TWI718066B - 光學攝像透鏡組、成像裝置及電子裝置 - Google Patents

光學攝像透鏡組、成像裝置及電子裝置 Download PDF

Info

Publication number
TWI718066B
TWI718066B TW109118147A TW109118147A TWI718066B TW I718066 B TWI718066 B TW I718066B TW 109118147 A TW109118147 A TW 109118147A TW 109118147 A TW109118147 A TW 109118147A TW I718066 B TWI718066 B TW I718066B
Authority
TW
Taiwan
Prior art keywords
lens
object side
image side
convex
optical imaging
Prior art date
Application number
TW109118147A
Other languages
English (en)
Other versions
TW202144839A (zh
Inventor
李旭昇
許智程
Original Assignee
紘立光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 紘立光電股份有限公司 filed Critical 紘立光電股份有限公司
Priority to TW109118147A priority Critical patent/TWI718066B/zh
Priority to CN202010994237.1A priority patent/CN113741001B/zh
Priority to CN202022073008.4U priority patent/CN212483966U/zh
Application granted granted Critical
Publication of TWI718066B publication Critical patent/TWI718066B/zh
Publication of TW202144839A publication Critical patent/TW202144839A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Abstract

一種光學攝像透鏡組,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡、第五透鏡及第六透鏡。其中,第一透鏡具有負屈折力,其物側面為凸面、像側面為凹面;第二透鏡具有負屈折力,其像側面為凹面;第三透鏡具有正屈折力,其物側面為凸面、像側面為凸面;第四透鏡具有正屈折力,其物側面及像側面為凸面;第五透鏡具有負屈折力,其物側面為凸面、像側面為凹面;第六透鏡具有正屈折力,其物側面及像側面為凸面;透鏡總數為六片。當滿足特定條件時,本發明之光學攝像透鏡組能同時滿足小型化、廣視角及高成像品質的需求。

