WO2019024490A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019024490A1
WO2019024490A1 PCT/CN2018/077203 CN2018077203W WO2019024490A1 WO 2019024490 A1 WO2019024490 A1 WO 2019024490A1 CN 2018077203 W CN2018077203 W CN 2018077203W WO 2019024490 A1 WO2019024490 A1 WO 2019024490A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
focal length
effective focal
Prior art date
Application number
PCT/CN2018/077203
Other languages
English (en)
French (fr)
Inventor
李明
杨健
贺凌波
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710640672.2A external-priority patent/CN107219613B/zh
Priority claimed from CN201720942056.8U external-priority patent/CN206930826U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/226,181 priority Critical patent/US10859796B2/en
Publication of WO2019024490A1 publication Critical patent/WO2019024490A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens comprising six lenses.
  • the number of apertures Fno (the total effective focal length of the lens / the diameter of the lens entrance) of the existing lens are both 2.0 or 2.0. Although these lenses can meet the requirements of miniaturization, they cannot be insufficient in light (such as rainy days, At dusk, etc., hand shake, etc. to ensure the image quality of the lens, so the number of apertures Fno is 2.0 or more than the lens can not meet the higher-order imaging requirements.
  • the present application provides an optical imaging lens that can be adapted to a portable electronic product that at least solves or partially addresses at least one of the above disadvantages of the prior art.
  • An aspect of the present application provides an optical imaging lens including, in order from an object side to an image side along an optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a first Six lenses.
  • the first lens may have a positive power; the second lens, the third lens, and the sixth lens may each have a negative power; at least one of the fourth lens and the fifth lens may have a positive power; the first lens
  • the image side surfaces of the side surface and the fourth lens may be convex surfaces; the image side surface of the second lens and the image side surface of the sixth lens may be concave surfaces; and the total effective focal length f of the optical imaging lens and the radius of curvature R9 of the side surface of the fifth lens object It can satisfy f/
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.8.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1 ⁇ f1/f2 ⁇ 0.
  • the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1 ⁇ f/f1 ⁇ 1.5.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 2.0 ⁇ CT1/CT2 ⁇ 3.5.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R12 of the side of the sixth lens image may satisfy 2.5 ⁇ f / R12 ⁇ 4.0.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the first lens object side may satisfy 2 ⁇ f / R1 ⁇ 2.5.
  • the fourth lens may have a positive power, and its effective focal length f4 and the total effective focal length f of the optical imaging lens may satisfy 0.7 ⁇ f4 / f ⁇ 1.2.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0 ⁇ V1/V2 ⁇ 4.0.
  • the angle of incidence ⁇ 62 of the upper ray of the maximum field of view on the side of the sixth lens image may satisfy 7° ⁇ ⁇ 62 ⁇ 12°.
  • the distance from the center of the object side of the first lens to the optical imaging lens imaging surface on the optical axis is half the length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH can satisfy TTL/ImgH ⁇ 1.7.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the first lens may have a positive power, the object side may be a convex surface; the second lens may have a negative power, the image side may be a concave surface; the third lens has a positive power or a negative power; the fourth lens may Having a positive power, the image side may be a convex surface; the fifth lens has a positive power or a negative power, the object side may be a concave surface, the image side may be a convex surface; the sixth lens may have a negative power, the image
  • the side surface may be a concave surface; and the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the side surface of the fifth lens image may satisfy f/
  • the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1 ⁇ f/f1 ⁇ 1.5.
  • the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 0.7 ⁇ f4 / f ⁇ 1.2.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1 ⁇ f1/f2 ⁇ 0.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0 ⁇ V1/V2 ⁇ 4.0.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 2.0 ⁇ CT1/CT2 ⁇ 3.5.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the first lens object side may satisfy 2 ⁇ f / R1 ⁇ 2.5.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R12 of the side of the sixth lens image may satisfy 2.5 ⁇ f / R12 ⁇ 4.0.
  • the angle of incidence ⁇ 62 of the upper ray of the maximum field of view on the side of the sixth lens image may satisfy 7° ⁇ ⁇ 62 ⁇ 12°.
  • the distance from the center of the object side of the first lens to the optical imaging lens imaging surface on the optical axis is half the length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH can satisfy TTL/ImgH ⁇ 1.7.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.8.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the first lens may have a positive power, the object side may be a convex surface; the second lens may have a negative power, the image side may be a concave surface; the third lens has a positive power or a negative power; the fourth lens has a positive power or a negative power, the image side may be a convex surface; the fifth lens may have a positive power or a negative power; the sixth lens may have a negative power, the image side may be a concave surface; and the maximum field of view
  • the incident angle ⁇ 62 of the upper ray on the side of the sixth lens image can satisfy 7° ⁇ 62 ⁇ 12°.
  • the system has a large size in the process of increasing the amount of light passing through rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • Aperture advantage which enhances the imaging effect in dark environments while improving edge ray aberrations.
  • the optical imaging lens configured by the above configuration can have at least one advantageous effect of miniaturization, large aperture, high imaging quality, low sensitivity, and the like.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural view of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural view of an optical imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 9;
  • Fig. 19 schematically shows the incident angle ⁇ 62 of the upper ray of the maximum field of view on the side of the sixth lens image.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens includes, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface.
  • the first lens may have a positive power, the object side may be a convex surface; the second lens may have a negative power, the image side may be a concave surface; the third lens has a positive power or a negative power; the fourth lens has A positive power or a negative power, the image side is a convex surface; the fifth lens has a positive power or a negative power; and the sixth lens has a negative power, and the image side is a concave surface.
  • the third lens can have a negative power.
  • the third lens has a negative power, which is beneficial to reduce system sensitivity.
  • the object side of the fifth lens may be a concave surface, and the image side may be a convex surface.
  • Arranging the fifth lens as a meniscus shape convex toward the image side helps to reduce the amount of astigmatism of the system and to match the chip chief ray angle CRA.
  • the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy 1 ⁇ f/f1 ⁇ 1.5, and more specifically, f and f1 may further satisfy 1.05 ⁇ f/f1 ⁇ 1.34.
