WO2019169853A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019169853A1
WO2019169853A1 PCT/CN2018/106614 CN2018106614W WO2019169853A1 WO 2019169853 A1 WO2019169853 A1 WO 2019169853A1 CN 2018106614 W CN2018106614 W CN 2018106614W WO 2019169853 A1 WO2019169853 A1 WO 2019169853A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
image side
focal length
Prior art date
Application number
PCT/CN2018/106614
Other languages
English (en)
French (fr)
Inventor
徐标
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019169853A1 publication Critical patent/WO2019169853A1/zh
Priority to US16/744,887 priority Critical patent/US11550123B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens comprising six lenses.
  • the present application provides an optical imaging lens that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have positive refractive power, the object side may be convex, the image side may be concave; the second lens may have negative power, and the image side may be concave; the third lens has positive or negative optical
  • the fourth lens may have a negative power; the fifth lens may have a positive power, and the image side may be a convex surface; the sixth lens may have a negative power, and both the object side and the image side may be concave.
  • the effective focal length f5 of the fifth lens and the central thickness CT2 of the second lens on the optical axis can satisfy 11.5 ⁇ f5 / CT2 ⁇ 12.5.
  • the total effective focal length f of the optical imaging lens and the maximum half angle of view HFOV of the optical imaging lens may satisfy 3.8 ⁇ f x tan (HFOV) ⁇ 5.0.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.8.
  • the distance from the center of the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis is half the length of the effective pixel area of the imaging surface of the optical imaging lens, ImgH can satisfy TTL/ ImgH ⁇ 1.4.
  • the effective focal length f2 of the second lens and the total effective focal length f of the optical imaging lens may satisfy -3.0 ⁇ f2 / f ⁇ -2.0.
  • the total effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens may satisfy 1.1 ⁇ f/f5 ⁇ 1.6.
  • the effective focal length f1 of the first lens and the effective focal length f6 of the sixth lens may satisfy -1.7 ⁇ f1/f6 ⁇ -1.2.
  • the radius of curvature R11 of the object side of the sixth lens and the radius of curvature R12 of the image side of the sixth lens may satisfy 1.5 ⁇ (R11-R12)/(R11+R12) ⁇ 2.0.
  • the radius of curvature R2 of the image side of the first lens and the radius of curvature R1 of the object side of the first lens may satisfy 4.0 ⁇ R2/R1 ⁇ 5.0.
  • the separation distance T56 of the fifth lens and the sixth lens on the optical axis and the separation distance T23 of the second lens and the third lens on the optical axis may satisfy 1.0 ⁇ T56/T23 ⁇ 2.0.
  • the effective focal length f2 of the second lens and the radius of curvature R4 of the image side of the second lens may satisfy -3.0 ⁇ f2 / R4 ⁇ -1.5.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT2 of the second lens on the optical axis may satisfy 2.2 ⁇ CT1/CT2 ⁇ 3.2.
  • the present application provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a first Five lenses and a sixth lens.
  • the first lens may have positive refractive power, the object side may be convex, the image side may be concave; the second lens may have negative power, and the image side may be concave; the third lens has positive or negative optical
  • the fourth lens may have a negative power; the fifth lens may have a positive power, and the image side may be a convex surface; the sixth lens may have a negative power, and both the object side and the image side may be concave.
  • the radius of curvature R11 of the object side surface of the sixth lens and the curvature radius R12 of the image side surface of the sixth lens may satisfy 1.5 ⁇ (R11-R12)/(R11+R12) ⁇ 2.0.
  • a plurality of (for example, six) lenses are used, and the above optical imaging lens is super-over by rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • At least one beneficial effect such as thinness, miniaturization, large image area, large aperture, and high image quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural view of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 8.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens may include, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have positive refractive power
  • the object side may be convex
  • the image side may be concave
  • the second lens may have negative power
  • the image side may be concave
  • the third lens has Positive or negative power
  • the fourth lens may have a negative power
  • the fifth lens may have a positive power
  • the image side may be a convex surface
  • the sixth lens may have a negative power
  • the object side may be Concave, like the side can be concave.
  • the object side of the second lens may be convex.
  • the image side of the fourth lens may be a concave surface.
  • the optical imaging lens of the present application may satisfy conditional formula 3.8 ⁇ f ⁇ tan (HFOV) ⁇ 5.0, where f is the total effective focal length of the optical imaging lens, and HFOV is the maximum half field of view of the optical imaging lens angle. More specifically, f and HFOV can further satisfy 3.8 ⁇ f ⁇ tan (HFOV) ⁇ 4.0, for example, 3.81 ⁇ f ⁇ tan (HFOV) ⁇ 3.94.
  • the optical imaging lens of the present application may satisfy the conditional expression 11.5 ⁇ f5 / CT2 ⁇ 12.5, where f5 is the effective focal length of the fifth lens, and CT2 is the center thickness of the second lens on the optical axis. More specifically, f5 and CT2 can further satisfy 11.50 ⁇ f5 / CT2 ⁇ 12.34.
  • the optical imaging lens of the present application may satisfy the conditional expression f/EPD ⁇ 1.8, where f is the total effective focal length of the optical imaging lens and the EPD is the entrance pupil diameter of the optical imaging lens. More specifically, f and EPD can further satisfy 1.65 ⁇ f / EPD ⁇ 1.80.
  • the imaging lens with a large image surface has a small F number (ie, f/EPD), ensuring that the imaging lens has a large aperture imaging effect, so that the imaging lens is It also has good image quality in dark environments.
  • the optical imaging lens of the present application may satisfy the conditional expression -3.0 ⁇ f2 / f ⁇ -2.0, where f2 is the effective focal length of the second lens and f is the total effective focal length of the optical imaging lens. More specifically, f2 and f can further satisfy, -2.9 ⁇ f2 / f ⁇ -2.1, for example, -2.79 ⁇ f2 / f ⁇ -2.13.
  • the second lens can be made to have a positive spherical aberration.
  • the positive spherical aberration produced by the second lens is balanced with the negative spherical aberration produced by the other lenses in the optical system, so that the imaging lens can have a better imaging quality in the on-axis field of view.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.1 ⁇ f/f5 ⁇ 1.6, where f is the total effective focal length of the optical imaging lens, and f5 is the effective focal length of the fifth lens. More specifically, f and f5 can further satisfy 1.29 ⁇ f / f5 ⁇ 1.51.
  • the contribution rate of the fifth lens power can be reasonably controlled, and the high spherical aberration generated by the imaging lens can be balanced.
  • the optical imaging lens of the present application may satisfy the conditional expression -1.7 ⁇ f1/f6 ⁇ -1.2, where f1 is the effective focal length of the first lens and f6 is the effective focal length of the sixth lens. More specifically, f1 and f6 can further satisfy -1.61 ⁇ f1/f6 ⁇ - 1.39.
  • the power of the system can be reasonably distributed such that the positive and negative spherical aberrations of the front group lens and the rear group lens cancel each other out.