Description

光學攝像透鏡組、成像裝置及電子裝置
本發明係有關於一種光學攝像透鏡組及成像裝置,特別是有關於可應用於電子裝置的光學攝像透鏡組和成像裝置。
隨著半導體製程技術的進步,使得影像感測元件的畫素可以達到更微小的尺寸,進而提升了整體影像感測元件的效能。因此,光學成像鏡頭的成像品質也必須持續地提升,以符合現今消費市場的需求。
除了逐漸朝向小型化的發展,光學鏡頭模組亦要求更寬廣的拍照視野及良好的成像品質。然而,提高光學鏡頭模組的成像視角,常會導致透鏡組的總長度增加(體積變大),或者使得像差變得難以修正。以美國專利7,623,305號為例,其包含具有負屈折力之第一鏡群、光圈及具有正屈折力之第二鏡群;第一鏡群包含具有負屈折力之第一透鏡及具有正屈折力之第二透鏡;第二鏡群包含具有正屈折力之第三透鏡、具有負屈折力之第四透鏡及具有正屈折力之第五透鏡。雖然在此專利所揭露的光學透鏡組架構下,可以有效縮小鏡頭成像的畸變像差,但其拍攝視角僅能達到70度左右,無法符合現今消費者的使用需求。
是以,如何提供一種廣視角且具有良好成像品質的小型光學鏡頭已成為此技術領域之人士亟欲解決之問題。
是以,為解決上述問題,本發明提供一種光學攝像透鏡組,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡、第五透鏡及第六透鏡。其中,第一透鏡,具有負屈折力,其物側面為凸面、像側面為凹面;第二透鏡,具有負屈折力,其像側面為凹面,其物側面及像側面皆為非球面;第三透鏡,具有正屈折力,其像側面為凸面;第四透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;第五透鏡,具有負屈折力,其物側面為凸面、像側面為凹面,其物側面及像側面皆為非球面;及第六透鏡,具有正屈折力,其物側面為凸面、像側面為凸面,其物側面及像側面皆為非球面。其中,所述光學攝像透鏡組之透鏡總數為六片。所述第一透鏡之焦距為f1,第二透鏡之焦距為f2,第一透鏡之物側面至光學攝像透鏡組之成像面在光軸上的距離為TTL,光學攝像透鏡組之最大像高為ImgH,該第一透鏡像側面的曲率半徑為R2,該第二透鏡像側面的曲率半徑為R4,該第四透鏡物側面的曲率半徑為R7、像側面的曲率半徑為R8,係滿足以下關係式:1.2<f1/f2<5.5;4<TTL/ImgH<7;1.85≦R2/R4<4;及-0.3<(R7+R8)/(R8-R7)≦0.0005。
較佳地,根據本發明之一實施例,所述第三透鏡之焦距為f3,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:1.5<f3/EFL<6.5。
較佳地,根據本發明之一實施例,所述第一透鏡物側面之曲率半徑為R1,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.5<R1/EFL<8。
本發明另提供一種光學攝像透鏡組,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡、第五透鏡及第六透鏡。其中,第一透鏡,具有負屈折力,其物側面為凸面、像側面為凹面;第二透鏡,具有 負屈折力,其像側面為凹面,其物側面及像側面皆為非球面;第三透鏡,具有正屈折力,其像側面為凸面;第四透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;第五透鏡,具有負屈折力,其物側面為凸面、像側面為凹面,其物側面及像側面皆為非球面;第六透鏡,具有正屈折力,其物側面為凸面、像側面為凸面,其物側面及像側面皆為非球面。其中,所述光學攝像透鏡組之透鏡總數為六片。所述第三透鏡之焦距為f3,第一透鏡物側面之曲率半徑為R1,整體光學攝像透鏡組之有效焦距為EFL,該第一透鏡像側面的曲率半徑為R2,該第二透鏡像側面的曲率半徑為R4,該第四透鏡物側面的曲率半徑為R7、像側面的曲率半徑為R8,係滿足以下關係式:1.5<f3/EFL<6.5;3.5<R1/EFL<8;1.85≦R2/R4<4;及-0.3<(R7+R8)/(R8-R7)≦0.0005。
較佳地,根據本發明之一實施例,所述第一透鏡之焦距為f1,第二透鏡之焦距為f2,係滿足以下關係式:1.2<f1/f2<5.5。
較佳地,根據本發明之一實施例,第一透鏡之物側面至光學攝像透鏡組之成像面在光軸上的距離為TTL,光學攝像透鏡組之最大像高為ImgH,係滿足以下關係式:4<TTL/ImgH<7。
根據本發明之一實施例,第五透鏡像側面的曲率半徑為R10,第六透鏡物側面的曲率半徑為R11,係滿足以下關係式:0.25<R10/R11<0.55。
根據本發明之一實施例,第三透鏡之焦距為f3,第四透鏡之焦距為f4,光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.9<f3/EFL+f4/EFL<7.8。
根據本發明之一實施例,第五透鏡之焦距為f5,光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:-3.2<f5/EFL<-1.4。
根據本發明之一實施例,第四透鏡之焦距為f4,第六透鏡之焦距為f6,係滿足以下關係式:0.3<f4/f6<1.2。
根據本發明之一實施例,第四透鏡在光軸上之厚度為CT4,第五透鏡在光軸上之厚度為CT5,第六透鏡在光軸上之厚度為CT6,而第一透鏡之物側面至光學攝像透鏡組之成像面在光軸上的距離為TTL,係滿足以下關係式:0.15<(CT4+CT5+CT6)/TTL<0.25。
根據本發明之一實施例,第一透鏡之折射率為Nd1,第三透鏡之折射率為Nd3,係滿足以下關係式:Nd1>1.75;及Nd3>1.75。
根據本發明之一實施例,第三透鏡物側面的曲率半徑為R5、像側面的曲率半徑為R6,係滿足以下關係式:-6<(R5+R6)/(R6-R5)<0.5。
根據本發明之一實施例,第四透鏡之焦距為f4,第五透鏡之焦距為f5,第六透鏡之焦距為f6,係滿足以下關係式:0.3
Figure 109118147-A0305-02-0006-39
|f5|/(f4+f6)
Figure 109118147-A0305-02-0006-36
0.62。
本發明又提供一種成像裝置,其包含如前述之光學攝像透鏡組,及一影像感測元件,其中,所述影像感測元件係設置於光學攝像透鏡組之成像面。
本發明進一步提供一種電子裝置,其包含如前述之成像裝置。
為使本發明上述特徵和優點能更明顯易懂,以下列舉數個實施例,並配合附圖詳細說明如下。
10、20、30、40、50、60、70、80:光學攝像透鏡組
11、21、31、41、51、61、71、81:第一透鏡
12、22、32、42、52、62、72、82:第二透鏡
13、23、33、43、53、63、73、83:第三透鏡
14、24、34、44、54、64、74、84:第四透鏡
15、25、35、45、55、65、75、85:第五透鏡
16、26、36、46、56、66、76、86:第六透鏡
17、27、37、47、57、67、77、87:濾光元件
18、28、38、48、58、68、78、88:成像面
11a、21a、31a、41a、51a、61a、71a、81a:第一透鏡之物側面
11b、21b、31b、41b、51b、61b、71b、81b:第一透鏡之像側面
12a、22a、32a、42a、52a、62a、72a、82a:第二透鏡之物側面
12b、22b、32b、42b、52b、62b、72b、82b:第二透鏡之像側面
13a、23a、33a、43a、53a、63a、73a、83a:第三透鏡之物側面
13b、23b、33b、43b、53b、63b、73b、83b:第三透鏡之像側面
14a、24a、34a、44a、54a、64a、74a、84a:第四透鏡之物側面
14b、24b、34b、44b、54b、64b、74b、84b:第四透鏡之像側面
15a、25a、35a、45a、55a、65a、75a、85a:第五透鏡之物側面
15b、25b、35b、45b、55b、65b、75b、85b:第五透鏡之像側面
16a、26a、36a、46a、56a、66a、76a、86a:第六透鏡之物側面
16b、26b、36b、46b、56b、66b、76b、86b:第六透鏡之像側面
17a、17b、27a、27b、37a、37b、47a、47b、57a、57b、67a、67b、77a、77b、87a、87b:濾光元件之二表面
100、200、300、400、500、600、700、800:影像感測元件
1000:電子裝置
1010:成像裝置
I:光軸
〔圖1A〕為本發明第一實施例之光學攝像透鏡組示意圖; 〔圖1B〕由左至右依序為本發明第一實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖2A〕為本發明第二實施例之光學攝像透鏡組示意圖;〔圖2B〕由左至右依序為本發明第二實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖3A〕為本發明第三實施例之光學攝像透鏡組示意圖;〔圖3B〕由左至右依序為本發明第三實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖4A〕為本發明第四實施例之光學攝像透鏡組示意圖;〔圖4B〕由左至右依序為本發明第四實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖5A〕為本發明第五實施例之光學攝像透鏡組示意圖;〔圖5B〕由左至右依序為本發明第五實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖6A〕為本發明第六實施例之光學攝像透鏡組示意圖;〔圖6B〕由左至右依序為本發明第六實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖7A〕為本發明第七實施例之光學攝像透鏡組示意圖;〔圖7B〕由左至右依序為本發明第七實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;〔圖8A〕為本發明第八實施例之光學攝像透鏡組示意圖;〔圖8B〕由左至右依序為本發明第八實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;及〔圖9〕為本發明第十實施例之電子裝置之示意圖。