  • Reasonable distribution of the power of the first lens allows the imaging lens to have a better ability to balance field curvature.
  • the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging lens may satisfy 0.7 ⁇ f4 / f ⁇ 1.2, and more specifically, f4 and f may further satisfy 0.84 ⁇ f4 / f ⁇ 1.04.
  • Reasonable distribution of the power of the fourth lens allows the imaging lens to have a better balance of astigmatism.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -1 ⁇ f1/f2 ⁇ 0, and more specifically, f1 and f2 may further satisfy -0.57 ⁇ f1/f2 ⁇ -0.32.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 2.0 ⁇ CT1/CT2 ⁇ 3.5, and more specifically, CT1 and CT2 may further satisfy 2.27 ⁇ CT1/CT2. ⁇ 3.41.
  • the lens can have a better ability to balance aberrations.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R1 of the first lens object side may satisfy 2 ⁇ f / R1 ⁇ 2.5, and more specifically, f and R1 may further satisfy 2.03 ⁇ f / R1 ⁇ 2.34.
  • Reasonably arranging the radius of curvature of the side surface of the first lens can effectively balance the system aberration and improve the imaging quality of the lens.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R9 of the side surface of the fifth lens may satisfy f/
  • the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the side surface of the fifth lens image may satisfy f/
  • the total effective focal length f of the optical imaging lens and the radius of curvature R12 of the side of the sixth lens image may satisfy 2.5 ⁇ f/R12 ⁇ 4.0, and more specifically, f and R12 may further satisfy 2.93 ⁇ f/R12 ⁇ 3.79.
  • the radius of curvature of the sixth lens is reasonably arranged so that the lens can be well matched with the conventional chip.
  • the incident angle ⁇ 62 (see FIG. 19) of the upper ray of the maximum field of view on the side of the sixth lens image can satisfy 7° ⁇ 62 ⁇ 12°, and more specifically, ⁇ 62 can further satisfy 8.3° ⁇ 62 ⁇ 11°. By controlling ⁇ 62 within a reasonable range, the ghost state of the system can be effectively reduced to an acceptable range.
  • the dispersion coefficient V1 of the first lens and the dispersion coefficient V2 of the second lens may satisfy 2.0 ⁇ V1/V2 ⁇ 4.0, and more specifically, V1 and V2 may further satisfy 2.23 ⁇ V1/V2 ⁇ 3.14.
  • Reasonable selection of the materials of the first lens and the second lens can make the imaging lens have a better ability to balance chromatic aberration.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens can satisfy f/EPD ⁇ 1.8, and more specifically, f and EPD can further satisfy 1.68 ⁇ f / EPD ⁇ 1.78.
  • the smaller the aperture number Fno of the optical imaging lens ie, the total effective focal length of the lens f/the diameter of the lens entrance EPD), the larger the aperture of the lens, and the greater the amount of light entering the same unit time.
  • the reduction of the aperture number Fno can effectively enhance the brightness of the image surface, so that the lens can better meet the shooting requirements when the light is insufficient.
  • the lens is configured to satisfy the conditional expression f/EPD ⁇ 1.8, which can make the lens have a large aperture advantage in the process of increasing the amount of light passing through, thereby improving the imaging effect in a dark environment while improving edge ray aberration.
  • the total optical length TTL of the optical imaging lens (ie, the distance from the center of the side of the first lens to the imaging surface of the optical imaging lens) is between half the ImgH of the diagonal of the effective pixel area on the imaging surface of the optical imaging lens.
  • TTL/ImgH ⁇ 1.7 is satisfied, and more specifically, TTL and ImgH can further satisfy 1.56 ⁇ TTL / ImgH ⁇ 1.64.
  • the optical imaging lens may also be provided with at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm can be disposed at any position between the object side and the image side as needed, i.e., the diaphragm arrangement should not be limited to the position described in the following embodiments.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the six described above.
  • a plurality of lenses such as the six described above.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality. In addition, the use of aspherical lenses can also effectively reduce the number of lenses in an optical system.
  • optical imaging lens is not limited to including six lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each lens can be an aspherical lens, and each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S8 in the embodiment 1.
  • Table 3 below gives the effective focal lengths f1 to f6 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, and the optical total length TTL of the optical imaging lens (that is, from the center of the object side S1 of the first lens E1 to The distance of the imaging plane S15 on the optical axis) and the half of the effective pixel area diagonal length ImgH on the optical imaging lens imaging plane S15.
  • the radius of curvature R9 of the E5 object side surface S9 satisfies f/
  • 0.11; the total effective focal length f of the optical imaging lens and the curvature radius R10 of the image side surface S10 of the fifth lens E5 satisfy f/
  • 0.24;
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good image quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are both aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2, in which the unit of curvature radius and thickness are in millimeters (mm).
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens. Half of ImgH.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are both aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a concave surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel area on the imaging surface S15 of the optical imaging lens. Half of ImgH.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 16A to 16D, the optical imaging lens given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a view showing the configuration of an optical imaging lens according to Embodiment 9 of the present application.
  • the optical imaging lens sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens from the object side to the imaging side along the optical axis. E6 and imaging plane S15.
  • the optical imaging lens may further include a photosensitive element disposed on the imaging surface S15.
  • the first lens E1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface
  • the object side surface S1 and the image side surface S2 of the first lens E1 are both aspherical surfaces.
  • the second lens E2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface
  • the object side surface S3 and the image side surface S4 of the second lens E2 are both aspherical surfaces.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface
  • the object side surface S5 and the image side surface S6 of the third lens E3 are aspherical surfaces.
  • the fourth lens E4 has positive refractive power, the object side surface S7 is a concave surface, the image side surface S8 is a convex surface, and the object side surface S7 and the image side surface S8 of the fourth lens E4 are aspherical surfaces.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface
  • the object side surface S9 and the image side surface S10 of the fifth lens E5 are aspherical surfaces.
  • the sixth lens E6 has a negative refractive power, the object side surface S11 is a convex surface, the image side surface S12 is a concave surface, and the object side surface S11 and the image side surface S12 of the sixth lens E6 are both aspherical surfaces.
