are 0.842 mm and 2.501 mm, respectively. Therefore, the ratio (Sag22 / (D22 / 2)) is 0.674, which satisfies the conditional expression (4).
  • the combined focal lengths f12 and f3456 are ⁇ 1.283 mm and 2.360 mm, respectively. Therefore, the absolute value of the ratio f12 / f3456 is 0.544, which satisfies the condition (5).
  • the combined focal length f12 and the focal length f0 of the entire lens system are ⁇ 1.283 mm and 0.914 mm, respectively. Accordingly, the absolute value of the ratio f12 / f0 is 1.405, which satisfies the conditional expression (6).
  • the combined focal length f 456 and the focal length f 0 of the entire lens system are 3.029 mm and 0.914 mm, respectively. Accordingly, the ratio f456 / f0 is 3.316, which satisfies the conditional expression (7).
  • the focal length f0 and the total length d0 of the entire lens system are 0.914 mm and 12.301 mm, respectively. Accordingly, the ratio d0 / f0 is 13.463 and the conditional expression (8) is satisfied.
  • the refractive index Nd (n1) of the first lens 10 is 1.876, which satisfies the conditional expression (9).
  • the lens surface 102 of the first lens 10 is provided with the anti-reflection layer 18 exhibiting the reflectance characteristic indicated by the solid line L1 in FIG.
  • FIG. 6 is an explanatory view of a wide-angle lens 100 according to a second embodiment of the present invention.
  • FIG. 7 is an explanatory view showing the spherical aberration of the wide angle lens 100 shown in FIG.
  • FIG. 8 is an explanatory view showing the magnification chromatic aberration of the wide-angle lens 100 shown in FIG. 6, and shows the magnification chromatic aberration at the maximum angle of view (106.0000 deg / half angle).
  • FIG. 9 is an explanatory view showing astigmatism and distortion of the wide-angle lens 100 shown in FIG.
  • the wide-angle lens 100 also has the front group 110, the stop 80, the rear group 120, and the infrared cut filter arranged in order from the object side La to the image side Lb as in the first embodiment. It has 81.
  • the front group 110 includes a first lens 10, a second lens 20, and a third lens 30 which are disposed most toward the image side Lb from the object side La.
  • the rear group 120 includes a fourth lens 40, a fifth lens 50, and a sixth lens 60 disposed from the object side La to the image side Lb.
  • the lens surface 21 (third surface 3) on the object side La is a convex curved surface.
  • the other basic configuration is the same as that of the first embodiment.
  • each lens of the wide-angle lens 100 of the present embodiment is as shown in Table 4.
  • the focal length f0 of the entire lens system is 0.913 mm
  • the total length which is the distance from the lens surface 101 of the first lens 10 to the imaging device 85 is 12.450 mm.
  • the entire f-number is 2.0
  • the maximum angle of view is 212 deg.
  • spherical aberration, lateral chromatic aberration, and astigmatism (distortion) are corrected to appropriate levels.
  • the sag amount Sag12 and the diameter D12 of the lens surface 102 of the first lens 10 are 1.738 mm and 5.392 mm, respectively. Therefore, the ratio (Sag12 / (D12 / 2)) is 0.645, which satisfies the conditional expression (1).
  • the sag amount Sag 21 of the lens surface 21 of the second lens 20 and the diameter D 21 are 0.161 mm and 5.392 mm, respectively. Therefore, the absolute value of the ratio (Sag21 / (D21 / 2)) is 0.060, which satisfies the conditional expression (2).
  • the sag amount Sag 31 and the diameter D 31 of the lens surface 31 of the third lens 30 are respectively ⁇ 0.120 mm and 2.665 mm. Therefore, the absolute value of the ratio (Sag31 / (D31 / 2)) is 0.090, which satisfies the conditional expression (3).
  • the sag amount Sag22 and the diameter D22 of the lens surface 22 of the second lens 20 are 1.001 mm and 2.787 mm, respectively. Therefore, the ratio (Sag22 / (D22 / 2)) is 0.718, which satisfies the conditional expression (4).
  • the synthetic focal lengths f12 and f3456 are ⁇ 1.393 mm and 2.461 mm, respectively. Therefore, the absolute value of the ratio f12 / f3456 is 0.567, which satisfies the condition (5).
  • the combined focal length f12 and the focal length f0 of the entire lens system are ⁇ 1.393 mm and 0.913 mm, respectively. Accordingly, the absolute value of the ratio f12 / f0 is 1.53, which satisfies the conditional expression (6).
  • the combined focal length f 456 and the focal length f 0 of the entire lens system are 2.889 mm and 0.913 mm, respectively. Accordingly, the ratio f456 / f0 is 3.16, which satisfies the conditional expression (7).
  • the focal length f0 and the total length d0 of the entire lens system are 0.913 mm and 12.450 mm, respectively. Accordingly, the ratio d0 / f0 is 13.64, which satisfies the conditional expression (8).
  • the refractive index Nd (n1) of the first lens 10 is 1.876, which satisfies the conditional expression (9).
  • the lens surface 102 of the first lens 10 is provided with the anti-reflection layer 18 exhibiting the reflectance characteristic indicated by the solid line L1 in FIG.
  • FIG. 10 is an explanatory view of a wide-angle lens 100 according to a third embodiment of the present invention.
  • FIG. 11 is an explanatory view showing the spherical aberration of the wide angle lens 100 shown in FIG.
  • FIG. 12 is an explanatory view showing the magnification chromatic aberration of the wide-angle lens 100 shown in FIG. 10, and shows the magnification chromatic aberration at the maximum angle of view (106.5000 deg / half angle).
  • FIG. 13 is an explanatory view showing astigmatism and distortion of the wide-angle lens 100 shown in FIG.
  • the wide-angle lens 100 also has a front group 110, an aperture stop 80, a rear group 120, and an infrared cut filter arranged in order from the object side La to the image side Lb as in the first embodiment. It has 81.
  • the front group 110 includes a first lens 10, a second lens 20, and a third lens 30 which are disposed most toward the image side Lb from the object side La.
  • the basic configuration of the rear group 120 is the same as that of the first embodiment, such as the fourth lens 40, the fifth lens 50, and the sixth lens 60 disposed from the object side La to the image side Lb. .
  • each lens of the wide-angle lens 100 of the present embodiment is as shown in Table 5.
  • the focal length f0 of the entire lens system is 0.945 mm
  • the total length which is the distance from the lens surface 101 of the first lens 10 to the imaging device 85 is 12.393 mm.
  • the entire F-number is 2.04, and the maximum angle of view is 213 deg.
  • spherical aberration, lateral chromatic aberration, and astigmatism (distortion) are corrected to appropriate levels.
  • the sag amount Sag12 and the diameter D12 of the lens surface 102 of the first lens 10 are 1.439 mm and 4.837 mm, respectively. Therefore, the ratio (Sag12 / (D12 / 2)) is 0.595, which satisfies the conditional expression (1).
  • the sag amount Sag21 and the diameter D21 of the lens surface 21 of the second lens 20 are respectively -0.124 mm and 4.837 mm. Accordingly, the absolute value of the ratio (Sag21 / (D21 / 2)) is 0.051, which satisfies the conditional expression (2).
  • the sag amount Sag 31 and the diameter D 31 of the lens surface 31 of the third lens 30 are respectively ⁇ 0.110 mm and 2.387 mm. Therefore, the absolute value of the ratio (Sag31 / (D31 / 2)) is 0.092, which satisfies the conditional expression (3).
  • the sag amount Sag22 and the diameter D22 of the lens surface 22 of the second lens 20 are 0.600 mm and 2.586 mm, respectively. Therefore, the ratio (Sag22 / (D22 / 2)) is 0.464, which satisfies the conditional expression (4).
  • the combined focal lengths f12 and f3456 are ⁇ 1.319 mm and 2.374 mm, respectively. Therefore, the absolute value of the ratio f12 / f3456 is 0.556, which satisfies the condition (5).
  • the combined focal length f12 and f0 of the entire lens system are ⁇ 1.319 mm and 0.945 mm, respectively. Accordingly, the absolute value of the ratio f12 / f0 is 1.40, which satisfies the conditional expression (6).
  • the combined focal length f 456 and the focal length f 0 of the entire lens system are 2.832 mm and 0.945 mm, respectively. Accordingly, the ratio f456 / f0 is 3.00, which satisfies the conditional expression (7).
  • the focal length f0 and the total length d0 of the entire lens system are 0.945 mm and 12.393 mm, respectively. Therefore, the ratio d0 / f0 is 13.12, which satisfies the conditional expression (8).
  • the refractive index Nd (n1) of the first lens 10 is 1.876, which satisfies the conditional expression (9).
  • the lens surface 102 of the first lens 10 is provided with the anti-reflection layer 18 exhibiting the reflectance characteristic indicated by the solid line L1 in FIG.
  • the first lens 10 is a glass lens in the above embodiment, it may be a plastic lens.
  • the lens surface 102 on the image side Lb of the first lens 10 can be made aspheric.
  • the absolute value of the ratio (Sag21 / (D21 / 2)) of the sag amount Sag21 of the lens surface on the object side of the second lens to the radius (D21 / 2) of the lens surface on the object side of the second lens is Since the lower limit (0) is exceeded, the object-side lens surface of the second lens does not become flat. Therefore, various aberrations can be properly corrected. Further, since the upper limit (0.125) is set to the absolute value of the ratio (Sag21 / (D21 / 2)), the concave surface with a large amount of sag and the convex surface with a large amount of sag between the first lens and the second lens Can be avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

