WO2019101052A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019101052A1
WO2019101052A1 PCT/CN2018/116311 CN2018116311W WO2019101052A1 WO 2019101052 A1 WO2019101052 A1 WO 2019101052A1 CN 2018116311 W CN2018116311 W CN 2018116311W WO 2019101052 A1 WO2019101052 A1 WO 2019101052A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
object side
image side
Prior art date
Application number
PCT/CN2018/116311
Other languages
English (en)
French (fr)
Inventor
徐标
张凯元
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019101052A1 publication Critical patent/WO2019101052A1/zh
Priority to US16/744,957 priority Critical patent/US11493733B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including eight lenses.
  • the performance of the photosensitive coupling element (CCD) or the complementary oxidized metal semiconductor (CMOS) image sensor is improved and the size is reduced, corresponding requirements are also placed on the imaging lens, and the imaging lens can be required to be miniaturized. At the same time, it also takes into account the high image quality.
  • CCD photosensitive coupling element
  • CMOS complementary oxidized metal semiconductor
  • the present application provides an optical imaging lens that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application discloses an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, and an eighth lens.
  • the first lens may have a positive power; the second lens may have a negative power; the third lens has a positive power or a negative power; the fourth lens has a positive power or a negative power, and the object side may be The convex surface, the image side may be a convex surface; the fifth lens has a positive power or a negative power, and the image side may be a concave surface; the sixth lens has a positive power or a negative power; and the seventh lens may have a positive power; And the eighth lens can have a negative power.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 2.0.
  • the distance from the center of the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis is half the length of the effective pixel area of the imaging surface of the optical imaging lens, ImgH can satisfy TTL/ ImgH ⁇ 1.70.
  • the full field of view FOV of the optical imaging lens may satisfy 70° ⁇ FOV ⁇ 80°.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens may satisfy 0.5 ⁇ f1/f ⁇ 1.5.
  • the total effective focal length f of the optical imaging lens and the effective focal length f2 of the second lens may satisfy -0.5 ⁇ f / f2 ⁇ 0.
  • the effective focal length f7 of the seventh lens and the effective focal length f8 of the eighth lens may satisfy -2.0 ⁇ f7 / f8 ⁇ -1.0.
  • the radius of curvature R8 of the image side of the fourth lens and the radius of curvature R7 of the object side of the fourth lens may satisfy -2.5 ⁇ R8 / R7 ⁇ -0.5.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 1.0 ⁇ CT4/CT5 ⁇ 2.5.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the image side of the fifth lens may satisfy 0 ⁇ f / R10 ⁇ 1.0.
  • the separation distance T67 of the sixth lens and the seventh lens on the optical axis and the separation distance T78 of the seventh lens and the eighth lens on the optical axis may satisfy 0 ⁇ T67/T78 ⁇ 1.0.
  • the radius of curvature R6 of the image side of the third lens and the radius of curvature R5 of the object side of the third lens satisfy 0 ⁇ R6/R5 ⁇ 1.5.
  • the effective focal length f1 of the first lens and the radius of curvature R1 of the object side of the first lens may satisfy 1.5 ⁇ f1/R1 ⁇ 2.5.
  • the total effective focal length f of the optical imaging lens and the center thickness CT6 of the sixth lens on the optical axis may satisfy 13.0 ⁇ f / CT6 ⁇ 17.0.
  • the present application also discloses an optical imaging lens that sequentially includes an object from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, and a fifth A lens, a sixth lens, a seventh lens, and an eighth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens, the fifth lens and the sixth lens each have a positive power or a negative power
  • the fourth lens has a positive power Or a negative power
  • the object side may be a convex surface
  • the image side may be a convex surface
  • the seventh lens may have a positive power
  • the eighth lens may have a negative power.
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens can satisfy f/EPD ⁇ 2.0.
  • the object side of the third lens may be convex, and the image side may be concave.
  • the image side of the fifth lens may be concave.
  • the present application also discloses an optical imaging lens that sequentially includes an object from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, and a fifth A lens, a sixth lens, a seventh lens, and an eighth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens, the fifth lens and the sixth lens each have a positive power or a negative power
  • the fourth lens has a positive power Or a negative power
  • the object side may be a convex surface
  • the image side may be a convex surface
  • the seventh lens may have a positive power
  • the eighth lens may have a negative power.
  • the total effective focal length f of the optical imaging lens and the radius of curvature R10 of the side surface of the fifth lens image satisfy 0 ⁇ f/R10 ⁇ 1.0.
  • the present application employs a plurality of (for example, eight) lenses, and the optical imaging lens has a small size by appropriately distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect, such as large aperture, large viewing angle, and high image quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural view of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural view of an optical imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 9;
  • FIG. 19 is a schematic structural view of an optical imaging lens according to Embodiment 10 of the present application.
  • 20A to 20D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 10.
  • FIG. 21 is a schematic structural view of an optical imaging lens according to Embodiment 11 of the present application.
  • 22A to 22D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 11;
  • FIG. 23 is a schematic structural view of an optical imaging lens according to Embodiment 12 of the present application.
  • 24A to 24D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 12.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens may include, for example, eight lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a Seven lenses and eighth lens.
  • the eight lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a positive power; the second lens may have a negative power; the third lens has a positive power or a negative power; and the fourth lens has a positive power or a negative optical power Degree, the object side may be a convex surface, the image side may be a convex surface; the fifth lens has a positive power or a negative power, the image side is a concave surface; the sixth lens has a positive power or a negative power; the seventh lens There may be positive power; the eighth lens may have negative power.
  • At least one of the object side and the image side of the first lens may be convex, for example, the object side of the first lens may be convex.
  • the object side of the third lens may be a convex surface, and the image side may be a concave surface.
  • the fourth lens may have a positive power.
  • At least one of the object side and the image side of the seventh lens may be convex, for example, the image side of the seventh lens may be convex.
  • the object side of the eighth lens may be a concave surface, and the image side may be a concave surface.
  • the optical imaging lens of the present application may satisfy the conditional expression f/EPD ⁇ 2.0, where f is the total effective focal length of the optical imaging lens and the EPD is the entrance pupil diameter of the optical imaging lens. More specifically, f and EPD can further satisfy 1.61 ⁇ f / EPD ⁇ 1.93. Satisfying the conditional expression f/EPD ⁇ 2.0, it can effectively increase the amount of light per unit time, so that the optical imaging lens has a large aperture advantage, which can enhance the imaging effect in the dark environment while reducing the aberration of the edge field of view. .
  • the optical imaging lens of the present application can satisfy the conditional TTL/ImgH ⁇ 1.70, wherein TTL is the distance from the center of the side of the first lens to the imaging plane of the optical imaging lens on the optical axis, and ImgH is The optical imaging lens has half the length of the effective pixel area on the imaging surface. More specifically, TTL and ImgH can further satisfy 1.47 ⁇ TTL / ImgH ⁇ 1.66. By controlling the ratio of TTL and ImgH, the longitudinal dimension of the imaging system is effectively compressed, and the ultra-thin characteristics of the lens are ensured to meet the miniaturization requirements.
  • the optical imaging lens of the present application may satisfy the conditional expression 70° ⁇ FOV ⁇ 80°, wherein the FOV is the full field of view of the optical imaging lens. More specifically, the FOV can further satisfy 70.6 ° ⁇ FOV ⁇ 78.2 °.
  • the lens's imaging range is effectively controlled by controlling the full field of view of the lens.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ f1/f ⁇ 1.5, where f1 is the effective focal length of the first lens and f is the total effective focal length of the optical imaging lens. More specifically, f1 and f can further satisfy 0.85 ⁇ f1/f ⁇ 1.15, for example, 0.97 ⁇ f1/f ⁇ 1.07.
  • the deflection angle of the light can be reduced, and the imaging quality of the imaging system is improved.
  • the optical imaging lens of the present application may satisfy the conditional expression -0.5 ⁇ f / f2 ⁇ 0, where f is the total effective focal length of the optical imaging lens and f2 is the effective focal length of the second lens. More specifically, f and f2 can further satisfy -0.46 ⁇ f2 / f ⁇ -0.03. Reasonable control of the power of the second lens can constrain the on-axis spherical aberration generated by the second lens within a reasonable range, thereby ensuring the imaging quality of the on-axis field of view.
  • the optical imaging lens of the present application may satisfy the conditional expression -2.0 ⁇ f7 / f8 ⁇ -1.0, where f7 is the effective focal length of the seventh lens and f8 is the effective focal length of the eighth lens. More specifically, f7 and f8 may further satisfy -1.80 ⁇ f7 / f8 ⁇ - 1.30, for example, -1.66 ⁇ f7 / f8 ⁇ -1.41.
  • the power of the seventh lens and the eighth lens is reasonably controlled such that the effective focal length ratio of the seventh lens and the eighth lens is within a certain range, which is advantageous for balancing the aberration of the off-axis field of view of the imaging system.
  • the optical imaging lens of the present application may satisfy the conditional expression -2.5 ⁇ R8 / R7 ⁇ -0.5, where R8 is the radius of curvature of the image side of the fourth lens, and R7 is the object side of the fourth lens Radius of curvature. More specifically, R8 and R7 may further satisfy -2.40 ⁇ R8 / R7 ⁇ - 0.90, for example, -2.35 ⁇ R8 / R7 ⁇ -0.98. Reasonable distribution of the ratio of R8 and R7 can reduce the deflection angle of the light, so that the imaging system can better achieve the deflection of the optical path.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.0 ⁇ CT4/CT5 ⁇ 2.5, where CT4 is the center thickness of the fourth lens on the optical axis, and CT5 is the fifth lens on the optical axis. Center thickness. More specifically, CT4 and CT5 can further satisfy 1.20 ⁇ CT4/CT5 ⁇ 2.20, for example, 1.26 ⁇ CT4/CT5 ⁇ 2.08. By controlling the ratio of CT4 and CT5, the distortion of the imaging system can be reasonably regulated, so that the distortion of the imaging system is within a reasonable range.
  • the optical imaging lens of the present application may satisfy the conditional expression 0 ⁇ f/R10 ⁇ 1.0, where f is the total effective focal length of the optical imaging lens, and R10 is the radius of curvature of the image side of the fifth lens. More specifically, f and R10 may further satisfy 0.10 ⁇ f / R10 ⁇ 0.60, for example, 0.18 ⁇ f / R10 ⁇ 0.57.
  • f and R10 may further satisfy 0.10 ⁇ f / R10 ⁇ 0.60, for example, 0.18 ⁇ f / R10 ⁇ 0.57.
  • the optical imaging lens of the present application may satisfy the conditional expression 0 ⁇ T67/T78 ⁇ 1.0, where T67 is the separation distance of the sixth lens and the seventh lens on the optical axis, and T78 is the seventh lens and The separation distance of the eighth lens on the optical axis. More specifically, T67 and T78 can further satisfy 0.25 ⁇ T67 / T78 ⁇ 0.75, for example, 0.31 ⁇ T67 / T78 ⁇ 0.65. By properly controlling the ratio of T67 and T78, the field curvature of the system can be effectively controlled, and the off-axis field of view of the imaging system has better image quality.
