WO2021026869A1 - 光学系统、取像模组及电子装置 - Google Patents

光学系统、取像模组及电子装置 Download PDF

Info

Publication number
WO2021026869A1
WO2021026869A1 PCT/CN2019/100747 CN2019100747W WO2021026869A1 WO 2021026869 A1 WO2021026869 A1 WO 2021026869A1 CN 2019100747 W CN2019100747 W CN 2019100747W WO 2021026869 A1 WO2021026869 A1 WO 2021026869A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image
convex
circumference
Prior art date
Application number
PCT/CN2019/100747
Other languages
English (en)
French (fr)
Inventor
张文燕
刘彬彬
邹海荣
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to US17/601,075 priority Critical patent/US11953756B2/en
Priority to PCT/CN2019/100747 priority patent/WO2021026869A1/zh
Publication of WO2021026869A1 publication Critical patent/WO2021026869A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to the field of optical imaging, in particular to an optical system, an image capturing module and an electronic device.
  • an optical system an image capturing module, and an electronic device are provided.
  • An optical system from the object side to the image side, includes:
  • a first lens with positive refractive power, the object side of the first lens is convex at the circumference
  • the third lens with refractive power is the third lens with refractive power
  • the fourth lens with refractive power is the fourth lens with refractive power
  • the fifth lens with refractive power is the fifth lens with refractive power
  • the sixth lens with refractive power is the sixth lens with refractive power
  • a seventh lens with refractive power wherein the image side surface of the seventh lens is concave at the optical axis;
  • the eighth lens with negative refractive power is the eighth lens with negative refractive power
  • optical system satisfies the following relationship:
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical system on the optical axis
  • the optical system further includes a diaphragm
  • L is the effective aperture diameter of the diaphragm
  • An image capturing module includes a photosensitive element and the above-mentioned optical system, and the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes the above-mentioned image capturing module.
  • FIG. 1 is a schematic diagram of the optical system provided by the first embodiment of the application.
  • Figure 2 shows the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the first embodiment
  • FIG. 3 is a schematic diagram of the optical system provided by the second embodiment of the application.
  • Figure 4 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the second embodiment;
  • FIG. 5 is a schematic diagram of an optical system provided by a third embodiment of the application.
  • Fig. 6 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the third embodiment;
  • FIG. 7 is a schematic diagram of an optical system provided by a fourth embodiment of this application.
  • Fig. 8 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the fourth embodiment;
  • FIG. 9 is a schematic diagram of an optical system provided by a fifth embodiment of this application.
  • FIG. 10 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the fifth embodiment;
  • FIG. 11 is a schematic diagram of an optical system provided by a sixth embodiment of this application.
  • Fig. 12 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the sixth embodiment;
  • FIG. 13 is a schematic diagram of an optical system provided by a seventh embodiment of this application.
  • 15 is a schematic diagram of an optical system provided by an eighth embodiment of this application.
  • Fig. 16 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the eighth embodiment;
  • FIG. 17 is a schematic diagram of an optical system provided by a ninth embodiment of this application.
  • mm longitudinal spherical aberration diagram
  • mm astigmatism diagram
  • % distortion diagram
  • 21 is a schematic diagram of an optical system provided by an eleventh embodiment of this application.
  • FIG. 23 is a schematic diagram of an optical system provided by a twelfth embodiment of this application.
  • FIG. 25 is a schematic diagram of an optical system provided by a thirteenth embodiment of this application.
  • FIG. 26 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the thirteenth embodiment;
  • FIG. 27 is a schematic diagram of an optical system provided by a fourteenth embodiment of this application.
  • Fig. 28 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the fourteenth embodiment;
  • FIG. 29 is a schematic diagram of an image capturing module provided by an embodiment of the application.
  • FIG. 30 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • the optical system provided in this application can be applied to, but not limited to, electronic devices such as mobile phones, tablet computers, drones, computers, etc., so that users can obtain high-quality captured images in dark environments.
  • the optical system 100 of an embodiment of the present application sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side.
  • the first lens L1 includes the object side S1 and the image side S2; the second lens L2 includes the object side S3 and the image side S4; the third lens L3 includes the object side S5 and the image side S6; the fourth lens L4 includes the object side S7 and the image side S8; the fifth lens L5 includes the object side S9 and the image side S10; the sixth lens L6 includes the object side S11 and the image side S12; the seventh lens L7 includes the object side S13 and the image side S14; the eighth lens L8 includes the object side S15 and Like the side S16.
  • the optical system 100 has an imaging surface S19 on the image side of the eighth lens L8, and the imaging surface S19 may be the photosensitive surface of the photosensitive element.
  • the object side surface S1 of the first lens L1 is convex at the optical axis; the object side S3 of the second lens L2 is convex at the optical axis; the object side S13 of the seventh lens L7 is convex at the optical axis, and the image side S14 is concave ; The object side surface S15 of the eighth lens L8 is convex at the optical axis, and the image side surface S16 is concave at the optical axis.
  • a side surface of the lens is convex at the optical axis (the central area of the side)
  • the area near the optical axis of the side of the lens is convex, so the side can also be considered as convex.
  • the paraxial area is a convex surface; when describing a side surface of the lens as a concave surface at the circumference, it can be understood that the side surface near the maximum effective radius is a concave surface.
  • the shape of the side surface from the center (optical axis) to the edge direction can be a pure convex surface; or a convex shape from the center first Transition to a concave shape and then become convex when approaching the maximum effective radius.
  • the various shapes and structures (concave-convex relationship) on the side surface are not fully represented, but other situations can be derived from the above examples.
  • the object side surface or the image side surface of the lens in the optical system 100 may be a spherical surface or an aspheric surface.
  • the surface type formula of the aspheric surface is:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex (at the optical axis)
  • k is the cone Constant
  • Ai is the coefficient corresponding to the higher order term of the i-th term in the aspheric surface formula.
  • each lens in the optical system 100 (first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, and third lens) Both the object side and the image side of the eight lens L8) are aspherical.
  • the material of each lens in the optical system 100 is plastic.
  • the plastic lens can reduce the weight of the optical system 100 and reduce the production cost.
  • the material of each lens in the optical system 100 is glass.
  • the optical system 100 can withstand higher temperatures and has better optical performance.
  • the material of the first lens L1 is glass, and the material of the other lenses is plastic.
  • the first lens L1 closest to the object side can well withstand the environmental temperature of the object side, and Due to the fact that other lenses are made of plastic, the optical system 100 can also maintain a low production cost.
  • the material of each lens in the optical system 100 may be any of plastic or glass.
  • a stop STO is provided in the optical system 100, and the stop STO may be provided on the object side of the first lens L1.
  • the diaphragm STO is arranged on the object side of the first lens L1
  • the optical system 100 is described as being sequentially arranged with the diaphragm STO, the first lens L1, and the second lens L2 from the object side to the image side.
  • the projection of the stop STO on the optical axis of the first lens L1 may overlap with the projection of the first lens L1 on the optical axis, or may not overlap.
  • the image side of the eighth lens L8 is further provided with an infrared cut filter L9, and the infrared cut filter L9 includes an object side surface S17 and an image side surface S18.
  • the infrared cut filter L9 can filter infrared light, prevent the infrared light from passing through and reaching the photosensitive element, and prevent the infrared interference light from being received by the photosensitive element and affecting normal imaging, thereby improving the imaging quality of the optical system 100.
  • the infrared cut filter L9 can be assembled together with the photosensitive element and assembled on the image side of the optical system 100 together with the photosensitive element, or the infrared cut filter can also be directly arranged in the optical system 100 to combine with The lenses are assembled into one body.
  • the optical system 100 may include, in addition to a lens with refractive power, a mirror, a diaphragm, a filter, Any components such as protective glass and photosensitive components.
  • the optical system 100 satisfies the following relationship:
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis
  • L is the effective aperture diameter of the stop STO.
  • TTL/L can be 1.76, 1.78, 1.80, 1.81, 1.85, 1.90, 1.95, 2.10, 2.20, 2.25, or 2.30.
  • the optical system 100 has the characteristics of large aperture and large aperture in performance, and has the ability to obtain high-quality images in dark environments such as cloudy days, night scenes, and starry sky, and the image quality is high in definition; in addition, optical The system 100 also has the feature of miniaturization in structure.
  • the optical system 100 satisfies the following relationship:
  • f14 is the combined focal length of the first lens L1, the second lens L2, the third lens L3 and the fourth lens L4, and f58 is the combination of the fifth lens L5, the sixth lens L6, the seventh lens L7 and the eighth lens L8 focal length.
  • f14 can be 5.20, 5.22, 5.25, 5.30, 5.35, 5.40, 5.50, 5.60, 5.70, 5.80, 5.85, 5.90 or 5.92;
  • f58 can be -30.00, -28.00, -25.00, -23.00, -20.00, -15.00, -14.50, -14.00, -10.00, -9.50, -9.30, -9.10, -8.50, -8.40, or -8.30.
  • the units of f14 and f58 are both mm.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 combine to form a first lens group with positive refractive power
  • the fifth lens L5, the sixth lens L6, and the seventh lens L7 In combination with the eighth lens L8, a second lens group with negative refractive power is formed.
  • the positive and negative refractive powers of the first lens group and the second lens group cooperate with each other to achieve the purpose of correcting field curvature, distortion and aberration.
  • the optical system 100 satisfies the following relationship:
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 combine to form a first lens group with positive refractive power.
  • the fifth lens L5, the sixth lens L6, the seventh lens L7, and the eighth lens L8 The combination forms a second lens group with negative refractive power.
  • f14/f58 can be -0.60, -0.57, -0.50, -0.45, -0.37, -0.35, -0.30, -0.25, -0.22, -0.20, or -0.19.
  • the first lens group and the second lens group can cooperate with each other to achieve the purpose of correcting aberrations, curvature of field and distortion.
  • the optical system 100 satisfies the following relationship:
  • Fno is the aperture number of the optical system 100
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis
  • the unit of TTL is mm.
  • Fno/TTL can be 0.24, 0.250, 0.28, 0.30 or 0.32.
  • the optical system 100 satisfies the following relationship:
  • FNO can be 1.40, 1.41, 1.42, 1.45, 1.47, 1.48, 1.57, 1.65, 1.70, 1.75, 1.80, 1.84, 1.86, or 1.87.
  • the optical system 100 not only meets the miniaturization, but also has the characteristics of large aperture, so that the optical system 100 has sufficient light input, and thus has the ability to obtain high-quality images in dark environments such as night scenes and stars.
  • the optical system 100 satisfies the following relationship:
  • TTL is the distance from the object side surface S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis
  • Imgh is half of the diagonal length of the effective pixel area on the imaging surface S19.
  • TTL/Imgh can be 1.45, 4.46, 1.47, or 1.48.