広角レンズ(100)は、前群(110)、絞り(80)、および後群(120)を有している。前群(110)は、最も物体側(La)から像側(Lb)に向けて配置された第1レンズ(10)、および第2レンズ(20)を備える。かかる広角レンズにおいて、第1レンズ(10)の像側のレンズ面(102)と第2レンズ(20)の物体側のレンズ面(21)との間での多重反射に起因するゴーストの発生を抑制するために、レンズ面(21)のサグ量Sag21(mm)、および直径D21(mm)は、以下の条件式 0<|Sag21/(D21/2)|<0.125 を満たしている。従って、第1レンズ(10)と第2レンズ(20)との間で、サグ量が大きな凹面とサグ量が大きな凸面とが対向することを回避することができるので、レンズ面(102)とレンズ面(21)との間での多重反射を抑制することができる。

Description

広角レンズ
 本発明は、各種撮像系に用いられる広角レンズに関するものである。
 広角レンズにおいて、高解像度を得るために5群6枚のレンズ構成が提案されている(特許文献1参照)。特許文献1に記載の広角レンズでは、物体側から像側に向けて、前群、絞り、および後群が順に配置され、前群では、最も物体側から像側に向けて、少なくとも、第1レンズおよび第2レンズが順に配置されている。第1レンズは、像側のレンズ面が凹曲面である負メニスカスレンズであり、第2レンズは、像側のレンズ面が凹曲面である負メニスカスレンズである。
特開2016-57562号公報
 特許文献1等に記載の広角レンズでは、第1レンズと第2レンズとの間で、第1レンズの像側の凹状のレンズ面と第2レンズの物体側の凹状のレンズ面とが対向している。このため、第1レンズのレンズ面と第2レンズの物体側のレンズ面との間で多重反射が発生しやすく、かかる多重反射によって、リング状のゴーストが発生しやすい。
 そこで、第1レンズの像側のレンズ面に反射防止層を形成する等の対策が行われるが、広画角化に対応するという観点から、第1レンズの像側のレンズ面のサグ量が大きく、レンズ面の周辺部に対する接線が光軸となす角度が小さい。このため、第1レンズの像側のレンズ面に反射防止層を設けても、周辺部では、反射防止層を構成する膜の膜厚が適正な値より薄くなる。それ故、長波長域の光に対しては、反射防止層が適正な反射防止効果を発揮しなくなるので、リング状の赤いゴーストが発生しやすい。
 以上の問題点に鑑みて、本発明の課題は、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射に起因するゴーストの発生を抑制することのできる広角レンズを提供することにある。
 上記課題を解決するために、本発明に係る広角レンズは、物体側から像側に向けて、前群、絞り、および後群が順に配置され、前記前群では、最も物体側から像側に向けて、少なくとも、第1レンズおよび第2レンズが順に配置され、前記第1レンズは、像側のレンズ面が凹曲面である負メニスカスレンズであり、前記第2レンズは、像側のレンズ面が凹曲面である負レンズであり、前記第2レンズの物体側のレンズ面のサグ量をSag21(mm)とし、前記第2レンズの物体側のレンズ面の直径をD21(mm)としたとき、サグ量Sag21および直径D21は、以下の条件式
  0<|Sag21/(D21/2)|<0.125
を満たすことを特徴とする。
 本発明では、第2レンズの物体側のレンズ面のサグ量Sag21と第2レンズの物体側のレンズ面の半径(D21/2)との比(Sag21/(D21/2))の絶対値が下限(0)を超えるため、第2レンズの物体側のレンズ面が平面にならない。従って、各種収差を適正に補正することができる。また、比(Sag21/(D21/2))の絶対値に上限(0.125)を設けたため、第1レンズと第2レンズとの間で、サグ量が大きな凹面とサグ量が大きな凸面とが対向することを回避することができる。従って、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射を抑制することができる。それ故、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射に起因するリング状のゴーストの発生を抑制することができる。
 本発明において、少なくとも前記第1レンズの像側のレンズ面には反射防止層が設けられている態様を採用することができる。かかる態様によれば、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射を抑制することができる。この場合、前記第1レンズの像側のレンズ面には、前記反射防止層として、430nmから850nmまでの波長域における反射率を1.5%以下とする反射防止層が設けられている態様を採用することができる。すなわち、第1レンズの像側のレンズ面には、通常の可視域に加えて、近赤外域までの広い波長域において反射率を1.5%以下とする反射防止層が設けている。このため、レンズ面の周辺部に対する接線が光軸となす角度が小さくなって、第1レンズの像側のレンズ面に反射防止層を設けた際に周辺部において、反射防止層を構成する膜の膜厚が適正な値より薄くなっても、長波長域の光に対して、反射防止層が適正な反射防止を行う。それ故、リング状の赤いゴーストの発生を抑制することができる。
 本発明において、前記第1レンズの像側のレンズ面のサグ量をSag12(mm)とし、前記第1レンズの像側のレンズ面の直径をD12(mm)としたとき、サグ量Sag12および直径D12は、以下の条件式
  0.577<Sag12/(D12/2)<1.733
を満たす態様を採用することができる。かかる態様では、第1レンズの像側のレンズ面のサグ量Sag12と第1レンズの像側のレンズ面の半径(D12/2)との比(Sag12/(D12/2))に下限(0.577)を設けたため、十分な負のパワーを確保することができる。従って、広画角化に対応した場合でも、各種収差を適正に補正することができる。また、比(Sag12/(D12/2))に上限(1.733)を設けたため、第1レンズの像側のレンズ面の周辺部が接線となす角度が過度に小さくなることを抑制することができる。従って、第1レンズの像側のレンズ面に反射防止層を設けた際に周辺部において、反射防止層を構成する膜の膜厚が薄くなることを抑制することができる。また、第1レンズを製作しやすいので、コストの低減を図ることができる。
 本発明において、前記前群では、最も物体側から像側に向けて、少なくとも、前記第1レンズ、前記第2レンズ、および第3レンズが順に配置されている態様を採用することができる。
 この場合、前記第3レンズは、像側のレンズ面が凸曲面である正レンズであり、前記第3レンズの物体側のレンズ面のサグ量をSag31(mm)とし、前記第3レンズの物体側のレンズ面の直径をD31(mm)としたとき、サグ量Sag31および直径D31は、以下の条件式
  0<|Sag31/(D31/2)|<0.125
を満たす態様を採用することができる。かかる態様では、第3レンズの物体側のレンズ面のサグ量Sag31と第3レンズの物体側のレンズ面の半径(D31/2)との比(Sag31/(D31/2))の絶対値が下限(0)を超えるため、第3レンズの物体側のレンズ面が平面にならない。従って、各種収差を適正に補正することができる。また、比(Sag31/(D31/2))の絶対値に上限(0.125)を設けたため、第2レンズと第3レンズとの間で、サグ量が大きな凹面同士が対向することを回避することができる。従って、第2レンズと第3レンズとの間で、サグ量が大きな凹面の間での多重反射を抑制することができるので、第2レンズの像側のレンズ面と第3レンズの物体側のレンズ面との間での多重反射に起因するスポット状のゴーストの発生を抑制することができる。
 本発明において、前記第2レンズの像側のレンズ面のサグ量をSag22(mm)とし、前記第2レンズの像側のレンズ面の直径をD22(mm)としたとき、サグ量Sag22および直径D22は、以下の条件式
  0.400<Sag22/(D22/2)<1.733
を満たす態様を採用することができる。かかる態様では、第2レンズの像側のレンズ面のサグ量Sag22と第2レンズの像側のレンズ面の半径(D22/2)との比(Sag22/(D22/2))に下限(0.400)を設けたため、十分な負のパワーを確保することができる。従って、各種収差を適正に補正することができる。また、比(Sag22/(D22/2))に上限(1.733)を設けたため、第2レンズの像側のレンズ面の周辺部が接線となす角度が過度に小さくなることを抑制することができる。従って、第2レンズを製作しやすいので、コストの低減を図ることができる。
 本発明において、前記前群は、物体側から像側に向けて順に配置された前記第1レンズ、前記第2レンズ、および前記第3レンズからなり、前記後群は、物体側から像側に向けて順に配置された第4レンズ、第5レンズ、および第6レンズからなり、前記第3レンズは、像側のレンズ面が凸曲面である正レンズであり、前記第4レンズは、像側のレンズ面が凸曲面である正レンズであり、前記第5レンズは、像側のレンズ面が凹曲面である負レンズであり、前記第6レンズは、物体側のレンズ面および像側のレンズ面が凸曲面である両凸レンズであり、前記第2レンズ、前記第3レンズ、前記第5レンズ、および前記第6レンズは、プラスチックレンズであり、前記第4レンズは、ガラスレンズであり、前記第5レンズと前記第6レンズは、前記第5レンズの像側のレンズ面と前記第6レンズの物体側のレンズ面が接合された接合レンズを構成している態様を採用することができる。かかる態様によれば、絞りに対して像側で、第5レンズの像側の凹面と第6レンズの物体側の凸面とが接合されているため、色収差を適切に補正することができる。また、第2レンズ、第3レンズ、第5レンズ、および第6レンズがプラスチックレンズであるため、低コスト化を図ることができる。この場合でも、第4レンズがガラスレンズであり、温度変化に伴う屈折率変化が小さい。従って、広角レンズの温度特性を向上することができる。それ故、広い温度範囲にわたって、さらなる高解像度化を実現することができる。
