WO2018214349A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2018214349A1
WO2018214349A1 PCT/CN2017/102428 CN2017102428W WO2018214349A1 WO 2018214349 A1 WO2018214349 A1 WO 2018214349A1 CN 2017102428 W CN2017102428 W CN 2017102428W WO 2018214349 A1 WO2018214349 A1 WO 2018214349A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
focal length
effective focal
object side
Prior art date
Application number
PCT/CN2017/102428
Other languages
English (en)
French (fr)
Inventor
戴付建
闻人建科
贺凌波
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720570321.4U external-priority patent/CN206710689U/zh
Priority claimed from CN201710362676.9A external-priority patent/CN106950681B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/067,108 priority Critical patent/US10962740B2/en
Publication of WO2018214349A1 publication Critical patent/WO2018214349A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an image pickup lens, and more particularly to an image pickup lens including seven lenses.
  • the photosensitive element of a commonly used imaging lens is generally a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the number of apertures Fno (the effective focal length of the lens/the diameter of the lens) of the existing lens is generally 2.0 or more, and the lens size is reduced while having good optical performance.
  • higher requirements have been placed on the camera lens, especially for insufficient light (such as rainy days, dusk, etc.), hand shake, etc., so the number of apertures above 2.0 or 2.0 Fno has been unable to meet higher-order imaging requirements.
  • an image pickup lens having a total effective focal length f and an entrance pupil diameter EPD, and sequentially including a first lens, a second lens, and a third from the object side to the image side along the optical axis.
  • a lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens wherein the first lens and the sixth lens each have a positive power; the second lens, the third lens, the fifth lens, and the seventh lens Each has a positive power or a negative power; and the fourth lens has a negative power, the object side is a concave surface, and the image side is a convex surface.
  • the total effective focal length f of the camera lens and the entrance pupil diameter EPD of the camera lens can satisfy f/EPD ⁇ 1.7.
  • the present application adopts a plurality of (for example, seven) lenses, and by properly distributing the relationship between the total effective focal length of the camera lens and the diameter of the entrance pupil, the system has a large aperture advantage and enhances the dark environment in the process of increasing the amount of light passing through.
  • an image pickup lens having a total effective focal length f and an entrance pupil diameter EPD, and sequentially including a first lens, a second lens, and an order from the object side to the image side along the optical axis.
  • a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens wherein the first lens and the sixth lens each have a positive power; the second lens, the third lens, the fifth lens, and the seventh The lenses each have a positive power or a negative power; and the fourth lens has a negative power, the object side is a concave surface, and the image side is a convex surface.
  • the total effective focal length f of the imaging lens and the effective focal length f5 of the fifth lens can satisfy 0 ⁇ f / f5 ⁇ 1.0.
  • the distance TTL of the object side of the first lens to the imaging surface of the imaging lens on the optical axis and the diagonal ImgH of the effective pixel area on the imaging surface of the imaging lens may satisfy TTL/ImgH ⁇ 1.85.
  • the object side of the first lens may be a convex surface
  • the image side may be a concave surface
  • the object side of the second lens may be a convex surface
  • the image side may be a concave surface
  • the object side and the image side of the sixth lens are near
  • the shaft can be convex.
  • the total effective focal length f of the imaging lens and the effective focal length f1 of the first lens may satisfy 0.5 ⁇ f / f1 ⁇ 1.0.
  • the total effective focal length f of the imaging lens and the effective focal length f5 of the fifth lens may satisfy 0 ⁇ f/f5 ⁇ 1.0.
  • the total effective focal length f of the imaging lens and the effective focal length f7 of the seventh lens may satisfy -2 ⁇ f/f7 ⁇ 0.
  • the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy 0 ⁇ f1/f3 ⁇ 1.0.
  • the effective focal length f1 of the first lens and the effective focal length f4 of the fourth lens may satisfy -1.0 ⁇ f1/f4 ⁇ 0.
  • the effective focal length f6 of the sixth lens and the effective focal length f7 of the seventh lens may satisfy -2.5 ⁇ f6 / f7 ⁇ -1.0.
  • the center thickness CT5 of the fifth lens and the center thickness CT6 of the sixth lens may satisfy 0.5 ⁇ CT5/CT6 ⁇ 1.0.
  • the air gap T23 on the optical axis of the second lens and the third lens and the center thickness CT3 of the third lens may satisfy 0 ⁇ T23/CT3 ⁇ 1.0.
  • the radius of curvature R3 of the object side of the second lens and the radius of curvature R8 of the image side of the fourth lens may satisfy -1.5 ⁇ R3 / R8 ⁇ 0.
  • the radius of curvature R4 of the image side of the second lens and the radius of curvature R7 of the object side of the fourth lens may satisfy -1.5 ⁇ R4 / R7 ⁇ -0.5.
  • the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy
  • At least one advantageous effect such as miniaturization, low sensitivity, good assembly processability, and high image quality can be further achieved.
  • FIG. 1 is a schematic structural view of an image pickup lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural diagram of an image pickup lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an image pickup lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 3;
  • FIG. 7 is a schematic structural diagram of an image pickup lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 4;
  • FIG. 9 is a schematic structural diagram of an image pickup lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 5;
  • FIG. 11 is a schematic structural diagram of an image pickup lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 6;
  • FIG. 13 is a schematic structural diagram of an image pickup lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural diagram of an image pickup lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural diagram of an image pickup lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens of Example 9.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis.
  • the surface closest to the object in each lens is referred to as the object side
  • the surface of each lens closest to the image plane is referred to as the image side.
  • the image pickup lens has, for example, seven lenses, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a Seven lenses. These seven lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a positive power; the second lens may have a positive power or a negative power; the third lens may have a positive power or a negative power; and the fourth lens may have a negative
  • the power of the object may be a concave side, the image side may be a convex surface; the fifth lens may have a positive power or a negative power; the sixth lens may have a positive power; and the seventh lens may have a positive power or Negative power.
  • the object side surface of the first lens may be a convex surface
  • the image side surface may be a concave surface
  • the object side surface of the second lens may be a convex surface
  • the image side surface may be a concave surface
  • the object side surface of the sixth lens may be a convex surface at the paraxial shape, like the side surface It can be convex at the paraxial.
  • the total effective focal length f of the above-described image pickup lens according to the exemplary embodiment of the present application and the entrance pupil diameter EPD of the image pickup lens may satisfy f/EPD ⁇ 1.7, and more specifically, f and EPD may further satisfy 1.53 ⁇ f/EPD ⁇ 1.55.
  • the camera lens is configured to satisfy f/EPD ⁇ 1.7, which can make the system have a large aperture advantage in the process of increasing the amount of light passing through, thereby enhancing the imaging effect in a dark environment while reducing the aberration of the edge field of view.
  • the reduction of the aperture number Fno can effectively enhance the brightness of the image surface, so that the lens can better meet the shooting requirements when the light is insufficient (for example, night, rainy, dusk, etc.).
  • the reduction in the number of apertures Fno in the smaller range of values can produce better results in terms of brightness enhancement, highlighting, and background blurring.
  • the lens assembly of Fno 1.8 has been used in the prior art, but cannot be further reduced due to other factors.
  • the parameter can be further reduced to 1.7, although the difference between Fno1.7 and Fno1.8 is small, but the lens component with the parameter Fno1.7 exceeds the energy ratio of the imaging surface with parameters.
  • the lens assembly with the parameter Fno1.7 has a shorter depth of field than Fno1.8.
  • the depth of field of the lens assembly with the parameter Fno1.7 is about 7% smaller than the depth of field of the lens assembly with the parameter Fno1.8, so that the user can highlight the focus and background.
  • Fno1.7 and Fno1.8 differ only by 0.1 in value, the lens component with the parameter Fno1.7 is obviously superior in practical technical efficiency.
  • the parameter Fno1.8 differ only by 0.1 in value
  • the distance TTL of the object side of the first lens to the imaging surface of the imaging lens on the optical axis is half of the diagonal length of the effective pixel area on the imaging surface of the imaging lens, and ImgH can satisfy TTL/ImgH ⁇ 1.85, more specifically, TTL and ImgH can further satisfy 1.47 ⁇ TTL / ImgH ⁇ 1.85. This effectively compresses the overall size of the camera lens, thereby achieving ultra-thin characteristics and miniaturization of the camera lens.
  • the effective focal length of each lens can be reasonably configured.
  • the total effective focal length f of the imaging lens and the effective focal length f1 of the first lens may satisfy 0.5 ⁇ f / f1 ⁇ 1.0, and more specifically, f and f1 may further satisfy 0.52 ⁇ f / f1 ⁇ 0.97.
  • the back focus is not easy to be long.
  • 0 ⁇ f/f5 ⁇ 1.0 may be satisfied, and more specifically, f and f5 may further satisfy 0.19 ⁇ f/f5 ⁇ 0.56. If the focal length of the fifth lens is too long, the effect of correcting the aberration is not obtained, which is too short and is not conducive to processing.