  • TTL/Imgh can determine the size of the optical system 100. Therefore, when the above relationship is satisfied, the optical system 100 can realize a miniaturized design. In addition, the optical system 100 has a larger image height to meet the 48M design requirement.
  • the optical system 100 satisfies the following relationship:
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis
  • f is the effective focal length of the optical system 100.
  • can be 1.21, 1.22, 1.23, or 1.24.
  • ⁇ 1.0 the optical length of the optical system 100 is too short, resulting in increased system sensitivity and difficulty in aberration correction; when TTL/
  • the optical system 100 satisfies the following relationship:
  • f is the effective focal length of the optical system 100
  • f1 is the effective focal length of the first lens L1.
  • f/f1 can be 0.70, 0.73, 0.75, 0.78, 0.85, 0.92, 0.93, 0.94, 0.97, 1.00, 1.02, 1.04, or 1.08.
  • the optical information obtained by the optical system 100 needs to pass through the first lens L1.
  • the focal length of the first lens L1 determines the optical information obtained by the optical system 100 in the object space.
  • the sensitivity of the optical system 100 can be reduced. , Reduce the difficulty of the processing technology, and reduce the difficulty of correcting the aberrations generated by the first lens L1.
  • the optical system 100 satisfies the following relationship:
  • R9 is the curvature radius of the object side surface S7 of the fourth lens L4 at the optical axis
  • R10 is the curvature radius of the image side surface S8 of the fourth lens L4 at the optical axis
  • the units of R9 and R10 are mm.
  • (R9+R10)/(R9*R10) can be -0.07, -0.06, -0.05, 0.10, 0.15, 0.20 or 0.21.
  • the optical system 100 satisfies the following relationship:
  • R3 is the radius of curvature of the object side S1 of the first lens L1 at the optical axis
  • R4 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis
  • f1 is the effective focal length of the first lens L1.
  • (R3+R4)/f1 can be 0.88, 0.90, 0.92, 1.00, 1.30, 1.70, 2.00, 2.55, 2.60, 2.70, 2.90, 3.00, 3.10, 3.15, or 3.20.
  • the optical system 100 satisfies the following relationship:
  • R5 is the curvature radius of the object side surface S3 of the second lens L2 at the optical axis
  • R6 is the curvature radius of the image side surface S4 of the second lens L2 at the optical axis.
  • the second lens L2 provides negative refractive power to balance the distortion produced by the first lens L1 and correct the aberration produced by the first lens L1.
  • R5/R6 can be 1.00, 1.10, 1.20, 1.50, 1.80, 2.00, 2.10, 2.20, 2.30, 2.43, 2.45, 2.50, 2.60, 2.70, 2.80, 2.85 or 2.88.
  • R5/R6 ⁇ 3.5 the distortion correction will be too large; when R5/R6 ⁇ 0.8, the purpose of correcting the distortion cannot be achieved.
  • the optical system 100 satisfies the following relationship:
  • R7 is the radius of curvature of the object side surface S5 of the third lens L3 at the optical axis
  • R8 is the radius of curvature of the image side surface S6 of the third lens L3 at the optical axis.
  • can be 10.00, 11.00, 15.00, 20.00, 25.00, 35.00, 43.00 or 45.00.
  • the curvature radius of the object side surface S5 of the third lens L3 and the curvature radius of the image side surface S6 can be reasonably matched, and the incident angle can be reasonably increased to meet the image height requirements of the optical system 100, while reducing the system sensitivity. Improve assembly stability.
  • the optical system 100 satisfies the following relationship:
  • f1 is the effective focal length of the first lens L1
  • f2 is the effective focal length of the second lens L2.
  • f1/f2 can be -0.55, -0.54, -0.50, -0.49, -0.47, -0.46, -0.35, -0.30, -0.10, or 0.01.
  • the optical system 100 satisfies the following relationship:
  • R17 is the radius of curvature of the object side S15 of the eighth lens L8 at the optical axis
  • R18 is the radius of curvature of the image side S16 of the eighth lens L8 at the optical axis
  • the units of R17 and R18 are mm.
  • (R17*R18)/(R17-R18) can be 2.00, 2.10, 2.20, 2.56, 2.58, 2.60, 2.65, 2.70, 2.75, 2.80, 2.85 or 2.87.
  • the radius of curvature of the object side S15 of the eighth lens L8 and the radius of curvature of the image side S16 can be reasonably matched, which can effectively correct the spherical aberration of the optical system 100, improve distortion and astigmatism, and reduce system sensitivity. Performance and improve assembly stability.
  • the optical system 100 satisfies the following relationship:
  • ⁇ CT is the total center thickness of each lens in the optical system 100
  • f is the effective focal length of the optical system 100.
  • ⁇ CT/f can be 0.70, 0.71, 0.72, 0.73, 0.74, or 0.75.
  • the optical system 100 satisfies the following relationship:
  • ⁇ CT is the sum of the center thickness of each lens in the optical system 100
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis.
  • ⁇ CT/TTL can be 0.57, 0.58, 0.59, 0.60 or 0.61.
  • the optical system 100 satisfies the following relationship:
  • ET1 is the edge thickness of the first lens L1 (the thickness of the first lens L1 at the maximum effective radius), and CT1 is the center thickness of the first lens L1.
  • ET1/CT1 can be 0.26, 0.27, 0.28, 0.30, 0.35, 0.39, 0.42, 0.46, 0.49, 0.53, 0.55, or 0.56.
  • the optical information obtained by the optical system 100 needs to pass through the first lens L1.
  • corresponding aberrations, distortions, and curvature of field are also generated with the first lens L1. Therefore, the ratio of the edge thickness to the center thickness of the first lens L1 is not suitable. If the ratio is too large, the subsequent aberration correction will be difficult, and large distortion and field curvature will be generated, which cannot meet the optical performance requirements.
  • a good optical system 100 can be obtained to balance the image of the system. Difference, distortion and field curvature meet the requirements of high-quality shooting.
  • the optical system 100 satisfies the following relationship:
  • ET8 is the edge thickness of the eighth lens L8 (the thickness of the eighth lens L8 at the maximum effective radius), and CT8 is the center thickness of the eighth lens L8.
  • ET8/CT8 can be 0.88, 0.90, 0.92, 0.95, 1.00, 1.05, 1.10, 1.13, 1.15, 1.80, 2.10, 2.20, 2.25 or 2.27.
  • the eighth lens L8 is the key element for final correction of the aberration performance of the optical system 100.
  • the processing difficulty is relatively high, and the ratio of the edge thickness to the center thickness should not be too large. When the above relationship is satisfied, the eighth lens L8 can have good The optical performance and molding yield.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a positive refractive power in sequence from the object side to the image side.
  • the eighth lens L8 The eighth lens L8.
  • the 2 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 100 in the first embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength.
  • the reference wavelength in each embodiment is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is convex at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object-side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image-side surface S8 of the fourth lens L4 is concave at the paraxial position; the object-side surface S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the object and image sides of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the eighth lens L8 are aspherical surfaces, aspherical design that can effectively solve the problem of distortion of vision, it is possible to realize excellent optical lens effect at a smaller, thinner case, and thus the optical system 100 having a smaller volume.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the eighth lens L8 are all plastic.
  • the image side of the eighth lens L8 is further provided with an infrared cut filter L9 to filter out infrared light to prevent the photosensitive element from receiving the infrared light and affect normal imaging.
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis
  • L is the stop The effective aperture diameter of the STO.
  • the optical system 100 has the characteristics of large aperture and large aperture in performance, and has the ability to obtain high-quality images in dark environments such as cloudy days, night scenes, starry sky, etc., and the image quality is high in definition. It also has the characteristics of miniaturization.
  • the units of f14 and f58 are both mm.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 combine to form a first lens group with positive refractive power, the fifth lens L5, the sixth lens L6, and the seventh lens L7
  • a second lens group with negative refractive power is formed.
  • the positive and negative refractive powers of the first lens group and the second lens group cooperate with each other to achieve the purpose of correcting field curvature, distortion and aberration.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 combine to form a first lens group with positive refractive power.
  • the fifth lens L5, the sixth lens L6, the seventh lens L7, and the eighth lens L8 The combination forms a second lens group with negative refractive power.
  • the first lens group and the second lens group can cooperate with each other to achieve the purpose of correcting aberrations, curvature of field and distortion.
  • the unit is mm.
  • the optical system 100 not only meets the miniaturization, but also has the characteristics of large aperture, so that the optical system 100 has sufficient light input, and thus has the ability to obtain high-quality images in dark environments such as night scenes and stars.
  • the optical system 100 satisfies the relationship: TTL/
  • 1.245; where TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S19 of the optical system 100 on the optical axis, and f is the effective focal length of the optical system 100.
  • is too small, the optical length of the optical system 100 is too short, resulting in increased system sensitivity and difficulty in aberration correction;
  • is too large, the optical length of the optical system 100 is too long, resulting in The chief ray angle of the light entering the imaging surface S19 is too large, so that the light reaching the edge of the imaging surface S19 cannot be imaged on the photosensitive surface, resulting in incomplete imaging information.
  • the optical information obtained by the optical system 100 needs to pass through the first lens L1.
  • the focal length of the first lens L1 determines the optical information obtained by the optical system 100 in the object space.
  • the units of R9 and R10 are mm.
  • the radius of curvature, f1 is the effective focal length of the first lens L1.
  • the second lens L2 provides negative refractive power to balance the distortion produced by the first lens L1 and correct the aberration produced by the first lens L1.
  • the optical system 100 satisfies the relationship:
  • 13.81; where R7 is the radius of curvature of the object side surface S5 of the third lens L3 at the optical axis, and R8 is the image side surface S6 of the third lens L3 The radius of curvature at the optical axis.
  • R7 is the radius of curvature of the object side surface S5 of the third lens L3 at the optical axis
  • R8 is the image side surface S6 of the third lens L3
  • the radius of curvature at the optical axis When the above relationship is satisfied, the curvature radius of the object side surface S5 of the third lens L3 and the curvature radius of the image side surface S6 can be reasonably matched, and the incident angle can be reasonably increased to meet the image height requirements of the optical system 100, while reducing the system sensitivity. Improve assembly stability.
  • f1 is the effective focal length of the first lens L1
  • f2 is the effective focal length of the second lens L2.
  • the units of R17 and R18 are mm.
  • ⁇ CT is the sum of the center thickness of each lens in the optical system 100
  • f is the effective focal length of the optical system 100.
  • ⁇ CT is the sum of the central thickness of each lens in the optical system 100
  • TTL is the distance between the object side S1 of the first lens L1 and the imaging surface S19 of the optical system 100 on the optical axis distance.
  • ET1 is the edge thickness of the first lens L1 (the thickness of the first lens L1 at the maximum effective radius)
  • CT1 is the center thickness of the first lens L1.
  • the optical information obtained by the optical system 100 needs to pass through the first lens L1.