  • the optical imaging lens may further include a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a filter E7 having an object side S13 and an image side S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • a stop STO for limiting the light beam may be disposed between the object side and the first lens E1 to improve the imaging quality of the optical imaging lens.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • Table 26 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 27 shows the effective focal lengths f1 to f6 of the lenses in Embodiment 9, the total effective focal length f of the optical imaging lens, the optical total length TTL of the optical imaging lens, and the diagonal length of the effective pixel region on the imaging surface S15 of the optical imaging lens.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that light of different wavelengths is deviated from the focus point after passing through the lens.
  • Fig. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the optical imaging lens of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 9 can achieve good imaging quality.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Abstract

一种光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。第一透镜(E1)具有正光焦度,第二透镜(E2)、第三透镜(E3)和第六透镜(E6)均具有负光焦度,第四透镜(E4)和第五透镜(E5)中的至少一个具有正光焦度,第一透镜(E1)的物侧面和第四透镜(E4)的像侧面均为凸面,第二透镜(E2)的像侧面和第六透镜(E6)的像侧面均为凹面,光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9满足f/|R9|≤0.35。由此可在改善边缘光线相差的同时增强暗环境下的成像效果。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年7月31日提交于中国国家知识产权局(SIPO)的、专利申请号为201710640672.2的中国专利申请以及于2017年7月31日提交至SIPO的、专利申请号为201720942056.8的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的光学成像镜头。
背景技术
近年来,随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。由于便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。
同时,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对于相配套的光学成像镜头的高成像品质及小型化提出了更高的要求。
现有镜头通常配置的光圈数Fno(镜头的总有效焦距/镜头的入瞳直径)均在2.0或2.0以上,此类镜头虽然能够满足小型化的要求,却无法在光线不足(如阴雨天、黄昏等)、手抖等情况下保证镜头的成像品质,故光圈数Fno为2.0或2.0以上镜头已经无法满足更高阶的成像要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解 决现有技术中的上述至少一个缺点的光学成像镜头。
本申请的一个方面提供了这样一种光学成像镜头,该镜头沿光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度;第二透镜、第三透镜和第六透镜均可具有负光焦度;第四透镜和第五透镜中的至少一个可具有正光焦度;第一透镜的物侧面和第四透镜的像侧面均可为凸面;第二透镜的像侧面和第六透镜的像侧面均可为凹面;以及光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9可满足f/|R9|≤0.35。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。
在一个实施方式中,第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足-1<f1/f2<0。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<1.5。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足2.0<CT1/CT2<3.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12可满足2.5<f/R12<4.0。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1可满足2≤f/R1<2.5。
在一个实施方式中,第四透镜可具有正光焦度,其有效焦距f4与光学成像镜头的总有效焦距f可满足0.7<f4/f<1.2。
在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2可满足2.0<V1/V2<4.0。
在一个实施方式中,最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.7。
本申请另一个方面提供了这样一种光学成像镜头。该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜具有正光焦度或负光焦度,其物侧面可为凹面,像侧面可为凸面;第六透镜可具有负光焦度,其像侧面可为凹面;以及光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10可满足f/|R10|≤0.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足1<f/f1<1.5。
在一个实施方式中,第四透镜的有效焦距f4与光学成像镜头的总有效焦距f可满足0.7<f4/f<1.2。
在一个实施方式中,第一透镜的有效焦距f1和第二透镜的有效焦距f2可满足-1<f1/f2<0。
在一个实施方式中,第一透镜的色散系数V1与第二透镜的色散系数V2可满足2.0<V1/V2<4.0。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足2.0<CT1/CT2<3.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1可满足2≤f/R1<2.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12可满足2.5<f/R12<4.0。
在一个实施方式中,最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头成像面在光轴上的距离TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.7。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。
本申请另一个方面还提供了这样一种光学成像镜头。该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其像侧面可为凸面;第五透镜具有正光焦度或负光焦度;第六透镜可具有负光焦度,其像侧面可为凹面;以及最大视场的上光线在第六透镜像侧面上的入射角β62可满足7°<β62<12°。
本申请采用了例如六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,在加大通光量的过程中,使系统具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。同时,通过上述配置的光学成像镜头可具有小型化、大孔径、高成像品质、低敏感度等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示意性示出了最大视场的上光线在第六透镜像侧面上的入射角β62。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形 状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。该光学成像镜头还可进一步包括设置于成像面的感光元件。