本発明の実施形態1に係る広角レンズの説明図である。 図1に示す広角レンズの球面収差を示す説明図である。 図1に示す広角レンズの倍率色収差を示す説明図である。 図1に示す広角レンズの非点収差およびディストーションを示す説明図である。 図1に示す第1レンズの像側のレンズ面に設けた反射防止層の反射率特性を示す説明図である。 本発明の実施形態2に係る広角レンズの説明図である。 図6に示す広角レンズの球面収差を示す説明図である。 図6に示す広角レンズの倍率色収差を示す説明図である。 図6に示す広角レンズの非点収差およびディストーションを示す説明図である。 本発明の実施形態3に係る広角レンズの説明図である。 図10に示す広角レンズの球面収差を示す説明図である。 図10に示す広角レンズの倍率色収差を示す説明図である。 図10に示す広角レンズの非点収差およびディストーションを示す説明図である。
 図面を参照して、本発明の実施形態を説明する。以下に参照する図面において、光軸Lが延在する方向の物体側にはLaを付し、像側にはLbを付してある。本願発明において、「レンズ面の直径(Diameter)」とは、レンズ面における光学有効径のことである。有効径とは、結像に寄与する全光線とレンズ面との交わる点を考えたとき、径方向における最も外側の点(最も光軸から離れた点)からなる円の直径のことである。「サグ量(Sag)」とは、光軸と直交する仮想平面を仮想基準面としたとき、レンズ面の有効径の最外周における仮想基準面の光軸L上の点から、レンズ面の光軸L上の点までの距離である。また、サグ量が正の値である場合、仮想基準面における光軸Lの点がレンズ面の光軸L上の点よりも物体側に位置し、サグ量が負の値である場合、仮想基準面における光軸Lの点がレンズ面の光軸L上の点よりも像側に位置する。
[実施形態1]
 図1は、本発明の実施形態1に係る広角レンズ100の説明図である。なお、図1に面番号を表すにあたって、非球面には「*」を付してある。図1に示すように、本形態の広角レンズ100は、物体側Laから像側Lbに向けて順に配置された前群110、絞り80、後群120、および赤外線カットフィルタ81を有している。前群110は、最も物体側Laから像側Lbに向けて配置された第1レンズ10、第2レンズ20、および第3レンズ30からなる。後群120は、物体側Laから像側Lbに向けて配置された第4レンズ40、第5レンズ50、および第6レンズ60からなる。第6レンズ60に対して像側Lbには、平板状の赤外線カットフィルタ81、透光性のカバー82、および撮像素子85が順に配置されている。
 第1レンズ10は、像側Lbのレンズ面102(第2面2)が凹曲面である負メニスカスレンズ(負のパワーを有するメニスカスレンズ)であり、物体側Laのレンズ面101(第1面1)が凸曲面である。第2レンズ20は、像側Lbのレンズ面22(第4面4)が凹曲面である負レンズ(負のパワーを有するレンズ)であり、物体側Laのレンズ面21(第3面4)が凹曲面である。第3レンズ30は、像側Lbのレンズ面32(第6面6)が凸曲面である正レンズ(正のパワーを有するレンズ)であり、本形態において、第3レンズ30の物体側Laのレンズ面31(第5面5)は凹曲面である。第4レンズ40は、像側Lbのレンズ面42(第9面9)が凸曲面である正レンズ(正のパワーを有するレンズ)であり、本形態において、第4レンズ40の物体側Laのレンズ面41(第8面8)は凸曲面である。第5レンズ50は、像側Lbのレンズ面52(第11面11)が凹曲面である負レンズ(負のパワーを有するレンズ)であり、本形態において、第5レンズ50の物体側Laのレンズ面51(第10面10)は凹曲面である。第6レンズ60は、物体側Laのレンズ面61、および像側Lbのレンズ面62(第12面12)が凸曲面である両凸レンズであり、正のパワーを有している。第5レンズ50と第6レンズ60は、第5レンズ50の像側Lbのレンズ面52と第6レンズ60の物体側Laのレンズ面61が接着剤(図示せず)によって接合された接合レンズ70を構成しており、第5レンズ50の像側Lbのレンズ面52、および第6レンズ60の物体側Laのレンズ面61が第11面11を構成している。かかる態様によれば、絞り80に対して像側Lbで、第5レンズ50と第6レンズ60とが接合レンズ70を構成しているため、色収差を適切に補正することができる。接着剤は、硬化後も弾性を有する材質であることが好ましい。
 絞り80は、第7面7を構成している。赤外線カットフィルタ81の物体側Laの面811は第13面13を構成し、像側Lbの面812は第14面14を構成している。カバー82の物体側Laの面821は第15面15を構成し、像側Lbの面822は第16面16を構成している。撮像素子85の撮像面は第17面17を構成している。
 第2レンズ20、第3レンズ30、第5レンズ50、および第6レンズ60は、アクリル樹脂系、ポリカーボネート系、ポリオレフィン系等からなるプラスチックレンズである。従って、低コスト化を図ることができる。この場合でも、第1レンズ10および第4レンズ40は、ガラスレンズである。絞り80に隣り合う第4レンズがガラスレンズであり、温度変化に伴う屈折率変化が小さい。従って、広角レンズ100の温度特性を向上することができる。それ故、広い温度範囲にわたって、さらなる高解像度化を実現することができる。また。最も物体側Laに配置される第1レンズ10がガラスレンズであるため、第1レンズ10に傷等がつきにくい。本形態において、第2レンズ20のレンズ面21、22、第3レンズ30のレンズ面31、32、第5レンズ50のレンズ面51、52、および第6レンズ60のレンズ面61、62は、非球面である。第1レンズ10のレンズ面101、102、および第4レンズ40のレンズ面41、42は球面である。
(レンズ構成)
 本形態の広角レンズ100の各レンズの構成等は、表1に示す通りであり、表1には、広角レンズ100の特性として以下の特性を示してある。
  レンズ系全体の焦点距離f0(Effective Focal Length)
  全長d0(Total Track)
  レンズ系全体のF値(Image Space)
  最大画角(Max. Field Angle)
 また、表1には、各面の以下の項目が示されている。曲率半径、厚さ、焦点距離の単位はmmである。ここで、レンズ面が物体側に向けて突出した凸面あるいは物体側に向けて凹んだ凹面である場合には、曲率半径を正の値とし、レンズ面が像側に向けて突出した凸面あるいは像側に向けて凹んだ凹面である場合、曲率半径を負の値としてある。
  曲率半径(Radius)
  厚さ(Thickness)
  屈折率Nd
  アッベ数νd
  焦点距離f
 また、表1には、非球面の形状を下式(数1)で表した際の非球面係数A4、A6、A8、A10・・が示されている。下式においては、サグ量(光軸方向の軸)をz、光軸と垂直方向の高さ(光線高さ)をr、円錐係数をk、曲率半径の逆数をcとしてある。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1に示すように、本形態の広角レンズ100においては、レンズ系全体の焦点距離f0は0.914mmであり、第1レンズ10の物体側Laのレンズ面101から撮像素子85までの距離である全長は12.302mmであり、レンズ系全体のF値は2.0であり、最大画角は215degである。
(広角レンズ100の収差特性)
 図2は、図1に示す広角レンズ100の球面収差を示す説明図である。図3は、図1に示す広角レンズ100の倍率色収差を示す説明図であり、最大画角(107.3998deg/半角)における倍率色収差を示してある。図4は、図1に示す広角レンズ100の非点収差およびディストーションを示す説明図である。
 なお、図2、図3、図4には、波長が435nm、473nm、546nm、600nm、および668nmにおける各収差にV、B、G、O、およびRを付して示してある。また、図4に示す非点収差に関しては、サジタル方向の特性にSを付し、タンジェンシャル方向の特性にTを付してある。また、図4に示すディストーションとは、撮像中央部と周辺部における像の変化比率を示し、ディストーションをあらわす数値の絶対値が小さいほど、高精度なレンズといえる。
 図2~図4に示すように、本形態の広角レンズ100においては、球面収差、倍率色収差、および非点収差(ディストーション)が適正なレベルまで補正されている。
(ゴースト対策等に関する構成)
 表2には、以下に説明する条件式に対応する各数値を示してあり、図2には、後述する実施例1の変形例、および実施例2、3の数値も示してある。なお、表2に示す値は、四捨五入による端数処理を行ってある。
Figure JPOXMLDOC01-appb-T000003
 