在以下實施例中,光學攝像透鏡組之各透鏡可為玻璃或塑膠材質,而不以實施例所列舉之材質為限。當透鏡材質為玻璃時,透鏡表面可透過研磨方式或模造的方式進行加工;此外,由於玻璃材質本身耐溫度變化及高硬度特性,可以減輕環境變化對光學攝像透鏡組的影響,進而延長光學攝像透鏡組的使用壽命。當透鏡材質為塑膠時,則有利於減輕光學攝像透鏡組的重量,及降低生產成本。
在本發明之實施例中,每一個透鏡皆包含朝向被攝物之一物側面,及朝向成像面之一像側面。每一個透鏡的表面形狀係依據所述表面靠近光軸區域(近軸處)的形狀加以定義,例如描述一個透鏡之物側面為凸面時,係表示該透鏡在靠近光軸區域的物側面為凸面,亦即,雖然在實施例中描述該透鏡表面為凸面,而該表面在遠離光軸區域(離軸處)可能是凸面或凹面。每一個透鏡近軸處的形狀係以該面之曲率半徑為正值或負值加以判斷,例如,若一個透鏡之物側面曲率半徑為正值時,則該物側面為凸面;反之,若其曲率半徑為負值,則該物側面為凹面。就一個透鏡之像側面而言,若其曲率半徑為正值,則該像側面為凹面;反之,若其曲率半徑為負值,則該像側面為凸面。
在本發明之實施例中,每一透鏡的物側面及像側面可以是球面或非球面表面。在透鏡上使用非球面表面有助於修正如球面像差等光學攝像透鏡組的成像像差,減少光學透鏡元件的使用數量。然而,使用非球面透鏡會使整體光學攝像透鏡組的成本提高。雖然在本發明之實施例中,有些光學透鏡的表面係使用球面表面,但仍可以視需要將其設計為非球面表面。
在本發明之實施例中,光學攝像透鏡組之總長TTL(Total Track Length)定義為此光學攝像透鏡組之第一透鏡的物側面至成像面在光軸上之距離。此光學攝像透鏡組之成像高度稱為最大像高ImgH(Image Height);當成像面上設置一影像感測元件時,最大像高ImgH代表影像感測元件的有效感測區域對角線長度之一半。在以下實施例中,所有透鏡的曲率半徑、透鏡厚度、透鏡之間的距離、透鏡組總長TTL、最大像高ImgH和焦距(Focal Length)的單位皆以公厘(mm)加以表示。
本發明提供一種光學攝像透鏡組,由物側至像側依序包含第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡、第五透鏡及第六透鏡。其中,第一透鏡具有負屈折力,其物側面為凸面、像側面為凹面;第二透鏡具有負屈折力,其像側面為凹面;第三透鏡具有正屈折力,其像側面為凸面;第四透鏡具有正屈折力,其物側面為凸面、像側面為凸面;第五透鏡具有負屈折力,其物側面為凸面、像側面為凹面;第六透鏡具有正屈折力,其物側面為凸面、像側面為凸面;其中,所述光學攝像透鏡組之透鏡總數為六片。
所述第一透鏡具有負屈折力,其物側面為凸面、像側面為凹面。藉由設置具有負屈折力之第一透鏡,有助於擴大光學攝像透鏡組的取像視角,使大角度的入射光線經由第一透鏡之物側面及像側面折射後,可以形成較為靠近光軸的光束。
所述第二透鏡具有負屈折力,其像側面為凹面。其中,第二透鏡之物側面可以是凸面或凹面。藉由在第一透鏡後方設置同樣具有負屈折力之第二透鏡,可以進一步調整光線行進的方向,縮小光線與光軸之間的夾角,進而 降低成像像差。較佳地,第二透鏡之物側面及像側面可設置為非球面,有利於修正成像像差。
所述第三透鏡具有正屈折力,係作為主要調整光路的元件,其像側面為凸面。其中,其物側面可以是凸面或凹面。具有正屈折力之第三透鏡提供光學攝像透鏡組所需之主要正屈折力,用以匯聚由第一透鏡及第二透鏡所形成之發散光束。
所述第四透鏡具有正屈折力,其物側面為凸面、像側面為凸面。所述第五透鏡具有負屈折力,其物側面為凸面、像側面為凹面。所述第六透鏡具有正屈折力,其物側面為凸面、像側面為凸面。藉由依序設置具有正負屈折力之凸透鏡及凹透鏡,可以有效地修正球面像差及場曲像差。較佳地,第四透鏡、第五透鏡或第六透鏡之物側面及像側面皆可設置為非球面,有利於進一步修正成像像差。
所述光學攝像透鏡組之第一透鏡之焦距為f1,第二透鏡之焦距為f2,係滿足以下關係式:1.2<f1/f2<5.5 (1);藉由滿足關係式(1)的條件,可以適當地將負屈折力分配至第一透鏡及第二透鏡,有利於形成廣視角結構。
所述光學攝像透鏡組之第一透鏡物側面至光學攝像透鏡組之成像面在光軸上的距離為TTL,而光學攝像透鏡組之最大像高為ImgH,係滿足以下關係式:4<TTL/ImgH<7 (2);藉由滿足關係式(2)的條件,可以適當地控制光學攝像透鏡組總長度與最大像高的比例,有助於縮減透鏡組體積,達到小型化的目的。
所述光學攝像透鏡組之第一透鏡像側面的曲率半徑為R2,第二透鏡像側面的曲率半徑為R4,係滿足以下關係式:1.85≦R2/R4<4 (3);藉由滿足關係式(3)的條件,可以在第一透鏡及第二透鏡的像側形成互相搭配的凹面,有利於調整入射光線行進的方向,使光線依序經由此二凹面折射後可以更靠近光軸。
所述光學攝像透鏡組之第四透鏡物側面的曲率半徑為R7、像側面的曲率半徑為R8,係滿足以下關係式:-0.3<(R7+R8)/(R8-R7)≦0.0005 (4);同樣地,藉由滿足關係式(4)的條件,有助於控制第四透鏡的面形,避免透鏡表面曲率過大,使成像像差增大。
所述光學攝像透鏡組之第三透鏡之焦距為f3,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:1.5<f3/EFL<6.5 (5);藉由滿足關係式(5)的條件,有利於縮小光學攝像透鏡組的體積,同時保有良好的光學性能。若f3/EFL低於關係式(5)的下限值,則第三透鏡的屈折力過大,使得第三透鏡至成像面間之距離過短,難以配置第三透鏡後方的透鏡群;若f3/EFL高於關係式(5)的上限值,則第三透鏡的焦距過長,難以平衡第一透鏡及第二透鏡的負屈折力。
所述光學攝像透鏡組之第一透鏡物側面之曲率半徑為R1,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.5<R1/EFL<8 (6); 藉由滿足關係式(6)的條件,可以控制第一透鏡物側面的曲率半徑的大小,有利於提高光學攝像透鏡組的收光範圍,擴大成像視角。
所述光學攝像透鏡組之第五透鏡像側面的曲率半徑為R10,第六透鏡物側面的曲率半徑為R11,係滿足以下關係式:0.25<R10/R11<0.55 (7);藉由滿足關係式(7)的條件,有利於在第五透鏡及第六透鏡之間形成一彎月形的空氣間隔,有利於修正光學攝像透鏡組的成像像差,以及控制所需使用之第六透鏡的尺寸,使其具有適當的光學有效半徑。
所述光學攝像透鏡組之第三透鏡之焦距為f3,第四透鏡之焦距為f4,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.9<f3/EFL+f4/EFL<7.8 (8);藉由滿足關係式(8)的條件,可以控制設置在光圈二側之第三透鏡及第四透鏡的焦距大小,使此二透鏡具有適當之正屈折力。
所述光學攝像透鏡組之第五透鏡的焦距為f5,整體光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:-3.2<f5/EFL<-1.4 (9);藉由滿足關係式(9)的條件,可以使第五透鏡具有適當之負屈折力,有利於修正畸變像差和控制像高。
所述光學攝像透鏡組之第四透鏡的焦距為f4,第六透鏡的焦距為f6,係滿足以下關係式:0.3<f4/f6<1.2 (10); 藉由滿足關係式(10)的條件,有利於將正屈折力適當地分配予第四透鏡及第六透鏡,使此二透鏡與具有負屈折力之第五透鏡組合後得以降低成像像差。
所述光學攝像透鏡組之第四透鏡在光軸上之厚度為CT4,第五透鏡在光軸上之厚度為CT5,第六透鏡在光軸上之厚度為CT6,而第一透鏡之物側面至光學攝像透鏡組之成像面在光軸上的距離為TTL,係滿足以下關係式:0.15<(CT4+CT5+CT6)/TTL<0.25 (11);藉由滿足關係式(11)的條件,可以控制光圈後群透鏡組之總長度,有利於光學攝像透鏡組的小型化。
所述光學攝像透鏡組之第一透鏡之折射率為Nd1,第三透鏡之折射率為Nd3,係滿足以下關係式:Nd1>1.75 (12);及Nd3>1.75 (13);藉由滿足關係式(12)及(13)的條件,可使第一透鏡及第三透鏡具有高折射率,有利於降低光學攝像透鏡組的成像像差。
所述光學攝像透鏡組之第三透鏡物側面的曲率半徑為R5、像側面的曲率半徑為R6,係滿足以下關係式:-6<(R5+R6)/(R6-R5)<0.5 (14);藉由滿足關係式(14)的條件,有助於控制第三透鏡的面形,避免透鏡表面曲率過大,使成像像差增大。
所述光學攝像透鏡組之第四透鏡之焦距為f4,第五透鏡之焦距為f5,第六透鏡之焦距為f6,係滿足以下關係式:
Figure 109118147-A0305-02-0013-1
藉由滿足關係式(15)的條件,有利於控制第五透鏡與第四透鏡、第六透鏡之間的屈折力比例,有利於降低成像像差。
第一實施例
參見圖1A及圖1B,圖1A為本發明第一實施例之光學攝像透鏡組之示意圖。圖1B由左至右依序為本發明第一實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖1A所示,第一實施例之光學攝像透鏡組10由物側至像側依序包含第一透鏡11、第二透鏡12、第三透鏡13、光圈ST、第四透鏡14、第五透鏡15及第六透鏡16。此光學攝像透鏡組10更可包含濾光元件17及成像面18。在成像面18上更可設置一影像感測元件100,以構成一成像裝置(未另標號)。
第一透鏡11具有負屈折力,其物側面11a為凸面、像側面11b為凹面,且物側面11a及像側面11b皆為球面。第一透鏡11係由玻璃材質製成。
第二透鏡12具有負屈折力,其物側面12a為凹面、像側面12b為凹面,且物側面12a及像側面12b皆為非球面。第二透鏡12係由塑膠材質製成。
第三透鏡13具有正屈折力,其物側面13a為凸面、像側面13b為凸面,且物側面13a及像側面13b皆為球面。第三透鏡13係由玻璃材質製成。
第四透鏡14具有正屈折力,其物側面14a為凸面、像側面14b為凸面,且物側面14a及像側面14b皆為非球面。第四透鏡14係由塑膠材質製成。
第五透鏡15具有負屈折力,其物側面15a為凸面、像側面15b為凹面,且物側面15a及像側面15b皆為非球面;更詳細地說,第五透鏡15之物側面15a在近軸處為凸面、在離軸處為凹面;第五透鏡15之物側面15a具有二個反曲點。第五透鏡15係由塑膠材質製成。
第六透鏡16具有正屈折力,其物側面16a為凸面、像側面16b為凸面,且物側面16a及像側面16b皆為非球面。更詳細地說,第六透鏡16之像側面16b在近軸處為凸面、離軸處為凹面;第六透鏡16之像側面16b具有二個反曲點。第六透鏡16係由塑膠材質製成。