  • corresponding aberrations, distortions, and curvature of field are also generated with the first lens L1. Therefore, the ratio of the edge thickness to the center thickness of the first lens L1 is not suitable. If the ratio is too large, the subsequent aberration correction will be difficult, and large distortion and field curvature will be generated, which cannot meet the optical performance requirements.
  • a good optical system 100 can be obtained to balance the image of the system. Difference, distortion and field curvature meet the requirements of high-quality shooting.
  • the eighth lens L8 is the key element for final correction of the aberration performance of the optical system 100.
  • the processing difficulty is relatively high, and the ratio of the edge thickness to the center thickness should not be too large.
  • the eighth lens L8 can have good The optical performance and molding yield.
  • the various parameters of the optical system 100 are given in Table 1 and Table 2.
  • the elements of the optical system 100 from the object surface (object side) to the imaging surface S19 (image surface in Table 1) are arranged in the order of the elements in Table 1 from top to bottom.
  • the surface numbers 3 and 4 in Table 1 are respectively the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller number is the object side, and the surface with the larger number is the image side.
  • the Y radius is the curvature radius of the object side or image side at the paraxial position of the corresponding surface number.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the latter lens on the optical axis.
  • the value corresponding to the surface number 20 in the "thickness" parameter of the infrared cut filter L9 is the distance from the image side surface S18 of the infrared cut filter L9 to the imaging surface S19.
  • K in Table 2 is the conic constant
  • Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface formula.
  • the image surface in Table 1 is the photosensitive surface of the photosensitive element.
  • the refractive index and focal length of each lens are values at the reference wavelength.
  • the calculation of the relationship is based on lens parameters (such as the data in Table 1) and surface parameters (such as the data in Table 2).
  • the optical system 100 includes a stop STO, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a positive refractive power from the object side to the image side.
  • the eighth lens L8. 4 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 100 in the second embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is convex at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object-side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image-side surface S8 of the fourth lens L4 is concave at the paraxial position; the object-side surface S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the parameters of the optical system 100 are given in Tables 3 and 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a second lens L2 with a negative refractive power, in order from the object side to the image side.
  • Figure 6 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 100 in the third embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is convex at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object-side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image-side surface S8 of the fourth lens L4 is concave at the paraxial position; the object-side surface S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the parameters of the optical system 100 are given in Table 5 and Table 6, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a positive refractive power in sequence from the object side to the image side.
  • the eighth lens L8. 8 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the fourth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, the image side surface S6 of the third lens L3 is concave at the paraxial position; the object side surface S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object-side surface S7 of the fourth lens L4 is concave at the paraxial position, the image-side surface S8 of the fourth lens L4 is convex at the paraxial position; the object-side surface S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a positive refractive power in sequence from the object side to the image side.
  • Figure 10 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 100 in the fifth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, the image side surface S6 of the third lens L3 is concave at the paraxial position; the object side surface S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a positive refractive power from the object side to the image side.
  • Figure 12 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 100 in the sixth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is convex at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object-side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image-side surface S8 of the fourth lens L4 is concave at the paraxial position; the object-side surface S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from S1 to the imaging surface S19 on the optical axis TTL 6.07mm.
  • the optical system 100 includes a stop STO, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens L2 with negative refractive power in sequence from the object side to the image side.
  • the eighth lens L8. 14 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the seventh embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a positive refractive power, a second lens L2 with a negative refractive power, in order from the object side to the image side.
  • the eighth lens L8. 16 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the eighth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is concave at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from S1 to the imaging surface S19 on the optical axis TTL 5.92mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a negative refractive power in sequence from the object side to the image side.
  • FIG. 18 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 100 in the ninth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is concave at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is concave at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a second lens L2 with a negative refractive power, in order from the object side to the image side.
  • the eighth lens L8. 20 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the tenth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is concave at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • TTL 5.9 mm.
  • the parameters of the optical system 100 are given in Table 19 and Table 20, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a negative refractive power from the object side to the image side.
  • FIG. 22 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 100 in the eleventh embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the reference wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is convex at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is concave at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from the side surface S1 to the imaging surface S19 on the optical axis TTL 5.9 mm.
  • the parameters of the optical system 100 are given in Table 21 and Table 22, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a negative refractive power from the object side to the image side.
  • Powerful eighth lens L8. 24 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the twelfth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the reference wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is concave at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is convex at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from the side surface S1 to the imaging surface S19 on the optical axis TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a second lens L2 with a negative refractive power, in order from the object side to the image side.
  • FIG. 26 includes the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the thirteenth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the reference wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object-side surface S5 of the third lens L3 is convex at the paraxial position, and the image-side surface S6 of the third lens L3 is concave at the paraxial position; the object-side surface S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is concave at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is concave at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from the side surface S1 to the imaging surface S19 on the optical axis TTL 5.9 mm.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a second lens with a negative refractive power in order from the object side to the image side.
  • FIG. 28 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 100 in the fourteenth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the reference wavelength is 555nm.
  • the object-side surface S1 of the first lens L1 is convex at the paraxial position, and the image-side surface S2 of the first lens L1 is concave at the paraxial position; the object-side surface S1 of the first lens L1 is convex at the circumference, and the image of the first lens L1
  • the side surface S2 is concave at the circumference.
  • the object-side surface S3 of the second lens L2 is convex at the paraxial position, and the image-side surface S4 of the second lens L2 is concave at the paraxial position; the object-side surface S3 of the second lens L2 is convex at the circumference, and the image of the second lens L2
  • the side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, the image side surface S6 of the third lens L3 is concave at the paraxial position; the object side surface S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 of the fourth lens L4 is convex at the paraxial position; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 of the fifth lens L5 is concave at the paraxial position; the object side surface S9 of the fifth lens L5 is concave at the circumference, and the image of the fifth lens L5
  • the side surface S10 is concave at the circumference.
  • the object-side surface S11 of the sixth lens L6 is concave at the paraxial position, and the image-side surface S12 of the sixth lens L6 is convex at the paraxial position; the object-side surface S11 of the sixth lens L6 is concave at the circumference, and the image of the sixth lens L6
  • the side surface S12 is convex at the circumference.
  • the object-side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image-side surface S14 of the seventh lens L7 is concave at the paraxial position; the object-side surface S13 of the seventh lens L7 is concave at the circumference, and the image of the seventh lens L7
  • the side surface S14 is convex at the circumference.
  • the object-side surface S15 of the eighth lens L8 is concave at the paraxial position, and the image-side surface S16 of the eighth lens L8 is concave at the paraxial position; the object-side surface S15 of the eighth lens L8 is concave at the circumference, and the image of the eighth lens L8
  • the side surface S16 is convex at the circumference.
  • the distance from the side surface S1 to the imaging surface S19 on the optical axis TTL 5.9 mm.
  • the image side of the optical system is equipped with a photosensitive element 210 to form the imaging module 200.
  • the photosensitive element may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Complementary metal oxide semiconductor). It should be noted that the imaging surface S19 in the above embodiments can be understood as the photosensitive surface of the photosensitive element 210.
  • the photosensitive element 210 is relatively fixedly arranged on the image side of the optical system, and the imaging module 200 at this time is a fixed focus module.
  • a voice coil motor is configured to enable the photosensitive element 210 to move relative to each lens in the optical system 100, thereby achieving a focusing function.
  • the image capturing module 200 can be applied to but not limited to electronic devices 30 such as smart phones, tablet computers, PDAs (Personal Digital Assistants), drones, computers, etc. Enable users to obtain high-quality shooting images in dark environments.
  • the electronic device 30 includes any mobile terminal with camera capability, especially a smart phone.
  • the image capturing module 200 when the image capturing module 200 is a fixed focus module, the image capturing module 200 can be used as the front camera module of a smart phone; when the image capturing module 200 has a focusing function, the image capturing module 200 can also be used as The rear camera module of a smartphone.