  • the optical imaging lens of the present application may satisfy the conditional expression 0 ⁇ R6/R5 ⁇ 1.5, where R6 is the radius of curvature of the image side of the third lens, and R5 is the radius of curvature of the object side of the third lens. . More specifically, R6 and R5 may further satisfy 0.20 ⁇ R6 / R5 ⁇ 1.20, for example, 0.32 ⁇ R6 / R5 ⁇ 1.09. By controlling the ratio of R6 and R5, the power distribution of the third lens can be effectively controlled, so that the light can be deflected better in the third lens, thereby obtaining a better imaging effect.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ f1/R1 ⁇ 2.5, where f1 is the effective focal length of the first lens and R1 is the radius of curvature of the object side of the first lens. More specifically, f1 and R1 may further satisfy 1.75 ⁇ f1/R1 ⁇ 2.35, for example, 1.83 ⁇ f1/R1 ⁇ 2.25.
  • f1 and R1 may further satisfy 1.75 ⁇ f1/R1 ⁇ 2.35, for example, 1.83 ⁇ f1/R1 ⁇ 2.25.
  • the optical imaging lens of the present application may satisfy Conditional Formula 13.0 ⁇ f / CT6 ⁇ 17.0, where f is the total effective focal length of the optical imaging lens, and CT6 is the center thickness of the sixth lens on the optical axis. More specifically, f and CT6 can further satisfy 13.15 ⁇ f / CT6 ⁇ 16.95. Reasonably controlling the ratio of f to CT6 can control the contribution of the sixth lens to the coma of the imaging system to effectively balance the coma generated by the front lens (ie, the lens between the object side and the sixth lens), thereby Get good image quality.
  • the optical imaging lens described above may further include at least one aperture to enhance the imaging quality of the lens.
  • the aperture may be disposed at any position as needed, for example, the aperture may be disposed between the first lens and the second lens.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the eight sheets described above.
  • a plurality of lenses such as the eight sheets described above.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including eight lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a first lens E1, a stop STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S16 in the embodiment 1. .
  • Table 3 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • the optical imaging lens of Embodiment 1 satisfies:
  • f/EPD 1.61, where f is the total effective focal length of the optical imaging lens, and EPD is the diameter of the entrance pupil of the optical imaging lens;
  • TTL/ImgH 1.55, where TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and ImgH is half the diagonal length of the effective pixel area on the imaging plane S19;
  • F1/f 1.07, where f1 is the effective focal length of the first lens E1, and f is the total effective focal length of the optical imaging lens;
  • f/f2 -0.28, where f is the total effective focal length of the optical imaging lens, and f2 is the effective focal length of the second lens E2;
  • F7/f8 -1.46, where f7 is the effective focal length of the seventh lens E7, and f8 is the effective focal length of the eighth lens E8;
  • R8/R7 -2.35, where R8 is the radius of curvature of the image side surface S8 of the fourth lens E4, and R7 is the radius of curvature of the object side surface S7 of the fourth lens E4;
  • CT4/CT5 1.49, wherein CT4 is the center thickness of the fourth lens E4 on the optical axis, and CT5 is the center thickness of the fifth lens E5 on the optical axis;
  • f/R10 0.57, where f is the total effective focal length of the optical imaging lens, and R10 is the radius of curvature of the image side S10 of the fifth lens E5;
  • T67 / T78 0.65, wherein T67 is the separation distance of the sixth lens E6 and the seventh lens E7 on the optical axis, and T78 is the separation distance of the seventh lens E7 and the eighth lens E8 on the optical axis;
  • R6 / R5 0.84, wherein R6 is the radius of curvature of the image side surface S6 of the third lens E3, and R5 is the radius of curvature of the object side surface S5 of the third lens E3;
  • F1/R1 2.25, where f1 is the effective focal length of the first lens E1, and R1 is the radius of curvature of the object side surface S1 of the first lens E1;
  • f/CT6 16.22, where f is the total effective focal length of the optical imaging lens, and CT6 is the center thickness of the sixth lens E6 on the optical axis.
  • FIG. 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, a third lens E3, and a first Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the image plane S19.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 13 shows the surface type, curvature radius, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 5, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 23 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Example 8, which shows that light of different wavelengths is deviated from the focus point after passing through the lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 16A to 16D, the optical imaging lens given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a view showing the configuration of an optical imaging lens according to Embodiment 9 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, a third lens E3, and a first Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 26 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 27 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 9, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the optical imaging lens of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 9 can achieve good imaging quality.
  • FIG. 19 is a view showing the configuration of an optical imaging lens according to Embodiment 10 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 10, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 29 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 10, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 30 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 10, the total effective focal length f of the optical imaging lens, the center of the object side surface S1 of the first lens E1 to the distance TTL of the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 20A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 10, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 20B shows an astigmatism curve of the optical imaging lens of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 20C shows a distortion curve of the optical imaging lens of Embodiment 10, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 20D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 10, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 10 can achieve good imaging quality.
  • FIG. 21 is a view showing the configuration of an optical imaging lens according to Embodiment 11 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a pupil STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 31 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 11, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 32 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 11, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 33 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 11, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 22A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 11, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 22B shows an astigmatism curve of the optical imaging lens of Example 11, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 22C shows a distortion curve of the optical imaging lens of Embodiment 11, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 22D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 22A to 22D, the optical imaging lens given in Embodiment 11 can achieve good imaging quality.