濾光元件17設置於第六透鏡16與成像面18之間,用以濾除特定波長區段的光線,例如是一紅外線濾除元件(IR Filter)。濾光元件17之二表面17a、17b皆為平面,其材質為玻璃。
影像感測元件100例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
上述各個非球面之曲線方程式表示如下:
Figure 109118147-A0305-02-0015-2
其中,X:非球面上距離光軸為Y的點與非球面於光軸上之切面間的距離;Y:非球面上的點與光軸間之垂直距離;R:透鏡於近光軸處的曲率半徑;K:錐面係數;以及 Ai:第i階非球面係數。
請參見下方表一,其為本發明第一實施例之光學攝像透鏡組10的詳細光學數據。其中,第一透鏡11之物側面11a標示為表面11a、像側面11b標示為表面11b,其他各透鏡表面則依此類推。表中距離欄位的數值代表該表面至下一表面在光軸I上的距離,例如第一透鏡11之物側面11a至像側面11b之距離為0.5mm,代表第一透鏡11之厚度為0.5mm。第一透鏡11之像側面11b至第二透鏡12之物側面12a之距離為1.9mm。其它可依此類推,以下不再重述。第一實施例中,光學攝像透鏡組10之有效焦距為EFL,光圈值(F-number)為Fno,整體光學攝像透鏡組10最大視角之一半為HFOV(Half Field of View),其數值亦列於表一中。
Figure 109118147-A0305-02-0016-3
請參見下方表二,其為本發明第一實施例之第二透鏡、第四透鏡、第五透鏡及第六透鏡各表面的非球面係數。其中,K為非球面曲線方程式中的錐面係數,A4至A16則代表各表面第4階至第16階非球面係數。例如第二透鏡12之物側面12a之錐面係數K為234。其它可依此類推,以下不再重述。此外,以下各實施例的表格係對應至各實施例之光學攝像透鏡組,各表格的定義係與本實施例相同,故在以下實施例中不再加以贅述。
Figure 109118147-A0305-02-0017-4
第一實施例中,所述第一透鏡11之焦距f1與第二透鏡12之焦距f2的關係式為f1/f2=2.52。
第一實施例中,所述第一透鏡11之物側面11a至光學攝像透鏡組10之成像面18在光軸上的距離TTL,與光學攝像透鏡組10之最大像高ImgH,二者間之關係式為TTL/ImgH=6.72。
第一實施例中,所述第三透鏡13之焦距f3,與整體光學攝像透鏡組10之有效焦距EFL間之關係式為f3/EFL=4.45。
第一實施例中,所述第一透鏡11物側面11a的曲率半徑R1,與整體光學攝像透鏡組10之有效焦距EFL間之關係式為R1/EFL=7.74。
第一實施例中,所述第一透鏡11像側面的曲率半徑R2,與第二透鏡12像側面12b的曲率半徑R4間之關係式為R2/R4=2.47。
第一實施例中,所述第五透鏡15像側面15b的曲率半徑R10,與第六透鏡16物側面16a的曲率半徑R11間之關係式為R10/R11=0.28。
第一實施例中,所述第三透鏡13之焦距f3與光學攝像透鏡組10之有效焦距EFL的比值,與第四透鏡14之焦距f4與光學攝像透鏡組10之有效焦距EFL的比值,二者之關係式為f3/EFL+f4/EFL=7.05。
第一實施例中,所述第五透鏡15之焦距f5與光學攝像透鏡組10之有效焦距EFL間之關係式為f5/EFL=-2.93。
第一實施例中,所述第四透鏡14的焦距f4與第六透鏡16的焦距f6間之關係式為f4/f6=0.76。
第一實施例中,所述第四透鏡14在光軸上之厚度CT4、第五透鏡15在光軸上之厚度CT5及第六透鏡16在光軸上之厚度CT6,三者厚度和與第一透鏡11之物側面11a至光學攝像透鏡組10之成像面18在光軸上的距離TTL之關係式為(CT4+CT5+CT6)/TTL=0.18。
第一實施例中,所述第一透鏡11的折射率Nd1為1.839,第三透鏡13的折射率Nd3為1.805,滿足Nd1>1.75及Nd2>1.75。
第一實施例中,所述第三透鏡13物側面13a的曲率半徑R5,與像側面13b的曲率半徑R6間之關係式為(R5+R6)/(R6-R5)=-0.1。
第一實施例中,所述第四透鏡14物側面14a的曲率半徑R7,與像側面14b的曲率半徑R8間之關係式為(R7+R8)/(R8-R7)=-0.17。
第一實施例中,所述第四透鏡14的焦距f4、第五透鏡15的焦距f5,與第六透鏡16的焦距f6,三者間之關係式為|f5|/(f4+f6)=0.49。
由上述關係式的數值可知,第一實施例之光學攝像透鏡組10滿足關係式(1)至(15)的要求。
參見圖1B,圖中由左至右分別為光學攝像透鏡組10之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.06mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.08mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.04mm以內;而畸變像差可以控制在10%以內。如圖1B所示,本實施例之光學攝像透鏡組10已良好地修正了各項像差,符合光學系統的成像品質要求。
第二實施例
參見圖2A及圖2B,圖2A為本發明第二實施例之光學攝像透鏡組20之示意圖。圖2B由左至右依序為本發明第二實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖2A所示,第二實施例之光學攝像透鏡組20由物側至像側依序包含第一透鏡21、第二透鏡22、第三透鏡23、光圈ST、第四透鏡24、第五透鏡25及第六透鏡26。此光學攝像透鏡組20更可包含濾光元件27及成像面28。在成像面28上更可設置一影像感測元件200,以構成一成像裝置(未另標號)。
第一透鏡21具有負屈折力,其物側面21a為凸面、像側面21b為凹面,且物側面21a及像側面21b皆為球面。第一透鏡21係由玻璃材質製成。
第二透鏡22具有負屈折力,其物側面22a為凹面、像側面22b為凹面,且物側面22a及像側面22b皆為非球面。第二透鏡22係由塑膠材質製成。
第三透鏡23具有正屈折力,其物側面23a為凸面、像側面23b為凸面,且物側面23a及像側面23b皆為球面。第三透鏡23係由玻璃材質製成。
第四透鏡24具有正屈折力,其物側面24a為凸面、像側面24b為凸面,且物側面24a及像側面24b皆為非球面。第四透鏡24係由塑膠材質製成。
第五透鏡25具有負屈折力,其物側面25a為凸面、像側面25b為凹面,且物側面25a及像側面25b皆為非球面。更詳細地說,第五透鏡25之物側面25a在近軸處為凸面、離軸處為凹面,第五透鏡25之物側面25a具有二個反曲點。第五透鏡25係由塑膠材質製成。
第六透鏡26具有正屈折力,其物側面26a為凸面、像側面26b為凸面,第六透鏡之物側面26a及像側面26b皆為非球面。更詳細地說,第六透 鏡26之像側面26b在近軸處為凸面、離軸處為凹面,第六透鏡26之像側面26b具有二個反曲點。第六透鏡26係由塑膠材質製成。
濾光元件27設置於第六透鏡26與成像面28之間,用以濾除特定波長區段的光線。濾光元件27之二表面27a、27b皆為平面,其材質為玻璃。
影像感測元件200例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第二實施例之光學攝像透鏡組20之詳細光學數據及透鏡表面之非球面係數分別列於表三及表四。在第二實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0021-5
Figure 109118147-A0305-02-0022-6
在第二實施例中,光學攝像透鏡組20之各關係式的數值列於表五。由表五可知,第二實施例之光學攝像透鏡組20滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0022-40
Figure 109118147-A0305-02-0023-8
參見圖2B,圖中由左至右分別為光學攝像透鏡組20之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.04mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.08mm以內;而畸變像差可以控制在10%以內。如圖2B所示,本實施例之光學攝像透鏡組20已良好地修正了各項像差,符合光學系統的成像品質要求。
第三實施例
參見圖3A及圖3B,圖3A為本發明第三實施例之光學攝像透鏡組30之示意圖。圖3B由左至右依序為本發明第三實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖3A所示,第三實施例之光學攝像透鏡組30由物側至像側依序包含第一透鏡31、第二透鏡32、第三透鏡33、光圈ST、第四透鏡34、第五透鏡35及第六透鏡36。此光學攝像透鏡組30更可包含濾光元件37及成像面38。在成像面38上更可設置一影像感測元件300,以構成一成像裝置(未另標號)。
第一透鏡31具有負屈折力,其物側面31a為凸面、像側面31b為凹面,且物側面31a及像側面31b皆為球面。第一透鏡31係由玻璃材質製成。
第二透鏡32具有負屈折力,其物側面32a為凸面、像側面32b為凹面,且物側面32a及像側面32b皆為非球面。更詳細地說,第二透鏡32物側面32a於近軸處為凸面、離軸處為凹面。第二透鏡32係由塑膠材質製成。
第三透鏡33具有正屈折力,其物側面33a為凸面、像側面33b為凸面,且物側面33a及像側面33b皆為球面。第三透鏡33係由玻璃材質製成。
第四透鏡34具有正屈折力,其物側面34a為凸面、像側面34b為凸面,且物側面34a及像側面34b皆為非球面。第四透鏡34係由塑膠材質製成。
第五透鏡35具有負屈折力,其物側面35a為凸面、像側面35b為凹面,且物側面35a及像側面35b皆為非球面。更詳細地說,第五透鏡35之物側面35a在近軸處為凸面、離軸處為凹面,第五透鏡35之物側面35a具有二個反曲點。第五透鏡35係由塑膠材質製成。
第六透鏡36具有正屈折力,其物側面36a為凸面、像側面36b為凸面,第六透鏡之物側面36a及像側面36b皆為非球面。第六透鏡36係由塑膠材質製成。
濾光元件37設置於第六透鏡36與成像面38之間,用以濾除特定波長區段的光線。濾光元件37之二表面37a、37b皆為平面,其材質為玻璃。