  • the optical imaging lens of the present application can satisfy the conditional expression ⁇ ⁇ R11-R12) / (R11 + R12) ⁇ 2.0, wherein R11 is the radius of curvature of the object side of the sixth lens, and R12 is the first The radius of curvature of the image side of the six lens. More specifically, R11 and R12 may further satisfy 1.54 ⁇ (R11 - R12) / (R11 + R12) ⁇ 1.84.
  • the on-axis field of view and the off-axis field of view are caused.
  • the difference is small, which makes the imaging lens have good imaging quality.
  • the optical imaging lens of the present application can satisfy the conditional TTL/ImgH ⁇ 1.4, where TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical imaging lens on the optical axis, ImgH It is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens. More specifically, TTL and ImgH can further satisfy 1.36 ⁇ TTL / ImgH ⁇ 1.40.
  • the optical system can be ultra-thin and high in pixel characteristics.
  • the optical imaging lens of the present application may satisfy the conditional expression 4.0 ⁇ R2/R1 ⁇ 5.0, where R2 is the radius of curvature of the image side of the first lens, and R1 is the radius of curvature of the object side of the first lens. . More specifically, R2 and R1 may further satisfy 4.5 ⁇ R2 / R1 ⁇ 4.9, for example, 4.57 ⁇ R2 / R1 ⁇ 4.88.
  • R2 and R1 may further satisfy 4.5 ⁇ R2 / R1 ⁇ 4.9, for example, 4.57 ⁇ R2 / R1 ⁇ 4.88.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.0 ⁇ T56/T23 ⁇ 2.0, where T56 is the separation distance of the fifth lens and the sixth lens on the optical axis, and T23 is the second lens and The separation distance of the third lens on the optical axis. More specifically, T56 and T23 may further satisfy 1.3 ⁇ T56 / T23 ⁇ 1.9, for example, 1.40 ⁇ T56 / T23 ⁇ 1.87.
  • the field curvature contribution of each field of view of the system is controlled within a reasonable range Inside.
  • the optical imaging lens of the present application may satisfy the conditional expression -3.0 ⁇ f2 / R4 ⁇ -1.5, where f2 is the effective focal length of the second lens and R4 is the radius of curvature of the image side of the second lens. More specifically, f2 and R4 may further satisfy -2.98 ⁇ f2 / R4 ⁇ -1.56.
  • the field curvature contribution of the side of the second lens image is within a reasonable range to balance the amount of field curvature produced by the subsequent lens.
  • the optical imaging lens of the present application may satisfy the conditional expression 2.2 ⁇ CT1/CT2 ⁇ 3.2, where CT1 is the center thickness of the first lens on the optical axis, and CT2 is the second lens on the optical axis. Center thickness. More specifically, CT1 and CT2 can further satisfy 2.38 ⁇ CT1/CT2 ⁇ 3.09. By controlling the ratio of the center thickness of the first lens to the center thickness of the second lens, the distortion contribution of each field of view of the system is controlled within a reasonable range, and finally the system distortion is within 3%, and the imaging lens is improved. quality.
  • the optical imaging lens described above may further include at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed at any position as needed, for example, the diaphragm may be disposed between the object side and the first lens.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the six described above.
  • a plurality of lenses such as the six described above.
  • the volume of the imaging lens can be effectively reduced, the sensitivity of the imaging lens can be reduced, and the imaging lens can be improved.
  • the processability makes the optical imaging lens more advantageous for production processing and can be applied to portable electronic products.
  • the optical imaging lens configured by the above configuration has advantages such as a large image plane, a large aperture, high image quality, low sensitivity, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including six lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S12 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • the optical imaging lens of Embodiment 1 satisfies:
  • f ⁇ tan(HFOV) 3.81
  • f is the total effective focal length of the optical imaging lens
  • HFOV is the maximum half angle of view of the optical imaging lens
  • F5/CT2 12.27, where f5 is the effective focal length of the fifth lens E5, and CT2 is the center thickness of the second lens E2 on the optical axis;
  • f / EPD 1.65, where f is the total effective focal length of the optical imaging lens, and EPD is the entrance pupil diameter of the optical imaging lens;
  • F2/f -2.66, where f2 is the effective focal length of the second lens E2, and f is the total effective focal length of the optical imaging lens;
  • f/f5 1.46, where f is the total effective focal length of the optical imaging lens, and f5 is the effective focal length of the fifth lens E5;
  • F1/f6 -1.56, where f1 is the effective focal length of the first lens E1, and f6 is the effective focal length of the sixth lens E6;
  • R11-R12 is a radius of curvature of the object side surface S11 of the sixth lens E6, and R12 is a radius of curvature of the image side surface S12 of the sixth lens E6;
  • TTL/ImgH 1.38, where TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and ImgH is half the diagonal length of the effective pixel area on the imaging plane S15;
  • R2 / R1 4.57, wherein R2 is the radius of curvature of the image side surface S2 of the first lens E1, and R1 is the radius of curvature of the object side surface S1 of the first lens E1;
  • T56/T23 1.40, wherein T56 is a separation distance of the fifth lens E5 and the sixth lens E6 on the optical axis, and T23 is a separation distance of the second lens E2 and the third lens E3 on the optical axis;
  • F2/R4 -2.98, where f2 is the effective focal length of the second lens E2, and R4 is the radius of curvature of the image side surface S4 of the second lens E2;
  • CT1/CT2 3.09, where CT1 is the center thickness of the first lens E1 on the optical axis, and CT2 is the center thickness of the second lens E2 on the optical axis.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a stop STO, a first lens E1, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, filter E7, and imaging surface S15.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, wherein the unit of curvature radius and thickness are in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f6 of each lens in Embodiment 7, optical imaging lens
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging lens, the center of the object side surface S1 of the first lens E1 to the distance TTL of the imaging surface S15 on the optical axis, and the imaging surface.
  • the effective pixel area on S15 is half the length of the diagonal ImgH.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 16A to 16D, the optical imaging lens given in Embodiment 8 can achieve good imaging quality.