 表1および表2に示すように、第1レンズ10のレンズ面102のサグ量をSag12(mm)とし、第1レンズ10のレンズ面102の直径をD12(mm)としたとき、サグ量Sag12および直径D12は、以下の条件式(1)
  0.577<Sag12/(D12/2)<1.733  ・・条件式(1)
を満たしている。より具体的には、Sag12は1.547mmであり、D12は4.793mmである。従って、比(Sag12/(D12/2))は、0.646であり、条件式(1)を満たしている。
 比(Sag12/(D12/2))が下限(0.577)を超えているため、十分な負のパワーを確保することができる。また、広画角化に対応した場合でも、各種収差を適正に補正することができる。また、比(Sag12/(D12/2))に上限(1.733)を設けたため、第1レンズ10のレンズ面102の周辺部が接線となす角度が過度に小さくなることを抑制することができる。従って、第1レンズ10のレンズ面102に、後述する反射防止層を設けた際、周辺部において、反射防止層を構成する膜の膜厚が薄くなることを抑制することができる。また、第1レンズ10を製作しやすいので、コストの低減を図ることができる。
 第2レンズ20のレンズ面21のサグ量をSag21(mm)とし、第2レンズ20のレンズ面21の直径をD21(mm)としたとき、サグ量Sag21および直径D21は、以下の条件式(2)
  0<|Sag21/(D21/2)|<0.125  ・・条件式(2)
を満たしている。より具体的には、Sag21は0.199mmであり、D21は4.793mmである。従って、比(Sag21/(D21/2))の絶対値は、0.083であり、条件式(2)を満たしている。
 比(Sag21/(D21/2))の絶対値が下限(0)を超えるため、第2レンズ20のレンズ面21が平面にならない。従って、各種収差を適正に補正することができる。また、比(Sag21/(D21/2))の絶対値に上限(0.125)を設けたため、第1レンズ10と第2レンズ20との間で、サグ量が大きな凹面とサグ量が大きな凸面とが対向することを回避することができる。従って、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間での多重反射を抑制することができる。それ故、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間での多重反射に起因するリング状のゴーストの発生を抑制することができる。また、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間で、サグ量が大きな凹面同士が対向することを回避することもできる。従って、サグ量が大きな凹面の間での多重反射を原因とするスポット状のゴーストの発生も抑制することができる。
 第3レンズ30のレンズ面31のサグ量をSag31(mm)とし、第3レンズ30のレンズ面31の直径をD31(mm)としたとき、サグ量Sag31および直径D31は、以下の条件式(3)
  0<|Sag31/(D31/2)|<0.125  ・・条件式(3)
を満たしている。より具体的には、サグ量Sag31は、-0.097mmであり、D21は2.354mmである。従って、比(Sag31/(D31/2))の絶対値は、0.082であり、条件式(3)を満たしている。
 比(Sag31/(D31/2))の絶対値が下限(0)を超えるため、第3レンズ30のレンズ面31が平面にならない。従って、各種収差を適正に補正することができる。また、比(Sag31/(D31/2))の絶対値に上限(0.125)を設けたため、第2レンズ20と第3レンズ30との間で、サグ量が大きな凹面同士が対向することを回避することができる。従って、第2レンズ20と第3レンズ30との間で、サグ量が大きな凹面の間での多重反射を抑制することができるので、第2レンズ20のレンズ面22と第3レンズ30のレンズ面31との間において、サグ量が大きな凹面の間での多重反射を原因とするスポット状のゴーストの発生を抑制することができる。
 第2レンズ20のレンズ面22のサグ量をSag22(mm)とし、第2レンズ20のレンズ面22の直径をD22(mm)としたとき、サグ量Sag22および直径D22は、以下の条件式(4)
  0.400<Sag22/(D22/2)<1.733  ・・・条件式(4)
を満たしている。より具体的には、サグ量Sag22は0.837mmであり、直径D22は2.495mmである。従って、比(Sag22/(D22/2))は、0.671であり、条件式(4)を満たしている。
 比(Sag22/(D22/2))が下限(0.400)を超えているため、十分な負のパワーを確保することができる。従って、各種収差を適正に補正することができる。また、比(Sag22/(D22/2))に上限(1.733)を設けたため、第2レンズ20のレンズ面22の周辺部が接線となす角度が過度に小さくなることを抑制することができる。従って、第2レンズ20を製作しやすいので、コストの低減を図ることができる。
 第1レンズ10および第2レンズ20の合成焦点距離をf12(mm)とし、第3レンズ30、第4レンズ40、第5レンズ50、および第6レンズ60の合成焦点距離をf3456(mm)としたとき、合成焦点距離f12、f3456は、以下の条件式(5)
   0.1<|f12/f3456|<1  ・・条件式(5)
を満たしている。より具体的には、合成焦点距離f12、f3456は各々、-1.283mm、および2.440mmである。従って、比f12/f3456の絶対値は0.526であり、条件(5)を満たしている。
 比(f12/f3456)の絶対値が上限(1)未満であるため、正のパワーが強くなりすぎることを抑制することができる。従って、コマ収差や非点収差を適正に補正することができる。また、比(f12/f3456)の絶対値が下限(0.1)を超えるため、負のパワーが強くなりすぎることを抑制することができる。従って、レンズ系全体の全長が長くなることを回避することができる。それ故、広角レンズ100の小型化を図ることができる。
 合成焦点距離f12、およびレンズ系全体の焦点距離f0は、以下の条件式(6)
   0.5<|f12/f0|<2.5  ・・条件式(6)
を満たしている。より具体的には、合成焦点距離f12、およびレンズ系全体の焦点距離f0は各々、-1.283mm、および0.914mmである。従って、比f12/f0の絶対値は1.40であり、条件式(6)を満たしている。
 比(f12/f0)の絶対値が下限(0.5)を超えるため、像面湾曲を抑えることができる。また、比(f12/f0)の絶対値が上限(2.5)未満であるため、視野角を大きくすることができる。
 第4レンズ40、第5レンズ50、および第6レンズ60の合成焦点距離をf456(mm)としたとき、合成焦点距離f456、およびレンズ系全体の焦点距離f0は、以下の条件式(7)
   2<f456/f0<4  ・・条件式(7)
を満たしている。より具体的には、合成焦点距離f456、およびレンズ系全体の焦点距離f0は各々、3.456mm、および0.914mmである。従って、比f456/f0は3.78であり、条件式(7)を満たしている。
 比(f456/f0)が下限(2)を超えるため、第4レンズ40、第5レンズ50、および第6レンズからなる後群120のパワーが強くなりすぎてしまうことを防ぐことができる。従って、各収差、特に色収差の補正をより良好に行うことができ、さらに高い光学性能を実現することができる。また、比(f456/f0)が上限(4)未満であるため、レンズ径が大きくなりすぎることを抑制することができるとともに、レンズ系全体の全長が長くなることを回避することができる。それ故、広角レンズの小型化を図ることができる。
 全長d0、レンズ系全体の焦点距離f0は、以下の条件式(8)
   10<d0/f0<18  ・・条件式(8)
を満たしている。より具体的には、全長d0、およびレンズ系全体の焦点距離f0は各々、12.302mm、および0.914mmである。従って、d0/f0は13.46であり、条件式(8)を満たしている。
 比(d0/f0)が下限(10)を超えているので、球面収差や歪曲収差を適正に補正することができる。また、比(d0/f0)が上限(18)未満であるので、レンズ径が大きくなりすぎることを抑制することができるとともに、レンズ系全体の全長が長くなることを回避することができる。それ故、広角レンズの小型化を図ることができる。
 第1レンズ10の屈折率Ndをn1としたとき、第1レンズ10の屈折率n1は、以下の条件式(9)
   1.7<n1  ・・条件式(9)
を満たしている。より具体的には、第1レンズ10の屈折率n1は、1.876である。従って、条件式(9)を満たしている。
 第1レンズ10の屈折率n1が1.7を超えているので、第1レンズ10の外径を小さくできる。それ故、広角レンズ100の小型化を図ることができる。また、第2レンズ20のレンズ面21のサグ量を小さく(浅く)することができ、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間での多重反射を抑制することができる。従って、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間での多重反射に起因するリング状のゴーストの発生を抑制することができる。
(反射防止層の構成)
 図5は、図1に示す第1レンズ10の像側Lbのレンズ面102に設ける反射防止層の反射率特性を示す説明図である。本形態では、少なくとも、第1レンズ10の像側Lbのレンズ12面に反射防止層19が形成されており、反射防止層19は、図5に点線L2で示す反射率特性を有している。このため、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との間での多重反射を抑制することができ、多重反射に起因するリング状のゴーストの発生を抑制することができる。
 ここで、第1レンズ10の像側Lbのレンズ12面には、反射防止層19に代えて、図5に実線L1で示す反射率特性を有する反射防止層18を設けることが好ましい。反射防止層18は、430nmから850nmまでの波長域における反射率が1.5%以下である。反射防止層18は誘電体多層膜からなる。反射防止層19は、誘電体多層膜または単層のコーティング層からなる。
 図5から分かるように、反射防止層18は、通常の可視域に加えて、近赤外域までの広い波長域において反射率が1.5%以下である。このため、レンズ面102の周辺部に対する接線が光軸Lとなす角度が小さくなって、レンズ面102の周辺部において、反射防止層18を構成する膜の膜厚が適正な値より薄くなっても、長波長域の光に対して、反射防止層18が適正な反射防止を行う。それ故、第1レンズ10のレンズ面102と第2レンズ20のレンズ面21との多重反射を抑制することができるので、リング状の赤いゴーストの発生を抑制することができる。なお、反射防止層18、19を比較すると、反射防止層19は、一般的な反射防止層より誘電体層の積層数が多い。従って、第1レンズ10のレンズ面102のみに反射防止層18を形成し、第1レンズ10のレンズ面101等の他のレンズ面には、反射防止層19を形成した方がコストを低減することができる。
[実施形態1の変形例]
 実施形態1の変形例では、広角レンズ100の基本的な構成が、図1に示す実施形態1と略同様である。このため、本例のレンズ構成については、実施形態1で参照した図1に基づいて説明する。
 図1に示すように、本形態の広角レンズ100も、実施形態1と同様、物体側Laから像側Lbに向けて順に配置された前群110、絞り80、後群120、および赤外線カットフィルタ81を有している。前群110は、最も物体側Laから像側Lbに向けて配置された第1レンズ10、第2レンズ20、および第3レンズ30からなる。後群120は、物体側Laから像側Lbに向けて配置された第4レンズ40、第5レンズ50、および第6レンズ60からなる。第6レンズ60に対して像側Lbには、平板状の赤外線カットフィルタ81、透光性のカバー82、および撮像素子85が順に配置されている。
 本形態の広角レンズ100の各レンズの構成等は、表3に示す通りである。本形態の広角レンズ100においては、レンズ系全体の焦点距離f0は0.914mmであり、第1レンズ10のレンズ面101から撮像素子85までの距離である全長は12.301mmであり、レンズ系全体のF値は2.0であり、最大画角は215degである。本例の広角レンズ100においては、球面収差、倍率色収差、および非点収差(ディストーション)は、実施形態1において参照した図2~図4と同等であり、適正なレベルまで補正されている。
Figure JPOXMLDOC01-appb-T000004
 