影像感測元件300例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第三實施例之光學攝像透鏡組30之詳細光學數據及透鏡表面之非球面係數分別列於表六及表七。在第三實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0025-41
Figure 109118147-A0305-02-0025-10
Figure 109118147-A0305-02-0026-11
在第三實施例中,光學攝像透鏡組30之各關係式的數值列於表八。由表八可知,第三實施例之光學攝像透鏡組30滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0026-12
參見圖3B,圖中由左至右分別為光學攝像透鏡組30之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.05mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;子午方向的 像差在整個視場範圍內的焦距變化量在±0.1mm以內;而畸變像差可以控制在40%以內。如圖3B所示,本實施例之光學攝像透鏡組30已良好地修正了各項像差,符合光學系統的成像品質要求。
第四實施例
參見圖4A及圖4B,圖4A為本發明第四實施例之光學攝像透鏡組40之示意圖。圖4B由左至右依序為本發明第四實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖4A所示,第四實施例之光學攝像透鏡組40由物側至像側依序包含第一透鏡41、第二透鏡42、第三透鏡43、光圈ST、第四透鏡44、第五透鏡45及第六透鏡46。此光學攝像透鏡組40更可包含濾光元件47及成像面48。在成像面48上更可設置一影像感測元件400,以構成一成像裝置(未另標號)。
第一透鏡41具有負屈折力,其物側面41a為凸面、像側面41b為凹面,且物側面41a及像側面41b皆為球面。第一透鏡41係由玻璃材質製成。
第二透鏡42具有負屈折力,其物側面42a為凸面、像側面42b為凹面,且物側面42a及像側面42b皆為非球面。更詳細地說,第二透鏡42物側面42a於近軸處為凸面、離軸處為凹面,第二透鏡42物側面42a具有二個反曲點。第二透鏡42係由塑膠材質製成。
第三透鏡43具有正屈折力,其物側面43a為凸面、像側面43b為凸面,且物側面43a及像側面43b皆為球面。第三透鏡43係由玻璃材質製成。
第四透鏡44具有正屈折力,其物側面44a為凸面、像側面44b為凸面,且物側面44a及像側面44b皆為非球面。第四透鏡44係由塑膠材質製成。
第五透鏡45具有負屈折力,其物側面45a為凸面、像側面45b為凹面,且物側面45a及像側面45b皆為非球面。更詳細地說,第五透鏡45之物側面45a在近軸處為凸面、離軸處為凹面,第五透鏡45之物側面45a具有二個反曲點。第五透鏡45係由塑膠材質製成。
第六透鏡46具有正屈折力,其物側面46a為凸面、像側面46b為凸面,第六透鏡之物側面46a及像側面46b皆為非球面。更詳細地說,第六透鏡46像側面46b在近軸處為凸面、離軸處為凹面,第六透鏡46之像側面46b具有二個反曲點。第六透鏡46係由塑膠材質製成。
濾光元件47設置於第六透鏡46與成像面48之間,用以濾除特定波長區段的光線。濾光元件47之二表面47a、47b皆為平面,其材質為玻璃。
影像感測元件400例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第四實施例之光學攝像透鏡組40之詳細光學數據及透鏡表面之非球面係數分別列於表九及表十。在第四實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0028-13
Figure 109118147-A0305-02-0029-14
Figure 109118147-A0305-02-0029-15
在第四實施例中,光學攝像透鏡組40之各關係式的數值列於表十一。由表十一可知,第四實施例之光學攝像透鏡組40滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0030-16
參見圖4B,圖中由左至右分別為光學攝像透鏡組40之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.03mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.1mm以內;而畸變像差可以控制在12%以內。如圖4B所示,本實施例之光學攝像透鏡組40已良好地修正了各項像差,符合光學系統的成像品質要求。
第五實施例
參見圖5A及圖5B,圖5A為本發明第五實施例之光學攝像透鏡組50之示意圖。圖5B由左至右依序為本發明第五實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖5A所示,第五實施例之光學攝像透鏡組50由物側至像側依序包含第一透鏡51、第二透鏡52、第三透鏡53、光圈ST、第四透鏡54、第五透鏡55及第六透鏡56。此光學攝像透鏡組50更可包含濾光元件57及成像面58。在成像面58上更可設置一影像感測元件500,以構成一成像裝置(未另標號)。
第一透鏡51具有負屈折力,其物側面51a為凸面、像側面51b為凹面,且物側面51a及像側面51b皆為球面。第一透鏡51係由玻璃材質製成。
第二透鏡52具有負屈折力,其物側面52a為凹面、像側面52b為凹面,且物側面52a及像側面52b皆為非球面。第二透鏡52係由塑膠材質製成。
第三透鏡53具有正屈折力,其物側面53a為凸面、像側面53b為凸面,且物側面53a及像側面53b皆為球面。第三透鏡53係由玻璃材質製成。
第四透鏡54具有正屈折力,其物側面54a為凸面、像側面54b為凸面,且物側面54a及像側面54b皆為非球面。第四透鏡54係由塑膠材質製成。
第五透鏡55具有負屈折力,其物側面55a為凸面、像側面55b為凹面,且物側面55a及像側面55b皆為非球面。更詳細地說,第五透鏡55之 物側面55a在近軸處為凸面、離軸處為凹面,第五透鏡55之物側面55a具有二個反曲點。第五透鏡55係由塑膠材質製成。
第六透鏡56具有正屈折力,其物側面56a為凸面、像側面56b為凸面,第六透鏡之物側面56a及像側面56b皆為非球面。更詳細地說,第六透鏡56之像側面56b在近軸處為凸面、離軸處為凹面,第六透鏡56之像側面56b具有二個反曲點。第六透鏡56係由塑膠材質製成。
濾光元件57設置於第六透鏡56與成像面58之間,用以濾除特定波長區段的光線。濾光元件57之二表面57a、57b皆為平面,其材質為玻璃。
影像感測元件500例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第五實施例之光學攝像透鏡組50之詳細光學數據及透鏡表面之非球面係數分別列於表十二及表十三。在第五實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0032-18
Figure 109118147-A0305-02-0033-19
Figure 109118147-A0305-02-0033-20
在第五實施例中,光學攝像透鏡組50之各關係式的數值列於表十四。由表十四可知,第五實施例之光學攝像透鏡組50滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0033-21
Figure 109118147-A0305-02-0034-22
參見圖5B,圖中由左至右分別為光學攝像透鏡組50之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.05mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.06mm以內;而畸變像差可以控制在10%以內。如圖5B所示,本實施例之光學攝像透鏡組50已良好地修正了各項像差,符合光學系統的成像品質要求。
第六實施例
參見圖6A及圖6B,圖6A為本發明第六實施例之光學攝像透鏡組60之示意圖。圖6B由左至右依序為本發明第六實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖6A所示,第六實施例之光學攝像透鏡組60由物側至像側依序包含第一透鏡61、第二透鏡62、第三透鏡63、光圈ST、第四透鏡64、第五透鏡65及第六透鏡66。此光學攝像透鏡組60更可包含濾光元件67及成像面 68。在成像面68上更可設置一影像感測元件600,以構成一成像裝置(未另標號)。
第一透鏡61具有負屈折力,其物側面61a為凸面、像側面61b為凹面,且物側面61a及像側面61b皆為球面。第一透鏡61係由玻璃材質製成。
第二透鏡62具有負屈折力,其物側面62a為凹面、像側面62b為凹面,且物側面62a及像側面62b皆為非球面。第二透鏡62係由塑膠材質製成。
第三透鏡63具有正屈折力,其物側面63a為凸面、像側面63b為凸面,且物側面63a及像側面63b皆為球面。第三透鏡63係由玻璃材質製成。
第四透鏡64具有正屈折力,其物側面64a為凸面、像側面64b為凸面,且物側面64a及像側面64b皆為非球面。第四透鏡64係由塑膠材質製成。
第五透鏡65具有負屈折力,其物側面65a為凸面、像側面65b為凹面,且物側面65a及像側面65b皆為非球面。更詳細地說,第五透鏡65之物側面65a在近軸處為凸面、離軸處為凹面,第五透鏡65之物側面65a具有二個反曲點。第五透鏡65係由塑膠材質製成。
第六透鏡66具有正屈折力,其物側面66a為凸面、像側面66b為凸面,第六透鏡之物側面66a及像側面66b皆為非球面。更詳細地說,第六透鏡66之像側面66b在近軸處為凸面、離軸處為凹面,第六透鏡66之像側面66b具有二個反曲點。第六透鏡66係由塑膠材質製成。
濾光元件67設置於第六透鏡66與成像面68之間,用以濾除特定波長區段的光線。濾光元件67之二表面67a、67b皆為平面,其材質為玻璃。
影像感測元件600例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第六實施例之光學攝像透鏡組60之詳細光學數據及透鏡表面之非球面係數分別列於表十五及表十六。在第六實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0036-23
Figure 109118147-A0305-02-0036-24