  • FIG. 23 is a view showing the configuration of an optical imaging lens according to Embodiment 12 of the present application.
  • an optical imaging lens sequentially includes, from an object side to an image side along an optical axis, a first lens E1, a stop STO, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, eighth lens E8, filter E9, and imaging surface S19.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. Light from the object sequentially passes through the respective surfaces S1 to S18 and is finally imaged on the imaging plane S19.
  • Table 34 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 12, in which the unit of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the eighth lens E8 are aspherical.
  • Table 35 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 12, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 36 gives the effective focal lengths f1 to f8 of the lenses in Embodiment 12, the total effective focal length f of the optical imaging lens, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S19 on the optical axis, and the imaging surface.
  • Fig. 24A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 12, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 24B shows an astigmatism curve of the optical imaging lens of Example 12, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24C shows a distortion curve of the optical imaging lens of Embodiment 12, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 24D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 12, which shows deviations of different image heights on the imaging plane after the light passes through the lens. According to FIGS. 24A to 24D, the optical imaging lens given in Embodiment 12 can achieve good imaging quality.
  • Embodiments 1 to 12 satisfy the relationship shown in Table 37, respectively.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)、第七透镜(E7)和第八透镜(E8)。其中,第一透镜(E1)具有正光焦度;第二透镜(E2)具有负光焦度;第三透镜(E3)具有正光焦度或负光焦度;第四透镜(E4)具有正光焦度或负光焦度,其物侧面(S7)为凸面,像侧面(S8)为凸面;第五透镜(E5)具有正光焦度或负光焦度,其像侧面(S10)为凹面;第六透镜(E6)具有正光焦度或负光焦度;第七透镜(E7)具有正光焦度;以及第八透镜(E8)具有负光焦度。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年11月22日提交于中国国家知识产权局(CNIPA)的、专利申请号为201711171315.2的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括八片透镜的光学成像镜头。
背景技术
近年来,科学技术的迅速发展,适用于便携电子产品的成像镜头日新月异,人们对成像镜头的成像质量要求越来越高。但是,由于便携电子产品向小型化的趋势发展,对成像镜头的总长要求越来越严格,造成镜头的设计自由度减少,设计难度加大。
同时,随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)图像传感器的性能提高及尺寸减小,对成像镜头也提出了相应的更高要求,需要成像镜头能够在满足小型化的同时兼顾高成像品质。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请公开了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凸面;第五透镜具有正光焦度或负光焦度,其像侧面可为凹面;第六 透镜具有正光焦度或负光焦度;第七透镜可具有正光焦度;以及第八透镜可具有负光焦度。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤2.0。
在一个实施方式中,第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.70。
在一个实施方式中,光学成像镜头的全视场角FOV可满足70°≤FOV≤80°。
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜头的总有效焦距f可满足0.5<f1/f<1.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第二透镜的有效焦距f2可满足-0.5<f/f2<0。
在一个实施方式中,第七透镜的有效焦距f7与第八透镜的有效焦距f8可满足-2.0<f7/f8<-1.0。
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第四透镜的物侧面的曲率半径R7可满足-2.5<R8/R7<-0.5。
在一个实施方式中,第四透镜于光轴上的中心厚度CT4与第五透镜于光轴上的中心厚度CT5可满足1.0<CT4/CT5<2.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第五透镜的像侧面的曲率半径R10可满足0<f/R10<1.0。
在一个实施方式中,第六透镜和第七透镜于光轴上的间隔距离T67与第七透镜和第八透镜于光轴上的间隔距离T78可满足0<T67/T78<1.0。
在一个实施方式中,第三透镜的像侧面的曲率半径R6与第三透镜的物侧面的曲率半径R5满足0<R6/R5<1.5。
在一个实施方式中,第一透镜的有效焦距f1与第一透镜的物侧面的曲率半径R1可满足1.5<f1/R1<2.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第六透镜于光轴上的中心厚度CT6可满足13.0<f/CT6<17.0。
另一方面,本申请还公开了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜、第五透镜和第六透镜均具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凸面;第七透镜可具有正光焦度;第八透镜可具有负光焦度。其中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤2.0。
在一个实施方式中,第三透镜的物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,第五透镜的像侧面可为凹面。
又一方面,本申请还公开了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜、第五透镜和第六透镜均具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凸面;第七透镜可具有正光焦度;第八透镜可具有负光焦度。其中,光学成像镜头的总有效焦距f与第五透镜像侧面的曲率半径R10可满足0<f/R10<1.0。
本申请采用了多片(例如,八片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有小型化、大孔径、大视角、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像镜头的结构示意图;
图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图21示出了根据本申请实施例11的光学成像镜头的结构示意图;
图22A至图22D分别示出了实施例11的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图23示出了根据本申请实施例12的光学成像镜头的结构示意图;
图24A至图24D分别示出了实施例12的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如八片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。这八片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凸面;第五透镜具有正光焦度或负光焦度,其像侧面为凹面;第六透镜具有正光焦度或负光焦度;第七透镜可具有正光焦度;第八透镜可具有负光焦度。通过对系统中各个透镜正负光焦度的合理分配,可有效地平衡成像系统的低阶像差,降低公差敏感性并维持成像系统的小型化。
在示例性实施方式中,第一透镜的物侧面和像侧面中的至少一个可为凸面,例如,第一透镜的物侧面可为凸面。
在示例性实施方式中,第三透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第四透镜可具有正光焦度。
在示例性实施方式中,第七透镜的物侧面和像侧面中的至少一个可为凸面,例如,第七透镜的像侧面可为凸面。
在示例性实施方式中,第八透镜的物侧面可为凹面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式f/EPD≤2.0,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.61≤f/EPD≤1.93。满足条件式f/EPD≤2.0,可有效地加大单位时间内的通光量,使光学成像镜头具有大光圈优势,从而能够在减小边缘视场的像差的同时增强暗环境下的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH≤1.70,其中,TTL为第一透镜物侧面的中心至光学成像镜头的成像面在光轴上的距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.47≤TTL/ImgH≤1.66。通过控制TTL和ImgH的比值,有效地压缩了成像系统的纵向尺寸,保证镜头的超薄特性,以满足小型化需求。
在示例性实施方式中,本申请的光学成像镜头可满足条件式70°≤FOV≤80°,其中,FOV为光学成像镜头的全视场角。更具体地,FOV进一步可满足70.6°≤FOV≤78.2°。通过控制镜头的全视场角,来有效地控制镜头的成像范围。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<f1/f<1.5,其中,f1为第一透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f1和f进一步可满足0.85<f1/f<1.15,例如,0.97≤f1/f≤1.07。通过控制第一透镜的光焦度对成像系统总光焦度的贡献率,可以减小光线的偏转角,提高成像系统的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-0.5<f/f2<0,其中,f为光学成像镜头的总有效焦距,f2为第二透镜的有效焦距。更具体地,f和f2进一步可满足-0.46≤f2/f≤-0.03。合理控制第二透镜的光焦度,能将第二透镜所产生的轴上球差约束在合理区间范围内,进而保证轴上视场区域的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2.0<f7/f8<-1.0,其中,f7为第七透镜的有效焦距,f8为第八透镜的有效焦距。更具体地,f7和f8进一步可满足-1.80<f7/f8<-1.30,例如,-1.66≤f7/f8≤-1.41。合理控制第七透镜和第八透镜的光焦度,使得第 七透镜和第八透镜的有效焦距比值在一定范围内,有利于平衡成像系统的轴外视场区域的像差。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2.5<R8/R7<-0.5,其中,R8为第四透镜的像侧面的曲率半径,R7为第四透镜的物侧面的曲率半径。更具体地,R8和R7进一步可满足-2.40<R8/R7<-0.90,例如,-2.35≤R8/R7≤-0.98。合理分配R8和R7的比值,可以减小光线的偏转角,使成像系统较好地实现光路的偏折。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.0<CT4/CT5<2.5,其中,CT4为第四透镜于光轴上的中心厚度,CT5为第五透镜于光轴上的中心厚度。更具体地,CT4和CT5进一步可满足1.20<CT4/CT5<2.20,例如,1.26≤CT4/CT5≤2.08。通过控制CT4和CT5的比值,能够对成像系统的畸变量进行合理的调控,使得成像系统的畸变量在一定合理范围内。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<f/R10<1.0,其中,f为光学成像镜头的总有效焦距,R10为第五透镜的像侧面的曲率半径。更具体地,f和R10进一步可满足0.10<f/R10<0.60,例如,0.18≤f/R10≤0.57。通过第五透镜像侧面的曲率半径,能够一定量的控制其对成像系统高阶球差的贡献量,进而使得成像系统具有良好的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<T67/T78<1.0,其中,T67为第六透镜和第七透镜于光轴上的间隔距离,T78为第七透镜和第八透镜于光轴上的间隔距离。更具体地,T67和T78进一步可满足0.25<T67/T78<0.75,例如,0.31≤T67/T78≤0.65。通过合理控制T67和T78的比值,可以有效地控制系统的场曲,进而使得成像系统的轴外视场区域具有较佳的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<R6/R5<1.5,其中,R6为第三透镜的像侧面的曲率半径,R5为第三透镜的物侧面的曲率半径。更具体地,R6和R5进一步可满足0.20<R6/R5<1.20,例如,0.32≤R6/R5≤1.09。通过控制R6和R5的比值,可以有效地控制第三透镜的光焦度分布,使光线在第三透镜实现较好 的偏转,进而获得更好的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<f1/R1<2.5,其中,f1为第一透镜的有效焦距,R1为第一透镜的物侧面的曲率半径。更具体地,f1和R1进一步可满足1.75<f1/R1<2.35,例如,1.83≤f1/R1≤2.25。通过控制f1和R1的比值,能够有效地控制成像系统的入射光线在第一透镜的偏折,从而可以降低成像系统的敏感性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式13.0<f/CT6<17.0,其中,f为光学成像镜头的总有效焦距,CT6为第六透镜于光轴上的中心厚度。更具体地,f和CT6进一步可满足13.15≤f/CT6≤16.95。合理控制f和CT6的比值,能够控制第六透镜对成像系统慧差的贡献量,以有效地平衡前端透镜(即,物侧与第六透镜之间的各透镜)所产生的慧差,从而获得良好的成像质量。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在第一透镜与第二透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像镜头的体积、降低成像镜头的敏感度并提高成像镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头还具有例如大孔径、大视角、高成像品质等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像 差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以八个透镜为例进行了描述,但是该光学成像镜头不限于包括八个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000001