第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其像侧面为凸面;第五透镜具有正光焦度或负光焦度;以及第六透镜具有负光焦度,其像侧面为凹面。
在一个实施方式中,第三透镜可具有负光焦度。第三透镜具有负光焦度,有利于降低系统敏感性。
在一个实施方式中,第五透镜的物侧面可为凹面,像侧面可为凸面。将第五透镜布置为凸向像侧的弯月形状,有助于降低系统的象散量,并匹配芯片主光线角度CRA。
光学成像镜头的总有效焦距f与第一透镜的有效焦距f1之间可满足1<f/f1<1.5,更具体地,f和f1进一步可满足1.05≤f/f1≤1.34。合理分配第一透镜的光焦度,可使得成像镜头具有较好的平衡场曲的能力。
第四透镜的有效焦距f4与光学成像镜头的总有效焦距f之间可满足0.7<f4/f<1.2,更具体地,f4和f进一步可满足0.84≤f4/f≤1.04。合理分配第四透镜的光焦度,可使得成像镜头具有较好的平衡象散的能力。
第一透镜的有效焦距f1与第二透镜的有效焦距f2之间可满足-1<f1/f2<0,更具体地,f1和f2进一步可满足-0.57≤f1/f2≤-0.32。通过对第一透镜和第二透镜的光焦度的合理分配,可减小光线偏转角,降低系统的敏感度。
第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2之间可满足2.0<CT1/CT2<3.5,更具体地,CT1和CT2进一步可满足2.27≤CT1/CT2≤3.41。通过合理布置第一透镜和第二透镜的中心厚度,可使得镜头具有较好的平衡像差的能力。
光学成像镜头的总有效焦距f与第一透镜物侧面的曲率半径R1之间可满足2≤f/R1<2.5,更具体地,f与R1进一步可满足2.03≤f/R1≤2.34。合理布置第一透镜物侧面的曲率半径,可有效地平衡系统像差,提升镜头的成像品质。
光学成像镜头的总有效焦距f与第五透镜物侧面的曲率半径R9之间可满足f/|R9|≤0.35,更具体地,f与R9进一步可满足0≤f/|R9|≤0.27。光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10之间可满足f/|R10|≤0.5,更具体地,f与R10进一步可满足0.08≤f/|R10|≤0.42。
光学成像镜头的总有效焦距f与第六透镜像侧面的曲率半径R12之间可满足2.5<f/R12<4.0,更具体地,f与R12进一步可满足2.93≤f/R12≤3.79。合理布置第六透镜的曲率半径,使镜头能够与常用芯片较好地匹配。
最大视场的上光线在第六透镜像侧面上的入射角β62(参见图19所示)可满足7°<β62<12°,更具体地,β62进一步可满足8.3°≤β62≤11°。通过将β62控制在合理范围内,可有效地将系统的鬼像状态减弱到可接受的范围。
第一透镜的色散系数V1与第二透镜的色散系数V2之间可满足2.0<V1/V2<4.0,更具体地,V1和V2进一步可满足2.23≤V1/V2≤3.14。合理选用第一透镜和第二透镜的材料,可以使得成像镜头具有较好的平衡色差的能力。
光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间可满足f/EPD≤1.8,更具体地,f和EPD进一步可满足1.68≤f/EPD≤1.78。光学成像镜头的光圈数Fno(即,镜头的总有效焦距f/镜头的入瞳直径EPD)越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。光圈数Fno的缩小,可有效地提升像面亮度,从而使镜头能够更好地满足光线不足时的拍摄需求。将镜头配置成满足条件式f/EPD≤1.8,可在加大通光量的过程中,使镜头具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。
光学成像镜头的光学总长度TTL(即,从第一透镜物侧面的中心至光学成像镜头成像面的轴上距离)与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足TTL/ImgH≤1.7,更具体地,TTL和ImgH进一步可满足1.56≤TTL/ImgH≤1.64。通过对镜头的光学总长度和像高比例的控制,可有效地压缩成像镜头的总尺寸,以实现成像镜头的超薄特性与小型化,从而使得该成像镜头能够较好地适用于例如便携式电子产品等尺寸受限的系统。
在示例性实施方式中,光学成像镜头还可设置有至少一光阑,以提升镜头的成像质量。本领域技术人员应当理解的是,光阑可根据需要设置于物侧与像侧之间的任意位置处,即,光阑设置不应局限于下 文实施例中所述的位置。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地降低镜头的敏感度并提高镜头的加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头,还具有例如超薄大孔径、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。另外,非球面透镜的使用还可有效地减少光学系统中的透镜个数。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077203-appb-000001
Figure PCTCN2018077203-appb-000002
表1
由表1可得,第一透镜E1于光轴上的中心厚度CT1与第二透镜E2于光轴上的中心厚度CT2之间满足CT1/CT2=3.09;第一透镜E1的色散系数V1与第二透镜E2的色散系数V2之间满足V1/V2=3.14。
本实施例采用了五片透镜作为示例,通过合理分配各透镜的焦距、各透镜的面型、各透镜的中心厚度以及各透镜之间的间隔距离,在实现镜头小型化的同时,增大镜头通光量并提升镜头的成像品质。各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure PCTCN2018077203-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.1503E-02 9.8254E-03 -4.8419E-02 7.5778E-02 -7.0247E-02 3.2873E-02 -7.0505E-03
S2 -1.0788E-01 1.0714E-01 8.5427E-02 -3.8756E-01 4.6600E-01 -2.6404E-01 5.8382E-02
S3 -1.6197E-01 2.6212E-01 7.1959E-02 -5.6650E-01 7.3097E-01 -4.1333E-01 8.8677E-02
S4 3.6309E-02 3.0429E-02 4.5209E-01 -1.2915E+00 1.9176E+00 -1.4841E+00 5.2145E-01
S5 -1.0598E-01 -1.3125E-01 6.0651E-01 -1.7206E+00 2.7621E+00 -2.3642E+00 8.6203E-01
S6 -7.7441E-02 -6.4387E-02 8.2649E-02 -1.3492E-01 1.5097E-01 -8.6394E-02 2.1849E-02
S7 4.5638E-02 -1.2372E-02 -2.2848E-02 -2.8653E-02 4.3012E-02 -2.1252E-02 3.8546E-03
S8 -7.0280E-02 1.6027E-01 -2.0263E-01 1.4419E-01 -5.6981E-02 1.1302E-02 -8.6592E-04
S9 1.2026E-01 -2.4979E-01 1.0022E-01 1.1263E-02 -1.8397E-02 4.9245E-03 -4.4309E-04
S10 2.2513E-01 -4.1935E-01 2.8406E-01 -1.0671E-01 2.3803E-02 -2.9260E-03 1.5148E-04
S11 -2.0941E-01 1.7045E-02 6.1951E-02 -3.3171E-02 7.6601E-03 -8.6246E-04 3.8700E-05
S12 -1.9957E-01 1.3111E-01 -5.1840E-02 1.2403E-02 -1.7954E-03 1.4443E-04 -4.9116E-06
表2
下表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离)以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000004
表3
由表3可得,第一透镜E1的有效焦距f1与第二透镜E2的有效焦距f2之间满足f1/f2=-0.32;第一透镜E1的有效焦距f1与光学成像镜头的总有效焦距f之间满足f/f1=1.07;第四透镜E4的有效焦距f4与光学成像镜头的总有效焦距f之间满足f4/f=0.91;光学成像镜头的光学总长度TTL与光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH之间满足TTL/ImgH=1.56。结合表1和表3可得,光学成像镜头的总有效焦距f与第一透镜E1物侧面S1的曲率半径R1之间满足f/R1=2.30;光学成像镜头的总有效焦距f与第五透镜E5物侧面S9的曲率半径R9之间满足f/|R9|=0.11;光学成像镜头的总有效焦距f与第五透镜E5像侧面S10的曲率半径R10之间满足f/|R10|=0.24;光学成像镜头的总有效焦距f与第六透镜E6像侧面S12的曲率半径R12之间满足f/R12=3.21。