  • a lens satisfying 0 ⁇ f/f5 ⁇ 1.0 can simultaneously achieve high image quality and good processability.
  • the total effective focal length f of the imaging lens and the effective focal length f7 of the seventh lens may satisfy -2 ⁇ f/f7 ⁇ 0, and more specifically, f and f7 may further satisfy -1.80 ⁇ f/f7 ⁇ - 1.30.
  • Properly configuring the total effective focal length f of the camera lens and the effective focal length f7 of the seventh lens helps to shorten the total length of the optical system while facilitating the correction of aberrations.
  • 0 ⁇ f1/f3 ⁇ 1.0 may be satisfied between the effective focal length f1 of the first lens and the effective focal length f3 of the third lens, and more specifically, f1 and f3 may further satisfy 0.34 ⁇ f1/f3 ⁇ 0.75.
  • the ratio of f1/f3 is too large, the first lens needs to bear too much power, the process is too bad and is not conducive to correcting the aberration; when the ratio of f1/f3 is too small, the diameter of the third lens is not easy to be large. , resulting in poor processability.
  • 0 ⁇ f1/f3 ⁇ 1.0 the lens processability and the assembly processability can be effectively ensured.
  • the effective focal length f1 of the first lens and the effective focal length f4 of the fourth lens may satisfy -1.0 ⁇ f1/f4 ⁇ 0, and more specifically, f1 and f4 may further satisfy -0.98 ⁇ f1/f4 ⁇ -0.13. Combined by assigning the power of the first lens and the fourth lens, the aberration of the entire system can be effectively reduced, and the sensitivity of the system is reduced.
  • the effective focal length f6 of the sixth lens and the effective focal length f7 of the seventh lens may satisfy -2.5 ⁇ f6 / f7 ⁇ -1.0, and more specifically, f6 and f7 may further satisfy -2.18 ⁇ f6 / f7 ⁇ -1.04.
  • the interaction of the sixth lens and the seventh lens can correct the chromatic aberration of the system. When the ratio of f6/f7 is too large, it is not conducive to the correction of chromatic aberration; and when the ratio of f6/f7 is too small, it is not conducive to the processability of the sixth lens. When -2.5 ⁇ f6/f7 ⁇ -1.0, it can effectively take into account both the lens quality and the processability.
  • the center thickness of each lens and the air spacing of the lenses on the optical axis can also be reasonably arranged.
  • 0.5 ⁇ CT5/CT6 ⁇ 1.0 may be satisfied between the center thickness CT5 of the fifth lens and the center thickness CT6 of the sixth lens, and more specifically, CT5 and CT6 may further satisfy 0.64 ⁇ CT5/CT6 ⁇ 0.97.
  • CT5/CT6 When the ratio of CT5/CT6 is too large, it is not conducive to eliminating chromatic aberration; when the ratio of CT5/CT6 is too small, the fifth lens will be too thin and the processability is not good.
  • 0.5 ⁇ CT5/CT6 ⁇ 1.0 the two aspects of chromatic aberration and processability can be effectively balanced.
  • the second lens and the third lens may satisfy 0 ⁇ T23/CT3 ⁇ 1.0 between the air interval T23 on the optical axis and the center thickness CT3 of the third lens, and more specifically, T23 and CT3 may further satisfy 0.37 ⁇ .
  • the ratio of T23/CT3 is too large, it will be detrimental to the miniaturization of the system; when the ratio of T23/CT3 is too small, there is a risk of ghost formation.
  • 0 ⁇ T23 / CT3 ⁇ 1.0 the system miniaturization and ghost risk can be effectively balanced.
  • the radius of curvature of each mirror surface can be reasonably configured.
  • the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R8 of the image side surface of the fourth lens may satisfy -1.5 ⁇ R3/R8 ⁇ 0, and more specifically, R3 and R8 may further satisfy -1.39 ⁇ R3. /R8 ⁇ -0.86.
  • the mutual cooperation of the second lens and the fourth lens corrects the chromatic aberration of the system. When the ratio of R3/R8 is too large or too small, it is not conducive to the correction of chromatic aberration. When -1.5 ⁇ R3 / R8 ⁇ 0, a balance of various aberrations can be achieved.
  • the radius of curvature R4 of the image side surface of the second lens and the radius of curvature R7 of the object side surface of the fourth lens may satisfy -1.5 ⁇ R4 / R7 ⁇ -0.5, more specifically, -1.42 ⁇ R4 / R7 ⁇ - 0.83.
  • Properly arranging the radius of curvature R4 of the image side of the second lens and the radius of curvature R7 of the object side of the fourth lens helps to correct the chromatic aberration of the system and achieve balance of various aberrations.
  • the radius of curvature R7 of the object side of the fourth lens is The radius of curvature R8 of the image side of the fourth lens satisfies
  • Properly arranging the radius of curvature of the side surface of the fourth lens and the side of the image helps to correct the overall aberration of the system.
  • an aperture STO may also be disposed between, for example, the object side and the first lens to effectively contract the light entering the imaging lens, thereby improving the imaging quality of the lens. It will be understood by those skilled in the art that the aperture STO can be disposed at other locations as needed, i.e., the arrangement of the aperture STO should not be limited to the position shown in the various embodiments.
  • the image pickup lens according to the above embodiment of the present application may employ a plurality of lenses, such as the seven sheets described above.
  • the aperture of the imaging lens can be effectively enlarged, the system sensitivity can be reduced, the lens can be miniaturized, and imaging can be improved.
  • the quality makes the camera lens more advantageous for production processing and can be applied to portable electronic products.
  • at least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery.
  • the aspherical lens Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the image quality of the lens.
  • the image pickup lens is not limited to including seven lenses.
  • the camera lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an image pickup lens according to Embodiment 1 of the present application.
  • the imaging lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side S1 and an image side S2;
  • the second lens E2 has an object side S3 and an image side S4;
  • the third lens E3 has an object side S5 and an image side S6;
  • the fourth lens E4 has an object side S7 and an image side S8;
  • the fifth lens E5 has an object side S9 and an image side S10;
  • the six lens E6 has an object side surface S11 and an image side surface S12; and the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 1.
  • the radius of curvature R3 of the object side surface S3 of the second lens E2 and the curvature radius R8 of the image side surface S8 of the fourth lens E4 satisfy R3/R8 - 0.92;
  • each aspherical surface type x is defined by the following formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1 above);
  • Ai is the correction coefficient of the a-th order of the aspheric surface.
  • Table 2 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 and A 18 which can be used for the respective mirror faces S1 - S14 in the embodiment 1.
  • Table 3 shown below gives the effective focal lengths f1 to f7 of the lenses of Embodiment 1, the total effective focal length f of the imaging lens, and the optical total length TTL of the imaging lens (that is, the object side S1 of the first lens E1 to the imaging)
  • the distance of the imaging plane S15 of the lens on the optical axis) and the half of the diagonal length of the effective pixel area on the imaging plane S17 are ImgH.
  • 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1, which shows a deviation of different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an image pickup lens according to Embodiment 2 of the present application.
  • the imaging lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 2.
  • Table 5 shows the high order term coefficients that can be used for each of the aspherical mirrors in Example 2.
  • Table 6 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 2, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the diagonal length of the effective pixel region on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A shows an axial chromatic aberration curve of the imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 3.
  • Table 8 shows the high order term coefficients that can be used for each aspherical mirror in Example 3.
  • Table 9 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 3, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the effective pixel region diagonal length on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the image pickup lens of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • 6D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 3, and its table Deviation of different image heights on the imaging surface after the light passes through the imaging lens. 6A to 6D, the imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an image pickup lens according to Embodiment 4 of the present application.
  • the image pickup lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 4.
  • Table 11 shows the high order term coefficients that can be used for each aspherical mirror in Example 4.
  • Table 12 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 4, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the diagonal length of the effective pixel region on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Figure 8C A distortion curve of the imaging lens of Embodiment 4 is shown, which represents a distortion magnitude value in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light rays pass through the imaging lens. 8A to 8D, the imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an image pickup lens according to Embodiment 5 of the present application.
  • the imaging lens includes seven lenses E1-E7 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 5.
  • Table 14 shows the high order term coefficients that can be used for each aspherical mirror in Example 5.
  • Table 15 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 5, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the diagonal length of the effective pixel area on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • FIG. 10A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 5, which shows that The wavelength of light is deflected by the focus point after the optical system.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the image pickup lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D is a graph showing the magnification chromatic aberration curve of the imaging lens of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens. 10A to 10D, the imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a block diagram showing the structure of an image pickup lens according to Embodiment 6 of the present application.
  • the imaging lens includes seven lenses E1-E7 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 6.
  • Table 17 shows the high order term coefficients that can be used for each aspherical mirror in Example 6.