表1
由表1可知,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018116311-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S16的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.0210E-02 1.5600E-04 -2.4760E-02 4.6719E-02 -6.3230E-02 5.0875E-02 -2.4630E-02 6.5440E-03 -7.1000E-04
S2 -4.3360E-02 -7.6420E-02 3.8243E-01 -8.7075E-01 1.2059E+00 -1.0456E+00 5.5314E-01 -1.6328E-01 2.0678E-02
S3 -6.7760E-02 3.5593E-02 1.2883E-01 -4.0684E-01 7.1265E-01 -7.9996E-01 5.5730E-01 -2.1964E-01 3.8002E-02
S4 1.1342E-02 -2.0293E-01 7.6044E-01 -2.7533E+00 6.3392E+00 -8.7505E+00 7.1475E+00 -3.2026E+00 6.1002E-01
S5 5.2124E-02 -2.0150E-01 5.4182E-01 -2.5326E+00 6.7383E+00 -9.9310E+00 8.4157E+00 -3.8655E+00 7.4631E-01
S6 -6.6700E-03 -1.4040E-01 9.8180E-01 -3.9659E+00 8.9363E+00 -1.1664E+01 8.7375E+00 -3.3938E+00 5.0335E-01
S7 -1.1043E-01 3.9284E-01 -2.4423E+00 8.8718E+00 -2.0640E+01 3.0488E+01 -2.7712E+01 1.4199E+01 -3.1370E+00
S8 -1.5655E-01 -1.3655E-01 8.0244E-01 -2.5103E+00 4.7938E+00 -5.6995E+00 4.0425E+00 -1.5125E+00 2.1522E-01
S9 -2.1678E-01 6.6112E-02 -1.0063E+00 4.1476E+00 -9.2524E+00 1.2580E+01 -1.0452E+01 4.8870E+00 -9.9279E-01
S10 -9.7380E-02 -6.8910E-02 -4.2780E-02 2.2541E-01 -1.9444E-01 -1.1425E-01 2.8311E-01 -1.7179E-01 3.6635E-02
S11 -1.4236E-01 2.7179E-01 -6.1780E-01 9.8656E-01 -1.1632E+00 9.2566E-01 -4.8395E-01 1.4936E-01 -2.0010E-02
S12 -1.7528E-01 1.6121E-01 -1.9481E-01 2.2716E-01 -1.9343E-01 8.9146E-02 -1.6950E-02 -2.4000E-04 3.4300E-04
S13 1.6715E-02 -1.1865E-01 2.9925E-02 5.1957E-02 -5.2080E-02 1.5537E-02 -2.0200E-03 9.1100E-04 -2.4000E-04
S14 -8.5130E-02 3.5131E-01 -7.8850E-01 9.5724E-01 -6.8705E-01 2.9965E-01 -7.8130E-02 1.1228E-02 -6.9000E-04
S15 -1.9370E-01 6.9666E-02 -4.3540E-02 7.1654E-02 -4.8110E-02 1.6314E-02 -3.0600E-03 3.0700E-04 -1.3000E-05
S16 -1.4917E-01 9.4648E-02 -4.8060E-02 1.9376E-02 -5.9300E-03 1.2610E-03 -1.7000E-04 1.3000E-05 -4.4000E-07
表2
表3给出实施例1中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 4.14 f7(mm) 3.19
f2(mm) -13.76 f8(mm) -2.18
f3(mm) -33.48 f(mm) 3.87
f4(mm) 11.19 TTL(mm) 4.81
f5(mm) -116.99 ImgH(mm) 3.10
f6(mm) -460.02 FOV(°) 75.9
表3
实施例1中的光学成像镜头满足:
f/EPD=1.61,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径;
TTL/ImgH=1.55,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离,ImgH为成像面S19上有效像素区域对角线长的一半;
f1/f=1.07,其中,f1为第一透镜E1的有效焦距,f为光学成像镜头的总有效焦距;
f/f2=-0.28,其中,f为光学成像镜头的总有效焦距,f2为第二透镜E2的有效焦距;
f7/f8=-1.46,其中,f7为第七透镜E7的有效焦距,f8为第八透镜E8的有效焦距;
R8/R7=-2.35,其中,R8为第四透镜E4的像侧面S8的曲率半径,R7为第四透镜E4的物侧面S7的曲率半径;
CT4/CT5=1.49,其中,CT4为第四透镜E4于光轴上的中心厚度,CT5为第五透镜E5于光轴上的中心厚度;
f/R10=0.57,其中,f为光学成像镜头的总有效焦距,R10为第五透镜E5的像侧面S10的曲率半径;
T67/T78=0.65,其中,T67为第六透镜E6和第七透镜E7于光轴上的间隔距离,T78为第七透镜E7和第八透镜E8于光轴上的间隔距离;
R6/R5=0.84,其中,R6为第三透镜E3的像侧面S6的曲率半径,R5为第三透镜E3的物侧面S5的曲率半径;
f1/R1=2.25,其中,f1为第一透镜E1的有效焦距,R1为第一透镜E1的物侧面S1的曲率半径;
f/CT6=16.22,其中,f为光学成像镜头的总有效焦距,CT6为第六透镜E6于光轴上的中心厚度。
另外,图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。 在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000003
Figure PCTCN2018116311-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.4300E-03 -6.2900E-03 1.4203E-02 -6.8040E-02 1.3531E-01 -1.5408E-01 9.9884E-02 -3.5050E-02 5.1460E-03
S2 -5.4010E-02 -1.1253E-01 5.8970E-01 -1.3715E+00 2.0028E+00 -1.9076E+00 1.1387E+00 -3.8511E-01 5.6189E-02
S3 -5.0780E-02 -1.9306E-01 7.6459E-01 -9.6006E-01 -2.4147E-01 2.3857E+00 -3.2641E+00 2.0417E+00 -5.0923E-01
S4 1.1092E-01 -6.9443E-01 1.8143E+00 -2.5858E+00 4.1928E-01 5.2014E+00 -9.0582E+00 6.7597E+00 -1.9440E+00
S5 1.3272E-01 -5.1777E-01 8.8166E-01 -4.5074E-01 -2.7401E+00 8.2302E+00 -1.0801E+01 7.3888E+00 -2.1131E+00
S6 -3.0700E-03 -7.4880E-02 4.5034E-02 6.0709E-01 -3.5874E+00 9.1978E+00 -1.2563E+01 9.0416E+00 -2.6707E+00
S7 -9.9820E-02 1.1944E-01 -1.2449E+00 5.6006E+00 -1.5951E+01 2.8594E+01 -3.1332E+01 1.9196E+01 -4.9904E+00
S8 -1.3684E-01 1.0139E-01 -6.2196E-01 1.3891E+00 -2.0674E+00 1.9312E+00 -8.1511E-01 -8.4330E-02 1.4200E-01
S9 -2.3436E-01 4.5243E-01 -1.7013E+00 4.0966E+00 -6.8412E+00 7.3436E+00 -4.6310E+00 1.4922E+00 -1.7707E-01
S10 -2.3365E-01 4.6981E-01 -1.2098E+00 2.1784E+00 -2.6220E+00 1.9728E+00 -8.6915E-01 1.9102E-01 -1.2510E-02
S11 -1.5455E-01 1.0278E-01 2.5543E-01 -1.4258E+00 2.9663E+00 -3.3851E+00 2.1910E+00 -7.5402E-01 1.0751E-01
S12 -1.3113E-01 -1.5169E-01 7.9894E-01 -1.8345E+00 2.4601E+00 -2.0189E+00 9.9857E-01 -2.7215E-01 3.1280E-02
S13 -2.4850E-02 -2.2697E-01 4.4062E-01 -5.0985E-01 3.0227E-01 -5.8030E-02 -3.3530E-02 2.1201E-02 -3.4200E-03
S14 2.0145E-02 -1.0483E-01 1.4529E-01 -9.3560E-02 2.0023E-02 8.0960E-03 -5.6400E-03 1.2040E-03 -9.1000E-05
S15 -2.6016E-01 2.0973E-01 -1.2957E-01 7.4708E-02 -2.8800E-02 6.5250E-03 -8.2000E-04 5.0200E-05 -1.0000E-06
S16 -1.6927E-01 1.5281E-01 -1.0834E-01 5.5159E-02 -1.9650E-02 4.7090E-03 -7.2000E-04 6.2900E-05 -2.4000E-06
表5
表6给出实施例2中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.92 f7(mm) 2.84
f2(mm) -10.41 f8(mm) -2.01
f3(mm) -2035.25 f(mm) 4.04
f4(mm) 9.20 TTL(mm) 4.85
f5(mm) -15.97 ImgH(mm) 3.15
f6(mm) -86.12 FOV(°) 74.8
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物 体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.8300E-03 -1.1290E-02 2.9854E-02 -9.6220E-02 1.5717E-01 -1.5458E-01 8.9570E-02 -2.8630E-02 3.8890E-03
S2 -5.3290E-02 -7.4220E-02 3.9090E-01 -8.6254E-01 1.1911E+00 -1.0757E+00 6.0964E-01 -1.9589E-01 2.7179E-02
S3 -4.7340E-02 -1.5877E-01 7.7836E-01 -1.7942E+00 2.9722E+00 -3.6551E+00 3.0713E+00 -1.5180E+00 3.2852E-01
S4 7.7867E-02 -6.0779E-01 1.7871E+00 -4.0117E+00 7.2456E+00 -9.7821E+00 8.9275E+00 -4.7282E+00 1.1182E+00
S5 1.0741E-01 -4.7280E-01 9.5106E-01 -1.9021E+00 3.5326E+00 -4.8440E+00 4.1253E+00 -1.6755E+00 1.7763E-01
S6 -7.5800E-03 -5.5540E-02 6.2280E-02 5.8783E-02 -1.3897E+00 5.2047E+00 -8.9619E+00 7.6423E+00 -2.5773E+00
S7 -1.0036E-01 1.0576E-01 -1.1060E+00 4.8606E+00 -1.3819E+01 2.5084E+01 -2.8126E+01 1.7798E+01 -4.8108E+00
S8 -1.4324E-01 -5.0540E-02 -1.9820E-02 -2.6150E-01 9.6197E-01 -1.2590E+00 8.0618E-01 -2.5074E-01 3.7865E-02
S9 -1.9902E-01 9.7771E-02 -1.4257E-01 -1.0199E+00 4.0232E+00 -6.9557E+00 6.8194E+00 -3.6879E+00 8.4487E-01
S10 -2.0315E-01 2.0410E-01 5.0996E-02 -1.3201E+00 3.3041E+00 -4.2636E+00 3.1064E+00 -1.2209E+00 2.0402E-01
S11 -1.8937E-01 1.0297E-01 5.1949E-01 -1.8471E+00 2.9669E+00 -2.7152E+00 1.3840E+00 -3.5221E-01 3.3340E-02
S12 -1.4795E-01 -1.9870E-01 1.0957E+00 -2.4440E+00 3.1795E+00 -2.5373E+00 1.2189E+00 -3.2306E-01 3.6340E-02
S13 -9.4000E-03 -3.0240E-01 7.6101E-01 -1.2239E+00 1.2462E+00 -8.2248E-01 3.3864E-01 -7.8960E-02 8.0520E-03
S14 -1.4160E-02 1.4375E-02 -5.9110E-02 1.3436E-01 -1.4564E-01 8.3993E-02 -2.6700E-02 4.4360E-03 -3.0000E-04
S15 -2.4979E-01 1.6409E-01 -7.8100E-02 4.8501E-02 -2.2210E-02 5.8600E-03 -8.5000E-04 6.0300E-05 -1.5000E-06
S16 -1.5879E-01 1.2541E-01 -7.6140E-02 3.3901E-02 -1.0810E-02 2.3580E-03 -3.3000E-04 2.6900E-05 -9.6000E-07
表8
表9给出实施例3中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 4.03 f7(mm) 3.02
f2(mm) -9.06 f8(mm) -2.09
f3(mm) 60.27 f(mm) 3.98
f4(mm) 8.63 TTL(mm) 4.85
f5(mm) -17.29 ImgH(mm) 3.31
f6(mm) -76.55 FOV(°) 78.2
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜 头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000006
Figure PCTCN2018116311-appb-000007
表10
由表10可知,在实施例4中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.0920E-02 -7.8400E-03 1.2699E-02 -5.4100E-02 9.1932E-02 -9.1870E-02 5.3201E-02 -1.6770E-02 2.2200E-03
S2 -5.1830E-02 -5.8160E-02 3.0661E-01 -6.7571E-01 9.4109E-01 -8.5468E-01 4.8374E-01 -1.5422E-01 2.1113E-02
S3 -5.0580E-02 -6.5780E-02 3.2029E-01 -4.1949E-01 1.1315E-01 3.8762E-01 -5.6996E-01 3.4019E-01 -7.8220E-02
S4 3.2861E-02 -3.5512E-01 1.2838E+00 -3.9690E+00 9.4882E+00 -1.5623E+01 1.6317E+01 -9.6227E+00 2.4587E+00
S5 5.9851E-02 -2.0879E-01 5.7695E-02 6.4382E-01 -2.0802E+00 3.4853E+00 -3.3100E+00 1.7460E+00 -3.9661E-01
S6 -1.5150E-02 -3.6480E-02 1.9233E-02 1.8488E-01 -1.3190E+00 3.9546E+00 -5.9488E+00 4.5622E+00 -1.4093E+00