在实施例1中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间满足f/EPD=1.68;最大视场的上光线在第六透镜像侧面上的入射角β62=10.7°。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良 好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫 米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000005
表4
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.2687E-02 8.6605E-03 -4.5636E-02 7.4360E-02 -7.1432E-02 3.4569E-02 -7.7543E-03
S2 -9.3123E-02 7.8171E-02 8.3047E-02 -3.0703E-01 3.4659E-01 -1.8953E-01 4.0751E-02
S3 -1.5378E-01 2.3354E-01 7.0522E-02 -4.4852E-01 5.2903E-01 -2.7278E-01 5.2708E-02
S4 3.3410E-02 2.6340E-02 4.4699E-01 -1.1914E+00 1.7019E+00 -1.2890E+00 4.5150E-01
S5 -1.1041E-01 -1.2281E-01 5.8468E-01 -1.6380E+00 2.5744E+00 -2.1534E+00 7.6605E-01
S6 -8.2993E-02 -6.2310E-02 9.2223E-02 -1.6090E-01 1.7545E-01 -9.5870E-02 2.2427E-02
S7 4.2345E-02 4.0006E-03 -4.0589E-02 -8.9978E-03 2.8162E-02 -1.5030E-02 2.7516E-03
S8 -6.5886E-02 1.5441E-01 -1.8932E-01 1.3690E-01 -5.6653E-02 1.2038E-02 -1.0182E-03
S9 1.3203E-01 -2.7606E-01 1.2589E-01 -3.5591E-03 -1.3014E-02 3.8295E-03 -3.5125E-04
S10 2.3162E-01 -4.3738E-01 3.0172E-01 -1.1504E-01 2.5883E-02 -3.1933E-03 1.6550E-04
S11 -2.1677E-01 1.7989E-02 6.6332E-02 -3.6138E-02 8.4840E-03 -9.7009E-04 4.4156E-05
S12 -2.1120E-01 1.4160E-01 -5.7738E-02 1.4432E-02 -2.2087E-03 1.8958E-04 -6.9285E-06
表5
Figure PCTCN2018077203-appb-000006
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12 为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000007
表7
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.7398E-02 3.7527E-02 -1.5996E-01 2.5988E-01 -2.4032E-01 1.1312E-01 -2.1899E-02
S2 -1.1782E-01 3.4423E-01 -5.8428E-01 5.6357E-01 -3.2591E-01 1.0928E-01 -1.8318E-02
S3 -1.6921E-01 6.3560E-01 -1.1440E+00 1.3546E+00 -1.0119E+00 4.6845E-01 -1.0376E-01
S4 1.6396E-02 2.1256E-01 -3.0961E-01 5.9850E-03 7.5499E-01 -1.0248E+00 4.8868E-01
S5 -1.1151E-01 -1.3488E-01 7.0287E-01 -2.0639E+00 3.2877E+00 -2.7606E+00 9.9463E-01
S6 -8.6368E-02 1.6281E-02 -1.5233E-01 2.2379E-01 -1.5686E-01 5.5324E-02 -4.4032E-03
S7 4.1490E-02 5.8795E-02 -1.4831E-01 7.1990E-02 1.2901E-03 -1.5000E-02 4.2654E-03
S8 -5.4914E-02 1.4260E-01 -1.7289E-01 1.2654E-01 -5.4654E-02 1.2391E-02 -1.1399E-03
S9 1.3587E-01 -3.2540E-01 1.8288E-01 -3.8520E-02 -9.5312E-05 1.2107E-03 -1.3247E-04
S10 2.4095E-01 -4.5694E-01 3.2287E-01 -1.2950E-01 3.1508E-02 -4.2899E-03 2.4835E-04
S11 -1.9726E-01 1.5906E-02 5.6164E-02 -2.9409E-02 6.6491E-03 -7.3602E-04 3.2644E-05
S12 -1.8024E-01 1.1157E-01 -4.2038E-02 9.4157E-03 -1.2629E-03 9.3904E-05 -2.9232E-06
表8
Figure PCTCN2018077203-appb-000008
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为 凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000009
Figure PCTCN2018077203-appb-000010
表10
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.1230E-02 9.6914E-03 -5.1005E-02 7.8296E-02 -7.1415E-02 3.3084E-02 -6.9589E-03
S2 -1.2414E-01 1.6440E-01 -3.9313E-02 -1.9603E-01 2.7475E-01 -1.5843E-01 3.4275E-02
S3 -1.8033E-01 3.5444E-01 -1.2398E-01 -3.0374E-01 4.9972E-01 -2.9791E-01 6.3553E-02
S4 2.1451E-02 1.5404E-01 -1.5537E-02 -1.1853E-01 1.0508E-01 5.1356E-02 -2.8879E-02
S5 -1.2527E-01 -9.9046E-04 7.5964E-03 -1.0241E-01 2.8890E-01 -3.6913E-01 1.9943E-01
S6 -8.5292E-02 -3.2348E-02 8.2299E-03 -4.9017E-02 8.9898E-02 -6.4413E-02 1.9961E-02
S7 2.6421E-02 1.9031E-02 -5.9176E-02 -8.5956E-03 3.6390E-02 -2.1129E-02 4.3941E-03
S8 -6.4075E-02 1.3629E-01 -1.5878E-01 9.8196E-02 -3.1266E-02 4.2273E-03 -1.0927E-04
S9 9.8044E-02 -1.8956E-01 3.7191E-02 4.3633E-02 -2.6347E-02 5.6607E-03 -4.4081E-04
S10 1.8839E-01 -3.4407E-01 2.1472E-01 -7.4134E-02 1.5413E-02 -1.7953E-03 8.9108E-05
S11 -1.7275E-01 1.0926E-02 4.5365E-02 -2.2304E-02 4.7859E-03 -5.0298E-04 2.1086E-05
S12 -1.8744E-01 1.1148E-01 -3.9727E-02 8.4697E-03 -1.0740E-03 7.4205E-05 -2.1123E-06
表11
Figure PCTCN2018077203-appb-000011
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜 头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000012
表13
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.0555E-02 5.8092E-03 -3.9480E-02 5.8671E-02 -5.2338E-02 2.3803E-02 -5.0346E-03
S2 -1.1654E-01 1.2450E-01 5.3256E-02 -3.1606E-01 3.6955E-01 -2.0285E-01 4.3708E-02