Figure 109118147-A0305-02-0037-25
在第六實施例中,光學攝像透鏡組60之各關係式的數值列於表十七。由表十七可知,第六實施例之光學攝像透鏡組60滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0037-26
參見圖6B,圖中由左至右分別為光學攝像透鏡組60之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、 555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.07mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.07mm以內;而畸變像差可以控制在20%以內。如圖6B所示,本實施例之光學攝像透鏡組60已良好地修正了各項像差,符合光學系統的成像品質要求。
第七實施例
參見圖7A及圖7B,圖7A為本發明第七實施例之光學攝像透鏡組70之示意圖。圖7B由左至右依序為本發明第七實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖7A所示,第七實施例之光學攝像透鏡組70由物側至像側依序包含第一透鏡71、第二透鏡72、第三透鏡73、光圈ST、第四透鏡74、第五透鏡75及第六透鏡76。此光學攝像透鏡組70更可包含濾光元件77及成像面78。在成像面78上更可設置一影像感測元件700,以構成一成像裝置(未另標號)。
第一透鏡71具有負屈折力,其物側面71a為凸面、像側面71b為凹面,且物側面71a及像側面71b皆為球面。第一透鏡71係由玻璃材質製成。
第二透鏡72具有負屈折力,其物側面72a為凹面、像側面72b為凹面,且物側面72a及像側面72b皆為非球面。第二透鏡72係由塑膠材質製成。
第三透鏡73具有正屈折力,其物側面73a為凸面、像側面73b為凸面,且物側面73a及像側面73b皆為球面。第三透鏡73係由玻璃材質製成。
第四透鏡74具有正屈折力,其物側面74a為凸面、像側面74b為凸面,且物側面74a及像側面74b皆為非球面。更詳細地說,第四透鏡74物側面74a在近軸處為凸面、離軸處為凹面,第四透鏡74物側面74a具有二個反曲點。第四透鏡74係由塑膠材質製成。
第五透鏡75具有負屈折力,其物側面75a為凸面、像側面75b為凹面,且物側面75a及像側面75b皆為非球面。更詳細地說,第五透鏡75之物側面75a在近軸處為凸面、離軸處為凹面;第五透鏡像側面在近軸處為凹面、離軸處為凸面;第五透鏡75之物側面75a及像側面75b各具有二個反曲點。第五透鏡75係由塑膠材質製成。
第六透鏡76具有正屈折力,其物側面76a為凸面、像側面76b為凸面,第六透鏡之物側面76a及像側面76b皆為非球面。更詳細地說,第六透鏡76物側面76a在近軸處為凸面、離軸處為凹面;第六透鏡76之像側面76b在近軸處為凸面、離軸處為凹面;第六透鏡76之物側面76a及像側面76b各具有二個反曲點。第六透鏡76係由塑膠材質製成。
濾光元件77設置於第六透鏡76與成像面78之間,用以濾除特定波長區段的光線。濾光元件77之二表面77a、77b皆為平面,其材質為玻璃。
影像感測元件700例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第七實施例之光學攝像透鏡組70之詳細光學數據及透鏡表面之非球面係數分別列於表十八及表十九。在第七實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0040-27
Figure 109118147-A0305-02-0040-28
Figure 109118147-A0305-02-0041-29
在第七實施例中,光學攝像透鏡組70之各關係式的數值列於表二十。由表二十可知,第七實施例之光學攝像透鏡組70滿足關係式(1)至(15)的要求。
Figure 109118147-A0305-02-0041-30
參見圖7B,圖中由左至右分別為光學攝像透鏡組70之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.08mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.05mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.04mm以內;而畸變像差可以控制在6%以 內。如圖7B所示,本實施例之光學攝像透鏡組70已良好地修正了各項像差,符合光學系統的成像品質要求。
第八實施例
參見圖8A及圖8B,圖8A為本發明第八實施例之光學攝像透鏡組80之示意圖。圖8B由左至右依序為本發明第八實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖8A所示,第八實施例之光學攝像透鏡組80由物側至像側依序包含第一透鏡81、第二透鏡82、第三透鏡83、光圈ST、第四透鏡84、第五透鏡85及第六透鏡86。此光學攝像透鏡組80更可包含濾光元件87及成像面88。在成像面88上更可設置一影像感測元件800,以構成一成像裝置(未另標號)。
第一透鏡81具有負屈折力,其物側面81a為凸面、像側面81b為凹面,且物側面81a及像側面81b皆為球面。第一透鏡81係由玻璃材質製成。
第二透鏡82具有負屈折力,其物側面82a為凹面、像側面82b為凹面,且物側面82a及像側面82b皆為非球面。更詳細地說,第二透鏡82物側面82a於近軸處為凹面、離軸處為凸面,第二透鏡82物側面82a具有二個反曲點。第二透鏡82係由塑膠材質製成。
第三透鏡83具有正屈折力,其物側面83a為凸面、像側面83b為凸面,且物側面83a及像側面83b皆為球面。第三透鏡83係由玻璃材質製成。
第四透鏡84具有正屈折力,其物側面84a為凸面、像側面84b為凸面,且物側面84a及像側面84b皆為非球面。更詳細地說,第四透鏡84物 側面84a於近軸處為凸面、離軸處為凹面,第四透鏡84物側面84a具有二個反曲點。第四透鏡84係由塑膠材質製成。
第五透鏡85具有負屈折力,其物側面85a為凸面、像側面85b為凹面,且物側面85a及像側面85b皆為非球面。更詳細地說,第五透鏡85之物側面85a在近軸處為凸面、離軸處為凹面,第五透鏡85之物側面85a具有二個反曲點。第五透鏡85係由塑膠材質製成。
第六透鏡86具有正屈折力,其物側面86a為凸面、像側面86b為凸面,第六透鏡之物側面86a及像側面86b皆為非球面。更詳細地說,第六透鏡86之像側面86b在近軸處為凸面、離軸處為凹面,第六透鏡86之像側面86b具有二個反曲點。第六透鏡86係由塑膠材質製成。
濾光元件87設置於第六透鏡86與成像面88之間,用以濾除特定波長區段的光線。濾光元件87之二表面87a、87b皆為平面,其材質為玻璃。
影像感測元件800例如是電荷耦合元件感測元件(Charge-Coupled Device(CCD)Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第八實施例之光學攝像透鏡組80之詳細光學數據及透鏡表面之非球面係數分別列於表二十一及表二十二。在第八實施例中,非球面之曲線方程式表示如第一實施例的形式。
Figure 109118147-A0305-02-0043-31
Figure 109118147-A0305-02-0044-32
Figure 109118147-A0305-02-0044-33
在第八實施例中,光學攝像透鏡組80之各關係式的數值列於表二十三。由表二十三可知,第八實施例之光學攝像透鏡組80滿足關係式(1)至(2)及關係式(5)至(15)的要求。
Figure 109118147-A0305-02-0045-34
參見圖8B,圖中由左至右分別為光學攝像透鏡組80之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光430nm、555nm及610nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在±0.05mm以內。由像散場曲像差圖(波長555nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在±0.04mm以內;子午方向的像差在整個視場範圍內的焦距變化量在±0.03mm以內;而畸變像差可以控制在30%以內。如圖8B所示,本實施例之光學攝像透鏡組80已良好地修正了各項像差,符合光學系統的成像品質要求。
第九實施例
本發明第九實施例為一成像裝置,此成像裝置包含如前述第一至第八實施例之光學攝像透鏡組,以及一影像感測元件;其中,影像感測元件例如是設置於光學攝像透鏡組之成像面。影像感測元件例如是電荷耦合元件(Charge-Coupled Device,CCD)或互補式金屬氧化半導體(Complementary Metal Oxide Semiconductor,CMOS)影像感測元件等。此成像裝置例如是車用攝影之相機模組、可攜式電子產品之相機模組,或監控攝影機之相機模組等。
第十實施例
請參照圖九,圖中係繪示本發明第十實施例之電子裝置1000的示意圖。如圖所示,電子裝置1000包含一成像裝置1010。成像裝置1010例如是前述第九實施例之成像裝置,可以由本發明之光學攝像透鏡組及一影像感測元件所構成。此電子裝置1000例如是車用攝影裝置、監視攝影機或空拍攝影機等。
雖然本發明使用前述數個實施例加以說明,然而該些實施例並非用以限制本發明之範圍。對本發明所屬技術領域具有通常知識者而言,在不脫離本發明之精神與範圍內,仍可以參照本發明所揭露的實施例內容進行形式上和細節上的多種變化。是故,此處需明白的是,本發明係以下列申請專利範圍所界定者為準,任何在申請專利範圍內或其等效的範圍內所作的各種變化,仍應落入本發明之申請專利範圍之內。
10:光學攝像透鏡組
11:第一透鏡
12:第二透鏡
13:第三透鏡
14:第四透鏡
15:第五透鏡
16:第六透鏡
17:濾光元件
18:成像面
11a:第一透鏡之物側面
11b:第一透鏡之像側面
12a:第二透鏡之物側面
12b:第二透鏡之像側面
13a:第三透鏡之物側面
13b:第三透鏡之像側面
14a:第四透鏡之物側面
14b:第四透鏡之像側面
15a:第五透鏡之物側面
15b:第五透鏡之像側面
16a:第六透鏡之物側面
16b:第六透鏡之像側面
17a、17b:濾光元件之二表面
100:影像感測元件
I:光軸
ST:光圈