  • Embodiments 1 to 8 respectively satisfy the relationship shown in Table 25.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。第一透镜(E1)具有正光焦度,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(E2)具有负光焦度,其像侧面(S4)为凹面;第三透镜(E3)具有正光焦度或负光焦度;第四透镜(E4)具有负光焦度;第五透镜(E5)具有正光焦度,其像侧面(S10)为凸面;第六透镜(E6)具有负光焦度,其物侧面(S11)和像侧面(S12)均为凹面。第五透镜(E5)的有效焦距f5与第二透镜(E2)于光轴上的中心厚度CT2满足11.5≤f5/CT2≤12.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年3月7日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810187128.1的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的光学成像镜头。
背景技术
随着科技的进步,具有摄像功能的电子产品快速发展,人们对适用于便携式电子产品的成像镜头的要求逐渐提高。同时,随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等图像传感器等技术的进步,使得芯片上像元数增加同时单像元的尺寸减小,这对相配套的成像镜头的高成像性能也提出了更高的要求。
因此,需要一种具有大像面、大孔径,超薄等特性的光学成像镜头。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;第五透镜可具有正光焦度,其像侧面可为凸面;第六透镜可具有负光焦度,其物侧面和像侧面均可为凹面。其中,第五透镜的有效 焦距f5与第二透镜于光轴上的中心厚度CT2可满足11.5≤f5/CT2≤12.5。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的最大半视场角HFOV可满足3.8≤f×tan(HFOV)<5.0。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.4。
在一个实施方式中,第二透镜的有效焦距f2与光学成像镜头的总有效焦距f可满足-3.0<f2/f<-2.0。
在一个实施方式中,光学成像镜头的总有效焦距f与第五透镜的有效焦距f5可满足1.1<f/f5<1.6。
在一个实施方式中,第一透镜的有效焦距f1与第六透镜的有效焦距f6可满足-1.7<f1/f6<-1.2。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足1.5<(R11-R12)/(R11+R12)<2.0。
在一个实施方式中,第一透镜的像侧面的曲率半径R2与第一透镜的物侧面的曲率半径R1可满足4.0<R2/R1<5.0。
在一个实施方式中,第五透镜和第六透镜在光轴上的间隔距离T56与第二透镜和第三透镜在光轴上的间隔距离T23可满足1.0≤T56/T23≤2.0。
在一个实施方式中,第二透镜的有效焦距f2与第二透镜的像侧面的曲率半径R4可满足-3.0≤f2/R4≤-1.5。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第二透镜于光轴上的中心厚度CT2可满足2.2<CT1/CT2<3.2。
另一方面,本申请提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其像侧面 可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;第五透镜可具有正光焦度,其像侧面可为凸面;第六透镜可具有负光焦度,其物侧面和像侧面均可为凹面。其中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足1.5<(R11-R12)/(R11+R12)<2.0。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有超薄、小型化、大像面、大孔径、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差 曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/ 或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜可具有负光焦度;第五透镜可具有正光焦度,其像侧面可为凸面;第六透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面。
在示例性实施方式中,第二透镜的物侧面可为凸面。
在示例性实施方式中,第四透镜的像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式3.8≤f×tan(HFOV)<5.0,其中,f为光学成像镜头的总有效焦距,HFOV为光学成像镜头的最大半视场角。更具体地,f和HFOV进一步可满足3.8≤f×tan(HFOV)<4.0,例如,3.81≤f×tan(HFOV)≤3.94。通过约束成像镜头的最大半视场角和控制成像镜头的有效焦距,可以实现镜头大像面的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式11.5≤f5/CT2≤12.5,其中,f5为第五透镜的有效焦距,CT2为第二透镜于光轴上的中心厚度。更具体地,f5和CT2进一步可满足11.50≤f5/CT2≤12.34。通过控制第五透镜的有效焦距和第二透镜的中心厚度的比值,有利于合理的保证第二透镜的加工性,并且有利于减小第五透镜的球差贡献率。
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/EPD≤1.8,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.65≤f/EPD≤1.80。通过合理分配光焦度并约束成像镜头的入瞳直径,使得具有大像面的成像镜头具有较小的F数(即,f/EPD),保证成像镜头具有大孔径成像效果,使成像镜头在暗环境下也具有良好的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-3.0<f2/f<-2.0,其中,f2为第二透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f2和f进一步可满足,-2.9<f2/f<-2.1,例如,-2.79≤f2/f≤-2.13。通过合理控制第二透镜的有效焦距,可以使第二透镜产生正球差。用第二透镜所产生的正球差与光学系统中其他镜片所产生的负球差平衡,可以使的成像镜头在轴上视场区域具有较佳的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.1<f/f5<1.6,其中,f为光学成像镜头的总有效焦距,f5为第五透镜的有效焦距。更具体地,f和f5进一步可满足1.29≤f/f5≤1.51。通过合理控制第五透镜的有效焦距,能够合理控制第五透镜光焦度的贡献率,并且能够平衡成像镜头产生的高级球差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1.7<f1/f6<-1.2,其中,f1为第一透镜的有效焦距,f6为第六透镜的有效焦距。更具体地,f1和f6进一步可满足-1.61≤f1/f6≤-1.39。通过合理控制第一透镜的有效焦距和第六透镜的有效焦距的比值,能够合理分配系统的光焦度,使得前组透镜和后组透镜的正负球差相互抵消。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5 <(R11-R12)/(R11+R12)<2.0,其中,R11为第六透镜的物侧面的曲率半径,R12为第六透镜的像侧面的曲率半径。更具体地,R11和R12进一步可满足1.54≤(R11-R12)/(R11+R12)≤1.84。通过约束第六透镜物侧面的曲率半径和像侧面的曲率半径之差与第六透镜物侧面的曲率半径和像侧面的曲率半径之和的比值,使得轴上视场和轴外视场的彗差较小,使成像镜头具有良好的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH≤1.4,其中,TTL为第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.36≤TTL/ImgH≤1.40。通过控制成像镜头的光学总长度和像高的比值,可以实现光学系统超薄化和高像素的特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式4.0<R2/R1<5.0,其中,R2为第一透镜的像侧面的曲率半径,R1为第一透镜的物侧面的曲率半径。更具体地,R2和R1进一步可满足4.5<R2/R1<4.9,例如,4.57≤R2/R1≤4.88。通过约束第一透镜物侧面的曲率半径和像侧面的曲率半径的比值,可以合理控制第一透镜对成像镜头象散的贡献量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.0≤T56/T23≤2.0,其中,T56为第五透镜和第六透镜在光轴上的间隔距离,T23为第二透镜和第三透镜在光轴上的间隔距离。更具体地,T56和T23进一步可满足1.3≤T56/T23≤1.9,例如,1.40≤T56/T23≤1.87。通过约束第五透镜和第六透镜在光轴上的空气间隔与第二透镜和第三透镜在光轴上的空气间隔的比值,以将系统各视场的场曲贡献量控制在合理的范围内。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-3.0≤f2/R4≤-1.5,其中,f2为第二透镜的有效焦距,R4为第二透镜的像侧面的曲率半径。更具体地,f2和R4进一步可满足-2.98≤f2/R4≤-1.56。通过控制第二透镜的有效焦距和第二透镜像侧面的曲率半径的比值,使第二透镜像侧面的场曲贡献量在合理的范围,以平衡后续透 镜所产生的场曲量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2.2<CT1/CT2<3.2,其中,CT1为第一透镜于光轴上的中心厚度,CT2为第二透镜于光轴上的中心厚度。更具体地,CT1和CT2进一步可满足2.38≤CT1/CT2≤3.09。通过控制第一透镜的中心厚度和第二透镜的中心厚度的比值,以将系统各视场的畸变贡献量控制在合理的范围内,最后使得系统畸变量在3%内,提升成像镜头的成像质量。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像镜头的体积、降低成像镜头的敏感度并提高成像镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头还具有例如大像面、大孔径、高成像品质、低敏感度等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000001