S3 -1.7228E-01 2.8757E-01 8.3000E-02 -6.2173E-01 7.8280E-01 -4.3955E-01 9.3372E-02
S4 2.2603E-02 1.2581E-01 8.2631E-02 -2.2266E-01 9.3248E-02 1.6527E-01 -9.7760E-02
S5 -1.2894E-01 2.4952E-03 -1.8943E-02 3.6619E-03 9.6905E-02 -1.9447E-01 1.3534E-01
S6 -8.4146E-02 -3.5177E-02 7.2855E-03 -3.4277E-02 6.4405E-02 -4.5877E-02 1.5085E-02
S7 3.3380E-02 -1.8211E-02 2.5208E-02 -1.2361E-01 1.2591E-01 -5.7510E-02 1.0340E-02
S8 -6.8643E-02 1.4479E-01 -1.8285E-01 1.2190E-01 -4.0771E-02 5.4992E-03 -8.5891E-05
S9 8.7425E-02 -1.5107E-01 -2.9102E-02 9.8208E-02 -4.9810E-02 1.0762E-02 -8.8214E-04
S10 1.9566E-01 -3.4582E-01 2.1208E-01 -7.0951E-02 1.4058E-02 -1.5267E-03 6.8260E-05
S11 -1.7476E-01 1.3446E-02 4.2603E-02 -2.0705E-02 4.3014E-03 -4.2969E-04 1.6715E-05
S12 -1.7663E-01 1.0740E-01 -4.0417E-02 9.2473E-03 -1.2904E-03 1.0147E-04 -3.4208E-06
表14
Figure PCTCN2018077203-appb-000013
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。 图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000014
表16
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.1804E-02 3.4033E-03 -3.4696E-02 5.8950E-02 -6.0090E-02 3.0669E-02 -7.2163E-03
S2 -1.0144E-01 1.0806E-01 1.4464E-02 -2.0290E-01 2.4999E-01 -1.4087E-01 3.0573E-02
S3 -1.6119E-01 2.5986E-01 2.7605E-02 -3.7524E-01 4.3038E-01 -2.0243E-01 3.2002E-02
S4 3.1557E-02 5.7324E-02 2.7530E-01 -6.2792E-01 7.1338E-01 -4.1032E-01 1.3174E-01
S5 -1.1395E-01 -1.6726E-01 8.0150E-01 -2.1428E+00 3.2208E+00 -2.5841E+00 8.8092E-01
S6 -9.8597E-02 -6.1531E-02 1.1663E-01 -2.0560E-01 2.1471E-01 -1.1364E-01 2.5674E-02
S7 2.3282E-02 1.6671E-02 -4.8096E-02 6.1130E-03 1.2506E-02 -8.0734E-03 1.6092E-03
S8 -5.7454E-02 1.1753E-01 -1.2888E-01 8.9872E-02 -3.7302E-02 7.9728E-03 -6.7447E-04
S9 1.2721E-01 -2.8510E-01 1.4365E-01 -1.4727E-02 -9.6776E-03 3.3687E-03 -3.2997E-04
S10 2.4459E-01 -4.6426E-01 3.2676E-01 -1.2764E-01 2.9345E-02 -3.6789E-03 1.9267E-04
S11 -2.1334E-01 1.8068E-02 6.4621E-02 -3.4958E-02 8.1245E-03 -9.1807E-04 4.1233E-05
S12 -2.0793E-01 1.4170E-01 -5.8523E-02 1.4868E-02 -2.3286E-03 2.0683E-04 -7.9281E-06
表17
Figure PCTCN2018077203-appb-000015
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为 凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21示出了实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000016
表19
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.2257E-02 3.6433E-03 -3.9207E-02 6.9202E-02 -7.3175E-02 3.8996E-02 -9.2270E-03
S2 -1.0431E-01 1.1914E-01 -1.3488E-02 -1.6137E-01 2.0591E-01 -1.1034E-01 2.0751E-02
S3 -1.6347E-01 2.7819E-01 2.6546E-02 -4.8052E-01 6.3644E-01 -3.5393E-01 6.9858E-02
S4 2.5237E-02 1.0710E-01 1.1674E-01 -2.7619E-01 1.6406E-01 1.0455E-01 -6.4258E-02
S5 -1.2760E-01 -5.8859E-02 2.9238E-01 -9.1038E-01 1.5633E+00 -1.4408E+00 5.7858E-01
S6 -9.4480E-02 -5.0371E-02 7.1558E-02 -1.5425E-01 1.8931E-01 -1.1365E-01 2.9446E-02
S7 2.2644E-02 2.4000E-02 -8.1542E-02 4.1214E-02 -8.0245E-03 -1.7695E-03 9.7316E-04
S8 -6.2578E-02 1.0086E-01 -1.0981E-01 8.0821E-02 -3.5143E-02 7.7808E-03 -6.7647E-04
S9 1.1317E-01 -2.7333E-01 1.3529E-01 -8.5639E-03 -1.3075E-02 4.3429E-03 -4.3552E-04
S10 2.2782E-01 -4.2278E-01 2.9386E-01 -1.1618E-01 2.7665E-02 -3.6397E-03 2.0109E-04
S11 -1.6616E-01 2.9247E-02 3.1934E-02 -1.8220E-02 4.1856E-03 -4.6540E-04 2.0608E-05
S12 -1.7230E-01 1.1619E-01 -4.9305E-02 1.3031E-02 -2.1544E-03 2.0398E-04 -8.3380E-06
表20
Figure PCTCN2018077203-appb-000017
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为 凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24示出了实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000018
Figure PCTCN2018077203-appb-000019
表22
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.1837E-02 -2.9733E-04 -3.0053E-02 5.5907E-02 -5.9103E-02 3.0452E-02 -6.7809E-03
S2 -1.2415E-01 1.7790E-01 -1.4983E-01 1.0919E-01 -1.2135E-01 8.9936E-02 -2.6450E-02
S3 -1.7685E-01 3.5182E-01 -2.0997E-01 6.6223E-02 -1.1206E-01 1.6445E-01 -7.0782E-02
S4 1.8047E-02 1.7774E-01 -1.0651E-01 1.5061E-01 -3.2325E-01 4.0698E-01 -1.5425E-01
S5 -1.2481E-01 -1.9806E-02 6.0802E-02 -1.3055E-01 2.0630E-01 -2.2318E-01 1.2821E-01
S6 -8.5553E-02 -2.4181E-02 -3.2193E-02 3.6590E-02 -1.9870E-03 -1.5447E-02 9.8993E-03
S7 3.4535E-02 -1.3846E-02 -4.7239E-03 -7.2329E-02 8.6801E-02 -4.3572E-02 8.4484E-03