S7 -1.0229E-01 1.8133E-01 -1.5400E+00 6.3318E+00 -1.6556E+01 2.7343E+01 -2.7731E+01 1.5819E+01 -3.8531E+00
S8 -1.5639E-01 -6.1110E-02 3.0446E-01 -1.8195E+00 5.5406E+00 -9.6028E+00 9.7737E+00 -5.4617E+00 1.3058E+00
S9 -2.2571E-01 1.7054E-01 -6.9507E-01 1.1762E+00 -4.8938E-01 -1.5366E+00 2.8728E+00 -2.0185E+00 5.1957E-01
S10 -1.9224E-01 2.7939E-01 -6.1230E-01 7.3989E-01 -2.4492E-01 -6.0119E-01 8.4874E-01 -4.4513E-01 8.7647E-02
S11 -2.1283E-01 3.2197E-01 -3.3395E-01 5.1483E-02 3.4519E-01 -4.6900E-01 2.2407E-01 -1.9680E-02 -7.8300E-03
S12 -1.9536E-01 4.6536E-02 2.8469E-01 -7.7759E-01 1.0943E+00 -9.2405E-01 4.5812E-01 -1.2140E-01 1.3249E-02
S13 2.7810E-03 -2.0302E-01 3.1234E-01 -3.4010E-01 2.6326E-01 -1.4991E-01 5.7389E-02 -1.3010E-02 1.3720E-03
S14 -2.9210E-02 1.0140E-01 -2.6353E-01 3.7361E-01 -3.0339E-01 1.4496E-01 -4.0320E-02 6.0470E-03 -3.8000E-04
S15 -2.4132E-01 1.5235E-01 -7.0590E-02 4.5755E-02 -2.2210E-02 6.3840E-03 -1.0700E-03 9.9700E-05 -4.1000E-06
S16 -1.5944E-01 1.2644E-01 -7.6280E-02 3.3696E-02 -1.0660E-02 2.3120E-03 -3.2000E-04 2.6300E-05 -9.4000E-07
表11
表12给出实施例4中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 4.10 f7(mm) 3.04
f2(mm) -8.67 f8(mm) -2.07
f3(mm) 40.40 f(mm) 3.98
f4(mm) 8.41 TTL(mm) 4.85
f5(mm) -18.39 ImgH(mm) 2.93
f6(mm) -96.77 FOV(°) 71.7
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率 半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.6000E-03 -4.1300E-03 4.2740E-03 -4.6750E-02 1.0752E-01 -1.3169E-01 8.9225E-02 -3.2320E-02 4.8560E-03
S2 -5.1340E-02 -1.2100E-01 5.9678E-01 -1.3574E+00 1.9549E+00 -1.8468E+00 1.0985E+00 -3.7157E-01 5.4378E-02
S3 -3.9840E-02 -2.4277E-01 9.6273E-01 -1.6087E+00 1.2334E+00 1.9207E-01 -1.2435E+00 1.0034E+00 -2.8246E-01
S4 1.2952E-01 -8.8787E-01 2.6143E+00 -5.1617E+00 6.6922E+00 -5.0626E+00 1.3397E+00 9.5428E-01 -5.7943E-01
S5 1.5350E-01 -7.4594E-01 1.9780E+00 -4.4737E+00 7.6752E+00 -9.0434E+00 6.4746E+00 -1.9960E+00 -1.2050E-02
S6 1.5030E-03 -6.9990E-02 -1.1888E-01 1.5387E+00 -6.5932E+00 1.5492E+01 -2.0819E+01 1.5061E+01 -4.5155E+00
S7 -9.8000E-02 1.4501E-01 -1.5650E+00 7.3546E+00 -2.1730E+01 4.0369E+01 -4.5707E+01 2.8724E+01 -7.5971E+00
S8 -1.3114E-01 -5.8040E-02 2.4711E-01 -1.7895E+00 5.3893E+00 -8.8707E+00 8.5874E+00 -4.6504E+00 1.1076E+00
S9 -2.0894E-01 1.4811E-01 -1.1683E-01 -1.1413E+00 3.8477E+00 -5.8531E+00 4.9362E+00 -2.2405E+00 4.1475E-01
S10 -1.9972E-01 1.5250E-01 2.7566E-01 -1.7339E+00 3.6853E+00 -4.3411E+00 2.9600E+00 -1.1019E+00 1.7476E-01
S11 -1.3387E-01 -1.4809E-01 1.1751E+00 -3.0094E+00 4.3431E+00 -3.8070E+00 1.9736E+00 -5.5078E-01 6.3602E-02
S12 -1.1060E-01 -3.1422E-01 1.2900E+00 -2.5495E+00 3.0331E+00 -2.2601E+00 1.0305E+00 -2.6161E-01 2.8234E-02
S13 -8.6500E-03 -3.0558E-01 7.1461E-01 -1.0101E+00 8.8674E-01 -5.0196E-01 1.7812E-01 -3.6010E-02 3.2000E-03
S14 1.2885E-02 -6.9400E-02 8.3034E-02 -3.6320E-02 -1.2440E-02 2.0465E-02 -8.8300E-03 1.7050E-03 -1.3000E-04
S15 -2.6846E-01 2.5462E-01 -2.1151E-01 1.4906E-01 -6.7430E-02 1.8537E-02 -3.0300E-03 2.7200E-04 -1.0000E-05
S16 -1.4224E-01 1.1334E-01 -7.1030E-02 3.1990E-02 -1.0070E-02 2.1240E-03 -2.8000E-04 2.1900E-05 -7.4000E-07
表14
表15给出实施例5中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.98 f7(mm) 2.97
f2(mm) -9.97 f8(mm) -2.04
f3(mm) 156.18 f(mm) 4.00
f4(mm) 8.64 TTL(mm) 4.83
f5(mm) -14.16 ImgH(mm) 3.26
f6(mm) -354.42 FOV(°) 77.1
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴 由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000009
Figure PCTCN2018116311-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1510E-02 8.9210E-03 -4.1870E-02 5.9210E-02 -5.4510E-02 2.4989E-02 -3.5800E-03 -1.3800E-03 4.7400E-04
S2 -3.8780E-02 -1.6420E-02 1.0522E-01 -2.6815E-01 4.1372E-01 -3.9853E-01 2.3337E-01 -7.6150E-02 1.0678E-02
S3 -4.6480E-02 4.0731E-02 7.8391E-02 -4.3480E-01 1.0867E+00 -1.5710E+00 1.3224E+00 -6.0461E-01 1.1690E-01
S4 1.8721E-02 -1.5095E-01 3.4597E-01 -1.3444E+00 3.9593E+00 -6.6086E+00 6.1906E+00 -3.0726E+00 6.3308E-01
S5 4.1010E-02 -1.9367E-01 2.8545E-01 -1.3483E+00 4.7550E+00 -8.5753E+00 8.4075E+00 -4.3121E+00 9.0644E-01
S6 -6.4500E-03 -5.8350E-02 2.9341E-01 -1.2622E+00 3.0574E+00 -3.9284E+00 2.5433E+00 -5.7403E-01 -6.2120E-02
S7 -1.0465E-01 2.4375E-01 -1.4681E+00 5.2362E+00 -1.2412E+01 1.8978E+01 -1.8018E+01 9.7196E+00 -2.2656E+00
S8 -2.1128E-01 2.0365E-01 -5.7228E-01 1.2978E+00 -2.3859E+00 3.2367E+00 -2.9297E+00 1.5608E+00 -3.6607E-01
S9 -2.7187E-01 3.1710E-01 -1.1256E+00 2.3694E+00 -2.9814E+00 2.0163E+00 -4.3370E-01 -2.3536E-01 1.0870E-01
S10 -1.7170E-01 2.5596E-01 -5.4869E-01 3.4752E-01 6.3088E-01 -1.5731E+00 1.4413E+00 -6.3620E-01 1.1292E-01
S11 -2.0297E-01 3.7872E-01 -4.6971E-01 8.9148E-02 4.4808E-01 -5.9038E-01 3.2084E-01 -7.8900E-02 6.9550E-03
S12 -2.2004E-01 1.8922E-01 -6.5880E-02 -2.3978E-01 4.5060E-01 -3.6620E-01 1.5570E-01 -3.2710E-02 2.5690E-03
S13 4.7420E-03 -1.3478E-01 1.3399E-01 -9.5720E-02 2.6291E-02 2.0525E-02 -2.5140E-02 1.0115E-02 -1.4300E-03
S14 -6.3530E-02 2.4191E-01 -5.5550E-01 7.1382E-01 -5.4420E-01 2.5038E-01 -6.8280E-02 1.0187E-02 -6.4000E-04
S15 -1.9600E-01 5.4397E-02 1.2690E-02 9.1750E-03 -1.3590E-02 5.4530E-03 -1.0700E-03 1.0700E-04 -4.4000E-06
S16 -1.4263E-01 9.1659E-02 -4.4400E-02 1.6134E-02 -4.4400E-03 8.7900E-04 -1.2000E-04 9.1700E-06 -3.3000E-07
表17
表18给出实施例6中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.91 f7(mm) 3.17
f2(mm) -140.23 f8(mm) -2.12
f3(mm) -9.30 f(mm) 3.95
f4(mm) 9.18 TTL(mm) 4.83
f5(mm) -32.68 ImgH(mm) 2.93
f6(mm) -84.73 FOV(°) 72.6
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000011
表19
由表19可知,在实施例7中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.2810E-02 3.7530E-03 -2.7480E-02 2.7024E-02 -9.3500E-03 -1.4100E-02 1.6633E-02 -6.8200E-03 1.0350E-03
S2 -4.4910E-02 -2.1010E-02 1.8071E-01 -4.6625E-01 7.0588E-01 -6.6255E-01 3.7771E-01 -1.1978E-01 1.6230E-02
S3 -5.3370E-02 7.1669E-02 -6.3700E-03 -1.8554E-01 5.2613E-01 -7.8913E-01 6.7978E-01 -3.1787E-01 6.3041E-02
S4 1.4814E-02 -1.9408E-01 6.9540E-01 -2.9440E+00 7.6816E+00 -1.1556E+01 1.0069E+01 -4.7583E+00 9.4863E-01
S5 4.6192E-02 -1.9492E-01 5.5552E-01 -2.9530E+00 8.7412E+00 -1.3947E+01 1.2624E+01 -6.1555E+00 1.2583E+00
S6 -1.0810E-02 -1.0047E-01 7.9780E-01 -3.4857E+00 8.5119E+00 -1.2051E+01 9.9499E+00 -4.4005E+00 7.9668E-01
S7 -1.0619E-01 1.4868E-01 -9.6995E-01 3.5809E+00 -8.7695E+00 1.3705E+01 -1.3170E+01 7.1646E+00 -1.6817E+00
S8 -2.0752E-01 1.4012E-01 -2.7974E-01 3.6432E-01 -3.8217E-01 4.5132E-01 -5.2573E-01 3.9718E-01 -1.2714E-01
S9 -2.7649E-01 3.4215E-01 -1.3004E+00 2.9605E+00 -4.0024E+00 2.8676E+00 -5.9364E-01 -4.4482E-01 2.0892E-01
S10 -1.5356E-01 1.2677E-01 -1.4453E-01 -4.0713E-01 1.5763E+00 -2.4146E+00 1.9632E+00 -8.3514E-01 1.4705E-01
S11 -1.8947E-01 2.6776E-01 -1.0345E-01 -6.0654E-01 1.3790E+00 -1.4668E+00 8.4839E-01 -2.5455E-01 3.1119E-02
S12 -2.0787E-01 1.2211E-01 1.5378E-01 -6.5264E-01 9.8613E-01 -8.3278E-01 4.0496E-01 -1.0491E-01 1.1187E-02
S13 1.1424E-02 -1.5693E-01 1.6840E-01 -1.3634E-01 7.4135E-02 -2.2130E-02 -3.2900E-03 4.4510E-03 -8.4000E-04
S14 -6.5540E-02 2.4689E-01 -5.8427E-01 7.6178E-01 -5.8569E-01 2.7177E-01 -7.4930E-02 1.1330E-02 -7.3000E-04
S15 -1.9280E-01 5.1193E-02 1.6522E-02 4.5690E-03 -1.0550E-02 4.3370E-03 -8.4000E-04 8.0600E-05 -3.1000E-06
S16 -1.4306E-01 9.1652E-02 -4.3050E-02 1.4437E-02 -3.4200E-03 5.3400E-04 -5.0000E-05 2.5300E-06 -5.8000E-08
表20
表21给出实施例7中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.84 f7(mm) 3.13
f2(mm) -13.91 f8(mm) -2.10
f3(mm) -23.75 f(mm) 3.94
f4(mm) 9.18 TTL(mm) 4.83
f5(mm) -42.69 ImgH(mm) 2.93
f6(mm) -38.21 FOV(°) 72.3
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、 第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000012
表22
由表22可知,在实施例8中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1980E-02 -1.4760E-02 2.8183E-02 -7.5120E-02 9.7643E-02 -7.6540E-02 3.4919E-02 -8.5800E-03 8.8800E-04
S2 -5.2740E-02 -2.4290E-02 1.9797E-01 -3.8389E-01 4.1432E-01 -2.8115E-01 1.1887E-01 -2.8620E-02 2.9990E-03