Figure PCTCN2018106614-appb-000002
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018106614-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9316E-01 -2.2775E-01 3.9266E-01 -5.9614E-01 6.7343E-01 -5.1468E-01 2.4826E-01 -6.7880E-02 7.9590E-03
S2 -4.4940E-02 3.6530E-02 -2.8680E-02 3.1480E-02 -6.8790E-02 9.8788E-02 -8.0290E-02 3.4127E-02 -5.9400E-03
S3 -6.6290E-02 9.2331E-02 -1.0438E-01 2.2564E-01 -4.5771E-01 5.8646E-01 -4.3986E-01 1.7831E-01 -3.0070E-02
S4 1.5441E-02 6.1649E-02 -1.9317E-01 6.1916E-01 -1.2463E+00 1.5235E+00 -1.0959E+00 4.2554E-01 -6.7600E-02
S5 -6.8960E-02 9.4263E-02 -4.2485E-01 9.9023E-01 -1.4972E+00 1.3783E+00 -7.2064E-01 1.7532E-01 -8.7600E-03
S6 -1.1736E-01 1.3756E-01 -2.1059E-01 5.6190E-02 2.7849E-01 -4.8987E-01 3.8168E-01 -1.4948E-01 2.3961E-02
S7 -7.7190E-02 -1.3450E-01 3.1250E-01 -3.6450E-01 2.1838E-01 -4.8260E-02 -1.1690E-02 7.9630E-03 -1.1600E-03
S8 -5.2530E-02 -1.1698E-01 2.4412E-01 -2.6525E-01 1.7974E-01 -7.5400E-02 1.8873E-02 -2.5700E-03 1.4700E-04
S9 -3.7650E-02 -7.2600E-03 -8.9300E-03 3.4915E-02 -2.7380E-02 1.0339E-02 -2.1100E-03 2.2600E-04 -9.9000E-06
S10 -1.0730E-01 6.8840E-02 -4.1300E-02 1.4144E-02 7.8900E-04 -1.9200E-03 5.3500E-04 -6.3000E-05 2.7800E-06
S11 -1.1531E-01 5.0632E-02 -1.4830E-02 3.5430E-03 -6.1000E-04 6.9500E-05 -4.9000E-06 1.9100E-07 -3.2000E-09
S12 -6.3560E-02 2.5972E-02 -7.6100E-03 1.4240E-03 -1.7000E-04 1.0900E-05 -3.0000E-07 -3.3000E-09 2.5700E-10
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.19 f6(mm) -2.69
f2(mm) -11.25 f(mm) 4.22
f3(mm) -649.32 TTL(mm) 5.40
f4(mm) -30.37 ImgH(mm) 3.90
f5(mm) 2.88    
表3
实施例1中的光学成像镜头满足:
f×tan(HFOV)=3.81,其中,f为光学成像镜头的总有效焦距,HFOV为光学成像镜头的最大半视场角;
f5/CT2=12.27,其中,f5为第五透镜E5的有效焦距,CT2为第二透镜E2于光轴上的中心厚度;
f/EPD=1.65,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径;
f2/f=-2.66,其中,f2为第二透镜E2的有效焦距,f为光学成像镜头的总有效焦距;
f/f5=1.46,其中,f为光学成像镜头的总有效焦距,f5为第五透镜E5的有效焦距;
f1/f6=-1.56,其中,f1为第一透镜E1的有效焦距,f6为第六透镜E6的有效焦距;
(R11-R12)/(R11+R12)=1.54,其中,R11为第六透镜E6的物侧面S11的曲率半径,R12为第六透镜E6的像侧面S12的曲率半径;
TTL/ImgH=1.38,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离,ImgH为成像面S15上有效像素区域对角线长的一半;
R2/R1=4.57,其中,R2为第一透镜E1的像侧面S2的曲率半径,R1为第一透镜E1的物侧面S1的曲率半径;
T56/T23=1.40,其中,T56为第五透镜E5和第六透镜E6在光轴上的间隔距离,T23为第二透镜E2和第三透镜E3在光轴上的间隔距离;
f2/R4=-2.98,其中,f2为第二透镜E2的有效焦距,R4为第二透镜E2的像侧面S4的曲率半径;
CT1/CT2=3.09,其中,CT1为第一透镜E1于光轴上的中心厚度,CT2为第二透镜E2于光轴上的中心厚度。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8670E-01 -1.6030E-01 1.6667E-01 -1.4876E-01 1.3836E-01 -1.2728E-01 8.6078E-02 -3.3350E-02 5.3340E-03
S2 -7.1090E-02 6.7134E-02 8.0757E-02 -4.4187E-01 7.9798E-01 -8.0171E-01 4.5695E-01 -1.3370E-01 1.4734E-02
S3 -8.8540E-02 1.8407E-01 -3.5586E-01 8.0170E-01 -1.4487E+00 1.7282E+00 -1.2591E+00 5.0960E-01 -8.7560E-02
S4 2.2025E-02 2.4783E-02 9.9500E-03 8.8048E-02 -5.6023E-01 1.1650E+00 -1.1796E+00 5.9466E-01 -1.1770E-01
S5 -6.8340E-02 7.2290E-02 -4.4155E-01 1.2418E+00 -2.2690E+00 2.5739E+00 -1.7351E+00 6.1826E-01 -8.5020E-02
S6 -9.4840E-02 5.1826E-02 -3.6460E-02 -1.5248E-01 3.9839E-01 -4.8071E-01 3.3045E-01 -1.2477E-01 2.0263E-02
S7 -1.1772E-01 2.0060E-03 7.8830E-03 1.2119E-01 -2.9399E-01 2.9993E-01 -1.5875E-01 4.2969E-02 -4.7300E-03
S8 -5.0670E-02 -1.1568E-01 2.5001E-01 -2.6690E-01 1.7411E-01 -7.0500E-02 1.7186E-02 -2.3000E-03 1.3000E-04
S9 -1.7580E-02 -4.5350E-02 5.5746E-02 -3.0110E-02 9.6630E-03 -2.0000E-03 2.7200E-04 -2.3000E-05 9.0200E-07
S10 -1.0240E-01 7.1429E-02 -4.3790E-02 1.6848E-02 -2.0700E-03 -5.5000E-04 2.1400E-04 -2.6000E-05 1.1500E-06
S11 -1.1273E-01 4.9026E-02 -1.4460E-02 3.4990E-03 -6.1000E-04 6.8500E-05 -4.8000E-06 1.8400E-07 -3.1000E-09
S12 -6.2250E-02 2.5099E-02 -7.2800E-03 1.4220E-03 -1.9000E-04 1.6200E-05 -8.6000E-07 2.5300E-08 -3.2000E-10
表5
表6给出实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.06 f6(mm) -2.59
f2(mm) -11.78 f(mm) 4.23
f3(mm) 798.44 TTL(mm) 5.45
f4(mm) -14.91 ImgH(mm) 3.93
f5(mm) 2.83    
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6 为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8427E-01 -1.3752E-01 6.9792E-02 8.6539E-02 -2.1074E-01 1.9358E-01 -9.1930E-02 2.1141E-02 -1.7100E-03
S2 -7.4210E-02 7.4385E-02 7.4998E-02 -4.4125E-01 7.8856E-01 -7.7008E-01 4.1971E-01 -1.1394E-01 1.0731E-02
S3 -9.1660E-02 1.8657E-01 -3.2365E-01 6.6748E-01 -1.1885E+00 1.4414E+00 -1.0761E+00 4.4710E-01 -7.8790E-02
S4 2.3552E-02 4.5780E-03 1.5359E-01 -4.3497E-01 5.5938E-01 -2.9069E-01 -5.0010E-02 1.1401E-01 -3.1400E-02