  • the electronic device 30 will have the ability to obtain high-quality images in dark environments such as night scenes and starry sky.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, for example, two, three, etc., unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),光学系统(100)由物侧至像侧依次包括具有正屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)于圆周处为凸面;具有屈折力的第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)、第六透镜(L6)、第七透镜(L7)以及具有负屈折力的第八透镜(L8),第七透镜(L7)的像侧面(S14)于光轴处为凹面,另外,光学系统(100)满足1<TTL/L<2.5,其中TTL为第一透镜(L1)的物侧面(S1)至光学系统(100)的成像面(S19)于光轴上的距离,光学系统(100)还包括光阑(STO),L为光阑(STO)的有效孔径直径。

Description

光学系统、取像模组及电子装置 技术领域
本发明涉及光学成像领域,特别是涉及一种光学系统、取像模组及电子装置。
背景技术
随着社会发展,手机、平板电脑、无人机、计算机等电子产品在生活中的应用变得越来越广泛。对于具备摄像功能的电子产品而言,大部分电子产品在暗环境下所拍摄的景象画面质量较低,无法满足大众在阴天、夜晚等光线不足的环境下的高质量拍摄需求,因此针对电子产品上的摄像模组的改进逐渐成为大众关注的重点之一。
发明内容
根据本申请的各种实施例,提供一种光学系统、取像模组及电子装置。
一种光学系统,由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于圆周处为凸面;
具有屈折力的第二透镜;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有屈折力的第六透镜;
具有屈折力的第七透镜,所述第七透镜的像侧面于光轴处为凹面;
具有负屈折力的第八透镜;
所述光学系统满足以下关系:
1<TTL/L<2.5;
其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,所述光学系统还包括光阑,L为所述光阑的有效孔径直径。
一种取像模组,包括感光元件及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子装置,包括上述的取像模组。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统示意图;
图2为第一实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图3为本申请第二实施例提供的光学系统的示意图;
图4为第二实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图5为本申请第三实施例提供的光学系统的示意图;
图6为第三实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图7为本申请第四实施例提供的光学系统的示意图;
图8为第四实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图9为本申请第五实施例提供的光学系统的示意图;
图10为第五实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图11为本申请第六实施例提供的光学系统的示意图;
图12为第六实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图13为本申请第七实施例提供的光学系统的示意图;
图14为第七实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图15为本申请第八实施例提供的光学系统的示意图;
图16为第八实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图17为本申请第九实施例提供的光学系统的示意图;
图18为第九实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图19为本申请第十实施例提供的光学系统的示意图;
图20为第十实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图21为本申请第十一实施例提供的光学系统的示意图;
图22为第十一实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图23为本申请第十二实施例提供的光学系统的示意图;
图24为第十二实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图25为本申请第十三实施例提供的光学系统的示意图;
图26为第十三实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图27为本申请第十四实施例提供的光学系统的示意图;
图28为第十四实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图29为本申请一实施例提供的取像模组的示意图;
图30为本申请一实施例提供的电子装置的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请所提供的光学系统可应用于但不限于手机、平板电脑、无人机、计算机等电子装置,以使用户能够在暗环境下获得高质量的拍摄影像。
参考图1,本申请一实施例的光学系统100由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8。
第一透镜L1包括物侧面S1及像侧面S2;第二透镜L2包括物侧面S3及像侧面S4;第三透镜L3包括物侧面S5及像侧面S6;第四透镜L4包括物侧面S7及像侧面S8;第五透镜L5包括物侧面S9及像侧面S10;第六透镜L6包括物侧面S11及像侧面S12;第七透镜L7包括物侧面S13及像侧面S14;第八透镜L8包括物侧面S15及像侧面S16。另外,光学系统100于第八透镜L8的像侧还有一成像面S19,成像面S19可以为感光元件的感光表面。
第一透镜L1的物侧面S1于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14为凹面;第八透镜L8的物侧面S15于光轴处为凸面,像侧面S16于光轴处为凹面。
需要注意的是,当描述透镜的一个侧面于光轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该侧面于光轴附近的区域为凸面,因此也可认为该侧面于近轴处为凸面;当描述透镜的一个侧面于圆周处为凹面时,可理解为该侧面在靠近最大有效半径处的区域为凹面。举例而言,当该侧面于光轴处为凸面,且于圆周处也为凸面时,该侧面由中心(光轴)至边缘方向的形状可以为纯粹的凸面; 或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,侧面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
在一些实施例中,光学系统100中透镜的物侧面或像侧面可以为球面,也可以为非球面,非球面的面型公式为:
Figure PCTCN2019100747-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点(于光轴处)的曲率,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
在一些实施例中,光学系统100中的各透镜(第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8)的物侧面和像侧面均为非球面。
在一些实施例中,光学系统100中各透镜的材质均为塑料,此时,塑料材质的透镜能够减少光学系统100的重量并降低生产成本。在另一些实施例中,光学系统100中的各透镜的材质均为玻璃,此时,光学系统100能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,第一透镜L1的材质为玻璃,而其他透镜的材质为塑料,此时,最靠近物侧的第一透镜L1能够很好地耐受物侧的环境温度影响,且由于其他透镜的材质为塑料的关系,光学系统100还能够保持较低的生产成本。需要注意的是,根据实际需求,光学系统100中的各透镜的材质分别可以为塑料或玻璃中的任一种。
在一些实施例中,光学系统100中设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。但需要注意的是,当描述光阑STO设置于第一透镜L1的物侧,或描述光学系统100由物侧至像侧依次设置有光阑STO、第一透镜L1、第二透镜L2等元件时,光阑STO于第一透镜L1的光轴上的投影可与第一透镜L1于光轴上的投影重叠,或者也可不重叠。
在一些实施例中,第八透镜L8的像侧还设置有红外截止滤光片L9,红外截止滤光片L9包括物侧面S17和像侧面S18。红外截止滤光片L9能够过滤红外光,防止红外光通过并到达感光元件,避免红外干扰光被感光元件接收而影响正常的成像,从而提升光学系统100的成像品质。在一些实施例中,红外截止滤光片L9可与感光元件一同组装,并随感光元件一同装配于光学系统100的像侧,或者红外截止滤光也可以直接设置于光学系统100中,以与各透镜组装成一体。
在能够使本申请的参数定义及效果描述更为清晰完整的情况下,在一些实施例中,光学系统100除了包括具有屈折力的透镜外,还可包括反射镜、光阑、滤光片、保护玻璃、感光元件等任意元件。
在一些实施例中,光学系统100满足以下关系:
1<TTL/L<2.5;
其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,L为光阑STO的有效孔径直径。TTL/L可以为1.76、1.78、1.80、1.81、1.85、1.90、1.95、2.10、2.20、2.25或2.30。
满足上述关系时,光学系统100在性能上拥有大口径及大光圈的特性,具备在阴天、夜景、星空等暗光环境下获得高质量影像的能力,且画质清晰度高;另外,光学系统100在结构上还拥有小型化的特性。
在一些实施例中,光学系统100满足以下关系:
f14>0;
f58<0;
其中,f14为第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的组合焦距,f58为第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8的组合焦距。f14可以为5.20、5.22、5.25、5.30、5.35、5.40、5.50、5.60、5.70、5.80、5.85、5.90或5.92;f58可以为-30.00、-28.00、-25.00、-23.00、-20.00、-15.00、-14.50、-14.00、-10.00、-9.50、-9.30、-9.10、-8.50、-8.40或-8.30。 f14和f58的单位均为mm。满足上述关系时,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4组合形成具有正屈折力的第一透镜组,第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8组合形成具有负屈折力的第二透镜组。第一透镜组和第二透镜组的正负屈折力相互配合,以达到校正场曲、畸变以及像差的目的。
在一些实施例中,光学系统100满足以下关系:
-0.7<f14/f58<-0.1。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4组合形成具有正屈折力的第一透镜组,第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8组合形成具有负屈折力的第二透镜组。f14/f58可以为-0.60、-0.57、-0.50、-0.45、-0.37、-0.35、-0.30、-0.25、-0.22、-0.20或-0.19。第一透镜组和第二透镜组能够相互配合以实现校正像差、场曲和畸变的目的。而当f14/f58≥-0.1时,光学系统100的负屈折力不足,导致位置相差校正困难;当f14/f58≤-0.7时,光学系统100的正屈折力过大,畸变校正困难,导致拍摄质量下降。
在一些实施例中,光学系统100满足以下关系:
0.20<Fno/TTL<0.35;
其中,Fno为光学系统100的光圈数,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,TTL的单位为mm。Fno/TTL可以为0.24、0.250、0.28、0.30或0.32。满足上述关系时,光学系统100拥有大光圈及小型化的特性。
在一些实施例中,光学系统100满足以下关系:
Fno<2.0。FNO可以为1.40、1.41、1.42、1.45、1.47、1.48、1.57、1.65、1.70、1.75、1.80、1.84、1.86或1.87。满足上述关系时,光学系统100在满足小型化的同时还拥有大口径的特性,使光学系统100拥有足够的进光量,从而具备在夜景、星空等暗环境下获得高质量影像的能力。
在一些实施例中,光学系统100满足以下关系:
TTL/Imgh<1.5;
其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,Imgh为成像面S19上的有效像素区域对角线长的一半。TTL/Imgh可以为1.45、4.46、1.47或1.48。TTL/Imgh能够决定光学系统100的结构大小,因此当满足上述关系时,光学系统100能够实现微型化设计,另外,光学系统100还拥有较大的像高以满足48M设计需求。
在一些实施例中,光学系统100满足以下关系:
1.0<TTL/|f|<1.5;
其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,f为光学系统100的有效焦距。TTL/|f|可以为1.21、1.22、1.23或1.24。满足上述关系时,光学系统100可有效平衡第一透镜L1产生的像差。当TTL/|f|≤1.0时,光学系统100的光学长度过短,导致系统敏感度加大,像差修正困难;当TTL/|f|≥1.5,光学系统100的光学长度过长,导致光线进入成像面S19的主光线角度太大,使到达成像面S19边缘的光线无法成像在感光面上,造成成像信息不全。
在一些实施例中,光学系统100满足以下关系:
f/f1≤1.2;
其中,f为光学系统100有效焦距,f1为第一透镜L1的有效焦距。f/f1可以为0.70、0.73、0.75、0.78、0.85、0.92、0.93、0.94、0.97、1.00、1.02、1.04或1.08。光学系统100所获得的光学信息均需要经过第一透镜L1,第一透镜L1的焦距大小决定了光学系统100对物空间光信息的获取,满足上述关系时,可减小光学系统100的敏感度,降低加工工艺难度,同时降低修正第一透镜L1产生的像差的难度。
在一些实施例中,光学系统100满足以下关系:
-0.10<(R9+R10)/(R9*R10)<0.25;
其中,R9为第四透镜L4的物侧面S7于光轴处的曲率半径,R10为第四透镜L4的像侧面S8于光轴处的曲率半径,R9和R10的单位均为mm。(R9+R10)/(R9*R10)可以为-0.07、-0.06、-0.05、0.10、 0.15、0.20或0.21。满足上述关系时,第四透镜L4的物侧面S7和像侧面S8的曲率半径能够得到合理匹配,从而能够有效改善光学系统100的像散问题,且提升第四透镜L4的成型良率。
在一些实施例中,光学系统100满足以下关系:
0.5<(R3+R4)/f1<3.5;
其中,R3为第一透镜L1的物侧面S1于光轴处的曲率半径,R4为第一透镜L1的像侧面S2于光轴处的曲率半径,f1为第一透镜L1的有效焦距。(R3+R4)/f1可以为0.88、0.90、0.92、1.00、1.30、1.70、2.00、2.55、2.60、2.70、2.90、3.00、3.10、3.15或3.20。当(R3+R4)/f1≥3.5时,会加大光学系统100对像差修正的难度;当(R3+R4)/f1≤0.5时,不利于光学系统100对物空间光信息获取,难以得到较佳的成像效果。
在一些实施例中,光学系统100满足以下关系:
0.8<R5/R6<3.5;
其中,R5为第二透镜L2的物侧面S3于光轴处的曲率半径,R6为第二透镜L2的像侧面S4于光轴处的曲率半径。第二透镜L2提供负屈折力,以平衡第一透镜L1产生的畸变,并对第一透镜L1产生的像差进行修正。R5/R6可以为1.00、1.10、1.20、1.50、1.80、2.00、2.10、2.20、2.30、2.43、2.45、2.50、2.60、2.70、2.80、2.85或2.88。当R5/R6≥3.5时,会造成畸变校正过大;当R5/R6≤0.8时,无法达到修正畸变的目的。
在一些实施例中,光学系统100满足以下关系:
8<|R7+R8|/|R7-R8|<48;