S3 -5.5470E-02 -1.1868E-01 5.7072E-01 -9.9241E-01 1.1921E+00 -1.2657E+00 1.1346E+00 -6.3897E-01 1.5545E-01
S4 8.6632E-02 -6.2810E-01 1.0042E+00 2.9978E-01 -3.3394E+00 5.1248E+00 -3.5581E+00 1.0720E+00 -6.2380E-02
S5 1.2610E-01 -4.6525E-01 -7.6170E-02 3.4238E+00 -9.7096E+00 1.4506E+01 -1.2883E+01 6.5855E+00 -1.5273E+00
S6 5.4400E-04 -1.2100E-02 -2.4362E-01 9.6408E-01 -2.4327E+00 4.5451E+00 -5.8477E+00 4.4400E+00 -1.4343E+00
S7 -1.0644E-01 7.7428E-02 -7.0658E-01 3.0268E+00 -8.6350E+00 1.5642E+01 -1.7480E+01 1.1048E+01 -2.9831E+00
S8 -1.7266E-01 -4.4630E-02 -1.2880E-02 2.6793E-01 -8.3078E-01 1.4743E+00 -1.4809E+00 7.9005E-01 -1.7230E-01
S9 -2.1367E-01 3.6769E-02 -1.2672E-01 -3.8508E-01 2.2937E+00 -4.7874E+00 5.2884E+00 -3.0566E+00 7.1788E-01
S10 -1.8247E-01 2.2615E-01 -4.1357E-01 3.8471E-01 6.5496E-02 -6.8385E-01 7.9050E-01 -4.0035E-01 7.8953E-02
S11 -2.0609E-01 1.7399E-01 3.5454E-01 -1.5327E+00 2.5809E+00 -2.4951E+00 1.3860E+00 -4.0358E-01 4.7257E-02
S12 -1.6814E-01 -1.4308E-01 1.0248E+00 -2.3990E+00 3.2304E+00 -2.6744E+00 1.3283E+00 -3.6005E-01 4.0780E-02
S13 3.1732E-02 -3.6731E-01 8.8137E-01 -1.4662E+00 1.6080E+00 -1.1518E+00 5.1316E-01 -1.2899E-01 1.4042E-02
S14 -5.7270E-02 1.5740E-01 -3.2054E-01 3.9068E-01 -2.8926E-01 1.3066E-01 -3.5200E-02 5.2030E-03 -3.3000E-04
S15 -2.3924E-01 1.5703E-01 -8.5210E-02 6.0241E-02 -2.9660E-02 8.5130E-03 -1.4000E-03 1.2200E-04 -4.4000E-06
S16 -1.4729E-01 1.0743E-01 -5.6960E-02 2.1819E-02 -5.9900E-03 1.1230E-03 -1.4000E-04 9.4200E-06 -2.9000E-07
表23
表24给出实施例8中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.85 f7(mm) 3.24
f2(mm) -13.17 f8(mm) -2.00
f3(mm) -21.41 f(mm) 3.87
f4(mm) 8.36 TTL(mm) 4.85
f5(mm) -35.50 ImgH(mm) 2.93
f6(mm) -130.18 FOV(°) 73.1
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示 不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000013
Figure PCTCN2018116311-appb-000014
表25
由表25可知,在实施例9中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1620E-02 -1.2800E-02 2.0714E-02 -5.8080E-02 7.5255E-02 -5.8840E-02 2.6532E-02 -6.3900E-03 6.4600E-04
S2 -5.3520E-02 -2.4120E-02 1.9997E-01 -3.9028E-01 4.2383E-01 -2.8939E-01 1.2322E-01 -2.9930E-02 3.1680E-03
S3 -5.5280E-02 -1.3142E-01 6.9275E-01 -1.3920E+00 1.8410E+00 -1.8117E+00 1.3118E+00 -5.9869E-01 1.2418E-01
S4 9.6280E-02 -7.2088E-01 1.4707E+00 -9.4633E-01 -1.5806E+00 4.0830E+00 -3.8894E+00 1.8399E+00 -3.5345E-01
S5 1.3515E-01 -5.8280E-01 4.4824E-01 2.0947E+00 -7.7348E+00 1.2953E+01 -1.2495E+01 6.8165E+00 -1.6531E+00
S6 5.2880E-03 -8.2570E-02 1.4123E-01 -3.6079E-01 6.1126E-01 -2.8190E-02 -1.4898E+00 2.0371E+00 -8.5328E-01
S7 -1.0764E-01 1.4166E-01 -1.1315E+00 4.5219E+00 -1.1799E+01 1.9701E+01 -2.0475E+01 1.2167E+01 -3.1357E+00
S8 -1.7527E-01 -3.7430E-02 -1.0810E-02 2.1948E-01 -7.3344E-01 1.4391E+00 -1.5804E+00 9.1257E-01 -2.1537E-01
S9 -2.2725E-01 1.6758E-01 -8.2025E-01 1.8590E+00 -2.3225E+00 1.3090E+00 2.8265E-01 -7.3148E-01 2.4989E-01
S10 -1.8477E-01 3.1637E-01 -8.7260E-01 1.6117E+00 -1.8734E+00 1.2004E+00 -3.2259E-01 -3.1420E-02 2.5968E-02
S11 -2.1947E-01 2.9257E-01 -1.1205E-01 -5.5094E-01 1.3877E+00 -1.6350E+00 1.0193E+00 -3.1513E-01 3.7351E-02
S12 -1.8383E-01 2.9420E-03 4.9491E-01 -1.3500E+00 1.9774E+00 -1.7403E+00 9.0187E-01 -2.5102E-01 2.8832E-02
S13 2.5827E-02 -3.1411E-01 7.1213E-01 -1.1909E+00 1.3360E+00 -9.7715E-01 4.4106E-01 -1.1164E-01 1.2205E-02
S14 -6.1730E-02 1.8126E-01 -3.6601E-01 4.3406E-01 -3.1196E-01 1.3713E-01 -3.6080E-02 5.2240E-03 -3.2000E-04
S15 -2.4042E-01 1.6043E-01 -9.0230E-02 6.4379E-02 -3.1610E-02 9.0450E-03 -1.4800E-03 1.2800E-04 -4.5000E-06
S16 -1.4871E-01 1.1001E-01 -5.9500E-02 2.3372E-02 -6.6100E-03 1.2860E-03 -1.6000E-04 1.1800E-05 -3.8000E-07
表26
表27给出实施例9中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.86 f7(mm) 3.22
f2(mm) -12.27 f8(mm) -1.98
f3(mm) -25.53 f(mm) 3.90
f4(mm) 8.40 TTL(mm) 4.85
f5(mm) 156.07 ImgH(mm) 2.93
f6(mm) -22.67 FOV(°) 72.7
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜头。图19示出了根据本申请实施例10的光学成像镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。第七透镜E7具有正光焦度,其物侧面S13为凹面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表28示出了实施例10的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000015
表28
由表28可知,在实施例10中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.7700E-03 -5.3000E-03 -2.9100E-03 -2.5900E-03 2.0650E-03 -1.9800E-03 2.8300E-04 1.7000E-04 -4.3000E-05
S2 -6.0190E-02 -4.5200E-03 1.0781E-01 -1.9085E-01 1.7822E-01 -1.0166E-01 3.4567E-02 -6.2700E-03 4.4200E-04
S3 -6.1870E-02 -6.2030E-02 4.4817E-01 -9.9330E-01 1.5044E+00 -1.6761E+00 1.2929E+00 -5.9450E-01 1.2046E-01
S4 3.9154E-02 -3.4774E-01 9.2213E-01 -1.9643E+00 3.4769E+00 -4.7198E+00 4.5210E+00 -2.5801E+00 6.5825E-01
S5 7.0249E-02 -2.7095E-01 3.2605E-01 -2.7031E-01 -2.0632E-01 1.2333E+00 -1.7259E+00 1.1772E+00 -3.3950E-01
S6 -2.4490E-02 3.8308E-02 -3.2285E-01 1.4964E+00 -4.9643E+00 1.0449E+01 -1.2974E+01 8.8060E+00 -2.5179E+00
S7 -1.0366E-01 1.2711E-01 -1.1225E+00 4.8751E+00 -1.3559E+01 2.3684E+01 -2.5329E+01 1.5235E+01 -3.9248E+00
S8 -1.7012E-01 5.2909E-02 -5.1906E-01 1.5278E+00 -2.5063E+00 2.5767E+00 -1.6599E+00 6.3692E-01 -1.1493E-01
S9 -2.2550E-01 2.4473E-01 -1.1699E+00 2.3289E+00 -1.8578E+00 -8.1885E-01 2.8802E+00 -2.1761E+00 5.6614E-01
S10 -2.1791E-01 5.1240E-01 -1.5638E+00 2.8925E+00 -3.1560E+00 1.8131E+00 -3.5358E-01 -1.1779E-01 5.0780E-02
S11 -2.4916E-01 5.1136E-01 -9.0429E-01 9.7534E-01 -4.1707E-01 -2.6110E-01 3.5607E-01 -1.3051E-01 1.5088E-02
S12 -1.9660E-01 2.2029E-01 -2.8091E-01 1.8195E-01 8.3080E-02 -2.4470E-01 1.7675E-01 -5.6220E-02 6.7790E-03
S13 -3.5000E-03 -7.2620E-02 -1.0360E-02 9.7655E-02 -8.7200E-02 1.1010E-02 1.9952E-02 -1.0680E-02 1.7490E-03
S14 -4.1620E-02 1.1921E-01 -3.0604E-01 4.3746E-01 -3.5695E-01 1.7208E-01 -4.8670E-02 7.4850E-03 -4.8000E-04
S15 -2.3748E-01 1.5875E-01 -8.7620E-02 5.7550E-02 -2.4840E-02 5.7600E-03 -6.2000E-04 1.1800E-05 1.9000E-06
S16 -1.5542E-01 1.2310E-01 -7.2270E-02 3.0362E-02 -8.9700E-03 1.7930E-03 -2.3000E-04 1.7000E-05 -5.5000E-07
表29
表30给出实施例10中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.92 f7(mm) 3.29
f2(mm) -9.29 f8(mm) -1.98
f3(mm) 697.44 f(mm) 3.98
f4(mm) 8.37 TTL(mm) 4.86
f5(mm) -33.94 ImgH(mm) 2.93
f6(mm) -501.35 FOV(°) 71.6
表30
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例 10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20D示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜头能够实现良好的成像品质。
实施例11
以下参照图21至图22D描述了根据本申请实施例11的光学成像镜头。图21示出了根据本申请实施例11的光学成像镜头的结构示意图。
如图21所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表31示出了实施例11的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000016
Figure PCTCN2018116311-appb-000017
表31
由表31可知,在实施例11中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表32示出了可用于实施例11中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.2200E-03 -1.6100E-03 -1.1300E-02 1.3980E-02 -1.5370E-02 7.4460E-03 -4.7000E-04 -1.4700E-03 4.4400E-04
S2 -6.8020E-02 -7.8100E-03 1.8093E-01 -3.9788E-01 5.2690E-01 -4.8015E-01 2.8706E-01 -9.9890E-02 1.5178E-02
S3 -6.8770E-02 -6.1520E-02 3.0348E-01 -1.8241E-01 -6.0919E-01 1.5830E+00 -1.8014E+00 1.0909E+00 -2.8040E-01
S4 1.1719E-01 -5.4268E-01 2.9524E-01 3.0636E+00 -1.1560E+01 2.1847E+01 -2.4555E+01 1.5624E+01 -4.2701E+00
S5 1.5221E-01 -5.6155E-01 3.7652E-01 1.6866E+00 -6.2806E+00 1.1588E+01 -1.3401E+01 9.2781E+00 -2.8420E+00
S6 7.5500E-04 -1.5170E-02 -5.5678E-01 3.2082E+00 -1.0254E+01 2.0493E+01 -2.5207E+01 1.7389E+01 -5.0803E+00
S7 -8.4140E-02 4.4821E-02 -7.5973E-01 3.6118E+00 -1.1246E+01 2.2262E+01 -2.7111E+01 1.8417E+01 -5.2379E+00
S8 -1.3740E-01 2.9382E-02 -3.0494E-01 4.5214E-01 -1.4253E-01 -5.1236E-01 8.7871E-01 -5.9594E-01 1.6338E-01
S9 -2.0454E-01 9.9659E-02 1.0635E-01 -1.8961E+00 5.9034E+00 -9.5550E+00 8.7885E+00 -4.3122E+00 8.5671E-01
S10 -2.0003E-01 1.6143E-01 1.6255E-01 -1.3898E+00 3.2128E+00 -4.0182E+00 2.8634E+00 -1.0994E+00 1.7780E-01
S11 -1.3437E-01 -1.5542E-01 1.2703E+00 -3.4890E+00 5.4241E+00 -5.0946E+00 2.8155E+00 -8.3535E-01 1.0220E-01