Claims (16)

  1. 一種光學攝像透鏡組,由物側至像側依序包含:一第一透鏡,具有負屈折力,其物側面為凸面、像側面為凹面;一第二透鏡,具有負屈折力,其像側面為凹面,其物側面及像側面皆為非球面;一第三透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;一光圈;一第四透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;一第五透鏡,具有負屈折力,其物側面為凸面、像側面為凹面,其物側面及像側面皆為非球面;及一第六透鏡,具有正屈折力,其物側面為凸面、像側面為凸面,其物側面及像側面皆為非球面;其中,該光學攝像透鏡組之透鏡總數為六片;該第一透鏡之焦距為f1,該第二透鏡之焦距為f2,該第一透鏡之物側面至該光學攝像透鏡組之成像面在光軸上的距離為TTL,該光學攝像透鏡組之最大像高為ImgH,該第一透鏡像側面的曲率半徑為R2,該第二透鏡像側面的曲率半徑為R4,該第四透鏡物側面的曲率半徑為R7、像側面的曲率半徑為R8,係滿足以下關係式:1.2<f1/f2<5.5;4<TTL/ImgH<7;1.85≦R2/R4<4;及-0.3<(R7+R8)/(R8-R7)≦0.0005。
  2. 如申請專利範圍第1項之光學攝像透鏡組,其中,該第三透鏡之焦距為f3,該光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:1.5<f3/EFL<6.5。
  3. 如申請專利範圍第1項之光學攝像透鏡組,其中,該第一透鏡物側面之曲率半徑為R1,該光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.5<R1/EFL<8。
  4. 一種光學攝像透鏡組,由物側至像側依序包含:一第一透鏡,具有負屈折力,其物側面為凸面、像側面為凹面;一第二透鏡,具有負屈折力,其像側面為凹面,其物側面及像側面皆為非球面;一第三透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;一光圈;一第四透鏡,具有正屈折力,其物側面為凸面、像側面為凸面;一第五透鏡,具有負屈折力,其物側面為凸面、像側面為凹面,其物側面及像側面皆為非球面;及一第六透鏡,具有正屈折力,其物側面為凸面、像側面為凸面,其物側面及像側面皆為非球面;其中,該光學攝像透鏡組之透鏡總數為六片;該第三透鏡之焦距為f3,該光學攝像透鏡組之有效焦距為EFL,該第一透鏡物側面之曲率半徑為R1,該第一透鏡像側面的曲率半徑為R2,該第二透鏡像側面的曲率半徑為R4,該第四透鏡物側面的曲率半徑為R7、像側面的曲率半徑為R8,係滿足以下關係式:1.5<f3/EFL<6.5;3.5<R1/EFL<8;1.85≦R2/R4<4;及-0.3<(R7+R8)/(R8-R7)≦0.0005。
  5. 如申請專利範圍第4項之光學攝像透鏡組,其中,該第一透鏡之焦距為f1,該第二透鏡之焦距為f2,係滿足以下關係式:1.2<f1/f2<5.5。
  6. 如申請專利範圍第4項之光學攝像透鏡組,其中,該第一透鏡之物側面至該光學攝像透鏡組之成像面在光軸上的距離為TTL,該光學攝像透鏡組之最大像高為ImgH,係滿足以下關係式:4<TTL/ImgH<7。
  7. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第五透鏡像側面的曲率半徑為R10,該第六透鏡物側面的曲率半徑為R11,係滿足以下關係式:0.25<R10/R11<0.55。
  8. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第三透鏡之焦距為f3,該第四透鏡之焦距為f4,該光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:3.9<f3/EFL+f4/EFL<7.8。
  9. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第五透鏡之焦距為f5,該光學攝像透鏡組之有效焦距為EFL,係滿足以下關係式:-3.2<f5/EFL<-1.4。
  10. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第四透鏡之焦距為f4,該第六透鏡之焦距為f6,係滿足以下關係式:0.3<f4/f6<1.2。
  11. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第四透鏡在光軸上之厚度為CT4,該第五透鏡在光軸上之厚度為CT5,該第六透鏡在光軸上之厚度為CT6,而該第一透鏡之物側面至該光學攝像透鏡組之成像面在光軸上的距離為TTL,係滿足以下關係式:0.15<(CT4+CT5+CT6)/TTL<0.25。
  12. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第一透鏡之折射率為Nd1,該第三透鏡之折射率為Nd3,係滿足以下關係式:Nd1>1.75;及Nd3>1.75。
  13. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第三透鏡物側面的曲率半徑為R5、像側面的曲率半徑為R6,係滿足以下關係式:-6<(R5+R6)/(R6-R5)<0.5。
  14. 如申請專利範圍第1項或第4項之光學攝像透鏡組,其中,該第四透鏡之焦距為f4,該第五透鏡之焦距為f5,該第六透鏡之焦距為f6,係滿足以下關係式:0.3
    Figure 109118147-A0305-02-0051-37
    |f5|/(f4+f6)
    Figure 109118147-A0305-02-0051-38
    0.62。
  15. 一種成像裝置,其包含如申請專利範圍第1項或第4項之光學攝像透鏡組,及一影像感測元件,其中,該影像感測元件係設置於該光學攝像透鏡組之成像面。
  16. 一種電子裝置,其包含如申請專利範圍第15項之成像裝置。
TW109118147A 2020-05-29 2020-05-29 光學攝像透鏡組、成像裝置及電子裝置 TWI718066B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109118147A TWI718066B (zh) 2020-05-29 2020-05-29 光學攝像透鏡組、成像裝置及電子裝置
CN202010994237.1A CN113741001B (zh) 2020-05-29 2020-09-21 光学摄像透镜组、成像装置及电子装置
CN202022073008.4U CN212483966U (zh) 2020-05-29 2020-09-21 光学摄像透镜组、成像装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109118147A TWI718066B (zh) 2020-05-29 2020-05-29 光學攝像透鏡組、成像裝置及電子裝置