其中,R7为第三透镜L3的物侧面S5于光轴处的曲率半径,R8为第三透镜L3的像侧面S6于光轴处的曲率半径。|R7+R8|/|R7-R8|可以为10.00、11.00、15.00、20.00、25.00、35.00、43.00或45.00。满足上述关系时,第三透镜L3的物侧面S5的曲率半径和像侧面S6的曲率半径能够得到合理匹配,可合理增大入射角以满足光学系统100的像高要求,同时降低系统敏感性,提高组装稳定性。
在一些实施例中,光学系统100满足以下关系:
-0.6<f1/f2<0.1;
其中,f1为第一透镜L1的有效焦距,f2为第二透镜L2的有效焦距。f1/f2可以为-0.55、-0.54、-0.50、-0.49、-0.47、-0.46、-0.35、-0.30、-0.10或0.01。满足上述关系时,可有效校正光学系统100的位置色差。
在一些实施例中,光学系统100满足以下关系:
1.8<(R17*R18)/(R17-R18)<3;
其中,R17为第八透镜L8的物侧面S15于光轴处的曲率半径,R18为第八透镜L8的像侧面S16于光轴处的曲率半径,R17和R18的单位均为mm。(R17*R18)/(R17-R18)可以为2.00、2.10、2.20、2.56、2.58、2.60、2.65、2.70、2.75、2.80、2.85或2.87。满足上述关系时,第八透镜L8的物侧面S15的曲率半径和像侧面S16的曲率半径能够得到合理匹配,可有效修正光学系统100的球差,改善歪曲像差和像散,同时降低系统敏感性,提高组装稳定性。
在一些实施例中,光学系统100满足以下关系:
0.5<ΣCT/f<0.8;
其中,ΣCT为光学系统100中各透镜的中心厚度总和,f为光学系统100的有效焦距。ΣCT/f可以为0.70、0.71、0.72、0.73、0.74或0.75。满足上述关系时,光学系统100拥有更为紧凑的结构以及与结构适应的有效焦距,从而满足小型化设计。
在一些实施例中,光学系统100满足以下关系:
0.40<ΣCT/TTL<0.62;
其中,ΣCT为光学系统100中各透镜的中心厚度总和,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离。ΣCT/TTL可以为0.57、0.58、0.59、0.60或0.61。满足上述关系时,光学系统100拥有良好的组装稳定性,有利于微型化设计。
在一些实施例中,光学系统100满足以下关系:
0.20<ET1/CT1<0.60;
其中,ET1为第一透镜L1的边缘厚度(第一透镜L1于最大有效半径处的厚度),CT1为第一透镜L1的中心厚度。ET1/CT1可以为0.26、0.27、0.28、0.30、0.35、0.39、0.42、0.46、0.49、0.53、0.55或0.56。光学系统100所获得的光学信息均需要经过第一透镜L1,同时,相应的像差、畸变、场曲也伴随着第一透镜L1产生,因此第一透镜L1的边缘厚度和中心厚度比值范围不宜过大,比值过大会导致后续像差校正困难,同时产生很大的畸变和场曲,无法满足光学性能要求,而当满足上述关系时,可获得一个良好的光学系统100,以平衡系统的像差、畸变和场曲,满足高质量拍摄的要求。
在一些实施例中,光学系统100满足以下关系:
0.80<ET8/CT8<3.00;
其中,ET8为第八透镜L8的边缘厚度(第八透镜L8于最大有效半径处的厚度),CT8为第八透镜L8的中心厚度。ET8/CT8可以为0.88、0.90、0.92、0.95、1.00、1.05、1.10、1.13、1.15、1.80、2.10、2.20、2.25或2.27。第八透镜L8是对光学系统100的像差性能做最后校正的关键元件,加工难度相对较高,边缘厚度和中心厚度的比值不宜过大,满足上述关系时,可使第八透镜L8拥有良好的光学性能及成型良率。
下面参照附图以进一步描述可适用于上述光学系统100的具体实施例。但需要注意的是,附图中的图形仅作为参考,并不能完全代表对应实施例的实际图形。
第一实施例
参考图1,在第一实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图2包括第一实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。各实施例中的参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8的物侧面和像侧面均为非球面,非球面的设计 能够有效解决视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统100具有更小的体积。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8的材质均为塑料。
在一些实施例中,第八透镜L8的像侧还设置有红外截止滤光片L9以滤除红外光,防止感光元件 接收到红外光而影响正常成像。
在第一实施例中,光学系统100满足关系:TTL/L=1.74;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,L为光阑STO的有效孔径直径。满足上述关系时,光学系统100在性能上拥有大口径及大光圈的特性,具备在阴天、夜景、星空等暗光环境下获得高质量影像的能力,且画质清晰度高,另外在结构上还拥有小型化的特性。
光学系统100满足关系:f14=5.51;f58=-21.71;其中,f14为第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的组合焦距,f58为第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8的组合焦距。f14和f58的单位均为mm。满足上述关系时,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4组合形成具有正屈折力的第一透镜组,第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8组合形成具有负屈折力的第二透镜组。第一透镜组和第二透镜组的正负屈折力相互配合,以达到校正场曲、畸变以及像差的目的。
光学系统100满足关系:f14/f58=-0.25。第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4组合形成具有正屈折力的第一透镜组,第五透镜L5、第六透镜L6、第七透镜L7及第八透镜L8组合形成具有负屈折力的第二透镜组。第一透镜组和第二透镜组能够相互配合以实现校正像差、场曲和畸变的目的。
光学系统100满足关系:Fno/TTL=0.237;其中,Fno为光学系统100的光圈数,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,TTL的单位为mm。满足上述关系时,光学系统100拥有大光圈及小型化的特性。
光学系统100满足关系:Fno=1.397。满足上述关系时,光学系统100在满足小型化的同时还拥有大口径的特性,使光学系统100拥有足够的进光量,从而具备在夜景、星空等暗环境下获得高质量影像的能力。
光学系统100满足关系:TTL/Imgh=1.475;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,Imgh为成像面S19上的有效像素区域对角线长的一半。TTL/Imgh能够决定光学系统100的结构大小,因此当满足上述关系时,光学系统100能够实现微型化设计,另外,光学系统100还拥有较大的像高以满足48M设计需求。
光学系统100满足关系:TTL/|f|=1.245;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离,f为光学系统100的有效焦距。当TTL/|f|过小时,光学系统100的光学长度过短,导致系统敏感度加大,像差修正困难;当TTL/|f|过大时,光学系统100的光学长度过长,导致光线进入成像面S19的主光线角度太大,使到达成像面S19边缘的光线无法成像在感光面上,造成成像信息不全。
光学系统100满足关系:f/f1=1.05;其中,f为光学系统100有效焦距,f1为第一透镜L1的有效焦距。光学系统100所获得的光学信息均需要经过第一透镜L1,第一透镜L1的焦距大小决定了光学系统100对物空间光信息的获取,满足上述关系时,可减小光学系统100的敏感度,降低加工工艺难度,同时降低修正第一透镜L1产生的像差的难度。
光学系统100满足关系:(R9+R10)/(R9*R10)=0.13;其中,R9为第四透镜L4的物侧面S7于光轴处的曲率半径,R10为第四透镜L4的像侧面S8于光轴处的曲率半径,R9和R10的单位均为mm。满足上述关系时,第四透镜L4的物侧面S7和像侧面S8的曲率半径能够得到合理匹配,从而能够有效改善光学系统100的像散问题,且提升第四透镜L4的成型良率。
光学系统100满足关系:(R3+R4)/f1=2.73;其中,R3为第一透镜L1的物侧面S1于光轴处的曲率半径,R4为第一透镜L1的像侧面S2于光轴处的曲率半径,f1为第一透镜L1的有效焦距。当(R3+R4)/f1的数值过大时,会加大光学系统100对像差修正的难度;当(R3+R4)/f1过小时,不利于光学系统100对物空间光信息获取,难以得到较佳的成像效果。
光学系统100满足关系:R5/R6=2.86;其中,R5为第二透镜L2的物侧面S3于光轴处的曲率半径,R6为第二透镜L2的像侧面S4于光轴处的曲率半径。第二透镜L2提供负屈折力,以平衡第一透镜L1产生的畸变,并对第一透镜L1产生的像差进行修正。
光学系统100满足关系:|R7+R8|/|R7-R8|=13.81;其中,R7为第三透镜L3的物侧面S5于光轴处的曲率半径,R8为第三透镜L3的像侧面S6于光轴处的曲率半径。满足上述关系时,第三透镜L3的物侧面S5的曲率半径和像侧面S6的曲率半径能够得到合理匹配,可合理增大入射角以满足光学系统100的像高要求,同时降低系统敏感性,提高组装稳定性。
光学系统100满足关系:f1/f2=-0.56;其中,f1为第一透镜L1的有效焦距,f2为第二透镜L2的有效焦距。满足上述关系时,可有效校正光学系统100的位置色差。
光学系统100满足关系:(R17*R18)/(R17-R18)=2.55;其中,R17为第八透镜L8的物侧面S17于光轴处的曲率半径,R18为第八透镜L8的像侧面S16于光轴处的曲率半径,R17和R18的单位均为mm。满足上述关系时,第八透镜L8的物侧面S15的曲率半径和像侧面S16的曲率半径能够得到合理匹配,可有效修正光学系统100的球差,改善歪曲像差和像散,同时降低系统敏感性,提高组装稳定性。
光学系统100满足关系:ΣCT/f=0.74;其中,ΣCT为光学系统100中各透镜的中心厚度总和,f为光学系统100的有效焦距。满足上述关系时,光学系统100拥有更为紧凑的结构以及与结构适应的有效焦距,从而满足小型化设计。
光学系统100满足关系:ΣCT/TTL=0.59;其中,ΣCT为光学系统100中各透镜的中心厚度总和,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S19于光轴上的距离。满足上述关系时,光学系统100拥有良好的组装稳定性,有利于微型化设计。
光学系统100满足关系:ET1/CT1=0.265;其中,ET1为第一透镜L1的边缘厚度(第一透镜L1于最大有效半径处的厚度),CT1为第一透镜L1的中心厚度。光学系统100所获得的光学信息均需要经过第一透镜L1,同时,相应的像差、畸变、场曲也伴随着第一透镜L1产生,因此第一透镜L1的边缘厚度和中心厚度比值范围不宜过大,比值过大会导致后续像差校正困难,同时产生很大的畸变和场曲,无法满足光学性能要求,而当满足上述关系时,可获得一个良好的光学系统100,以平衡系统的像差、畸变和场曲,满足高质量拍摄的要求。
光学系统100满足关系:ET8/CT8=0.86;其中,ET8为第八透镜L8的边缘厚度(第八透镜L8于最大有效半径处的厚度),CT8为第八透镜L8的中心厚度。第八透镜L8是对光学系统100的像差性能做最后校正的关键元件,加工难度相对较高,边缘厚度和中心厚度的比值不宜过大,满足上述关系时,可使第八透镜L8拥有良好的光学性能及成型良率。
另外,光学系统100的各项参数由表1和表2给出。光学系统100由物面(物侧)至成像面S19(表1中的像面)的各元件依次按照表1从上至下的各元件的顺序排列。表1中的面序号3和4分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。Y半径为相应面序号的物侧面或像侧面于近轴处的曲率半径。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。红外截止滤光片L9于“厚度”参数中面序号20所对应的数值为红外截止滤光片L9的像侧面S18至成像面S19的距离。表2中的K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。一般的,表1中的像面为感光元件的感光表面。
另外,各透镜的折射率及焦距均为参考波长下的数值。关系式的计算以透镜参数(如表1的数据)和面型参数(如表2的数据)为准。
在第一实施例中,光学系统100的有效焦距f=4.74mm,光圈数FNO=1.397,最大视场角(对角线视角)FOV=80.39度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm,成像面上的有效像素区域对角线长的一半Imgh=4.0mm。
表1
Figure PCTCN2019100747-appb-000002
Figure PCTCN2019100747-appb-000003
表2
Figure PCTCN2019100747-appb-000004
Figure PCTCN2019100747-appb-000005
第二实施例
参考图3,在第二实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图4包括第二实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第二实施例中,光学系统100的有效焦距f=4.75mm,光圈数FNO=1.397,最大视场角(对角线视角)FOV=80.33度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表3和表4给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2019100747-appb-000006
Figure PCTCN2019100747-appb-000007
表4
Figure PCTCN2019100747-appb-000008
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000009
Figure PCTCN2019100747-appb-000010
第三实施例
参考图5,在第三实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图6包括第三实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第三实施例中,光学系统100的有效焦距f=4.76mm,光圈数FNO=1.397,最大视场角(对角线视角)FOV=80.40度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表5和表6给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2019100747-appb-000011
Figure PCTCN2019100747-appb-000012
表6
Figure PCTCN2019100747-appb-000013
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000014
第四实施例
参考图7,在第四实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图8包括第四实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凹面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第四实施例中,光学系统100的有效焦距f=4.79mm,光圈数FNO=1.481,最大视场角(对角线视角)FOV=79.84度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表7和表8给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2019100747-appb-000015
Figure PCTCN2019100747-appb-000016
表8
Figure PCTCN2019100747-appb-000017
Figure PCTCN2019100747-appb-000018
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000019
第五实施例