S8 -5.5323E-02 1.0516E-01 -1.4195E-01 1.0406E-01 -3.9620E-02 6.8561E-03 -3.7311E-04
S9 8.4168E-02 -1.5180E-01 -2.5127E-02 9.2761E-02 -4.6599E-02 9.9491E-03 -8.0889E-04
S10 1.9624E-01 -3.4144E-01 2.0476E-01 -6.6321E-02 1.2664E-02 -1.3195E-03 5.5601E-05
S11 -1.8011E-01 1.4125E-02 4.4682E-02 -2.1922E-02 4.5761E-03 -4.5554E-04 1.7374E-05
S12 -1.7873E-01 1.0995E-01 -4.2208E-02 9.9545E-03 -1.4527E-03 1.2120E-04 -4.3871E-06
表23
Figure PCTCN2018077203-appb-000020
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,并且第一透镜E1的物侧面S1和像侧面S2均为非球面。
第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,并且第二透镜E2的物侧面S3和像侧面S4均为非球面。
第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,并且第三透镜E3的物侧面S5和像侧面S6均为非球面。
第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面,并且第四透镜E4的物侧面S7和像侧面S8均为非球面。
第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,并且第五透镜E5的物侧面S9和像侧面S10均为非球面。
第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面,并且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在物侧与第一透镜E1之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像 面S15上有效像素区域对角线长的一半ImgH。
Figure PCTCN2018077203-appb-000021
表25
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.4661E-02 2.0126E-02 -1.0234E-01 1.9923E-01 -2.1979E-01 1.2442E-01 -2.9404E-02
S2 -1.1236E-01 1.8584E-01 -1.3845E-01 -2.3930E-02 1.2707E-01 -9.0198E-02 1.9613E-02
S3 -1.9766E-01 4.4557E-01 -3.4579E-01 -9.2077E-02 4.5219E-01 -3.5421E-01 9.1892E-02
S4 3.3993E-02 1.7743E-01 -1.7989E-01 1.8027E-01 -2.6894E-01 3.4322E-01 -1.5499E-01
S5 -1.0733E-01 7.4068E-02 -4.0322E-01 1.0092E+00 -1.3669E+00 9.4378E-01 -2.4627E-01
S6 -6.2493E-02 -6.9770E-02 1.5363E-01 -2.9558E-01 3.2357E-01 -1.8233E-01 4.3273E-02
S7 2.8019E-02 6.2693E-03 -4.8186E-02 3.5442E-02 -1.5537E-02 3.2405E-03 -1.7281E-04
S8 -4.5520E-02 7.2976E-02 -9.4583E-02 8.1151E-02 -3.7846E-02 8.7795E-03 -8.0679E-04
S9 1.3842E-01 -2.6811E-01 1.5291E-01 -4.4325E-02 7.5135E-03 -7.1773E-04 2.7922E-05
S10 1.9802E-01 -3.5615E-01 2.2605E-01 -7.7140E-02 1.5180E-02 -1.6042E-03 6.9694E-05
S11 -1.9383E-01 1.5184E-02 5.2852E-02 -2.7222E-02 6.0493E-03 -6.5550E-04 2.8332E-05
S12 -1.8885E-01 1.2297E-01 -4.8187E-02 1.1149E-02 -1.5087E-03 1.0826E-04 -3.0459E-06
表26
Figure PCTCN2018077203-appb-000022
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示 不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足以下表28所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.68 1.68 1.70 1.69 1.70 1.69 1.78 1.69 1.68
f/|R9| 0.11 0.07 0.10 0.00 0.27 0.15 0.16 0.27 0.13
f/|R10| 0.24 0.18 0.15 0.08 0.26 0.28 0.42 0.39 0.20
TTL/ImgH 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.64
f1/f2 -0.32 -0.32 -0.50 -0.37 -0.32 -0.33 -0.36 -0.33 -0.57
f/f1 1.07 1.06 1.34 1.11 1.08 1.05 1.10 1.08 1.16
CT1/CT2 3.09 2.98 3.40 3.24 3.38 2.96 3.13 3.41 2.27
f/R12 3.21 3.25 2.93 3.09 3.14 3.13 2.93 3.15 3.79
f/R1 2.30 2.31 2.14 2.30 2.31 2.31 2.34 2.31 2.03
f4/f 0.91 0.92 1.04 0.94 0.84 0.86 0.85 0.87 1.03
V1/V2 3.14 3.14 3.14 2.96 3.14 3.14 3.14 3.11 2.23
β62(°) 10.7 10.5 10.3 10.4 11.0 9.0 8.3 9.8 10.4
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜、所述第三透镜和所述第六透镜均具有负光焦度;
    所述第四透镜和所述第五透镜中的至少一个具有正光焦度;
    所述第一透镜的物侧面和所述第四透镜的像侧面均为凸面;
    所述第二透镜的像侧面和所述第六透镜的像侧面均为凹面;以及
    所述光学成像镜头的总有效焦距f与所述第五透镜物侧面的曲率半径R9满足f/|R9|≤0.35。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.8。
  3. 根据权利要求2所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足-1<f1/f2<0。
  4. 根据权利要求2所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足1<f/f1<1.5。
  5. 根据权利要求2所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足2.0<CT1/CT2<3.5。
  6. 根据权利要求2所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第六透镜像侧面的曲率半径R12满足2.5<f/R12<4.0。
  7. 根据权利要求2所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜物侧面的曲率半径R1满足2≤f/R1<2.5。
  8. 根据权利要求2所述的光学成像镜头,其特征在于,所述第四透镜具有正光焦度,其有效焦距f4与所述光学成像镜头的总有效焦距f满足0.7<f4/f<1.2。
  9. 根据权利要求2所述的光学成像镜头,其特征在于,所述第一透镜的色散系数V1与所述第二透镜的色散系数V2满足2.0<V1/V2<4.0。
  10. 根据权利要求2所述的光学成像镜头,其特征在于,最大视场的上光线在所述第六透镜像侧面上的入射角β62满足7°<β62<12°。
  11. 根据权利要求1至10中任一项所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头成像面在所述光轴上的距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.7。
  12. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有负光焦度,其像侧面为凹面;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度,其像侧面为凸面;