 表2および表3に示すように、第1レンズ10のレンズ面102のサグ量Sag12、および直径D12は各々、1.555mm、および4.801mmである。従って、比(Sag12/(D12/2))は、0.648であり、条件式(1)を満たしている。
 第2レンズ20のレンズ面21のサグ量Sag21、および直径D21は各々、0.199mm、および4.801mmである。従って、比(Sag21/(D21/2))の絶対値は、0.083であり、条件式(2)を満たしている。
 第3レンズ30のレンズ面31のサグ量Sag31、および直径D31は各々、-0.098mm、および2.362mmである。従って、比(Sag31/(D31/2))の絶対値は、0.083であり、条件式(3)を満たしている。
 第2レンズ20のレンズ面22のサグ量Sag22、および直径D22は各々、0.842mm、および2.501mmである。従って、比(Sag22/(D22/2))は、0.674であり、条件式(4)を満たしている。
 合成焦点距離f12、f3456は各々、-1.283mm、および2.360mmである。従って、比f12/f3456の絶対値は0.544であり、条件(5)を満たしている。
 合成焦点距離f12、およびレンズ系全体の焦点距離f0は各々、-1.283mm、および0.914mmである。従って、比f12/f0の絶対値は1.405であり、条件式(6)を満たしている。
 合成焦点距離f456、およびレンズ系全体の焦点距離f0は各々、3.029mm、および0.914mmである。従って、比f456/f0は3.316であり、条件式(7)を満たしている。
 レンズ系全体の焦点距離f0、および全長d0は各々、0.914mm、および12.301mmである。従って、比d0/f0は13.463であり、条件式(8)を満たしている。
 第1レンズ10の屈折率Nd(n1)は、1.876であり、条件式(9)を満たしている。
 このように構成した広角レンズ100でも、実施形態1と同様、第1レンズ10のレンズ面102は、図5に実線L1で示す反射率特性を示す反射防止層18が形成されている。
[実施形態2]
 図6は、本発明の実施形態2に係る広角レンズ100の説明図である。図7は、図6に示す広角レンズ100の球面収差を示す説明図である。図8は、図6に示す広角レンズ100の倍率色収差を示す説明図であり、最大画角(106.0000deg/半角)における倍率色収差を示してある。図9は、図6に示す広角レンズ100の非点収差およびディストーションを示す説明図である。
 図6に示すように、本形態の広角レンズ100も、実施形態1と同様、物体側Laから像側Lbに向けて順に配置された前群110、絞り80、後群120、および赤外線カットフィルタ81を有している。前群110は、最も物体側Laから像側Lbに向けて配置された第1レンズ10、第2レンズ20、および第3レンズ30からなる。後群120は、物体側Laから像側Lbに向けて配置された第4レンズ40、第5レンズ50、および第6レンズ60からなる。本形態において、第2レンズ20は、物体側Laのレンズ面21(第3面3)が凸曲面である。その他の基本的な構成は、実施形態1と同様である。
 本形態の広角レンズ100の各レンズの構成等は、表4に示す通りである。本形態の広角レンズ100においては、レンズ系全体の焦点距離f0は0.913mmであり、第1レンズ10のレンズ面101から撮像素子85までの距離である全長は12.450mmであり、レンズ系全体のF値は2.0であり、最大画角は212degである。図7~図9に示すように、本形態の広角レンズ100においては、球面収差、倍率色収差、および非点収差(ディストーション)が適正なレベルまで補正されている。
Figure JPOXMLDOC01-appb-T000005
 