  • Table 18 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 6, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the effective pixel region diagonal length on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the image pickup lens of Example 6, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 12B shows an astigmatism curve of the image pickup lens of Embodiment 6, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the image pickup lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D is a graph showing the magnification chromatic aberration curve of the image pickup lens of Example 6, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens. 12A to 12D, the imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an image pickup lens according to Embodiment 7 of the present application.
  • the image pickup lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 7.
  • Table 20 shows the high order term coefficients that can be used for each aspherical mirror in Example 7.
  • Table 21 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 7, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the effective pixel region diagonal length on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 14B shows an astigmatism curve of the image pickup lens of Embodiment 7, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the image pickup lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the image pickup lens of Example 7, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens. 14A to 14D, the imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an image pickup lens according to Embodiment 8 of the present application.
  • the imaging lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 8.
  • Table 23 shows the high order term coefficients that can be used for each of the aspherical mirrors in Example 8.
  • Table 24 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 8, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the half ImgH of the diagonal length of the effective pixel region on the imaging surface S17.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the image pickup lens of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 16B shows an astigmatism curve of the image pickup lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the image pickup lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the image pickup lens of Example 8, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens.
  • the imaging lens given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a view showing the configuration of an image pickup lens according to Embodiment 9 of the present application.
  • the imaging lens includes seven lenses E1-E7 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens E1 has an object side surface S1 and an image side surface S2;
  • the second lens E2 has an object side surface S3 and an image side surface S4;
  • the third lens E3 has an object side surface S5 and an image side surface S6;
  • the fourth lens E4 has an object side surface S7 and an image side surface S8;
  • the fifth lens E5 has an object side surface S9 and an image side surface S10;
  • the sixth lens E6 has an object side surface S11 and an image side surface S12;
  • the seventh lens E7 has an object side surface S13 and an image side surface S14.
  • the imaging lens may further include a filter E8 having an object side S15 and an image side S16.
  • an aperture STO for limiting the light beam may be provided to improve the imaging quality of the imaging lens. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 9.
  • Table 26 shows the high order term coefficients that can be used for each aspherical mirror in Example 9.
  • Table 27 shows the effective focal lengths f1 to f7 of the lenses of Embodiment 9, the total effective focal length f of the imaging lens, the optical total length TTL of the imaging lens, and the imaging surface S17.
  • the upper effective pixel area is half the length of the diagonal ImgH.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • the application also provides an imaging device, the electronic photosensitive element of which may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or may be a camera module integrated on a mobile electronic device such as a mobile phone.
  • the image pickup apparatus is equipped with the image pickup lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,具有总有效焦距f和入瞳直径EPD,并且沿光轴由物侧至像侧依序包括第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)以及第七透镜(E7),其中,第一透镜和第六透镜均具有正光焦度;第二透镜、第三透镜、第五透镜和第七透镜均具有正光焦度或负光焦度;以及第四透镜具有负光焦度,其物侧面(S7)为凹面,像侧面(S8)为凸面。摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD满足f/EPD≤1.7。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2017年5月22日提交于中国国家知识产权局(SIPO)的、专利申请号为201710362676.9的中国专利申请以及于2017年5月22日提交至SIPO的、专利申请号为201720570321.4的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种摄像镜头,更具体地,本发明涉及一种包括七片透镜的摄像镜头。
背景技术
近年来,随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。由于便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。目前常用的摄像镜头的感光元件一般为CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)。随着CCD与COMS元件性能的提高及尺寸的减小,对于相配套的摄像镜头的高成像品质及小型化提出了更高的要求。
为了满足小型化的要求,现有镜头通常配置的光圈数Fno(镜头的有效焦距/镜头的入瞳直径)均在2.0或2.0以上,实现镜头尺寸减小的同时具有良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对摄像镜头提出了更高的要求,特别是针对光线不足(如阴雨天、黄昏等)、手抖等情况,故此2.0或2.0以上的光圈数Fno已经无法满足更高阶的成像要求。
因此,需要一种可适用于便携式电子产品的具有超薄大孔径、优 良成像品质且低敏感度的摄像镜头。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种摄像镜头,其具有总有效焦距f和入瞳直径EPD,并且沿光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜,其中,第一透镜和所述第六透镜均具有正光焦度;第二透镜、第三透镜、第五透镜和第七透镜均具有正光焦度或负光焦度;以及第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面。摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD可满足f/EPD≤1.7。
本申请采用了多片(例如,七片)镜片,通过合理分配摄像镜头的总有效焦距与入瞳直径之间的关系,在加大通光量的过程中,使系统具有大光圈优势,增强暗环境下的成像效果;同时减小边缘视场的像差。