    所述第五透镜具有正光焦度或负光焦度,其物侧面为凹面,像侧面为凸面;
    所述第六透镜具有负光焦度,其像侧面为凹面;以及
    所述光学成像镜头的总有效焦距f与所述第五透镜像侧面的曲率半径R10满足f/|R10|≤0.5。
  13. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的有效焦距f1满足1<f/f1<1.5。
  14. 根据权利要求12所述的光学成像镜头,其特征在于,所述第四透镜的有效焦距f4与所述光学成像镜头的总有效焦距f满足0.7<f4/f<1.2。
  15. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1和所述第二透镜的有效焦距f2满足-1<f1/f2<0。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的色散系数V1与所述第二透镜的色散系数V2满足2.0<V1/V2<4.0。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足2.0<CT1/CT2<3.5。
  18. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜物侧面的曲率半径R1满足2≤f/R1<2.5。
  19. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第六透镜像侧面的曲率半径R12满足2.5<f/R12<4.0。
  20. 根据权利要求19所述的光学成像镜头,其特征在于,最大视场的上光线在所述第六透镜像侧面上的入射角β62满足7°<β62<12°。
  21. 根据权利要求12至20中任一项所述的光学成像镜头,所述第一透镜的物侧面的中心至所述光学成像镜头成像面在所述光轴上的距离TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.7。
  22. 根据权利要求12至20中任一项所述的光学成像镜头,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.8。
PCT/CN2018/077203 2017-07-31 2018-02-26 光学成像镜头 WO2019024490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/226,181 US10859796B2 (en) 2017-07-31 2018-12-19 Optical imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710640672.2A CN107219613B (zh) 2017-07-31 2017-07-31 光学成像镜头
CN201710640672.2 2017-07-31
CN201720942056.8U CN206930826U (zh) 2017-07-31 2017-07-31 光学成像镜头
CN201720942056.8 2017-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/226,181 Continuation US10859796B2 (en) 2017-07-31 2018-12-19 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019024490A1 true WO2019024490A1 (zh) 2019-02-07

Family

ID=65233192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077203 WO2019024490A1 (zh) 2017-07-31 2018-02-26 光学成像镜头

Country Status (2)

Country Link
US (1) US10859796B2 (zh)
WO (1) WO2019024490A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709564B2 (ja) 2017-11-01 2020-06-17 カンタツ株式会社 撮像レンズ
JP6529627B1 (ja) * 2018-01-23 2019-06-12 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像光学レンズ
CN111221110B (zh) * 2018-12-13 2022-01-07 浙江舜宇光学有限公司 光学成像镜头
KR20200084180A (ko) * 2019-01-02 2020-07-10 삼성전기주식회사 촬상 광학계
CN111308651B (zh) * 2020-02-24 2022-03-01 诚瑞光学(常州)股份有限公司 摄像光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN104122650A (zh) * 2013-04-25 2014-10-29 大立光电股份有限公司 摄影系统镜片组
WO2015005417A1 (ja) * 2013-07-12 2015-01-15 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN106990511A (zh) * 2017-06-05 2017-07-28 浙江舜宇光学有限公司 成像镜头
CN107219613A (zh) * 2017-07-31 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
CN206930826U (zh) * 2017-07-31 2018-01-26 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621664B (zh) 2011-01-27 2014-05-21 大立光电股份有限公司 影像撷取镜头组
US9348112B2 (en) 2012-09-05 2016-05-24 Samsung Electro-Mechanics Co., Ltd. Optical system
KR101504034B1 (ko) 2013-10-18 2015-03-18 삼성전기주식회사 렌즈 모듈
CN104880809B (zh) 2015-01-23 2017-07-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
JP6541180B2 (ja) * 2015-04-22 2019-07-10 カンタツ株式会社 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN104122650A (zh) * 2013-04-25 2014-10-29 大立光电股份有限公司 摄影系统镜片组
WO2015005417A1 (ja) * 2013-07-12 2015-01-15 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN106990511A (zh) * 2017-06-05 2017-07-28 浙江舜宇光学有限公司 成像镜头
CN107219613A (zh) * 2017-07-31 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
CN206930826U (zh) * 2017-07-31 2018-01-26 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20190121063A1 (en) 2019-04-25
US10859796B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019169853A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
CN114114656B (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
WO2019134602A1 (zh) 光学成像镜头
WO2020119146A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019114366A1 (zh) 光学成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2019210739A1 (zh) 光学成像镜头
CN113296244A (zh) 摄像光学系统
WO2019100768A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2019137246A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019056758A1 (zh) 摄像透镜组
WO2020029613A1 (zh) 光学成像镜头
WO2019218628A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840379

Country of ref document: EP

Kind code of ref document: A1