 表2および表4に示すように、第1レンズ10のレンズ面102のサグ量Sag12、および直径D12は各々、1.738mm、および5.392mmである。従って、比(Sag12/(D12/2))は、0.645であり、条件式(1)を満たしている。
 第2レンズ20のレンズ面21のサグ量Sag21、および直径D21は各々、0.161mm、および5.392mmである。従って、比(Sag21/(D21/2))の絶対値は、0.060であり、条件式(2)を満たしている。
 第3レンズ30のレンズ面31のサグ量Sag31、および直径D31は各々、-0.120mm、および2.665mmである。従って、比(Sag31/(D31/2))の絶対値は、0.090であり、条件式(3)を満たしている。
 第2レンズ20のレンズ面22のサグ量Sag22、および直径D22は各々、1.001mm、および2.787mmである。従って、比(Sag22/(D22/2))は、0.718であり、条件式(4)を満たしている。
 合成焦点距離f12、f3456は各々、-1.393mm、2.461mmである。従って、比f12/f3456の絶対値は0.567であり、条件(5)を満たしている。
 合成焦点距離f12、およびレンズ系全体の焦点距離f0は各々、-1.393mm、および0.913mmである。従って、比f12/f0の絶対値は1.53であり、条件式(6)を満たしている。
 合成焦点距離f456、およびレンズ系全体の焦点距離f0は各々、2.889mm、および0.913mmである。従って、比f456/f0は3.16であり、条件式(7)を満たしている。
 レンズ系全体の焦点距離f0、および全長d0は各々、0.913mm、および12.450mmである。従って、比d0/f0は13.64であり、条件式(8)を満たしている。
 第1レンズ10の屈折率Nd(n1)は、1.876であり、条件式(9)を満たしている。
 このように構成した広角レンズ100でも、実施形態1と同様、第1レンズ10のレンズ面102は、図5に実線L1で示す反射率特性を示す反射防止層18が形成されている。
[実施形態3]
 図10は、本発明の実施形態3に係る広角レンズ100の説明図である。図11は、図10に示す広角レンズ100の球面収差を示す説明図である。図12は、図10に示す広角レンズ100の倍率色収差を示す説明図であり、最大画角(106.5000deg/半角)における倍率色収差を示してある。図13は、図10に示す広角レンズ100の非点収差およびディストーションを示す説明図である。
 図10に示すように、本形態の広角レンズ100も、実施形態1と同様、物体側Laから像側Lbに向けて順に配置された前群110、絞り80、後群120、および赤外線カットフィルタ81を有している。前群110は、最も物体側Laから像側Lbに向けて配置された第1レンズ10、第2レンズ20、および第3レンズ30からなる。後群120は、物体側Laから像側Lbに向けて配置された第4レンズ40、第5レンズ50、および第6レンズ60からなる等、基本的な構成は、実施形態1と同様である。
 本形態の広角レンズ100の各レンズの構成等は、表5に示す通りである。本形態の広角レンズ100においては、レンズ系全体の焦点距離f0は0.945mmであり、第1レンズ10のレンズ面101から撮像素子85までの距離である全長は12.393mmであり、レンズ系全体のF値は2.04であり、最大画角は213degである。図11~図13に示すように、本形態の広角レンズ100においては、球面収差、倍率色収差、および非点収差(ディストーション)が適正なレベルまで補正されている。
Figure JPOXMLDOC01-appb-T000006
 