参考图9,在第五实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图10包括第五实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第五实施例中,光学系统100的有效焦距f=4.78mm,光圈数FNO=1.481,最大视场角(对角线视角)FOV=79.95度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表9和表10给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2019100747-appb-000020
表10
Figure PCTCN2019100747-appb-000021
Figure PCTCN2019100747-appb-000022
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000023
第六实施例
参考图11,在第六实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图12包括第六实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凸面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第六实施例中,光学系统100的有效焦距f=4.88mm,光圈数FNO=1.397,最大视场角(对角线视角)FOV=78.21度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=6.07mm。
光学系统100的各参数由表11和表12给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2019100747-appb-000024
表12
Figure PCTCN2019100747-appb-000025
Figure PCTCN2019100747-appb-000026
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000027
第七实施例
参考图13,在第七实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图14包括第七实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第七实施例中,光学系统100的有效焦距f=4.79mm,光圈数FNO=1.397,最大视场角(对角线视角)FOV=80度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表13和表14给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表13
Figure PCTCN2019100747-appb-000028
表14
Figure PCTCN2019100747-appb-000029
Figure PCTCN2019100747-appb-000030
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000031
第八实施例
参考图15,在第八实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图16包括第八实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜 L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凹面,第八透镜L8的像侧面S16于圆周处为凸面。
在第八实施例中,光学系统100的有效焦距f=4.81mm,光圈数FNO=1.6,最大视场角(对角线视角)FOV=80度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.92mm。
光学系统100的各参数由表15和表16给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表15
Figure PCTCN2019100747-appb-000032
Figure PCTCN2019100747-appb-000033
表16
Figure PCTCN2019100747-appb-000034
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000035
第九实施例
参考图17,在第九实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折 力的第八透镜L8。图18包括第九实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凹面,第八透镜L8的像侧面S16于圆周处为凸面。
在第九实施例中,光学系统100的有效焦距f=4.9mm,光圈数FNO=1.8,最大视场角(对角线视角)FOV=78.66度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表17和表18给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表17
Figure PCTCN2019100747-appb-000036
Figure PCTCN2019100747-appb-000037
表18
Figure PCTCN2019100747-appb-000038
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000039
第十实施例
参考图19,在第十实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图20包括第十实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第十实施例中,光学系统100的有效焦距f=4.79mm,光圈数FNO=1.55,最大视场角(对角线视角)FOV=80度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表19和表20给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表19
Figure PCTCN2019100747-appb-000040
Figure PCTCN2019100747-appb-000041
表20
Figure PCTCN2019100747-appb-000042
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000043
Figure PCTCN2019100747-appb-000044
第十一实施例
参考图21,在第十一实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图22包括第十一实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凹面,第八透镜L8的像侧面S16于圆周处为凸面。
在第十一实施例中,光学系统100的有效焦距f=4.79mm,光圈数FNO=1.65,最大视场角(对角线视角)FOV=80度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表21和表22给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表21
Figure PCTCN2019100747-appb-000045
Figure PCTCN2019100747-appb-000046
表22
Figure PCTCN2019100747-appb-000047
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000048
Figure PCTCN2019100747-appb-000049
第十二实施例
参考图23,在第十二实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有负屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图24包括第十二实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凸面,第八透镜L8的像侧面S16于圆周处为凸面。
在第十二实施例中,光学系统100的有效焦距f=4.83mm,光圈数FNO=1.88,最大视场角(对角线视角)FOV=79.5度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表23和表24给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表23
Figure PCTCN2019100747-appb-000050
Figure PCTCN2019100747-appb-000051
表24
Figure PCTCN2019100747-appb-000052
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000053
第十三实施例
参考图25,在第十三实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有正屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图26包括第十三实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凹面,第八透镜L8的像侧面S16于圆周处为凸面。
在第十三实施例中,光学系统100的有效焦距f=4.8mm,光圈数FNO=1.88,最大视场角(对角线视角)FOV=79.8度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表25和表26给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表25
Figure PCTCN2019100747-appb-000054
Figure PCTCN2019100747-appb-000055
表26
Figure PCTCN2019100747-appb-000056
Figure PCTCN2019100747-appb-000057
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000058
第十四实施例
参考图27,在第十四实施例中,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5、具有负屈折力的第六透镜L6、具有正屈折力的第七透镜L7、具有负屈折力的第八透镜L8。图28包括第十四实施例中光学系统100的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图,参考波长为555nm。
第一透镜L1的物侧面S1于近轴处为凸面,第一透镜L1的像侧面S2于近轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凹面。
第二透镜L2的物侧面S3于近轴处为凸面,第二透镜L2的像侧面S4于近轴处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,第二透镜L2的像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,第三透镜L3的像侧面S6于近轴处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,第四透镜L4的像侧面S8于近轴处为凸面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,第五透镜L5的像侧面S10于近轴处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,第五透镜L5的像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凹面,第六透镜L6的像侧面S12于近轴处为凸面;第六透镜L6的物侧面S11于圆周处为凹面,第六透镜L6的像侧面S12于圆周处为凸面。
第七透镜L7的物侧面S13于近轴处为凸面,第七透镜L7的像侧面S14于近轴处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,第七透镜L7的像侧面S14于圆周处为凸面。
第八透镜L8的物侧面S15于近轴处为凹面,第八透镜L8的像侧面S16于近轴处为凹面;第八透镜L8的物侧面S15于圆周处为凹面,第八透镜L8的像侧面S16于圆周处为凸面。
在第十四实施例中,光学系统100的有效焦距f=4.85mm,光圈数FNO=1.8,最大视场角(对角线视角)FOV=79.2度(deg.),第一透镜L1的物侧面S1到成像面S19于光轴上的距离TTL=5.9mm。
光学系统100的各参数由表27和表28给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表27
Figure PCTCN2019100747-appb-000059
表28
Figure PCTCN2019100747-appb-000060
Figure PCTCN2019100747-appb-000061
根据以上所提供的各参数信息,可推得以下关系:
Figure PCTCN2019100747-appb-000062
参考图29,在一些实施例中,光学系统的像侧装配有感光元件210以形成取像模组200,感光元件可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。需要注意的是,以上各实施例中的成像面S19可理解为感光元件210的感光表面。
在一些实施例中,感光元件210相对固定地设置在光学系统的像侧,此时的取像模组200为定焦模组。在另一些实施例中,通过配置音圈马达以使感光元件210能够相对光学系统100中的各透镜相对移动,从而实现对焦功能。
参考图30,在一些实施例中,取像模组200可应用于但不限于智能手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、无人机、计算机等电子装置30中,以使用户能够在暗环境下获得高质量的拍摄影像。电子装置30包括任意具备摄像能力的移动终端,特别是智能手机。其中,当取像模组200为定焦模组时,取像模组200可作为智能手机的前置摄像模组;当取像模组200具有对焦功能时,取像模组200也可作为智能手机的后置摄像模组。通过使用具有上述光学系统的取像模组200,电子装置30将具备在夜景、星空等暗环境下获得高质量影像的能力。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的 限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,其特征在于,由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于圆周处为凸面;
    具有屈折力的第二透镜;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有屈折力的第五透镜;
    具有屈折力的第六透镜;
    具有屈折力的第七透镜,所述第七透镜的像侧面于光轴处为凹面;
    具有负屈折力的第八透镜;
    所述光学系统满足以下关系:
    1<TTL/L<2.5;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,所述光学系统还包括光阑,L为所述光阑的有效孔径直径。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    f14>0;
    f58<0;
    其中,f14为所述第一透镜、所述第二透镜、所述第三透镜及所述第四透镜的组合焦距,f58为所述第五透镜、所述第六透镜、所述第七透镜及所述第八透镜的组合焦距。
  3. 根据权利要求2所述的光学系统,其特征在于,满足以下关系:
    -0.7<f14/f58<-0.1。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.2<Fno/TTL<0.35;
    其中,Fno为所述光学系统的光圈数,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,TTL的单位为mm。
  5. 根据权利要求4所述的光学系统,其特征在于,满足以下关系:
    Fno<2.0。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    TTL/Imgh<1.5;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,Imgh为所述成像面上的有效像素区域对角线长的一半。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.0<TTL/|f|<1.5;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的有效焦距。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    f/f1≤1.2;