Publications (2)

Publication Number Publication Date
TWI718066B true TWI718066B (zh) 2021-02-01
TW202144839A TW202144839A (zh) 2021-12-01

Family

ID=74448945

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118147A TWI718066B (zh) 2020-05-29 2020-05-29 光學攝像透鏡組、成像裝置及電子裝置

Country Status (2)

Country Link
CN (2) CN212483966U (zh)
TW (1) TWI718066B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718066B (zh) * 2020-05-29 2021-02-01 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
WO2022226830A1 (zh) * 2021-04-28 2022-11-03 欧菲光集团股份有限公司 光学系统、摄像模组、电子设备及汽车
TWI792836B (zh) * 2022-01-05 2023-02-11 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
CN114779432B (zh) * 2022-03-10 2023-09-08 东莞晶彩光学有限公司 一种广角度光学镜头
TWI805283B (zh) * 2022-03-22 2023-06-11 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
CN114779449B (zh) * 2022-04-26 2023-09-08 东莞晶彩光学有限公司 一种近距离拍摄用广视角镜头
TWI807883B (zh) * 2022-06-27 2023-07-01 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置
CN114967073B (zh) * 2022-06-28 2023-08-01 东莞晶彩光学有限公司 一种短焦望远光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349920A (ja) * 2005-06-15 2006-12-28 Ricoh Co Ltd 撮影光学系、撮影レンズユニット、カメラおよび携帯情報端末装置
TW201539029A (zh) * 2014-04-01 2015-10-16 Sintai Optical Shenzhen Co Ltd 廣角鏡頭
JP2017156570A (ja) * 2016-03-02 2017-09-07 株式会社リコー 結像レンズ、カメラ装置、及びセンシング装置
TW201825956A (zh) * 2017-01-05 2018-07-16 先進光電科技股份有限公司 光學成像系統
WO2018135269A1 (ja) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 単焦点レンズ系、および、カメラ
TW201913164A (zh) * 2017-08-30 2019-04-01 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640810B (zh) * 2017-01-05 2018-11-11 先進光電科技股份有限公司 光學成像系統
JP2019070690A (ja) * 2017-10-06 2019-05-09 キヤノン株式会社 ズームレンズ及びそれを用いた光学機器
JP2019168491A (ja) * 2018-03-22 2019-10-03 コニカミノルタ株式会社 広角レンズ、レンズユニット、及び撮像装置
CN110488471B (zh) * 2018-05-14 2021-10-22 宁波舜宇车载光学技术有限公司 光学镜头
CN208432786U (zh) * 2018-07-13 2019-01-25 南昌欧菲精密光学制品有限公司 广角镜头、相机模组和电子装置
TWI718066B (zh) * 2020-05-29 2021-02-01 紘立光電股份有限公司 光學攝像透鏡組、成像裝置及電子裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349920A (ja) * 2005-06-15 2006-12-28 Ricoh Co Ltd 撮影光学系、撮影レンズユニット、カメラおよび携帯情報端末装置
TW201539029A (zh) * 2014-04-01 2015-10-16 Sintai Optical Shenzhen Co Ltd 廣角鏡頭
JP2017156570A (ja) * 2016-03-02 2017-09-07 株式会社リコー 結像レンズ、カメラ装置、及びセンシング装置
TW201825956A (zh) * 2017-01-05 2018-07-16 先進光電科技股份有限公司 光學成像系統
WO2018135269A1 (ja) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 単焦点レンズ系、および、カメラ
TW201913164A (zh) * 2017-08-30 2019-04-01 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置
TWI656376B (zh) * 2017-08-30 2019-04-11 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置

Also Published As

Publication number Publication date
CN113741001B (zh) 2022-08-09
CN212483966U (zh) 2021-02-05
TW202144839A (zh) 2021-12-01
CN113741001A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
TWI718066B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI431352B (zh) 光學成像鏡頭
TWI690743B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI691734B (zh) 光學成像透鏡組及成像裝置
TWI717285B (zh) 光學取像透鏡組、成像裝置及電子裝置
TW202024709A (zh) 光學成像透鏡組、成像裝置及電子裝置
WO2019024490A1 (zh) 光学成像镜头
TWI792749B (zh) 光學取像透鏡組、成像裝置及電子裝置
TWI693428B (zh) 光學取像透鏡組、成像裝置及電子裝置
TWI705265B (zh) 成像透鏡組、成像裝置及電子裝置
TWI680306B (zh) 成像透鏡組、成像裝置及電子裝置
TWI805283B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI751949B (zh) 光學成像透鏡組、成像裝置及電子裝置
TWI717301B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI804892B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI708963B (zh) 光學成像透鏡組、成像裝置及電子裝置
TW202045975A (zh) 攝像透鏡組、成像裝置及電子裝置
TWM581700U (zh) 光學成像透鏡組及成像裝置
TWI717264B (zh) 光學影像擷取透鏡組、成像裝置及電子裝置
TWI747760B (zh) 光學取像透鏡組、成像裝置及電子裝置
TW202102891A (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI775657B (zh) 光學影像擷取透鏡組、成像裝置及電子裝置
TWI758086B (zh) 光學取像透鏡組、成像裝置及電子裝置
TWI824391B (zh) 光學攝像透鏡組、成像裝置及電子裝置
TWI809914B (zh) 光學攝像透鏡組、成像裝置及電子裝置