S5 -7.5340E-02 1.1094E-01 -6.1912E-01 1.7380E+00 -3.1304E+00 3.5069E+00 -2.3473E+00 8.4031E-01 -1.1900E-01
S6 -8.9010E-02 2.5627E-02 2.5839E-02 -2.5914E-01 5.2506E-01 -5.8146E-01 3.8143E-01 -1.3954E-01 2.2132E-02
S7 -1.1920E-01 8.7760E-03 -1.2410E-02 1.5814E-01 -3.3642E-01 3.2969E-01 -1.7107E-01 4.5759E-02 -5.0000E-03
S8 -4.9320E-02 -1.2154E-01 2.5723E-01 -2.7156E-01 1.7601E-01 -7.1030E-02 1.7292E-02 -2.3200E-03 1.3100E-04
S9 -1.4010E-02 -5.4330E-02 6.3581E-02 -3.3140E-02 1.0008E-02 -1.8800E-03 2.2200E-04 -1.6000E-05 5.6800E-07
S10 -9.9010E-02 6.8458E-02 -4.2270E-02 1.6624E-02 -2.3300E-03 -4.0000E-04 1.7800E-04 -2.2000E-05 9.7600E-07
S11 -1.1579E-01 5.1724E-02 -1.5740E-02 3.8650E-03 -6.7000E-04 7.5700E-05 -5.2000E-06 2.0300E-07 -3.4000E-09
S12 -6.3780E-02 2.6330E-02 -7.8200E-03 1.5700E-03 -2.1000E-04 1.9300E-05 -1.1000E-06 3.5000E-08 -5.0000E-10
表8
表9给出实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.05 f6(mm) -2.59
f2(mm) -11.65 f(mm) 4.23
f3(mm) 213.10 TTL(mm) 5.45
f4(mm) -14.25 ImgH(mm) 3.93
f5(mm) 2.85    
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第 三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000006
表10
由表10可知,在实施例4中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实 施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8388E-01 -1.4572E-01 1.1171E-01 -2.7050E-02 -2.9250E-02 1.7485E-02 9.6960E-03 -1.0770E-02 2.4670E-03
S2 -5.9080E-02 3.5846E-02 1.2928E-01 -5.0150E-01 8.6281E-01 -8.6137E-01 4.9907E-01 -1.5314E-01 1.8809E-02
S3 -8.3240E-02 1.4411E-01 -1.8849E-01 3.4867E-01 -6.5443E-01 8.5022E-01 -6.7041E-01 2.9049E-01 -5.2810E-02
S4 1.7734E-02 1.0331E-02 1.6163E-01 -4.8858E-01 7.1108E-01 -5.3231E-01 1.6354E-01 1.6389E-02 -1.3840E-02
S5 -7.1790E-02 1.1153E-01 -5.0724E-01 1.2876E+00 -2.2317E+00 2.4756E+00 -1.6599E+00 5.9485E-01 -8.3550E-02
S6 -1.2076E-01 1.8995E-01 -4.3604E-01 6.1388E-01 -5.6450E-01 2.9759E-01 -5.9300E-02 -1.5270E-02 7.1550E-03
S7 -1.0252E-01 -7.6650E-02 1.9987E-01 -1.7155E-01 -6.4600E-03 1.2358E-01 -9.4840E-02 3.0667E-02 -3.7800E-03
S8 -4.8100E-02 -1.2008E-01 2.5015E-01 -2.6695E-01 1.7762E-01 -7.4040E-02 1.8631E-02 -2.5800E-03 1.5000E-04
S9 -3.2050E-02 -8.4100E-03 6.3300E-03 7.8400E-03 -7.8000E-03 2.8880E-03 -5.4000E-04 5.1100E-05 -1.9000E-06
S10 -1.0857E-01 7.4120E-02 -4.1610E-02 1.2312E-02 1.2500E-03 -1.7900E-03 4.6200E-04 -5.2000E-05 2.2100E-06
S11 -1.0972E-01 4.6641E-02 -1.3390E-02 3.2270E-03 -5.7000E-04 6.6400E-05 -4.8000E-06 1.9200E-07 -3.3000E-09
S12 -6.0850E-02 2.4435E-02 -7.3200E-03 1.5470E-03 -2.3000E-04 2.4300E-05 -1.6000E-06 6.4300E-08 -1.1000E-09
表11
表12给出实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.09 f6(mm) -2.67
f2(mm) -10.82 f(mm) 4.22
f3(mm) 135.17 TTL(mm) 5.45
f4(mm) -15.24 ImgH(mm) 3.93
f5(mm) 2.82    
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000007
Figure PCTCN2018106614-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.9188E-01 -1.9527E-01 2.8717E-01 -3.8114E-01 4.0170E-01 -3.0107E-01 1.4760E-01 -4.2140E-02 5.2360E-03
S2 -6.6270E-02 5.2110E-02 9.1247E-02 -3.8816E-01 6.0298E-01 -5.0154E-01 2.1458E-01 -3.4350E-02 -1.5300E-03
S3 -9.5610E-02 2.2351E-01 -5.1137E-01 1.1854E+00 -2.0357E+00 2.2952E+00 -1.5945E+00 6.1947E-01 -1.0269E-01
S4 1.3614E-02 4.9204E-02 -1.6770E-02 -3.1000E-03 -1.0592E-01 3.2163E-01 -3.6682E-01 1.9152E-01 -3.6360E-02
S5 -8.1450E-02 2.3779E-01 -1.2516E+00 3.5472E+00 -6.3181E+00 7.0280E+00 -4.7263E+00 1.7386E+00 -2.6391E-01
S6 -6.0750E-02 -1.3270E-02 -6.6870E-02 1.3015E-01 -1.1742E-01 -5.9200E-03 9.6926E-02 -7.0060E-02 1.6439E-02
S7 -9.8620E-02 -6.3930E-02 9.8944E-02 2.7019E-02 -2.3613E-01 2.9101E-01 -1.6832E-01 4.8343E-02 -5.5900E-03
S8 -4.2020E-02 -1.3406E-01 2.4237E-01 -2.1730E-01 1.2362E-01 -4.5860E-02 1.0651E-02 -1.4000E-03 7.8300E-05
S9 1.7413E-02 -1.1552E-01 1.1803E-01 -5.6870E-02 1.3465E-02 -9.1000E-04 -2.5000E-04 5.3800E-05 -3.2000E-06
S10 -1.0175E-01 7.3764E-02 -5.0820E-02 2.3282E-02 -5.1500E-03 2.9800E-04 7.9500E-05 -1.5000E-05 7.5200E-07
S11 -1.1537E-01 5.1834E-02 -1.4950E-02 3.3880E-03 -5.6000E-04 6.1900E-05 -4.3000E-06 1.7000E-07 -2.9000E-09
S12 -6.7990E-02 3.0520E-02 -9.8100E-03 2.1750E-03 -3.4000E-04 3.4900E-05 -2.3000E-06 9.0700E-08 -1.5000E-09
表14
表15给出实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.09 f6(mm) -2.54
f2(mm) -11.46 f(mm) 4.23
f3(mm) 19.63 TTL(mm) 5.45
f4(mm) -8.87 ImgH(mm) 3.93
f5(mm) 2.80    
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5 的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000009
Figure PCTCN2018106614-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0547E-01 -3.0789E-01 7.3082E-01 -1.3980E+00 1.8266E+00 -1.5372E+00 7.9389E-01 -2.2822E-01 2.7832E-02