    其中,f为所述光学系统有效焦距,f1为所述第一透镜的有效焦距。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -0.10<(R9+R10)/(R9*R10)<0.25;
    其中,R9为所述第四透镜的物侧面于光轴处的曲率半径,R10为所述第四透镜的像侧面于光轴处的曲率半径,R9和R10的单位均为mm。
  10. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.5<(R3+R4)/f1<3.5;
    其中,R3为所述第一透镜的物侧面于光轴处的曲率半径,R4为所述第一透镜的像侧面于光轴处的 曲率半径,f1为所述第一透镜的有效焦距。
  11. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.8<R5/R6<3.5;
    其中,R5为所述第二透镜的物侧面于光轴处的曲率半径,R6为所述第二透镜的像侧面于光轴处的曲率半径。
  12. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    8<|R7+R8|/|R7-R8|<48;
    其中,R7为所述第三透镜的物侧面于光轴处的曲率半径,R8为所述第三透镜的像侧面于光轴处的曲率半径。
  13. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -0.6<f1/f2<0.1;
    其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距。
  14. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.8<(R17*R18)/(R17-R18)<3;
    其中,R17为所述第八透镜的物侧面于光轴处的曲率半径,R18为所述第八透镜的像侧面于光轴处的曲率半径,R17和R18的单位均为mm。
  15. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.5<ΣCT/f<0.8;
    其中,ΣCT为所述光学系统中各透镜的中心厚度总和,f为所述光学系统的有效焦距。
  16. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.40<ΣCT/TTL<0.62;
    其中,ΣCT为所述光学系统中各透镜的中心厚度总和,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  17. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.20<ET1/CT1<0.60;
    其中,ET1为所述第一透镜的边缘厚度,CT1为所述第一透镜的中心厚度。
  18. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.80<ET8/CT8<3.00;
    其中,ET8为所述第八透镜的边缘厚度,CT8为所述第八透镜的中心厚度。
  19. 一种取像模组,其特征在于,包括感光元件及权利要求1至18任意一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  20. 一种电子装置,其特征在于,包括权利要求19所述的取像模组。
PCT/CN2019/100747 2019-08-15 2019-08-15 光学系统、取像模组及电子装置 WO2021026869A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/601,075 US11953756B2 (en) 2019-08-15 2019-08-15 Optical system, image capturing module and electronic device
PCT/CN2019/100747 WO2021026869A1 (zh) 2019-08-15 2019-08-15 光学系统、取像模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100747 WO2021026869A1 (zh) 2019-08-15 2019-08-15 光学系统、取像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021026869A1 true WO2021026869A1 (zh) 2021-02-18

Family

ID=74570771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100747 WO2021026869A1 (zh) 2019-08-15 2019-08-15 光学系统、取像模组及电子装置

Country Status (2)

Country Link
US (1) US11953756B2 (zh)
WO (1) WO2021026869A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579412B2 (en) 2019-11-15 2023-02-14 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412748B (zh) * 2019-08-28 2024-07-16 浙江舜宇光学有限公司 光学成像系统
CN111221105A (zh) * 2020-02-27 2020-06-02 浙江舜宇光学有限公司 光学成像镜头
CN114690378B (zh) * 2022-06-02 2022-10-21 江西晶超光学有限公司 一种光学成像系统、镜头模组及电子设备
WO2024020893A1 (en) * 2022-07-27 2024-02-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Imaging lens assembly, camera module, and imaging device
CN117389016B (zh) * 2023-12-13 2024-03-26 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170307858A1 (en) * 2016-04-20 2017-10-26 Ability Enterprise Co., Ltd. Optical lens
CN108761745A (zh) * 2018-07-25 2018-11-06 广东弘景光电科技股份有限公司 广角光学系统及其应用的摄像模组
CN109407267A (zh) * 2017-08-18 2019-03-01 大立光电股份有限公司 影像撷取光学系统组、取像装置及电子装置
CN109725406A (zh) * 2019-02-21 2019-05-07 浙江舜宇光学有限公司 光学镜头
CN109870788A (zh) * 2019-04-02 2019-06-11 浙江舜宇光学有限公司 摄像透镜组

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981344A (en) 1988-11-14 1991-01-01 Minolta Camera Kabushiki Kaisha Wide angle lens system for use in copying machine
JPH1144839A (ja) 1997-07-28 1999-02-16 Canon Inc 後絞り型の撮影レンズ
US6414800B1 (en) 1999-05-10 2002-07-02 Canon Kabushiki Kaisha Variable magnification optical system and camera having the same
JP2001208973A (ja) 1999-11-18 2001-08-03 Nikon Corp 実像式ファインダー光学系
FR2833086B1 (fr) 2001-11-30 2004-02-27 Thales Sa Dispositif de veille optronique sectorielle ou panoramique a grande vitesse sans mouvement apparent
JP2004302056A (ja) 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd 画像取込用レンズ
JP4623993B2 (ja) 2003-04-22 2011-02-02 オリンパス株式会社 結像光学系及びそれを用いた電子機器
US6950246B2 (en) 2003-04-23 2005-09-27 Olympus Corporation Imaging optical system and apparatus using the same
JP3770493B2 (ja) 2003-06-24 2006-04-26 フジノン株式会社 結像レンズ
CN101093274A (zh) 2006-06-23 2007-12-26 大立光电股份有限公司 三片式摄影镜片组
TWI317819B (en) 2006-11-02 2009-12-01 Young Optics Inc Zoom lens
CN101983348B (zh) 2008-04-09 2014-07-02 日立麦克赛尔株式会社 透镜单元、摄像机组件及透镜单元的生产方法
JP4642883B2 (ja) 2008-06-23 2011-03-02 株式会社リコー ズームレンズ、カメラおよび携帯情報端末装置
JP5217698B2 (ja) 2008-07-03 2013-06-19 株式会社ニコン ズームレンズ、撮像装置、ズームレンズの変倍方法
JP5601857B2 (ja) 2009-04-07 2014-10-08 富士フイルム株式会社 撮像レンズおよび撮像装置、ならびに携帯端末機器
US8786961B2 (en) 2010-07-16 2014-07-22 Konica Minolta Advanced Layers, Inc. Image pickup lens
JP5579555B2 (ja) 2010-09-24 2014-08-27 Hoya株式会社 撮影光学系、及び撮影装置
KR101871752B1 (ko) 2010-09-27 2018-06-27 삼성전자주식회사 줌렌즈 광학계 및 이를 구비하는 촬상장치
CN102466864B (zh) 2010-11-15 2014-03-26 大立光电股份有限公司 光学摄像系统
TWI437258B (zh) 2011-08-05 2014-05-11 Largan Precision Co Ltd 拾像光學鏡組
TWI429945B (zh) 2011-09-13 2014-03-11 Largan Precision Co Ltd 拾像鏡組
TWI438475B (zh) 2011-09-15 2014-05-21 Largan Precision Co Ltd 光學影像拾取鏡組
JP6103985B2 (ja) 2012-04-10 2017-03-29 キヤノン株式会社 ファインダー光学系及びそれを有する撮像装置
TW201350956A (zh) 2012-06-13 2013-12-16 Altek Corp 攝像鏡片組及其攝像裝置
JP5915462B2 (ja) 2012-08-28 2016-05-11 ソニー株式会社 撮像レンズおよび撮像装置
US8913332B2 (en) 2012-09-05 2014-12-16 Kolen Co., Ltd. Photographing lens optical system
CN204631345U (zh) 2012-11-16 2015-09-09 富士胶片株式会社 投影用变焦透镜以及投影型显示装置
TWI449948B (zh) 2012-11-30 2014-08-21 Largan Precision Co Ltd 影像擷取光學鏡組
TWI472794B (zh) 2013-01-31 2015-02-11 Largan Precision Co Ltd 移動對焦光學系統
WO2014162779A1 (ja) 2013-04-01 2014-10-09 ソニー株式会社 撮像レンズおよび撮像装置
KR20140135909A (ko) 2013-05-16 2014-11-27 주식회사 테크웍스플러스 카메라모듈 조립체
US9804364B2 (en) 2013-10-21 2017-10-31 Kantatsu Co., Ltd. Image pickup lens
TWI467218B (zh) 2013-10-29 2015-01-01 Largan Precision Co Ltd 成像光學鏡頭、取像裝置及可攜式電子裝置
KR20150058972A (ko) 2013-11-21 2015-05-29 삼성전자주식회사 촬상 렌즈 시스템 및 이를 채용한 촬상 장치
TWI493221B (zh) 2014-03-14 2015-07-21 Glory Science Co Ltd 成像鏡頭組
CN104914558B (zh) 2014-03-14 2017-09-01 光燿科技股份有限公司 成像镜头组
JP6278354B2 (ja) 2014-04-15 2018-02-14 株式会社オプトロジック 撮像レンズ
TWI533019B (zh) 2014-08-29 2016-05-11 大立光電股份有限公司 攝像透鏡系統、取像裝置及電子裝置
JP2016090777A (ja) 2014-11-04 2016-05-23 Hoya株式会社 撮像光学系
TWI519808B (zh) 2014-12-05 2016-02-01 大立光電股份有限公司 光學取像透鏡組、取像裝置以及電子裝置
CN104570295A (zh) 2014-12-31 2015-04-29 广东旭业光电科技股份有限公司 大光圈低敏感度光学镜头组件
TWI572892B (zh) 2015-02-26 2017-03-01 大立光電股份有限公司 透鏡系統、取像裝置及電子裝置
CN105988185B (zh) 2015-04-10 2018-11-30 浙江舜宇光学有限公司 摄像镜头
CN105988186B (zh) 2015-06-09 2018-09-07 浙江舜宇光学有限公司 成像镜头
CN104932086B (zh) 2015-06-29 2017-04-12 中山联合光电科技股份有限公司 一种大孔径大像面光学镜头
CN105259636B (zh) 2015-10-19 2017-07-07 浙江舜宇光学有限公司 长焦镜头
CN106610518B (zh) 2015-10-23 2019-02-15 大立光电股份有限公司 影像撷取透镜组、取像装置及电子装置
CN205210492U (zh) 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
CN205210493U (zh) 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
CN106959500B (zh) 2016-01-12 2019-12-13 信泰光学(深圳)有限公司 成像镜头
CN109669254B (zh) 2016-01-29 2020-11-06 大立光电股份有限公司 摄像用光学透镜组、取像装置及电子装置
CN105607232B (zh) 2016-03-22 2018-05-29 浙江舜宇光学有限公司 摄远镜头
CN105607233B (zh) 2016-03-23 2018-09-07 浙江舜宇光学有限公司 摄远镜头
US10310222B2 (en) 2016-04-15 2019-06-04 Apple, Inc. Imaging lens system
CN106154496B (zh) 2016-04-27 2018-09-25 玉晶光电(厦门)有限公司 光学成像镜头及便携式电子装置
CN106526795B (zh) 2016-08-05 2019-07-26 玉晶光电(厦门)有限公司 光学镜片组
KR20180040262A (ko) 2016-10-12 2018-04-20 삼성전기주식회사 촬상 광학계
US10302909B2 (en) 2016-10-21 2019-05-28 Newmax Technology Co., Ltd. Six-piece optical lens system
TWI612326B (zh) 2016-10-21 2018-01-21 大立光電股份有限公司 微型取像系統、取像裝置及電子裝置
CN106338815B (zh) 2016-10-28 2019-03-15 浙江舜宇光学有限公司 摄像镜头及装配有该摄像镜头的摄像装置