根据本申请的另一个方面,提供了这样一种摄像镜头,其具有总有效焦距f和入瞳直径EPD,并且沿光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜,其中,第一透镜和所述第六透镜均具有正光焦度;第二透镜、第三透镜、第五透镜和第七透镜均具有正光焦度或负光焦度;以及第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面。摄像镜头的总有效焦距f与第五透镜的有效焦距f5可满足0<f/f5<1.0。
在一个实施方式中,第一透镜的物侧面至摄像镜头的成像面在光轴上的距离TTL与摄像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.85。
在一个实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的物侧面可为凸面,像侧面可为凹面;以及第六透镜的物侧面和像侧面在近轴处均可为凸面。
在一个实施方式中,摄像镜头的总有效焦距f与第一透镜的有效焦距f1可满足0.5≤f/f1≤1.0。
在一个实施方式中,摄像镜头的总有效焦距f与第五透镜的有效焦距f5可满足0<f/f5<1.0。
在一个实施方式中,摄像镜头的总有效焦距f与第七透镜的有效焦距f7可满足-2<f/f7<0。
在一个实施方式中,第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足0<f1/f3<1.0。
在一个实施方式中,第一透镜的有效焦距f1与第四透镜的有效焦距f4可满足-1.0≤f1/f4<0。
在一个实施方式中,第六透镜的有效焦距f6与第七透镜的有效焦距f7可满足-2.5<f6/f7≤-1.0。
在一个实施方式中,第五透镜的中心厚度CT5与第六透镜的中心厚度CT6可满足0.5<CT5/CT6≤1.0。
在一个实施方式中,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3可满足0<T23/CT3<1.0。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第四透镜的像侧面的曲率半径R8可满足-1.5<R3/R8<0。
在一个实施方式中,第二透镜的像侧面的曲率半径R4与第四透镜的物侧面的曲率半径R7可满足-1.5<R4/R7<-0.5。
在一个实施方式中,第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8可满足|(R7-R8)/(R7+R8)|<1.0。
通过上述配置的摄像镜头,还可进一步具有小型化、低敏感度、较好的组立工艺性和高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2A至图2D分别示出了实施例1的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4A至图4D分别示出了实施例2的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6A至图6D分别示出了实施例3的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8A至图8D分别示出了实施例4的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10A至图10D分别示出了实施例5的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12A至图12D分别示出了实施例6的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14A至图14D分别示出了实施例7的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;
图16A至图16D分别示出了实施例8的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的摄像镜头的结构示意图;
图18A至图18D分别示出了实施例9的摄像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头具有例如七个透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第 七透镜。这七个透镜沿着光轴从物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有正光焦度或负光焦度;第三透镜可具有正光焦度或负光焦度;第四透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凸面;第五透镜可具有正光焦度或负光焦度;第六透镜可具有正光焦度;以及第七透镜可具有正光焦度或负光焦度。
另外,第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的物侧面可为凸面,像侧面可为凹面;第六透镜的物侧面在近轴处可为凸面,像侧面在近轴处可为凸面。这样的布置有利于在加大通光量的过程中减小边缘视场的像差。第一透镜的配置有利于分散正光焦度,避免光焦度的过度集中,同时可有效地减小色球差以及轴向色差。
根据本申请示例性实施方式的上述摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD可满足f/EPD≤1.7,更具体地,f和EPD进一步可满足1.53≤f/EPD≤1.55。将摄像镜头配置成满足f/EPD≤1.7,可在加大通光量的过程中,使系统具有大光圈优势,从而在减小边缘视场的像差的同时增强暗环境下的成像效果。
光圈数Fno(即f/EPD)的缩小,可有效地提升像面亮度,从而使镜头能够更好地满足光线不足(例如,夜晚、阴雨天、黄昏等)时的拍摄需求。光圈数Fno在数值上的较小范围的缩减,便可在提升亮度、突出重点、背景虚化等方面产生更优的效果。在现有技术中已经使用了Fno1.8的镜头组件,但是由于其它因素的制约不能进一步缩小。而在本申请中,可以将该参数进一步缩小为1.7,虽然Fno1.7和Fno1.8在数值上差异较小,但是具有参数为Fno1.7的镜头组件在成像面的能量比上超出具有参数为Fno1.8的镜头组件约12%,从而可有效地提升像面亮度,并更好地满足夜拍需求。另外,相对于Fno1.8,具有参数为Fno1.7的镜头组件拥有更短的景深。比如,在同时拍摄2米远的物体时,具有参数为Fno1.7的镜头组件的景深要比具有参数为Fno1.8的镜头组件的景深小约7%,从而可使用户在突出重点、背景虚化上有更加出色的体验。也就是说,尽管Fno1.7和Fno1.8在数值上仅相差0.1,但是具有参数为Fno1.7的镜头组件在实际的技术功效上要明显优 于具有参数为Fno1.8的镜头组件。
第一透镜的物侧面至摄像镜头的成像面在光轴上的距离TTL与摄像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.85,更具体地,TTL和ImgH进一步可满足1.47≤TTL/ImgH≤1.85。这可有效地压缩摄像镜头的总尺寸,从而实现摄像镜头的超薄特性与小型化。
为了能够有效地扩大镜头的视场角、矫正像差、降低光学系统的敏感性、提升镜头的成像品质,可对各透镜的有效焦距进行合理的配置。
摄像镜头的总有效焦距f与第一透镜的有效焦距f1之间可满足0.5≤f/f1≤1.0,更具体地,f和f1进一步可满足0.52≤f/f1≤0.97。对于第一透镜是正光焦度的镜头,其后焦不易做长。当f/f1的比值的绝对值太小时,会不利于实现大视场角和长后焦,而当f/f1的比值的绝对值太大时,则会引入更大的像差,同时增加镜片的制造难度。
摄像镜头的总有效焦距f与第五透镜的有效焦距f5之间可满足0<f/f5<1.0,更具体地,f和f5进一步可满足0.19≤f/f5≤0.56。第五透镜的焦距太长则起不到矫正像差的作用,太短又不利于加工,满足0<f/f5<1.0的镜头可同时兼顾高成像质量和良好的工艺性。
摄像镜头的总有效焦距f与第七透镜的有效焦距f7之间可满足-2<f/f7<0,更具体地,f和f7进一步可满足-1.80≤f/f7≤-1.30。合理配置摄像镜头的总有效焦距f与第七透镜的有效焦距f7有助于缩短光学系统的总长度,同时有利于矫正像差。
第一透镜的有效焦距f1与第三透镜的有效焦距f3之间可满足0<f1/f3<1.0,更具体地,f1和f3进一步可满足0.34≤f1/f3≤0.75。当f1/f3的比值过大时,第一透镜需要承担过多的光焦度,工艺性太差且不利于矫正像差;当f1/f3的比值过小时,第三透镜的口径不易做大,造成组立工艺性不佳。当0<f1/f3<1.0时,可有效地保证镜片工艺性和组立工艺性。
第一透镜的有效焦距f1与第四透镜的有效焦距f4之间可满足-1.0≤f1/f4<0,更具体地,f1和f4进一步可满足-0.98≤f1/f4≤-0.13。合 理分配第一透镜和第四透镜的光焦度,可有效地减小整个系统的像差,降低系统的敏感性。
第六透镜的有效焦距f6与第七透镜的有效焦距f7之间可满足-2.5<f6/f7≤-1.0,更具体地,f6和f7进一步可满足-2.18≤f6/f7≤-1.04。第六透镜和第七透镜的相互配合可以矫正系统的色差。当f6/f7的比值过大时,会不利于色差的矫正;而当f6/f7的比值过小时,则不利于第六透镜的工艺性。当-2.5<f6/f7≤-1.0时,可有效兼顾镜头画质和工艺性两方面。
在应用中,还可对各透镜的中心厚度以及各透镜在光轴上的空气间隔进行合理布置。例如,第五透镜的中心厚度CT5与第六透镜的中心厚度CT6之间可满足0.5<CT5/CT6≤1.0,更具体地,CT5和CT6进一步可满足0.64≤CT5/CT6≤0.97。当CT5/CT6的比值过大时,不利于消除色差;而当CT5/CT6的比值过小时,第五透镜会过薄,工艺性不佳。当0.5<CT5/CT6≤1.0时,可有效平衡色差和工艺性这两方面。又例如,第二透镜和第三透镜在光轴上的空气间隔T23与第三透镜的中心厚度CT3之间可满足0<T23/CT3<1.0,更具体地,T23和CT3进一步可满足0.37≤T23/CT3≤0.77。当T23/CT3的比值过大时,会不利于系统的小型化;而当T23/CT3的比值过小时,有形成鬼像的风险。当0<T23/CT3<1.0时,可有效平衡系统小型化和鬼像风险这两方面。
另外,还可对各镜面的曲率半径进行合理配置。例如,第二透镜的物侧面的曲率半径R3与第四透镜的像侧面的曲率半径R8之间可满足-1.5<R3/R8<0,更具体地,R3和R8进一步可满足-1.39≤R3/R8≤-0.86。第二透镜和第四透镜的相互配合,可矫正系统的色差。当R3/R8的比值过大或过小时,均不利于色差的矫正。当-1.5<R3/R8<0时,可实现各种像差的平衡。又例如,第二透镜的像侧面的曲率半径R4与第四透镜的物侧面的曲率半径R7之间可满足-1.5<R4/R7<-0.5,更具体地,-1.42≤R4/R7≤-0.83。合理配置第二透镜的像侧面的曲率半径R4与第四透镜的物侧面的曲率半径R7有助于矫正系统的色差,实现各种像差的平衡。再例如,第四透镜的物侧面的曲率半径R7与 所述第四透镜的像侧面的曲率半径R8满足|(R7-R8)/(R7+R8)|<1.0,更具体地,0.08≤|(R7-R8)/(R7+R8)|≤0.35。合理配置第四透镜物侧面和像侧面的曲率半径,有助于修正系统整体的像差。
在本申请的实施方式中,还可在例如物侧与第一透镜之间设置有光圈STO,以对进入摄像镜头中的光线进行有效地收缩,从而提高镜头的成像质量。本领域技术人员应当理解的是,光圈STO可根据需要设置于其他位置处,即,光圈STO的设置不应局限于各实施例中所示的位置。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效扩大摄像镜头的孔径、降低系统敏感度、保证镜头的小型化并提高成像质量,从而使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提高镜头的成像品质。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该摄像镜头不限于包括七个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜 E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。
Figure PCTCN2017102428-appb-000001
表1
由表1可得,第五透镜E5的中心厚度CT5与第六透镜E6的中心厚度CT6之间满足CT5/CT6=0.69;第二透镜E2和第三透镜E3在光轴上的空气间隔T23与第三透镜E3的中心厚度CT3之间满足T23/CT3=0.73;第二透镜E2的物侧面S3的曲率半径R3与第四透镜E4的像侧面S8的曲率半径R8之间满足R3/R8=-0.92;第二透镜E2的像侧面S4的曲率半径R4与第四透镜E4的物侧面S7的曲率半径R7之间满足R4/R7=-1.38;第四透镜E4的物侧面S7的曲率半径R7 与第四透镜E4的像侧面S8的曲率半径R8之间满足|(R7-R8)/(R7+R8)|=0.23。
本实施例采用了七片透镜作为示例,通过合理分配个镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径与小型化;同时矫正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2017102428-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表2示出了可用于实施例1中各镜面S1-S14的高次项系数A4、A6、A8、A10、A12、A14、A16和A18