S2 -6.2310E-02 7.8798E-02 -1.0982E-01 1.9679E-01 -3.3508E-01 3.8805E-01 -2.7585E-01 1.0819E-01 -1.7950E-02
S3 -8.2850E-02 1.0521E-01 2.8579E-02 -2.9969E-01 5.4551E-01 -5.3829E-01 3.0623E-01 -9.2130E-02 1.1108E-02
S4 9.0400E-03 4.7708E-02 -1.4930E-02 1.0051E-01 -4.6773E-01 9.0278E-01 -8.7823E-01 4.3044E-01 -8.3420E-02
S5 -4.6170E-02 -7.7010E-02 1.3478E-01 -4.7270E-02 -4.6842E-01 1.0170E+00 -9.4394E-01 4.1429E-01 -6.8160E-02
S6 -5.4140E-02 -6.9870E-02 1.2490E-01 -2.3462E-01 3.2561E-01 -3.4616E-01 2.5414E-01 -1.0862E-01 1.9951E-02
S7 -9.0470E-02 -5.4040E-02 2.6430E-02 1.8597E-01 -4.2803E-01 4.3684E-01 -2.3741E-01 6.6552E-02 -7.5800E-03
S8 -4.4810E-02 -1.2634E-01 2.3563E-01 -2.2558E-01 1.4046E-01 -5.7290E-02 1.4519E-02 -2.0500E-03 1.2300E-04
S9 6.6540E-03 -7.4170E-02 6.4329E-02 -2.1290E-02 -2.4000E-04 2.3310E-03 -7.1000E-04 9.2400E-05 -4.6000E-06
S10 -1.0461E-01 7.5204E-02 -5.0970E-02 2.2711E-02 -4.4800E-03 -1.4000E-05 1.5100E-04 -2.3000E-05 1.1300E-06
S11 -1.1219E-01 4.5457E-02 -1.0270E-02 1.6810E-03 -2.0000E-04 1.6800E-05 -8.8000E-07 2.5800E-08 -3.2000E-10
S12 -6.6050E-02 2.7836E-02 -8.4100E-03 1.7440E-03 -2.5000E-04 2.3900E-05 -1.5000E-06 5.2500E-08 -8.4000E-10
表17
表18给出实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.08 f6(mm) -2.60
f2(mm) -10.67 f(mm) 4.35
f3(mm) 26.45 TTL(mm) 5.48
f4(mm) -13.04 ImgH(mm) 4.03
f5(mm) 2.95    
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫 米(mm)。
Figure PCTCN2018106614-appb-000011
表19
由表19可知,在实施例7中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.1766E-01 -2.5534E-01 4.0490E-01 -5.7858E-01 6.5230E-01 -5.1836E-01 2.6546E-01 -7.7710E-02 9.7700E-03
S2 -5.6570E-02 7.3828E-02 -1.7750E-01 4.4579E-01 -7.8414E-01 8.5952E-01 -5.6639E-01 2.0526E-01 -3.1420E-02
S3 -6.4580E-02 1.1421E-01 -2.0054E-01 4.3191E-01 -7.0293E-01 7.3701E-01 -4.6954E-01 1.6653E-01 -2.5130E-02
S4 3.6830E-02 -6.1570E-02 4.8060E-01 -1.4962E+00 2.8020E+00 -3.2666E+00 2.3341E+00 -9.3779E-01 1.6436E-01
S5 -7.9290E-02 1.7659E-01 -8.3039E-01 2.1729E+00 -3.6442E+00 3.8366E+00 -2.4468E+00 8.5288E-01 -1.2205E-01
S6 -9.4120E-02 5.8283E-02 -7.6900E-02 -3.9060E-02 2.1561E-01 -3.0104E-01 2.2098E-01 -8.6190E-02 1.4257E-02
S7 -1.0566E-01 -6.3300E-02 1.4493E-01 -1.1580E-01 -1.1040E-02 8.0123E-02 -5.3720E-02 1.5323E-02 -1.6900E-03
S8 -7.4670E-02 -7.2720E-02 1.6739E-01 -1.7510E-01 1.1134E-01 -4.2680E-02 9.3480E-03 -1.0300E-03 4.0100E-05
S9 -2.9460E-02 -1.9990E-02 1.8240E-03 2.3755E-02 -1.9130E-02 6.9210E-03 -1.3300E-03 1.3300E-04 -5.4000E-06
S10 -9.7110E-02 5.3540E-02 -2.7570E-02 6.9380E-03 2.5200E-03 -1.9700E-03 4.7800E-04 -5.2000E-05 2.1600E-06
S11 -1.2961E-01 6.4947E-02 -2.1040E-02 5.1200E-03 -8.7000E-04 9.5900E-05 -6.6000E-06 2.5300E-07 -4.2000E-09
S12 -6.1160E-02 2.4907E-02 -7.2400E-03 1.4030E-03 -1.8000E-04 1.5600E-05 -8.2000E-07 2.4500E-08 -3.2000E-10
表20
表21给出实施例7中各透镜的有效焦距f1至f6、光学成像镜头
f1(mm) 3.98 f6(mm) -2.87
f2(mm) -9.67 f(mm) 4.54
f3(mm) 59.73 TTL(mm) 5.59
f4(mm) -21.22 ImgH(mm) 4.03
f5(mm) 3.45    
的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018106614-appb-000012
表22
由表22可知,在实施例8中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.8666E-01 -1.5382E-01 1.2607E-01 -3.8120E-02 -4.2320E-02 5.7212E-02 -2.9090E-02 6.9540E-03 -7.1000E-04
S2 -3.3250E-02 1.0325E-02 2.8347E-02 -9.4290E-02 1.3635E-01 -1.0834E-01 4.0852E-02 -3.4300E-03 -1.1600E-03
S3 -3.8750E-02 7.4019E-02 -9.5270E-02 1.4281E-01 -1.6913E-01 1.3647E-01 -7.3560E-02 2.5231E-02 -4.0000E-03
S4 1.4116E-02 -1.5040E-02 2.4184E-01 -6.8287E-01 1.1060E+00 -1.1024E+00 6.7482E-01 -2.3669E-01 3.8212E-02
S5 -6.6380E-02 7.2122E-02 -5.0327E-01 1.5204E+00 -2.8196E+00 3.1742E+00 -2.1160E+00 7.5679E-01 -1.0909E-01
S6 -5.0920E-02 -1.0216E-01 2.3740E-01 -4.6383E-01 6.1656E-01 -5.6953E-01 3.4919E-01 -1.2642E-01 2.0364E-02
S7 -7.0970E-02 -1.4122E-01 2.3035E-01 -1.1009E-01 -1.1274E-01 1.9982E-01 -1.2418E-01 3.6538E-02 -4.2600E-03
S8 -3.0730E-02 -1.8632E-01 3.1648E-01 -2.8209E-01 1.6389E-01 -6.3140E-02 1.5316E-02 -2.0900E-03 1.2200E-04
S9 1.7982E-02 -1.0111E-01 8.4016E-02 -2.6360E-02 -6.0000E-04 2.7680E-03 -8.0000E-04 9.7800E-05 -4.6000E-06
S10 -9.5420E-02 6.1681E-02 -3.9090E-02 1.7107E-02 -3.0900E-03 -1.5000E-04 1.4000E-04 -1.9000E-05 8.6700E-07
S11 -1.4092E-01 7.5751E-02 -2.6390E-02 6.7130E-03 -1.1700E-03 1.3500E-04 -9.8000E-06 4.0200E-07 -7.2000E-09
S12 -6.5290E-02 2.9715E-02 -9.3000E-03 1.9680E-03 -2.8000E-04 2.7500E-05 -1.7000E-06 6.0800E-08 -9.6000E-10
表23
表24给出实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) 4.03 f6(mm) -2.84
f2(mm) -9.77 f(mm) 4.46
f3(mm) 21.22 TTL(mm) 5.59
f4(mm) -12.52 ImgH(mm) 4.00
f5(mm) 3.45    
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
Figure PCTCN2018106614-appb-000013
Figure PCTCN2018106614-appb-000014