 表2および表5に示すように、第1レンズ10のレンズ面102のサグ量Sag12、および直径D12は各々、1.439mm、および4.837mmである。従って、比(Sag12/(D12/2))は、0.595であり、条件式(1)を満たしている。
 第2レンズ20のレンズ面21のサグ量Sag21、および直径D21は各々、-0.124mm、および4.837mmである。従って、比(Sag21/(D21/2))の絶対値は、0.051であり、条件式(2)を満たしている。
 第3レンズ30のレンズ面31のサグ量Sag31、および直径D31は各々、-0.110mm、および2.387mmである。従って、比(Sag31/(D31/2))の絶対値は、0.092であり、条件式(3)を満たしている。
 第2レンズ20のレンズ面22のサグ量Sag22、および直径D22は各々、0.600mm、および2.586mmである。従って、比(Sag22/(D22/2))は、0.464であり、条件式(4)を満たしている。
 合成焦点距離f12、f3456は各々、-1.319mm、2.374mmである。従って、比f12/f3456の絶対値は0.556であり、条件(5)を満たしている。
 合成焦点距離f12、およびレンズ系全体のf0は各々、-1.319mm、および0.945mmである。従って、比f12/f0の絶対値は1.40であり、条件式(6)を満たしている。
 合成焦点距離f456、およびレンズ系全体の焦点距離f0は各々、2.832mm、および0.945mmである。従って、比f456/f0は3.00であり、条件式(7)を満たしている。
 レンズ系全体の焦点距離f0、および全長d0は各々、0.945mm、および12.393mmである。従って、比d0/f0は13.12であり、条件式(8)を満たしている。
 第1レンズ10の屈折率Nd(n1)は、1.876であり、条件式(9)を満たしている。
 このように構成した広角レンズ100でも、実施形態1と同様、第1レンズ10のレンズ面102は、図5に実線L1で示す反射率特性を示す反射防止層18が形成されている。
[他の実施の形態]
 上記実施の形態では、第1レンズ10がガラスレンズであったが、プラスチックレンズであってもよい。この場合、第1レンズ10の像側Lbのレンズ面102を非球面とすることができる。
 本発明では、第2レンズの物体側のレンズ面のサグ量Sag21と第2レンズの物体側のレンズ面の半径(D21/2)との比(Sag21/(D21/2))の絶対値が下限(0)を超えるため、第2レンズの物体側のレンズ面が平面にならない。従って、各種収差を適正に補正することができる。また、比(Sag21/(D21/2))の絶対値に上限(0.125)を設けたため、第1レンズと第2レンズとの間で、サグ量が大きな凹面とサグ量が大きな凸面とが対向することを回避することができる。従って、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射を抑制することができる。それ故、第1レンズの像側のレンズ面と第2レンズの物体側のレンズ面との間での多重反射に起因するリング状のゴーストの発生を抑制することができる。

Claims (8)