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.9446E-02 1.8787E-02 -6.0659E-02 7.2138E-02 -5.4789E-02 2.1341E-02 -4.3067E-03 0
S2 -1.0518E-01 3.5215E-02 7.9487E-02 -1.5270E-01 1.1699E-01 -4.5084E-02 7.0785E-03 0
S3 3.7322E-02 -3.0847E-01 6.4488E-01 -7.2454E-01 4.8782E-01 -1.7827E-01 2.8152E-02 0
S4 -7.0612E-02 -8.5634E-02 3.0419E-01 -5.2379E-01 5.7272E-01 -3.5707E-01 9.9431E-02 0
S5 -4.7990E-02 2.7173E-02 -2.3605E-01 4.8654E-01 -6.0083E-01 3.8388E-01 -1.0138E-01 0
S6 -7.3247E-02 -8.4803E-02 1.5642E-01 -3.4743E-01 3.7351E-01 -1.8439E-01 3.3359E-02 0
S7 1.1996E-01 -3.0758E-01 5.9990E-01 -9.0972E-01 9.0644E-01 -4.7901E-01 1.0745E-01 0
S8 2.6017E-02 -1.3501E-02 4.3233E-02 -1.3072E-01 1.5425E-01 -8.1207E-02 1.7034E-02 0
S9 -2.0080E-01 2.1662E-01 -2.1382E-01 1.3924E-01 -6.7592E-02 1.9815E-02 -2.3694E-03 0
S10 -1.1381E-01 -8.0996E-03 6.0884E-02 -5.2995E-02 1.7671E-02 -1.9276E-03 -2.4691E-05 0
S11 9.0061E-02 -5.7464E-02 -1.3144E-02 3.2192E-02 -2.4909E-02 7.9341E-03 -8.6038E-04 0
S12 8.9992E-02 1.1066E-03 -1.0814E-02 -1.2657E-02 8.7832E-03 -1.8587E-03 1.3320E-04 0
S13 -1.5663E-01 8.2344E-02 -3.9011E-02 1.5862E-02 -4.0456E-03 5.9186E-04 -4.5915E-05 1.4710E-06
S14 -1.0864E-01 5.9943E-02 -2.6496E-02 7.9168E-03 -1.5184E-03 1.7686E-04 -1.1201E-05 2.9246E-07
表2
以下所示出的表3给出实施例1的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL(即,第一透镜E1的物侧面S1至摄像镜头的成像面S15在光轴上的距离)以及成像面S17上有效像素区域对角线长的一半ImgH。
f1(mm) 5.77 f(mm) 4.00
f2(mm) -194.20 TTL(mm) 5.05
f3(mm) 11.22 ImgH(mm) 3.44
f4(mm) -8.00    
f5(mm) 18.40    
f6(mm) 2.68    
f7(mm) -2.22    
表3
由表3可得,摄像镜头的总有效焦距f与第一透镜E1的有效焦距f1之间满足f/f1=0.69;摄像镜头的总有效焦距f与第五透镜E5的有效焦距f5之间满足f/f5=0.22;摄像镜头的总有效焦距f与第七透镜E7的有效焦距f7之间满足f/f7=-1.80;第一透镜E1的有效焦距f1与第三透镜E3的有效焦距f3之间满足f1/f3=0.51;第一透镜E1的有效焦距f1与第四透镜E4的有效焦距f4之间满足f1/f4=-0.72;第六透镜E6的有效焦距f6与第七透镜E7的有效焦距f7之间满足f6/f7=-1.21;第一透镜E1的物侧面S1至摄像镜头的成像面S15在光轴上的距离TTL与摄像镜头的成像面S15上有效像素区域对角线长的一半ImgH满足TTL/ImgH=1.47。
另外,本实施例中摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD满足f/EPD=1.55。
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的摄像镜头。 在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表5示出了可用于实施例2中各非球面镜面的高次项系数。表6示出了实施例2的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000003
Figure PCTCN2017102428-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.9098E-02 2.4496E-02 -7.5638E-02 9.2931E-02 -7.0500E-02 2.7660E-02 -5.4164E-03 0
S2 -1.0938E-01 4.1319E-02 7.3160E-02 -1.3944E-01 1.0001E-01 -3.5512E-02 5.0726E-03 0
S3 3.5919E-02 -2.9450E-01 6.1164E-01 -6.7966E-01 4.4764E-01 -1.5826E-01 2.3811E-02 0
S4 -7.4012E-02 -7.0898E-02 2.5417E-01 -4.0903E-01 4.1704E-01 -2.4472E-01 6.6129E-02 0
S5 -4.7586E-02 3.5993E-02 -2.3525E-01 4.6104E-01 -5.5206E-01 3.4829E-01 -9.1523E-02 0
S6 -7.4567E-02 -7.0245E-02 1.1458E-01 -2.7722E-01 2.9055E-01 -1.2886E-01 1.8686E-02 0
S7 1.1963E-01 -3.0632E-01 5.9791E-01 -9.1525E-01 9.2176E-01 -4.9155E-01 1.1072E-01 0
S8 2.7976E-02 -2.9331E-02 8.2704E-02 -1.7885E-01 1.8732E-01 -9.3159E-02 1.8586E-02 0
S9 -1.9925E-01 2.1327E-01 -2.0825E-01 1.3637E-01 -6.7285E-02 2.0025E-02 -2.4331E-03 0
S10 -1.2107E-01 8.8515E-03 3.9450E-02 -3.6730E-02 1.0316E-02 -1.2342E-04 -2.0794E-04 0
S11 8.9983E-02 -5.4797E-02 -1.7392E-02 3.6200E-02 -2.7230E-02 8.6006E-03 -9.3293E-04 0
S12 8.8409E-02 3.0816E-04 -1.0087E-02 -1.3105E-02 8.9417E-03 -1.8854E-03 1.3462E-04 0
S13 -1.7347E-01 9.5842E-02 -4.7799E-02 2.0456E-02 -5.4921E-03 8.4579E-04 -6.9049E-05 2.3259E-06
S14 -1.1733E-01 6.6758E-02 -2.8858E-02 8.4404E-03 -1.6035E-03 1.8731E-04 -1.2006E-05 3.1876E-07
表5
f1(mm) 5.76 f(mm) 3.96
f2(mm) -136.64 TTL(mm) 5.15
f3(mm) 11.07 ImgH(mm) 3.40
f4(mm) -7.21    
f5(mm) 15.91    
f6(mm) 2.55    
f7(mm) -2.21    
表6
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表8示出了可用于实施例3中各非球面镜面的高次项系数。表9示出了实施例3的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000005
Figure PCTCN2017102428-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.7623E-02 1.8009E-02 -5.7952E-02 6.7672E-02 -5.0504E-02 1.9677E-02 -4.1854E-03 0
S2 -1.1933E-01 6.6108E-02 3.8538E-02 -1.0680E-01 8.1049E-02 -2.9779E-02 4.4199E-03 0
S3 3.6187E-02 -2.8748E-01 5.9414E-01 -6.6102E-01 4.3582E-01 -1.5445E-01 2.3359E-02 0
S4 -7.5562E-02 -5.6376E-02 2.1198E-01 -3.3878E-01 3.4266E-01 -1.9901E-01 5.4114E-02 0
S5 -4.5818E-02 2.6956E-02 -2.1019E-01 4.2990E-01 -5.3343E-01 3.4583E-01 -9.2427E-02 0
S6 -7.5511E-02 -5.5891E-02 7.0163E-02 -2.0271E-01 2.2038E-01 -9.2845E-02 1.0641E-02 0
S7 1.2126E-01 -3.1526E-01 6.3011E-01 -9.8173E-01 9.9087E-01 -5.2445E-01 1.1614E-01 0
S8 2.8190E-02 -3.6283E-02 1.0001E-01 -1.9355E-01 1.9053E-01 -9.0831E-02 1.7509E-02 0
S9 -1.9623E-01 2.0525E-01 -1.9789E-01 1.3238E-01 -6.7511E-02 2.0539E-02 -2.5392E-03 0
S10 -1.2179E-01 6.8942E-03 3.8296E-02 -3.0984E-02 5.7298E-03 1.3514E-03 -3.7997E-04 0
S11 8.9011E-02 -5.4580E-02 -1.9670E-02 3.9891E-02 -2.9454E-02 9.1829E-03 -9.8868E-04 0
S12 8.6380E-02 1.6721E-03 -1.1490E-02 -1.1601E-02 8.1805E-03 -1.7162E-03 1.2075E-04 0
S13 -1.8056E-01 1.0156E-01 -5.1661E-02 2.2536E-02 -6.1666E-03 9.6722E-04 -8.0352E-05 2.7512E-06
S14 -1.0782E-01 5.7877E-02 -2.4334E-02 6.9631E-03 -1.2864E-03 1.4585E-04 -9.0943E-06 2.3562E-07
表8
f1(mm) 5.97 f(mm) 3.93
f2(mm) 254.99 TTL(mm) 5.15
f3(mm) 11.17 ImgH(mm) 3.40
f4(mm) -7.13    
f5(mm) 15.29    
f6(mm) 2.57    
f7(mm) -2.20    
表9
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的摄像镜头的倍率色差曲线,其表 示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表11示出了可用于实施例4中各非球面镜面的高次项系数。表12示出了实施例4的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000007
Figure PCTCN2017102428-appb-000008
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.6653E-02 1.2344E-02 -4.7591E-02 6.4487E-02 -5.7270E-02 2.6488E-02 -5.7287E-03 0
S2 -1.2924E-01 1.0399E-01 -4.1256E-02 -1.2338E-03 1.4129E-03 1.9494E-03 -7.7376E-04 0
S3 2.6799E-02 -2.4570E-01 5.0960E-01 -5.5020E-01 3.5117E-01 -1.2260E-01 1.8523E-02 0
S4 -7.7138E-02 -3.5169E-02 1.6586E-01 -2.4627E-01 2.2937E-01 -1.2339E-01 3.1176E-02 0