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其像侧面为凹面;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有负光焦度;
    所述第五透镜具有正光焦度,其像侧面为凸面;
    所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第五透镜的有效焦距f5与所述第二透镜于所述光轴上的中心厚度CT2满足11.5≤f5/CT2≤12.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的最大半视场角HFOV满足3.8≤f×tan(HFOV)<5.0。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.8。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.4。
  5. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述光学成像镜头的总有效焦距f满足-3.0<f2/f<-2.0。
  6. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的有效焦距f5满足1.1<f/f5<1.6。
  7. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足-1.7<f1/f6<-1.2。
  8. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述第六透镜的像侧面的曲率半径R12满足1.5<(R11-R12)/(R11+R12)<2.0。
  9. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第一透镜的物侧面的曲率半径R1满足4.0<R2/R1<5.0。
  10. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足1.0≤T56/T23≤2.0。
  11. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足-3.0≤f2/R4≤-1.5。
  12. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足2.2<CT1/CT2<3.2。
  13. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其像侧面为凹面;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有负光焦度;
    所述第五透镜具有正光焦度,其像侧面为凸面;
    所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面;
    所述第六透镜的物侧面的曲率半径R11与所述第六透镜的像侧面的曲率半径R12满足1.5<(R11-R12)/(R11+R12)<2.0。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足-1.7<f1/f6<-1.2。
  15. 根据权利要求13所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述光学成像镜头的总有效焦距f满足-3.0<f2/f<-2.0。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足-3.0≤f2/R4≤-1.5。
  17. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的有效焦距f5满足1.1<f/f5<1.6。
  18. 根据权利要求17所述的光学成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第二透镜于所述光轴上的中心厚度CT2 满足11.5≤f5/CT2≤12.5。
  19. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第一透镜的物侧面的曲率半径R1满足4.0<R2/R1<5.0。
  20. 根据权利要求13所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.4。
  21. 根据权利要求20所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足1.0≤T56/T23≤2.0。
  22. 根据权利要求20所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第二透镜于所述光轴上的中心厚度CT2满足2.2<CT1/CT2<3.2。
  23. 根据权利要求13所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.8。
  24. 根据权利要求23所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的最大半视场角HFOV满足3.8≤f×tan(HFOV)<5.0。
PCT/CN2018/106614 2018-03-07 2018-09-20 光学成像镜头 WO2019169853A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/744,887 US11550123B2 (en) 2018-03-07 2020-01-16 Optical imaging lens assembly including six lenses of +−−−+− or +−+−+− refractive powers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810187128.1A CN108152934A (zh) 2018-03-07 2018-03-07 光学成像镜头
CN201810187128.1 2018-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,887 Continuation US11550123B2 (en) 2018-03-07 2020-01-16 Optical imaging lens assembly including six lenses of +−−−+− or +−+−+− refractive powers

Publications (1)

Publication Number Publication Date
WO2019169853A1 true WO2019169853A1 (zh) 2019-09-12

Family

ID=62456503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106614 WO2019169853A1 (zh) 2018-03-07 2018-09-20 光学成像镜头

Country Status (3)

Country Link
US (1) US11550123B2 (zh)
CN (9) CN108152934A (zh)
WO (1) WO2019169853A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152934A (zh) * 2018-03-07 2018-06-12 浙江舜宇光学有限公司 光学成像镜头
CN109656005A (zh) * 2018-05-04 2019-04-19 浙江舜宇光学有限公司 光学成像镜头
CN108802972B (zh) * 2018-06-15 2019-12-17 浙江舜宇光学有限公司 光学成像系统
CN108957711B (zh) * 2018-08-02 2021-02-26 诚瑞光学(苏州)有限公司 摄像光学镜头
CN108957693B (zh) * 2018-08-04 2020-08-25 瑞声光学解决方案私人有限公司 摄像光学镜头
TWI671565B (zh) * 2018-09-26 2019-09-11 大立光電股份有限公司 成像光學系統、取像裝置及電子裝置
CN109031629A (zh) 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
CN109283664B (zh) * 2018-12-05 2024-02-23 浙江舜宇光学有限公司 光学成像镜片组
CN109459842B (zh) * 2018-12-31 2019-05-10 瑞声光电科技(常州)有限公司 摄像光学镜头
CN109870786B (zh) * 2018-12-31 2021-03-02 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110007431B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
KR20200127484A (ko) * 2019-05-02 2020-11-11 삼성전기주식회사 촬상 광학계
CN110333590B (zh) * 2019-06-29 2021-06-22 诚瑞光学(苏州)有限公司 摄像光学镜头
CN110161661B (zh) * 2019-07-03 2024-04-19 浙江舜宇光学有限公司 光学成像镜头及电子设备
US11656437B2 (en) 2019-08-12 2023-05-23 Zhejiang Sunny Optical Co., Ltd. Optical imaging system including six lenses of −−++−+ refractive powers
CN110471167B (zh) * 2019-08-16 2021-09-28 诚瑞光学(常州)股份有限公司 摄像光学镜头
EP4031920A4 (en) * 2019-10-17 2022-09-21 Huawei Technologies Co., Ltd. OPTICAL LENS SYSTEM, CAMERA AND TERMINAL
TWI703364B (zh) 2019-11-29 2020-09-01 大立光電股份有限公司 攝影用光學鏡片組及電子裝置