CN106772931B (zh) 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
CN106773008B (zh) 2016-11-18 2020-02-21 玉晶光电(厦门)有限公司 目镜光学系统
TWI594011B (zh) 2016-11-22 2017-08-01 大立光電股份有限公司 取像光學鏡片系統、取像裝置及電子裝置
CN106646825B (zh) 2016-12-12 2022-08-05 广东弘景光电科技股份有限公司 深度成像光学系统及其应用的镜头
CN106802469B (zh) 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN206460205U (zh) 2016-12-14 2017-09-01 广东旭业光电科技股份有限公司 一种成像光学系统
KR101956704B1 (ko) 2016-12-20 2019-03-11 삼성전기주식회사 촬상 광학계
KR20180075152A (ko) 2016-12-26 2018-07-04 삼성전기주식회사 촬상 광학계
CN106896474B (zh) 2016-12-30 2019-12-27 玉晶光电(厦门)有限公司 光学镜片组
CN106970464B (zh) 2017-01-11 2019-06-21 玉晶光电(厦门)有限公司 目镜光学系统
CN106842512B (zh) 2017-04-17 2019-10-11 浙江舜宇光学有限公司 摄像镜头
CN106842514B (zh) 2017-04-18 2022-10-11 浙江舜宇光学有限公司 摄像镜头
TWI638202B (zh) 2017-05-15 2018-10-11 先進光電科技股份有限公司 光學成像系統
TWI640811B (zh) 2017-06-16 2018-11-11 大立光電股份有限公司 攝像系統鏡片組、取像裝置及電子裝置
CN107167897B (zh) 2017-06-22 2023-06-09 江西联益光学有限公司 光学成像镜头及应用该光学成像镜头的虹膜摄像模组
CN107102425B (zh) 2017-07-06 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
CN107167902B (zh) 2017-07-25 2022-09-16 浙江舜宇光学有限公司 光学成像镜头
CN107290843B (zh) 2017-08-21 2022-09-13 浙江舜宇光学有限公司 光学成像镜头
TWI625567B (zh) 2017-10-16 2018-06-01 大立光電股份有限公司 成像用光學鏡頭、取像裝置及電子裝置
CN108107548B (zh) 2017-11-03 2021-11-30 玉晶光电(厦门)有限公司 光学透镜组
US10935759B2 (en) 2017-11-08 2021-03-02 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN113985584B (zh) 2017-11-22 2024-03-29 浙江舜宇光学有限公司 光学成像镜头
CN207424362U (zh) 2017-11-22 2018-05-29 浙江舜宇光学有限公司 光学成像镜头
CN107831588B (zh) 2017-11-29 2019-11-26 浙江舜宇光学有限公司 光学成像镜头
CN207557562U (zh) 2017-11-29 2018-06-29 浙江舜宇光学有限公司 光学成像镜头
JP6684033B2 (ja) 2017-12-12 2020-04-22 カンタツ株式会社 撮像レンズ
TWI655474B (zh) 2017-12-22 2019-04-01 大立光電股份有限公司 取像用光學鏡頭、取像裝置及電子裝置
CN108227146B (zh) 2017-12-29 2020-02-11 玉晶光电(厦门)有限公司 光学成像镜头
CN108089317B (zh) 2018-02-05 2020-05-19 浙江舜宇光学有限公司 光学成像镜头
CN108459394B (zh) 2018-03-19 2020-04-10 玉晶光电(厦门)有限公司 光学成像镜头
CN110018556B (zh) 2018-04-03 2021-07-09 浙江舜宇光学有限公司 光学成像镜头
CN208506348U (zh) 2018-06-26 2019-02-15 浙江舜宇光学有限公司 摄像镜头
JP6463591B1 (ja) 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
TWI769298B (zh) 2018-08-31 2022-07-01 佳能企業股份有限公司 光學鏡頭
CN208888449U (zh) 2018-09-20 2019-05-21 信泰光学(深圳)有限公司 一种潜望式镜头模组
CN208872939U (zh) 2018-09-29 2019-05-17 辽宁中蓝电子科技有限公司 长焦距双棱镜潜望式镜头
CN208833988U (zh) 2018-10-08 2019-05-07 浙江舜宇光学有限公司 光学成像镜片组
CN111045188B (zh) 2018-10-11 2022-02-11 江西晶超光学有限公司 光学透镜组、取像模组和电子装置
CN209070186U (zh) 2018-10-21 2019-07-05 辽宁中蓝电子科技有限公司 一种双棱镜潜望式手机镜头
CN117741916A (zh) * 2018-11-27 2024-03-22 浙江舜宇光学有限公司 光学成像透镜组
CN109283665B (zh) 2018-12-07 2024-04-16 浙江舜宇光学有限公司 成像镜头
CN109814235B (zh) 2018-12-28 2022-02-08 玉晶光电(厦门)有限公司 光学成像镜头
CN109814234A (zh) 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109870786B (zh) 2018-12-31 2021-03-02 瑞声光学解决方案私人有限公司 摄像光学镜头
WO2020192253A1 (zh) 2019-03-27 2020-10-01 南昌欧菲精密光学制品有限公司 镜头结构及其组装方法以及摄像模组
CN209765129U (zh) 2019-03-27 2019-12-10 南昌欧菲精密光学制品有限公司 摄像模组及其镜头结构
CN110109226B (zh) 2019-04-12 2021-11-12 深圳市万普拉斯科技有限公司 镜头结构、摄像头模组及移动终端
CN111856706A (zh) 2019-04-30 2020-10-30 南昌欧菲精密光学制品有限公司 光学镜头、取像模组及移动终端
CN110261997A (zh) 2019-06-11 2019-09-20 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
WO2020258269A1 (zh) 2019-06-28 2020-12-30 南昌欧菲精密光学制品有限公司 成像镜头、摄像模组及电子装置
CN110398815B (zh) 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110208927B (zh) 2019-07-12 2024-04-23 浙江舜宇光学有限公司 光学成像镜头
CN110568583A (zh) 2019-07-23 2019-12-13 珠海格力电器股份有限公司 一种潜望式摄像头及移动设备
CN110646919B (zh) 2019-08-22 2021-06-25 江西联创电子有限公司 鱼眼镜头
CN110426822B (zh) 2019-08-26 2024-06-11 浙江舜宇光学有限公司 光学成像镜头
CN110646921A (zh) 2019-09-27 2020-01-03 浙江舜宇光学有限公司 光学成像镜头
CN110531500B (zh) 2019-10-08 2024-05-14 浙江舜宇光学有限公司 光学成像系统
CN210720853U (zh) 2019-10-18 2020-06-09 南昌欧菲精密光学制品有限公司 光学成像系统、取像装置及电子装置
WO2021072745A1 (zh) 2019-10-18 2021-04-22 南昌欧菲精密光学制品有限公司 光学成像系统、取像装置及电子装置
CN110618522A (zh) 2019-10-29 2019-12-27 浙江舜宇光学有限公司 摄像透镜组
CN110794555B (zh) 2019-10-30 2021-10-15 凯迈(洛阳)测控有限公司 一种小型化三组元连续变焦中波制冷红外光学系统
US20220196989A1 (en) 2019-11-04 2022-06-23 Jiangxi Jingchao Optical Co., Ltd. Optical lens assembly, image capturing apparatus and electronic apparatus
EP3896510A4 (en) 2019-11-04 2022-08-10 Jiangxi Jingchao Optical Co., Ltd. OPTICAL SYSTEM, IMAGE CAPTURE DEVICE AND ELECTRONIC DEVICE
CN110901647B (zh) 2019-11-25 2021-03-26 同济大学 考虑复杂激励条件的车辆路面附着系数自适应估计方法
US20220206262A1 (en) 2019-11-29 2022-06-30 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module and electronic device
EP3904934A4 (en) 2019-12-06 2022-08-24 Jiangxi Jingchao Optical Co., Ltd. OPTICAL SYSTEM, CAMERA MODULE AND ELECTRONIC DEVICE
CN110879454A (zh) 2019-12-25 2020-03-13 Oppo广东移动通信有限公司 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
CN111007649B (zh) 2019-12-27 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111025600B (zh) 2019-12-31 2021-11-30 浙江舜宇光学有限公司 长焦光学成像系统及变焦摄像装置
WO2021138754A1 (zh) 2020-01-06 2021-07-15 江西晶超光学有限公司 光学系统、摄像模组及电子装置
US20220236534A1 (en) 2020-03-11 2022-07-28 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
WO2021184164A1 (zh) 2020-03-16 2021-09-23 江西晶超光学有限公司 光学系统、摄像模组及电子装置
WO2021184167A1 (zh) 2020-03-16 2021-09-23 江西晶超光学有限公司 透镜系统、成像模组及电子装置
US20220214521A1 (en) 2020-03-16 2022-07-07 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
CN111308688A (zh) 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 透镜系统、成像模组及电子装置
CN211786331U (zh) 2020-04-08 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
CN111338057A (zh) 2020-04-08 2020-06-26 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
WO2021203277A1 (zh) 2020-04-08 2021-10-14 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN111399186A (zh) 2020-04-29 2020-07-10 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
US20220311917A1 (en) 2020-04-29 2022-09-29 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic apparatus
US20220236536A1 (en) 2020-04-30 2022-07-28 Jiangxi Jingchao Optical Co., Ltd. Optical imaging system, image capturing module, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170307858A1 (en) * 2016-04-20 2017-10-26 Ability Enterprise Co., Ltd. Optical lens
CN109407267A (zh) * 2017-08-18 2019-03-01 大立光电股份有限公司 影像撷取光学系统组、取像装置及电子装置
CN108761745A (zh) * 2018-07-25 2018-11-06 广东弘景光电科技股份有限公司 广角光学系统及其应用的摄像模组
CN109725406A (zh) * 2019-02-21 2019-05-07 浙江舜宇光学有限公司 光学镜头
CN109870788A (zh) * 2019-04-02 2019-06-11 浙江舜宇光学有限公司 摄像透镜组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579412B2 (en) 2019-11-15 2023-02-14 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
US11835695B2 (en) 2019-11-15 2023-12-05 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
US20220155562A1 (en) 2022-05-19
US11953756B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
CN210605169U (zh) 光学系统、取像模组及电子装置
CN110456490B (zh) 摄像透镜组
WO2021026869A1 (zh) 光学系统、取像模组及电子装置
CN109870786B (zh) 摄像光学镜头
US20140293453A1 (en) Imaging lens and imaging apparatus including the imaging lens
US9261671B2 (en) Imaging lens and imaging apparatus including the imaging
CN108957693B (zh) 摄像光学镜头
WO2021179207A1 (zh) 光学系统、摄像模组及电子装置
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
EP4170407A1 (en) Seven-lens imaging objective
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
WO2022105926A1 (zh) 光学镜头及成像设备
CN112394475A (zh) 光学系统、取像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
CN111239971A (zh) 光学系统、摄像模组及电子装置
JP2005316010A (ja) 撮像レンズ
CN108681047B (zh) 摄像光学镜头
CN212540868U (zh) 光学镜头、取像模组及电子装置
CN211826697U (zh) 光学成像系统、取像模组和电子装置
CN110262010B (zh) 摄像光学镜头
CN112034596A (zh) 光学镜头、取像模组及电子装置
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
WO2021102943A1 (zh) 光学系统、摄像模组及电子装置
CN111427133A (zh) 光学成像系统、取像模组和电子装置
CN113448062B (zh) 广角镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941476

Country of ref document: EP

Kind code of ref document: A1