S5 -4.3478E-02 4.5043E-02 -2.5802E-01 5.1734E-01 -6.0079E-01 3.6626E-01 -9.3349E-02 0
S6 -7.5547E-02 1.6037E-03 -9.6445E-02 7.4503E-02 -3.4274E-02 2.4583E-02 -9.9282E-03 0
S7 1.2567E-01 -3.0919E-01 5.9651E-01 -9.1202E-01 9.1014E-01 -4.7544E-01 1.0328E-01 0
S8 2.2825E-02 -3.3515E-02 8.0118E-02 -1.3279E-01 1.2532E-01 -5.8466E-02 1.0998E-02 0
S9 -1.8247E-01 1.7948E-01 -1.5453E-01 9.0631E-02 -4.0382E-02 1.1028E-02 -1.2636E-03 0
S10 -1.1277E-01 8.8118E-03 2.3758E-02 -1.6076E-02 5.6811E-04 1.7365E-03 -3.2185E-04 0
S11 7.2195E-02 -1.9998E-02 -6.3941E-02 7.3837E-02 -4.3582E-02 1.2143E-02 -1.2344E-03 0
S12 7.9259E-02 2.3852E-02 -3.3175E-02 1.5382E-03 3.7902E-03 -9.9115E-04 7.4359E-05 0
S13 -1.7021E-01 9.0451E-02 -4.3979E-02 1.8448E-02 -4.8518E-03 7.3078E-04 -5.8312E-05 1.9187E-06
S14 -8.2052E-02 3.3304E-02 -9.3056E-03 1.3726E-03 -8.1470E-05 -1.1356E-06 3.0811E-07 -8.6766E-09
表11
f1(mm) 6.11 f(mm) 3.90
f2(mm) 532.41 TTL(mm) 5.17
f3(mm) 10.29 ImgH(mm) 3.40
f4(mm) -7.69    
f5(mm) 16.71    
f6(mm) 2.98    
f7(mm) -2.37    
表12
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C 示出了实施例4的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表14示出了可用于实施例5中各非球面镜面的高次项系数。表15示出了实施例5的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000009
Figure PCTCN2017102428-appb-000010
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.0652E-02 1.0198E-02 -2.2334E-02 2.4659E-02 -2.1939E-02 1.3058E-02 -3.5516E-03 0
S2 -5.1029E-02 -7.9011E-02 2.0779E-01 -1.9663E-01 9.6705E-02 -2.3912E-02 2.1931E-03 0
S3 1.5315E-01 -6.0325E-01 9.7368E-01 -9.1901E-01 5.2907E-01 -1.7130E-01 2.3833E-02 0
S4 -4.8367E-02 -1.2887E-01 2.3981E-01 -3.2145E-01 3.6477E-01 -2.5262E-01 7.5342E-02 0
S5 6.2981E-03 -2.7735E-01 8.6795E-01 -1.8523E+00 2.2097E+00 -1.3540E+00 3.3142E-01 0
S6 -6.7177E-02 -1.0001E-01 2.2821E-01 -6.2519E-01 9.3979E-01 -6.7260E-01 1.8008E-01 0
S7 1.4957E-01 -5.6020E-01 1.4917E+00 -2.8141E+00 3.3221E+00 -2.1069E+00 5.4515E-01 0
S8 5.3897E-02 -1.1048E-01 2.4366E-01 -3.5692E-01 3.1737E-01 -1.5573E-01 3.2549E-02 0
S9 -1.9262E-01 2.6138E-01 -2.8501E-01 1.9724E-01 -8.8400E-02 2.1913E-02 -2.1194E-03 0
S10 -1.4625E-01 7.3056E-02 -4.7001E-02 2.8782E-02 -1.5677E-02 5.2130E-03 -6.7653E-04 0
S11 7.7160E-02 -7.3692E-02 3.8499E-02 -1.4838E-02 -2.3342E-04 1.2786E-03 -1.7913E-04 0
S12 5.6503E-02 -6.7134E-03 7.7088E-03 -1.6277E-02 7.4144E-03 -1.3440E-03 8.7880E-05 0
S13 -1.8398E-01 2.1180E-02 5.1401E-02 -4.5833E-02 2.0724E-02 -5.2365E-03 6.9071E-04 -3.7095E-05
S14 -1.1671E-01 5.4346E-02 -1.7156E-02 3.2875E-03 -3.7885E-04 2.5953E-05 -9.7479E-07 1.5418E-08
表14
f1(mm) 7.07 f(mm) 3.65
f2(mm) 50.43 TTL(mm) 5.05
f3(mm) 9.46 ImgH(mm) 3.40
f4(mm) -7.23    
f5(mm) 19.52    
f6(mm) 2.41    
f7(mm) -2.31    
表15
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同 波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表17示出了可用于实施例6中各非球面镜面的高次项系数。表18示出了实施例6的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000011
Figure PCTCN2017102428-appb-000012
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -2.1468E-03 2.4652E-03 -5.0332E-03 4.6441E-03 -2.2045E-03 4.7433E-04 -3.6823E-05 0
S2 -2.6146E-02 1.6060E-02 -3.5002E-03 -6.5172E-03 7.3549E-03 -3.4925E-03 6.7741E-04 0
S3 -3.9605E-02 4.6923E-03 2.1117E-02 -2.1204E-02 9.8854E-03 -2.1816E-03 1.8138E-04 0
S4 -5.0893E-02 1.3873E-02 -5.1234E-03 1.7502E-02 -2.4195E-02 1.4811E-02 -3.4711E-03 0
S5 4.6564E-02 -5.9557E-02 2.8160E-02 -5.9704E-03 -6.9994E-03 5.6560E-03 -1.1033E-03 0
S6 -2.0454E-02 -1.5549E-02 7.7660E-03 -1.7362E-02 1.7884E-02 -9.3547E-03 2.1382E-03 0
S7 1.1862E-02 -6.4065E-02 5.4314E-02 -1.7860E-02 2.6426E-03 -1.6118E-04 2.2518E-06 0
S8 1.1586E-02 -5.9080E-02 5.4531E-02 -2.1864E-02 4.3413E-03 -3.7664E-04 7.2855E-06 0
S9 -3.1906E-02 1.0838E-02 -1.0692E-02 7.6789E-03 -3.9950E-03 1.1105E-03 -1.2082E-04 0
S10 -6.4255E-02 2.9066E-02 -1.8224E-02 6.9200E-03 -1.5970E-03 1.5823E-04 5.9523E-07 0
S11 1.1077E-03 -1.4181E-02 5.5679E-03 -2.2729E-03 6.0067E-04 -7.8575E-05 3.9053E-06 0
S12 5.2436E-03 -1.0529E-02 1.9043E-03 -3.7688E-04 8.0983E-05 -8.5462E-06 3.1960E-07 0
S13 -7.9257E-02 3.1505E-02 -8.2890E-03 1.3425E-03 -1.1908E-04 5.7281E-06 -1.4100E-07 1.3941E-09
S14 -1.9633E-02 4.0745E-03 -4.3001E-04 1.7804E-05 -3.8427E-07 4.5497E-09 -2.7951E-11 6.9692E-14
表17
f1(mm) 4.53 f(mm) 4.38
f2(mm) -6.79 TTL(mm) 5.97
f3(mm) 9.05 ImgH(mm) 3.24
f4(mm) -7.93    
f5(mm) 8.77    
f6(mm) 5.56    
f7(mm) -2.99    
表18
图12A示出了实施例6的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表20示出了可用于实施例7中各非球面镜面的高次项系数。表21示出了实施例7的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000013
Figure PCTCN2017102428-appb-000014
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -6.2128E-03 2.3447E-03 -1.0462E-02 1.2622E-02 -9.8136E-03 4.0115E-03 -7.6001E-04 0
S2 -1.5331E-02 -1.2441E-02 3.7026E-02 -3.9063E-02 2.2549E-02 -7.3433E-03 1.0511E-03 0
S3 -2.6574E-02 -3.0335E-02 6.7133E-02 -5.4981E-02 2.4111E-02 -5.3036E-03 4.5379E-04 0
S4 -4.4662E-02 -1.3964E-02 2.9057E-02 -1.3579E-02 -5.7875E-03 8.3672E-03 -2.5156E-03 0
S5 3.4205E-02 -4.0376E-02 2.0671E-03 2.0501E-02 -2.3755E-02 1.2211E-02 -2.2302E-03 0
S6 -2.6385E-02 -1.4164E-02 1.7244E-02 -3.5204E-02 3.4914E-02 -1.6930E-02 3.3973E-03 0
S7 3.7440E-02 -5.5057E-02 4.4554E-02 -1.7800E-02 3.5789E-03 -3.5116E-04 1.3441E-05 0
S8 1.1675E-02 -6.4514E-03 -5.1513E-03 1.4573E-02 -1.0912E-02 3.6570E-03 -4.5966E-04 0
S9 -4.6780E-02 4.3273E-02 -4.8787E-02 3.3877E-02 -1.5265E-02 3.8058E-03 -3.8225E-04 0
S10 -5.9977E-02 1.6432E-02 -6.1383E-03 -4.0595E-04 1.1836E-03 -4.6417E-04 6.0206E-05 0
S11 -1.4570E-02 -4.7167E-03 1.6096E-03 -8.8451E-04 2.8038E-04 -3.8429E-05 1.8841E-06 0
S12 7.0193E-03 -9.6023E-03 1.4221E-03 -9.2661E-05 3.0610E-06 -5.0110E-08 3.2369E-10 0
S13 -1.4637E-02 3.6981E-03 -1.6280E-04 3.4450E-06 -4.0365E-08 2.6770E-10 -9.4225E-13 1.3719E-15
S14 -1.1989E-02 2.3946E-03 -2.7315E-04 1.3150E-05 -3.4167E-07 4.8560E-09 -3.5317E-11 1.0285E-13
表20
f1(mm) 4.51 f(mm) 4.35
f2(mm) -6.95 TTL(mm) 5.96
f3(mm) 8.91 ImgH(mm) 3.24