  1.  物体側から像側に向けて、前群、絞り、および後群が順に配置され、
     前記前群では、最も物体側から像側に向けて、少なくとも、第1レンズおよび第2レンズが順に配置され、
     前記第1レンズは、像側のレンズ面が凹曲面である負メニスカスレンズであり、
     前記第2レンズは、像側のレンズ面が凹曲面である負レンズであり、
     前記第2レンズの物体側のレンズ面のサグ量をSag21(mm)とし、前記第2レンズの物体側のレンズ面の直径をD21(mm)としたとき、サグ量Sag21および直径D21は、以下の条件式
      0<|Sag21/(D21/2)|<0.125
    を満たすことを特徴とする広角レンズ。
  2.  少なくとも前記第1レンズの像側のレンズ面には反射防止層が設けられていることを特徴とする請求項1に記載の広角レンズ。
  3.  前記第1レンズの像側のレンズ面には、前記反射防止層として、430nmから850nmまでの波長域における反射率を1.5%以下とする反射防止層が設けられていることを特徴とする請求項2に記載の広角レンズ。
  4.  前記第1レンズの像側のレンズ面のサグ量をSag12(mm)とし、前記第1レンズの像側のレンズ面の直径をD12(mm)としたとき、サグ量Sag12および直径D12は、以下の条件式
      0.577<Sag12/(D12/2)<1.733
    を満たすことを特徴とする請求項2に記載の広角レンズ。
  5.  前記前群では、最も物体側から像側に向けて、少なくとも、前記第1レンズ、前記第2レンズ、および第3レンズが順に配置されていることを特徴とする請求項1から4までの何れか一項に記載の広角レンズ。
  6.  前記第3レンズは、像側のレンズ面が凸曲面である正レンズであり、
     前記第3レンズの物体側のレンズ面のサグ量をSag31(mm)とし、前記第3レンズの物体側のレンズ面の直径をD31(mm)としたとき、サグ量Sag31および直径D31は、以下の条件式
      0<|Sag31/(D31/2)|<0.125
    を満たすことを特徴とする請求項5に記載の広角レンズ。
  7.  前記第2レンズの像側のレンズ面のサグ量をSag22(mm)とし、前記第2レンズの像側のレンズ面の直径をD22(mm)としたとき、サグ量Sag22および直径D22は、以下の条件式
      0.400<Sag22/(D22/2)<1.733
    を満たすことを特徴とする請求項6に記載の広角レンズ。
  8.  前記前群は、物体側から像側に向けて順に配置された前記第1レンズ、前記第2レンズ、および前記第3レンズからなり、
     前記後群は、物体側から像側に向けて順に配置された第4レンズ、第5レンズ、および第6レンズからなり、
     前記第3レンズは、像側のレンズ面が凸曲面である正レンズであり、
     前記第4レンズは、像側のレンズ面が凸曲面である正レンズであり、
     前記第5レンズは、像側のレンズ面が凹曲面である負レンズであり、
     前記第6レンズは、物体側のレンズ面および像側のレンズ面が凸曲面である両凸レンズであり、
     前記第2レンズ、前記第3レンズ、前記第5レンズ、および前記第6レンズは、プラスチックレンズであり、
    前記第4レンズは、ガラスレンズであり、
     前記第5レンズと前記第6レンズは、前記第5レンズの像側のレンズ面と前記第6レンズの物体側のレンズ面が接合された接合レンズを構成していることを特徴とする請求項5に記載の広角レンズ。
PCT/JP2018/046710 2017-12-26 2018-12-19 広角レンズ WO2019131369A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880081425.6A CN111492290B (zh) 2017-12-26 2018-12-19 广角镜头
JP2019561567A JP7201619B2 (ja) 2017-12-26 2018-12-19 広角レンズ
US16/955,779 US11567306B2 (en) 2017-12-26 2018-12-19 Wide-angle lens capable of suppressing multiple reflection between the first lens and the second lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017248894 2017-12-26
JP2017-248894 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131369A1 true WO2019131369A1 (ja) 2019-07-04

Family

ID=67063622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046710 WO2019131369A1 (ja) 2017-12-26 2018-12-19 広角レンズ

Country Status (4)

Country Link
US (1) US11567306B2 (ja)
JP (1) JP7201619B2 (ja)
CN (1) CN111492290B (ja)
WO (1) WO2019131369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426826A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166289B2 (ja) * 2017-12-26 2022-11-07 日本電産サンキョー株式会社 広角レンズ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092798A (ja) * 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
JP2013073156A (ja) * 2011-09-29 2013-04-22 Fujifilm Corp 撮像レンズおよび撮像装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625711B2 (ja) 2005-03-31 2011-02-02 日本電産ニッシン株式会社 広角レンズ
JP4949871B2 (ja) 2007-01-22 2012-06-13 富士フイルム株式会社 撮像レンズ、および該撮像レンズを備えた撮像装置
WO2013046566A1 (ja) 2011-09-29 2013-04-04 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6385214B2 (ja) 2014-09-12 2018-09-05 日本電産サンキョー株式会社 広角レンズ
JP6549458B2 (ja) * 2015-09-30 2019-07-24 株式会社トプコン 反射防止膜、光学素子、及び眼科装置
KR102580826B1 (ko) 2016-01-26 2023-09-20 삼성전기주식회사 촬상 광학계
JP6646262B2 (ja) * 2016-04-12 2020-02-14 キヤノン株式会社 光学系及びそれを有する撮像装置
JP2017223755A (ja) * 2016-06-14 2017-12-21 キヤノン株式会社 撮像光学系

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092798A (ja) * 2007-10-05 2009-04-30 Fujinon Corp 撮像レンズおよび撮像装置
JP2013073156A (ja) * 2011-09-29 2013-04-22 Fujifilm Corp 撮像レンズおよび撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426826A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像系统
CN110426826B (zh) * 2019-08-12 2024-06-04 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
CN111492290B (zh) 2022-04-01
US20200371322A1 (en) 2020-11-26
CN111492290A (zh) 2020-08-04
US11567306B2 (en) 2023-01-31
JPWO2019131369A1 (ja) 2020-12-17
JP7201619B2 (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2019131368A1 (ja) 広角レンズ
WO2018021205A1 (ja) 広角レンズ
JP2019066645A (ja) 広角レンズ
US8988792B2 (en) Optical system, optical apparatus and method for arranging diffractive optical element
WO2019021831A1 (ja) 広角レンズ
JP7269801B2 (ja) 広角レンズ
WO2019131369A1 (ja) 広角レンズ
WO2019131367A1 (ja) 広角レンズ
JP5713555B2 (ja) 複合型レンズ、それを有する光学系及び光学機器
JP7269800B2 (ja) 広角レンズ
WO2020262488A1 (ja) 広角レンズ
CN110174744B (zh) 广角镜头
WO2020162094A1 (ja) 広角レンズ
JP2021107892A (ja) 広角レンズ
CN209928121U (zh) 一种光学成像镜头
CN117471656B (zh) 光学镜头
JP2023075468A (ja) 広角レンズ
JP2023075469A (ja) 広角レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895045

Country of ref document: EP

Kind code of ref document: A1