S12 -9.7270E-02 -4.1468E-01 1.6538E+00 -3.3116E+00 4.0135E+00 -3.0440E+00 1.4090E+00 -3.6208E-01 3.9422E-02
S13 7.1210E-03 -4.5609E-01 1.1655E+00 -1.7919E+00 1.7355E+00 -1.0884E+00 4.2773E-01 -9.5610E-02 9.3290E-03
S14 2.3807E-02 -1.1180E-01 1.5723E-01 -1.1233E-01 3.7172E-02 -4.3000E-04 -3.3400E-03 8.8600E-04 -7.4000E-05
S15 -2.6466E-01 2.3526E-01 -1.7101E-01 1.0645E-01 -4.2150E-02 9.6690E-03 -1.2000E-03 6.7400E-05 -7.3000E-07
S16 -1.4714E-01 1.1724E-01 -7.1870E-02 3.1221E-02 -9.4300E-03 1.9080E-03 -2.5000E-04 1.8300E-05 -6.0000E-07
表32
表33给出实施例11中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.95 f7(mm) 2.96
f2(mm) -40.04 f8(mm) -2.00
f3(mm) -13.61 f(mm) 4.04
f4(mm) 8.72 TTL(mm) 4.86
f5(mm) -14.19 ImgH(mm) 2.93
f6(mm) 1538.71 FOV(°) 70.6
表33
图22A示出了实施例11的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图22B示出了实施例11的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图22C示出了实施例11的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图22D示出了实施例11的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图22A至图22D可知,实施例11所给出的光学成像镜头能够实现良好的成像品质。
实施例12
以下参照图23至图24D描述了根据本申请实施例12的光学成像镜头。图23示出了根据本申请实施例12的光学成像镜头的结构示意图。
如图23所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表34示出了实施例12的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116311-appb-000018
表34
由表34可知,在实施例12中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表35示出了可用于实施例12中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.7800E-03 -4.1000E-04 -1.8520E-02 3.5760E-02 -5.2230E-02 4.4359E-02 -2.2280E-02 5.4530E-03 -4.6000E-04
S2 -6.9520E-02 3.5200E-04 1.4440E-01 -2.8157E-01 2.9909E-01 -2.1193E-01 1.0034E-01 -2.8900E-02 3.8130E-03
S3 -7.1560E-02 -5.2400E-02 2.2030E-01 2.3079E-01 -1.6922E+00 3.2128E+00 -3.2022E+00 1.7201E+00 -3.9146E-01
S4 1.2647E-01 -6.3588E-01 6.8617E-01 2.0170E+00 -9.3620E+00 1.8107E+01 -1.9851E+01 1.1998E+01 -3.0527E+00
S5 1.6329E-01 -6.5931E-01 6.9239E-01 1.2342E+00 -6.2992E+00 1.2678E+01 -1.4843E+01 9.8272E+00 -2.7892E+00
S6 7.5320E-03 -7.8800E-02 -2.2407E-01 2.0425E+00 -7.3765E+00 1.5633E+01 -1.9750E+01 1.3666E+01 -3.9300E+00
S7 -8.5430E-02 9.0485E-02 -1.1515E+00 5.4765E+00 -1.6458E+01 3.0955E+01 -3.5423E+01 2.2474E+01 -5.9752E+00
S8 -1.3645E-01 -6.2700E-03 -5.8250E-02 -4.2556E-01 1.7819E+00 -3.2365E+00 3.3402E+00 -1.8995E+00 4.7013E-01
S9 -2.0911E-01 1.2208E-01 -1.2399E-01 -6.4782E-01 2.2640E+00 -3.4882E+00 2.9632E+00 -1.3100E+00 2.1323E-01
S10 -1.9488E-01 1.2200E-01 2.9174E-01 -1.5322E+00 3.1168E+00 -3.6279E+00 2.4733E+00 -9.2486E-01 1.4763E-01
S11 -1.3331E-01 -1.5754E-01 1.1851E+00 -3.0244E+00 4.3842E+00 -3.8665E+00 2.0151E+00 -5.6402E-01 6.5018E-02
S12 -1.0292E-01 -3.6002E-01 1.4172E+00 -2.7378E+00 3.1900E+00 -2.3315E+00 1.0446E+00 -2.6080E-01 2.7657E-02
S13 -3.9500E-03 -3.7505E-01 9.0541E-01 -1.2989E+00 1.1596E+00 -6.6754E-01 2.4059E-01 -4.9390E-02 4.4610E-03
S14 2.0892E-02 -9.3180E-02 1.1467E-01 -6.4260E-02 7.3930E-03 9.8760E-03 -5.2300E-03 1.0380E-03 -7.6000E-05
S15 -2.5815E-01 2.3589E-01 -1.8491E-01 1.2401E-01 -5.3790E-02 1.4225E-02 -2.2500E-03 1.9600E-04 -7.4000E-06
S16 -1.4353E-01 1.1460E-01 -7.1140E-02 3.1477E-02 -9.7100E-03 2.0130E-03 -2.7000E-04 2.0200E-05 -6.7000E-07
表35
表36给出实施例12中各透镜的有效焦距f1至f8、光学成像镜头的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S19在光轴上的距离TTL、成像面S19上有效像素区域对角线长的一半ImgH以及光学成像镜头的全视场角FOV。
f1(mm) 3.92 f7(mm) 2.99
f2(mm) -85.08 f8(mm) -1.99
f3(mm) -11.05 f(mm) 4.01
f4(mm) 8.57 TTL(mm) 4.86
f5(mm) -14.09 ImgH(mm) 3.10
f6(mm) 1119.19 FOV(°) 74.0
表36
图24A示出了实施例12的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图24B示出了实施例 12的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24C示出了实施例12的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图24D示出了实施例12的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图24A至图24D可知,实施例12所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例12分别满足表37中所示的关系。
Figure PCTCN2018116311-appb-000019
表37
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (29)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第三透镜具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度,其物侧面为凸面,像侧面为凸面;
    所述第五透镜具有正光焦度或负光焦度,其像侧面为凹面;
    所述第六透镜具有正光焦度或负光焦度;
    所述第七透镜具有正光焦度;以及
    所述第八透镜具有负光焦度。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤2.0。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.70。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的全视场角FOV满足70°≤FOV≤80°。
  5. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足0.5<f1/f<1.5。
  6. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足-0.5<f/f2<0。
  7. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第八透镜的有效焦距f8满足-2.0<f7/f8<-1.0。
  8. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第四透镜的像侧面的曲率半径R8与所述第四透镜的物侧面的曲率半径R7满足-2.5<R8/R7<-0.5。
  9. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第五透镜于所述光轴上的中心厚度CT5满足1.0<CT4/CT5<2.5。
  10. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的像侧面的曲率半径R10满足0<f/R10<1.0。
  11. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第六透镜和所述第七透镜于所述光轴上的间隔距离T67与所述第七透镜和所述第八透镜于所述光轴上的间隔距离T78满足0<T67/T78<1.0。
  12. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第三透镜的物侧面的曲率半径R5满足0<R6/R5<1.5。
  13. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜的物侧面的曲率半径R1满足1.5<f1/R1<2.5。
  14. 根据权利要求1至4中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第六透镜于所述光轴上的中心厚度CT6满足13.0<f/CT6<17.0。
  15. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第三透镜、所述第五透镜和所述第六透镜均具有正光焦度或负光焦度;
    所述第四透镜具有正光焦度或负光焦度,其物侧面为凸面,像侧面为凸面;
    所述第七透镜具有正光焦度;
    所述第八透镜具有负光焦度;
    其中,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤2.0。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足0.5<f1/f<1.5。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第一透镜的物侧面的曲率半径R1满足1.5<f1/R1<2.5。
  18. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第二透镜的有效焦距f2满足-0.5<f/f2<0。
  19. 根据权利要求15所述的光学成像镜头,其特征在于,所述第三透镜的物侧面为凸面,像侧面为凹面。
  20. 根据权利要求19所述的光学成像镜头,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第三透镜的物侧面的曲率半径R5满足0<R6/R5<1.5。
  21. 根据权利要求15所述的光学成像镜头,其特征在于,所述第四透镜的像侧面的曲率半径R8与所述第四透镜的物侧面的曲率半径R7满足-2.5<R8/R7<-0.5。
  22. 根据权利要求19所述的光学成像镜头,其特征在于,所述第五透镜的像侧面为凹面。
  23. 根据权利要求22所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的像侧面的曲率半径R10满足0<f/R10<1.0。
  24. 根据权利要求15所述的光学成像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第八透镜的有效焦距f8满足-2.0<f7/f8<-1.0。
  25. 根据权利要求15至24中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的全视场角FOV满足70°≤FOV≤80°。
  26. 根据权利要求15至24中任一项所述的光学成像镜头,其特 征在于,所述第一透镜的物侧面的中心至所述光学成像镜头的成像面在光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.70。
  27. 根据权利要求26所述的光学成像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第五透镜于所述光轴上的中心厚度CT5满足1.0<CT4/CT5<2.5。
  28. 根据权利要求26所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第六透镜于所述光轴上的中心厚度CT6满足13.0<f/CT6<17.0。
  29. 根据权利要求26所述的光学成像镜头,其特征在于,所述第六透镜和所述第七透镜于所述光轴上的间隔距离T67与所述第七透镜和所述第八透镜于所述光轴上的间隔距离T78满足0<T67/T78<1.0。
PCT/CN2018/116311 2017-11-22 2018-11-20 光学成像镜头 WO2019101052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/744,957 US11493733B2 (en) 2017-11-22 2020-01-16 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711171315.2 2017-11-22
CN201711171315.2A CN107703609B (zh) 2017-11-22 2017-11-22 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,957 Continuation US11493733B2 (en) 2017-11-22 2020-01-16 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019101052A1 true WO2019101052A1 (zh) 2019-05-31

Family

ID=61185394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116311 WO2019101052A1 (zh) 2017-11-22 2018-11-20 光学成像镜头

Country Status (3)

Country Link
US (1) US11493733B2 (zh)
CN (3) CN113985584B (zh)
WO (1) WO2019101052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967811A (zh) * 2019-12-13 2020-04-07 瑞声通讯科技(常州)有限公司 摄像光学镜头

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962742B2 (en) * 2017-10-24 2021-03-30 Zhejiang Sunny Optical Co., Ltd. Optical imaging lens assembly
WO2019091170A1 (zh) * 2017-11-10 2019-05-16 浙江舜宇光学有限公司 摄像透镜组
CN113985584B (zh) * 2017-11-22 2024-03-29 浙江舜宇光学有限公司 光学成像镜头