f4(mm) -7.13    
f5(mm) 7.71    
f6(mm) 5.18    
f7(mm) -2.66    
表21
图14A示出了实施例7的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图14B示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表23示出了可用于实施例8中各非球面镜面的高次项系数。表24示出了实施例8的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000015
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -2.3126E-03 -5.1977E-04 4.3916E-05 -1.6063E-06 3.0843E-08 -3.0568E-10 1.2444E-12 0
S2 -2.9031E-02 2.4554E-02 -2.0567E-02 1.3827E-02 -5.9193E-03 1.3043E-03 -1.0597E-04 0
S3 -1.2756E-02 9.3623E-03 -2.5330E-03 3.2303E-04 -2.1635E-05 7.3989E-07 -1.0221E-08 0
S4 -5.2081E-02 2.7747E-02 -1.4778E-02 8.0879E-03 -6.6750E-03 3.7078E-03 -6.8269E-04 0
S5 5.5959E-02 -1.1320E-01 9.4940E-02 -4.4116E-02 -6.1996E-03 1.4619E-02 -3.6777E-03 0
S6 2.2592E-02 -9.4658E-02 5.5262E-02 3.3757E-03 -4.9332E-02 4.0525E-02 -1.0046E-02 0
S7 3.0749E-02 -2.1834E-02 -1.1127E-02 4.6129E-02 -5.5149E-02 3.3655E-02 -7.9882E-03 0
S8 5.4824E-03 -1.0371E-04 1.2910E-06 -6.3935E-09 -6.7405E-12 1.3836E-13 -1.1945E-15 0
S9 1.0127E-02 -1.0063E-01 1.1516E-01 -1.0156E-01 5.1906E-02 -1.4893E-02 1.8606E-03 0
S10 -7.5270E-02 2.2593E-02 -5.7682E-03 -5.9142E-03 5.3822E-03 -1.9409E-03 2.6487E-04 0
S11 -2.7485E-02 2.1681E-03 3.1594E-03 -1.1732E-03 1.5526E-04 -1.0208E-05 2.9010E-07 0
S12 -8.9273E-03 -4.5286E-03 4.7712E-04 4.2731E-04 -1.3697E-04 1.5164E-05 -5.7492E-07 0
S13 -9.1032E-02 2.6719E-02 -5.9188E-03 1.0543E-03 -1.1403E-04 6.6929E-06 -1.9735E-07 2.2965E-09
S14 -1.1737E-02 2.9206E-04 7.0646E-05 -3.2485E-06 6.2545E-08 -6.2197E-10 3.1446E-12 -6.4096E-15
表23
f1(mm) 4.74 f(mm) 4.41
f2(mm) -7.74 TTL(mm) 5.97
f3(mm) 14.10 ImgH(mm) 3.24
f4(mm) -36.41    
f5(mm) 14.24    
f6(mm) 7.37    
f7(mm) -3.38    
表24
图16A示出了实施例8的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图16B示出了实施例8的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的摄像镜头。图17示出了根据本申请实施例9的摄像镜头的结构示意图。
如图17所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的七个透镜E1-E7。第一透镜E1具有物侧面S1和像侧面S2;第二透镜E2具有物侧面S3和像侧面S4;第三透镜E3具有物侧面S5和像侧面S6;第四透镜E4具有物侧面S7和像侧面S8;第五透镜E5具有物侧面S9和像侧面S10;第六透镜E6具有物侧面S11和像侧面S12;以及第七透镜E7具有物侧面S13和像侧面S14。可选地,摄像镜头还可包括具有物侧面S15和像侧面S16的滤光片E8。在本实施例的摄像镜头中,还可设置有用于限制光束的光圈STO,以提高摄像镜头的成像质量。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表25示出了实施例9的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数。表26示出了可用于实施例9中各非球面镜面的高次项系数。表27示出了实施例9的各透镜的有效焦距f1至f7、摄像镜头的总有效焦距f、摄像镜头的光学总长度TTL以及成像面S17 上有效像素区域对角线长的一半ImgH。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017102428-appb-000016
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18
S1 -1.5025E-02 2.8315E-02 -9.7482E-02 1.5063E-01 -1.3397E-01 6.2078E-02 -1.2237E-02 0
S2 -8.2352E-02 -3.3533E-02 2.2928E-01 -3.3732E-01 2.5770E-01 -1.0499E-01 1.7721E-02 0
S3 3.8510E-02 -3.2740E-01 7.1402E-01 -8.5837E-01 6.2393E-01 -2.5461E-01 4.4861E-02 0
S4 -6.5506E-02 -7.1648E-02 2.2714E-01 -3.0010E-01 2.3908E-01 -1.0479E-01 1.9774E-02 0
S5 -2.9320E-02 4.7383E-02 -3.2735E-01 7.4385E-01 -9.4121E-01 6.2140E-01 -1.7081E-01 0
S6 -6.5453E-02 -5.7569E-02 4.4032E-02 -1.4677E-01 1.9360E-01 -1.0214E-01 1.7862E-02 0
S7 1.2357E-01 -3.2777E-01 6.0275E-01 -8.6993E-01 8.4053E-01 -4.3553E-01 9.4546E-02 0
S8 2.1733E-02 -1.6776E-02 3.8114E-02 -4.9308E-02 3.6876E-02 -1.4978E-02 2.8399E-03 0
S9 -1.7520E-01 1.9799E-01 -1.9505E-01 1.3399E-01 -6.3933E-02 1.7450E-02 -1.9531E-03 0
S10 -1.2295E-01 5.0415E-02 -3.7178E-02 3.1372E-02 -1.8655E-02 5.5553E-03 -6.1295E-04 0
S11 5.8603E-02 -1.6145E-02 -3.2633E-02 3.3241E-02 -1.7900E-02 4.5432E-03 -4.1641E-04 0
S12 4.1746E-02 3.8582E-02 -3.5549E-02 7.0528E-03 3.0020E-04 -2.1930E-04 1.6890E-05 0
S13 -1.8793E-01 9.9813E-02 -4.8346E-02 2.0399E-02 -5.2398E-03 7.3391E-04 -5.0346E-05 1.2132E-06
S14 -9.2473E-02 4.2748E-02 -1.4479E-02 3.1889E-03 -4.3293E-04 3.5500E-05 -1.6260E-06 3.1866E-08
表26
f1(mm) 5.31 f(mm) 3.98
f2(mm) -17.47 TTL(mm) 5.41
f3(mm) 9.10 ImgH(mm) 3.24
f4(mm) -7.52    
f5(mm) 14.23    
f6(mm) 3.05    
f7(mm) -2.45    
表27
综上,实施例1至实施例9分别满足以下表28所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.55 1.55 1.55 1.53 1.55 1.55 1.55 1.55 1.55
f/f1 0.69 0.69 0.66 0.64 0.52 0.97 0.96 0.93 0.75
f/f5 0.22 0.25 0.26 0.23 0.19 0.50 0.56 0.31 0.28
f/f7 -1.80 -1.79 -1.78 -1.64 -1.58 -1.46 -1.64 -1.30 -1.63
f1/f3 0.51 0.52 0.53 0.59 0.75 0.50 0.51 0.34 0.58
f1/f4 -0.72 -0.80 -0.84 -0.80 -0.98 -0.57 -0.63 -0.13 -0.71
f6/f7 -1.21 -1.15 -1.17 -1.25 -1.04 -1.86 -1.95 -2.18 -1.25
CT5/CT6 0.69 0.70 0.73 0.83 0.93 0.97 0.87 0.64 0.83
T23/CT3 0.73 0.76 0.77 0.66 0.59 0.38 0.37 0.53 0.53
R3/R8 -0.92 -0.93 -0.91 -0.95 -0.86 -1.30 -1.36 -1.39 -1.15
R4/R7 -1.38 -1.39 -1.40 -1.41 -1.42 -1.05 -1.14 -0.83 -1.39
|(R7-R8)/(R7+R8)| 0.23 0.23 0.23 0.21 0.23 0.33 0.35 0.08 0.22
TTL/ImgH 1.47 1.51 1.52 1.52 1.49 1.84 1.84 1.85 1.67
表28
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 摄像镜头,具有总有效焦距f和入瞳直径EPD,所述摄像镜头沿光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜,
    其特征在于,
    所述第一透镜和所述第六透镜均具有正光焦度;
    所述第二透镜、所述第三透镜、所述第五透镜和所述第七透镜均具有正光焦度或负光焦度;以及
    所述第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面,
    所述总有效焦距f与所述入瞳直径EPD满足f/EPD≤1.7。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.85。
  3. 根据权利要求1所述的摄像镜头,其特征在于,
    所述第一透镜的物侧面为凸面,像侧面为凹面;
    所述第二透镜的物侧面为凸面,像侧面为凹面;以及
    所述第六透镜的物侧面和像侧面在近轴处均为凸面。
  4. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述总有效焦距f与所述第一透镜的有效焦距f1满足0.5≤f/f1≤1.0。
  5. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述总有效焦距f与所述第五透镜的有效焦距f5满足0<f/f5<1.0。
  6. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述总有效焦距f与所述第七透镜的有效焦距f7满足-2<f/f7<0。
  7. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足0<f1/f3<1.0。
  8. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第四透镜的有效焦距f4满足-1.0≤f1/f4<0。
  9. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第七透镜的有效焦距f7满足-2.5<f6/f7≤-1.0。
  10. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第五透镜的中心厚度CT5与所述第六透镜的中心厚度CT6满足0.5<CT5/CT6≤1.0。
  11. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的空气间隔T23与所述第三透镜的中心厚度CT3满足0<T23/CT3<1.0。