CN111045193B (zh) * 2019-12-30 2022-07-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142230B (zh) * 2019-12-30 2022-03-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142231B (zh) * 2019-12-30 2022-03-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111198435B (zh) * 2020-02-24 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111158114B (zh) * 2020-02-24 2022-01-07 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021196223A1 (zh) * 2020-04-03 2021-10-07 江西晶超光学有限公司 光学系统、镜头模组及终端设备
CN111929873B (zh) * 2020-09-21 2020-12-15 瑞泰光学(常州)有限公司 摄像光学镜头
CN114488468A (zh) * 2020-11-13 2022-05-13 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN112394488B (zh) * 2020-12-09 2024-01-16 玉晶光电(厦门)有限公司 光学成像镜头
CN113625434B (zh) * 2021-09-18 2023-10-13 浙江舜宇光学有限公司 光学成像镜头
CN114296224B (zh) * 2022-03-09 2022-09-13 江西联益光学有限公司 光学镜头
CN117008302B (zh) * 2023-10-07 2024-02-20 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085733A (ja) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd 撮像レンズ系
CN102854606A (zh) * 2011-06-28 2013-01-02 大立光电股份有限公司 光学影像拾取镜片组
CN104216095A (zh) * 2013-05-30 2014-12-17 大立光电股份有限公司 结像镜片系统组及取像装置
CN107065135A (zh) * 2017-03-23 2017-08-18 惠州市星聚宇光学有限公司 一种小型化的高清镜头组和成像系统
CN108152934A (zh) * 2018-03-07 2018-06-12 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485464B (zh) * 2010-12-30 2015-05-21 Largan Precision Co Ltd 成像用光學鏡片組
JP2012155223A (ja) 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
TWI432772B (zh) * 2011-06-10 2014-04-01 Largan Precision Co Ltd 光學影像擷取透鏡組
TWI435138B (zh) * 2011-06-20 2014-04-21 Largan Precision Co 影像拾取光學系統
TWI438475B (zh) * 2011-09-15 2014-05-21 Largan Precision Co Ltd 光學影像拾取鏡組
KR101989157B1 (ko) 2012-12-31 2019-09-30 삼성전자주식회사 촬상 렌즈 및 이를 포함한 촬상 장치
TWI470266B (zh) 2013-08-23 2015-01-21 Largan Precision Co Ltd 光學結像鏡片組及取像裝置
KR20150058972A (ko) 2013-11-21 2015-05-29 삼성전자주식회사 촬상 렌즈 시스템 및 이를 채용한 촬상 장치
CN103955047B (zh) 2014-03-23 2016-08-17 浙江舜宇光学有限公司 摄像镜头及其模组和终端
TWI536039B (zh) 2014-07-07 2016-06-01 先進光電科技股份有限公司 光學成像系統
TWI540337B (zh) 2014-10-08 2016-07-01 先進光電科技股份有限公司 光學成像系統
CN104570284B (zh) 2015-01-07 2017-05-31 浙江舜宇光学有限公司 摄像镜头
KR101759058B1 (ko) 2015-01-30 2017-07-31 주식회사 코렌 촬영 렌즈 및 이를 포함하는 촬영 장치
TWI579586B (zh) 2015-05-21 2017-04-21 先進光電科技股份有限公司 光學成像系統
JP6573315B2 (ja) 2015-08-31 2019-09-11 カンタツ株式会社 撮像レンズ
TWI565967B (zh) * 2015-09-30 2017-01-11 大立光電股份有限公司 成像用光學系統、取像裝置及電子裝置
CN106556919B (zh) 2015-09-30 2019-04-02 大立光电股份有限公司 成像用光学系统、取像装置及电子装置
CN105607229B (zh) * 2015-12-31 2018-09-21 浙江舜宇光学有限公司 摄像镜头
CN106526795B (zh) * 2016-08-05 2019-07-26 玉晶光电(厦门)有限公司 光学镜片组
JP6082839B1 (ja) * 2016-11-03 2017-02-15 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN106646833B (zh) * 2017-02-23 2019-01-25 浙江舜宇光学有限公司 摄像镜头
CN107065136B (zh) * 2017-03-23 2020-11-10 惠州市星聚宇光学有限公司 一种微小体积高成像品质的镜头组和成像系统
CN107167900B (zh) * 2017-07-25 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
CN107219613B (zh) * 2017-07-31 2022-10-28 浙江舜宇光学有限公司 光学成像镜头
CN113238349B (zh) * 2017-08-17 2022-06-07 浙江舜宇光学有限公司 光学成像镜头
CN113311570B (zh) * 2017-09-07 2022-11-11 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085733A (ja) * 2009-10-15 2011-04-28 Hitachi Maxell Ltd 撮像レンズ系
CN102854606A (zh) * 2011-06-28 2013-01-02 大立光电股份有限公司 光学影像拾取镜片组
CN104216095A (zh) * 2013-05-30 2014-12-17 大立光电股份有限公司 结像镜片系统组及取像装置
CN107065135A (zh) * 2017-03-23 2017-08-18 惠州市星聚宇光学有限公司 一种小型化的高清镜头组和成像系统
CN108152934A (zh) * 2018-03-07 2018-06-12 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN109946821A (zh) 2019-06-28
CN109709662A (zh) 2019-05-03
US20200150384A1 (en) 2020-05-14
CN109946820A (zh) 2019-06-28
CN109507787A (zh) 2019-03-22
CN109946821B (zh) 2021-05-04
CN109085693B (zh) 2021-01-22
CN109960019B (zh) 2021-06-04
CN109946822B (zh) 2021-07-06
CN108152934A (zh) 2018-06-12
CN109709662B (zh) 2021-04-16
CN109960019A (zh) 2019-07-02
CN109946820B (zh) 2021-05-04
CN109946822A (zh) 2019-06-28
US11550123B2 (en) 2023-01-10
CN109669256A (zh) 2019-04-23
CN109085693A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2019169853A1 (zh) 光学成像镜头
CN113296244B (zh) 适用于便携式电子产品的摄像光学系统
WO2019100868A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像系统
WO2019101052A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
CN109782418B (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2018153012A1 (zh) 摄像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2019137246A1 (zh) 光学成像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2020042765A1 (zh) 影像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019052220A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019233143A1 (zh) 光学成像镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908368

Country of ref document: EP

Kind code of ref document: A1