WO2019100768A1 (zh) * 2017-11-22 2019-05-31 浙江舜宇光学有限公司 光学成像镜头
CN108279484B (zh) * 2018-03-13 2024-01-26 浙江舜宇光学有限公司 光学成像系统
CN108445610B (zh) * 2018-06-05 2023-05-26 浙江舜宇光学有限公司 光学成像镜片组
CN110646917B (zh) * 2018-06-26 2022-08-19 三星电机株式会社 光学成像系统
TWI684024B (zh) 2018-07-04 2020-02-01 大立光電股份有限公司 攝影光學鏡組、取像裝置及電子裝置
JP6530538B1 (ja) * 2018-07-20 2019-06-12 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP6463592B1 (ja) * 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN108646394B (zh) * 2018-07-26 2023-04-28 浙江舜宇光学有限公司 光学成像镜头
CN116719151A (zh) 2018-08-02 2023-09-08 浙江舜宇光学有限公司 光学成像镜头
CN108681040B (zh) * 2018-08-02 2023-06-09 浙江舜宇光学有限公司 光学成像镜片组
CN109164560B (zh) * 2018-10-22 2024-01-12 浙江舜宇光学有限公司 成像镜头
TWI699574B (zh) 2018-10-24 2020-07-21 大立光電股份有限公司 成像透鏡系統、取像裝置及電子裝置
CN109239891B (zh) * 2018-11-16 2024-04-19 浙江舜宇光学有限公司 光学成像透镜组
CN117741916A (zh) * 2018-11-27 2024-03-22 浙江舜宇光学有限公司 光学成像透镜组
CN109343205A (zh) * 2018-12-14 2019-02-15 浙江舜宇光学有限公司 光学成像镜头
KR20200098047A (ko) * 2019-02-11 2020-08-20 삼성전기주식회사 촬상 광학계
CN109870788B (zh) * 2019-04-02 2024-04-19 浙江舜宇光学有限公司 摄像透镜组
WO2021026869A1 (zh) 2019-08-15 2021-02-18 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子装置
CN110515183B (zh) * 2019-08-19 2021-06-29 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110412748A (zh) 2019-08-28 2019-11-05 浙江舜宇光学有限公司 光学成像系统
CN110412749B (zh) * 2019-08-28 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN110426823B (zh) * 2019-09-03 2024-05-14 浙江舜宇光学有限公司 光学成像透镜组
JP7416587B2 (ja) * 2019-09-03 2024-01-17 東京晨美光学電子株式会社 撮像レンズ
CN110632742A (zh) * 2019-11-06 2019-12-31 浙江舜宇光学有限公司 光学成像镜头
KR102449626B1 (ko) * 2019-11-21 2022-09-30 삼성전기주식회사 촬상 광학계
KR102418603B1 (ko) 2019-11-25 2022-07-07 삼성전기주식회사 촬상 광학계
CN110989133B (zh) * 2019-12-04 2021-10-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021114246A1 (zh) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111025532B (zh) * 2019-12-13 2021-05-04 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021114241A1 (zh) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021114248A1 (zh) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110989136A (zh) * 2019-12-20 2020-04-10 玉晶光电(厦门)有限公司 光学成像镜头
WO2021127880A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110908084B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007633B (zh) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142223B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111142224B (zh) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007631B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007629B (zh) * 2019-12-23 2022-01-07 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021127851A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007627B (zh) * 2019-12-23 2021-11-02 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021128394A1 (zh) * 2019-12-28 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021128390A1 (zh) * 2019-12-28 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021179207A1 (zh) * 2020-03-11 2021-09-16 江西晶超光学有限公司 光学系统、摄像模组及电子装置
CN111736311B (zh) * 2020-07-27 2020-11-13 常州市瑞泰光电有限公司 摄像光学镜头
CN111929813A (zh) * 2020-08-17 2020-11-13 玉晶光电(厦门)有限公司 光学成像镜头
CN112180542B (zh) * 2020-09-29 2022-07-12 常州市瑞泰光电有限公司 摄像光学镜头
CN111929850B (zh) * 2020-09-29 2020-12-29 常州市瑞泰光电有限公司 摄像光学镜头
CN112180541B (zh) * 2020-09-29 2022-05-31 常州市瑞泰光电有限公司 摄像光学镜头
KR102460213B1 (ko) * 2020-09-29 2022-10-28 삼성전기주식회사 촬상 광학계
CN112180544B (zh) * 2020-09-29 2022-07-12 常州市瑞泰光电有限公司 摄像光学镜头
CN111929857B (zh) * 2020-10-13 2020-12-18 常州市瑞泰光电有限公司 摄像光学镜头
CN111948791B (zh) * 2020-10-14 2020-12-18 常州市瑞泰光电有限公司 摄像光学镜头
CN111929858B (zh) * 2020-10-14 2020-12-15 常州市瑞泰光电有限公司 摄像光学镜头
CN112630942B (zh) * 2021-02-19 2021-11-12 耕宇牧星(北京)空间科技有限公司 光学成像镜头
CN113341540B (zh) * 2021-06-09 2023-03-17 浙江舜宇光学有限公司 光学成像镜头
CN113433656B (zh) * 2021-06-11 2023-11-07 江西欧菲光学有限公司 一种成像系统、镜头模组及电子设备
CN113534407B (zh) * 2021-06-30 2023-11-07 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN115202007A (zh) * 2021-08-04 2022-10-18 三星电机株式会社 光学成像系统
CN113376813B (zh) * 2021-08-16 2021-11-02 江西联益光学有限公司 光学镜头及成像设备
CN114236766A (zh) * 2021-12-28 2022-03-25 玉晶光电(厦门)有限公司 光学成像镜头
CN114488475B (zh) * 2021-12-29 2023-09-05 江西晶超光学有限公司 光学系统、镜头模组和电子设备
CN114740590B (zh) * 2022-02-28 2023-09-08 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114779439B (zh) * 2022-04-28 2023-07-18 浙江舜宇光学有限公司 光学成像镜头
CN114815173B (zh) * 2022-07-01 2022-11-01 江西联创电子有限公司 激光雷达接收镜头
CN114994880B (zh) * 2022-08-08 2022-11-22 江西晶超光学有限公司 光学系统、镜头模组及电子设备
CN117406409B (zh) * 2023-12-11 2024-03-26 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057328A (en) * 1974-12-30 1977-11-08 Olympus Optical Co., Ltd. Enlarging lens system
JP2000089108A (ja) * 1998-07-16 2000-03-31 Nikon Corp 読取用レンズ
CN104898259A (zh) * 2015-06-30 2015-09-09 中山联合光电科技股份有限公司 一种具有大孔径大像面的光学镜头
CN106950682A (zh) * 2017-04-28 2017-07-14 深圳市东正光学技术有限公司 中长焦镜头
CN107703609A (zh) * 2017-11-22 2018-02-16 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130850A (en) * 1989-12-20 1992-07-14 Mitsubishi Denki Kabushiki Kaisha Projection lens system
US5212597A (en) * 1990-10-25 1993-05-18 Fuji Photo Optical Co., Ltd. Projection lens system for projectors
JP3559623B2 (ja) * 1995-07-14 2004-09-02 富士写真光機株式会社 結像レンズ
CN103430075B (zh) * 2011-03-11 2016-01-20 富士胶片株式会社 可变放大率光学系统和成像设备
KR20130069046A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 망원렌즈 시스템
US20150036230A1 (en) 2013-07-31 2015-02-05 Genius Electronic Optical Co., Ltd. Optical imaging lens
TWI522643B (zh) 2014-06-11 2016-02-21 先進光電科技股份有限公司 光學成像系統
CN104808332B (zh) 2015-05-11 2017-11-17 中山联合光电科技股份有限公司 一种高分辨率、自动对焦电子显微目镜系统
CN104808315B (zh) 2015-05-22 2017-06-30 福建浩蓝光电有限公司 一种高像质、低畸变机器视觉紫外镜头
CN104932086B (zh) 2015-06-29 2017-04-12 中山联合光电科技股份有限公司 一种大孔径大像面光学镜头
TWI586998B (zh) 2015-08-11 2017-06-11 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
TWI553341B (zh) * 2015-08-11 2016-10-11 大立光電股份有限公司 影像擷取鏡片組、取像裝置及電子裝置
US9841586B2 (en) * 2015-08-31 2017-12-12 Panasonic Intellectual Property Management Co., Ltd. Single focal length lens system, interchangeable lens apparatus, and camera system
JP6478903B2 (ja) 2015-12-21 2019-03-06 カンタツ株式会社 撮像レンズ
KR20180076742A (ko) * 2016-12-28 2018-07-06 삼성전기주식회사 촬상 광학계
CN107085285B (zh) 2017-07-05 2022-09-30 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057328A (en) * 1974-12-30 1977-11-08 Olympus Optical Co., Ltd. Enlarging lens system
JP2000089108A (ja) * 1998-07-16 2000-03-31 Nikon Corp 読取用レンズ
CN104898259A (zh) * 2015-06-30 2015-09-09 中山联合光电科技股份有限公司 一种具有大孔径大像面的光学镜头
CN106950682A (zh) * 2017-04-28 2017-07-14 深圳市东正光学技术有限公司 中长焦镜头
CN107703609A (zh) * 2017-11-22 2018-02-16 浙江舜宇光学有限公司 光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967811A (zh) * 2019-12-13 2020-04-07 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110967811B (zh) * 2019-12-13 2021-11-02 诚瑞光学(常州)股份有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN107703609A (zh) 2018-02-16
US11493733B2 (en) 2022-11-08
CN113917666B (zh) 2023-08-08
US20200201002A1 (en) 2020-06-25
CN113985584A (zh) 2022-01-28
CN107703609B (zh) 2023-06-30
CN113985584B (zh) 2024-03-29
CN113917666A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019101052A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
CN108873272B (zh) 光学成像镜头
CN108681040B (zh) 光学成像镜片组
WO2019100868A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2019192180A1 (zh) 光学成像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019233160A1 (zh) 光学成像镜片组
WO2019114366A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
CN110346919B (zh) 光学成像镜头
WO2019196572A1 (zh) 光学成像系统
WO2020010879A1 (zh) 光学成像系统
WO2019210739A1 (zh) 光学成像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019080554A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019095865A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019137246A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882097

Country of ref document: EP

Kind code of ref document: A1