  12. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第四透镜的像侧面的曲率半径R8满足-1.5<R3/R8<0。
  13. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第四透镜的物侧面的曲率半径R7满足-1.5<R4/R7<-0.5。
  14. 根据权利要求1至3中任一项所述的摄像镜头,其特征在于, 所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足|(R7-R8)/(R7+R8)|<1.0。
  15. 摄像镜头,具有总有效焦距f,所述摄像镜头沿光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜,
    其特征在于,
    所述第一透镜和所述第六透镜均具有正光焦度;
    所述第二透镜、所述第三透镜、所述第五透镜和所述第七透镜均具有正光焦度或负光焦度;以及
    所述第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面,
    所述总有效焦距f与所述第五透镜的有效焦距f5满足0<f/f5<1.0。
  16. 根据权利要求15所述的摄像镜头,其特征在于,
    所述第一透镜的物侧面为凸面,像侧面为凹面;
    所述第二透镜的物侧面为凸面,像侧面为凹面;以及
    所述第六透镜的物侧面和像侧面在近轴处均为凸面。
  17. 根据权利要求15或16所述的摄像镜头,其特征在于,所述总有效焦距f与所述第一透镜的有效焦距f1满足0.5≤f/f1≤1.0。
  18. 根据权利要求15或16所述的摄像镜头,其特征在于,所述总有效焦距f与所述第七透镜的有效焦距f7满足-2<f/f7<0。
  19. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足0<f1/f3<1.0。
  20. 根据权利要求15或16所述的摄像镜头,其特征在于,所述 第一透镜的有效焦距f1与所述第四透镜的有效焦距f4满足-1.0≤f1/f4<0。
  21. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第七透镜的有效焦距f7满足-2.5<f6/f7≤-1.0。
  22. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第五透镜的中心厚度CT5与所述第六透镜的中心厚度CT6满足0.5<CT5/CT6≤1.0。
  23. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第二透镜和所述第三透镜在所述光轴上的空气间隔T23与所述第三透镜的中心厚度CT3满足0<T23/CT3<1.0。
  24. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第四透镜的像侧面的曲率半径R8满足-1.5<R3/R8<0。
  25. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第二透镜的像侧面的曲率半径R4与所述第四透镜的物侧面的曲率半径R7满足-1.5<R4/R7<-0.5。
  26. 根据权利要求15或16所述的摄像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足|(R7-R8)/(R7+R8)|<1.0。
  27. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的物侧面至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足 TTL/ImgH≤1.85。
  28. 根据权利要求27所述的摄像镜头,其特征在于,所述总有效焦距f与所述摄像镜头的入瞳直径EPD满足f/EPD≤1.7。
PCT/CN2017/102428 2017-05-22 2017-09-20 摄像镜头 WO2018214349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/067,108 US10962740B2 (en) 2017-05-22 2017-09-20 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720570321.4 2017-05-22
CN201720570321.4U CN206710689U (zh) 2017-05-22 2017-05-22 摄像镜头
CN201710362676.9 2017-05-22
CN201710362676.9A CN106950681B (zh) 2017-05-22 2017-05-22 摄像镜头

Publications (1)

Publication Number Publication Date
WO2018214349A1 true WO2018214349A1 (zh) 2018-11-29

Family

ID=64395097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102428 WO2018214349A1 (zh) 2017-05-22 2017-09-20 摄像镜头

Country Status (2)

Country Link
US (1) US10962740B2 (zh)
WO (1) WO2018214349A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025551A1 (en) * 2017-07-19 2019-01-24 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
JP2020106800A (ja) * 2018-12-27 2020-07-09 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645228B (zh) 2017-06-03 2018-12-21 大立光電股份有限公司 影像擷取系統鏡頭組、取像裝置及電子裝置
JP6611098B2 (ja) 2017-10-10 2019-11-27 カンタツ株式会社 撮像レンズ
WO2019080554A1 (zh) * 2017-10-26 2019-05-02 浙江舜宇光学有限公司 光学成像镜头
JP6778464B2 (ja) * 2018-12-27 2020-11-04 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ
JP6806859B2 (ja) * 2018-12-27 2021-01-06 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ
CN110361837B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110398815B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110346902B (zh) * 2019-06-29 2021-09-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN111552060A (zh) * 2020-06-28 2020-08-18 浙江舜宇光学有限公司 光学成像系统
CN112485892A (zh) * 2020-11-26 2021-03-12 玉晶光电(厦门)有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597582A (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
US9297983B2 (en) * 2012-11-19 2016-03-29 Ricoh Company, Ltd. Imaging lens, imaging device and information device
CN105866924A (zh) * 2016-01-07 2016-08-17 瑞声科技(新加坡)有限公司 摄像镜头
CN106054353A (zh) * 2015-04-10 2016-10-26 先进光电科技股份有限公司 光学成像系统
CN106950681A (zh) * 2017-05-22 2017-07-14 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510804B (zh) 2014-08-01 2015-12-01 Largan Precision Co Ltd 取像用光學鏡組、取像裝置及電子裝置
JP6376561B2 (ja) 2014-10-29 2018-08-22 カンタツ株式会社 撮像レンズ
TWI553341B (zh) 2015-08-11 2016-10-11 大立光電股份有限公司 影像擷取鏡片組、取像裝置及電子裝置
TWI629535B (zh) * 2017-02-18 2018-07-11 大立光電股份有限公司 影像擷取光學系統、取像裝置及電子裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297983B2 (en) * 2012-11-19 2016-03-29 Ricoh Company, Ltd. Imaging lens, imaging device and information device
CN104597582A (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
CN106054353A (zh) * 2015-04-10 2016-10-26 先进光电科技股份有限公司 光学成像系统
CN105866924A (zh) * 2016-01-07 2016-08-17 瑞声科技(新加坡)有限公司 摄像镜头
CN106950681A (zh) * 2017-05-22 2017-07-14 浙江舜宇光学有限公司 摄像镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190025551A1 (en) * 2017-07-19 2019-01-24 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10670837B2 (en) 2017-07-19 2020-06-02 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
JP2020106800A (ja) * 2018-12-27 2020-07-09 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
US11137578B2 (en) 2018-12-27 2021-10-05 Aac Optics Solutions Pte. Ltd. Camera optical lens comprising seven lenses of +--+-+-, ++-+-+- or ++---+- refractive powers

Also Published As

Publication number Publication date
US20210048623A1 (en) 2021-02-18
US10962740B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN106950681B (zh) 摄像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
WO2019192180A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
CN114779443B (zh) 摄像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2018192126A1 (zh) 摄像镜头
WO2019223263A1 (zh) 摄像镜头
WO2018153012A1 (zh) 摄像镜头
WO2019052220A1 (zh) 光学成像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2020042799A1 (zh) 光学成像镜片组
WO2019169856A1 (zh) 摄像镜头组
WO2019218628A1 (zh) 光学成像镜头
WO2019037466A1 (zh) 摄像镜头
WO2020029613A1 (zh) 光学成像镜头
CN110208925B (zh) 光学成像镜头
WO2018209855A1 (zh) 光学成像系统
WO2019019626A1 (zh) 成像镜头
WO2019056775A1 (zh) 摄像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910705

Country of ref document: EP

Kind code of ref document: A1