WO2021072745A1 - 光学成像系统、取像装置及电子装置 - Google Patents

光学成像系统、取像装置及电子装置 Download PDF

Info

Publication number
WO2021072745A1
WO2021072745A1 PCT/CN2019/111957 CN2019111957W WO2021072745A1 WO 2021072745 A1 WO2021072745 A1 WO 2021072745A1 CN 2019111957 W CN2019111957 W CN 2019111957W WO 2021072745 A1 WO2021072745 A1 WO 2021072745A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical axis
Prior art date
Application number
PCT/CN2019/111957
Other languages
English (en)
French (fr)
Inventor
谢晗
刘彬彬
李明
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to US17/606,040 priority Critical patent/US20220196988A1/en
Priority to PCT/CN2019/111957 priority patent/WO2021072745A1/zh
Publication of WO2021072745A1 publication Critical patent/WO2021072745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to the technical field of optical imaging, in particular to an optical imaging system, an image capturing device and an electronic device.
  • the wide-angle lens has a larger shooting field of view, and can shoot large scenes or panoramic photos within a limited distance range, which can better meet the needs of users.
  • the pixel size of the chip is getting smaller and smaller, and the requirements for the imaging quality of the matching optical imaging system are getting higher and higher.
  • the lens head is usually made relatively large, which makes it difficult to meet the application requirements of light, thin and miniaturized electronic products.
  • an optical imaging system is provided.
  • An optical imaging system which includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in order from the object side to the image side along the optical axis, wherein,
  • the first lens has a positive refractive power, and its object side surface is convex at the optical axis;
  • the second lens has refractive power, and its image side surface is convex at the optical axis;
  • the third lens has optical power
  • the fourth lens has a positive refractive power, and its image side surface is convex at the optical axis;
  • the fifth lens has negative refractive power, and its object side surface is convex at the optical axis, and its image side surface is concave at the optical axis. At least one of the object side surface and the image side surface of the fifth lens includes at least one Recurve point
  • a diaphragm is provided between the object side of the optical imaging system and the fifth lens;
  • optical imaging system satisfies the following relationship:
  • SD11 is the maximum effective half-aperture of the object side of the first lens
  • SD12 is the maximum effective half-aperture of the image side of the first lens
  • FOV is the maximum field of view of the optical imaging system.
  • An image capturing device includes the optical imaging system described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the optical imaging system.
  • An electronic device includes a housing and the imaging device described in the above embodiments, and the imaging device is installed on the housing.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to Embodiment 1 of the application;
  • 2A to 2C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to Embodiment 2 of the application.
  • 4A to 4C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to Embodiment 3 of the application.
  • 6A to 6C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 3;
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to Embodiment 4 of the application.
  • 8A to 8C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 4;
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the application.
  • 10A to 10C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 5;
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to Embodiment 6 of the application.
  • 12A to 12C are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging system of Embodiment 6.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the aperture of the first lens is usually relatively large, which is difficult to meet the application needs of thin and light electronic products.
  • the edge shape of the first lens of the traditional wide-angle lens is curved. It is also larger, so the mass production molding process of the lens is not high.
  • the optical imaging system of the embodiment of the present application includes five lenses with optical power, namely the first lens, the second lens, the second lens Three lens, fourth lens and fifth lens.
  • the five lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens has positive refractive power, and its object side is convex at the optical axis; the second lens has refractive power, and its image side is convex at the optical axis; the third lens has refractive power; the fourth lens has positive refractive power
  • the image side surface is convex at the optical axis; the fifth lens has negative refractive power, the object side is convex at the optical axis, and the image side is concave at the optical axis.
  • the object side and the image side of the fifth lens At least one of the surfaces contains at least one point of inflection.
  • the angle at which the light of the off-axis field of view is incident on the photosensitive element can be effectively suppressed, and at the same time, the aberration of the off-axis field of view can be further corrected to improve the imaging quality.
  • a diaphragm is arranged between the object side of the optical imaging system and the fifth lens to further improve the imaging quality of the optical imaging system.
  • the diaphragm can be an aperture diaphragm or a field diaphragm.
  • the optical imaging system satisfies the following relationship: SD11/SD12 ⁇ 1.1; where SD11 is the maximum effective half-aperture of the object side of the first lens, and SD12 is the maximum effective half-aperture of the image side of the first lens.
  • SD11/SD12 can be 0.90, 0.93, 0.95, 0.98, 1.01, 1.04, or 1.07.
  • the maximum effective half-aperture of the object side surface of the first lens and the maximum effective half-aperture of the image side surface of the first lens to satisfy the above relationship, the difference in aperture size between the object side surface and the image side surface of the first lens can be reduced, and the The aperture will not be too large, reducing the sensitivity of the optical imaging system.
  • the ratio of SD11 to SD12 in the above range the object-side aperture of the first lens can be better limited, so that the aperture of the lens head with the optical imaging system is smaller, and the miniaturization of the lens module is realized. .
  • the optical imaging system also satisfies the following relationship: 80° ⁇ FOV ⁇ 120°; where FOV is the maximum field of view of the optical imaging system.
  • FOV can be 80°, 83°, 87°, 90°, 93°, 96°, 99°, or 100°.
  • the maximum field of view FOV of the optical imaging system satisfies 80° ⁇ FOV ⁇ 100°, so that the distortion around the image can be effectively reduced.
  • the light emitted or reflected by the subject enters the optical imaging system from the object side, and passes through the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in sequence , And finally converge on the imaging surface.
  • the above-mentioned optical imaging system optimizes the aperture, curvature and shape of the first lens while ensuring a larger field of view, reducing the aperture of the first lens, making the head size of the optical imaging system smaller and more capable.
  • Excellent processing performance can better meet the application requirements of thin and light electronic equipment; at the same time, by reasonably distributing the optical power, surface shape of each lens and the distance between each lens, the aberration of the optical imaging system can be reduced, Ensure the imaging quality of the optical imaging system.
  • the diaphragm is provided between the object side of the optical imaging system and the first lens. By placing the diaphragm in front, it can effectively suppress the excessive increase of the incident angle of the chief ray, so that the optical imaging system is better matched with the photosensitive chip of the traditional specification.
  • the angle between the tangent to the apex of the maximum effective aperture on the object side of the first lens and the optical axis normal is ⁇
  • the optical imaging system satisfies the following relationship:
  • can be 0.3°, 3.3°, 6.3°, 9.3°, 12.3°, 15.3°, 16.3°, or 19.8°.
  • the maximum effective half diameter of the object side of the first lens is SD11
  • the maximum effective half diameter of the image side of the fifth lens is SD52
  • the optical imaging system satisfies the following relationship: SD11/SD52 ⁇ 0.4.
  • SD11/SD52 can be 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, or 0.38.
  • the maximum effective half-aperture of the object side of the first lens is SD11
  • the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH
  • the optical imaging system satisfies the following relationship: SD11/ImgH ⁇ 0.27.
  • SD11/ImgH can be 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, or 0.27.
  • the curvature radius of the object side surface of the first lens at the optical axis is R1
  • the effective focal length of the first lens is f1
  • the optical imaging system satisfies the following relationship: 0.3 ⁇ R1/f1 ⁇ 0.8.
  • R1/f1 can be 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, or 0.78.
  • the first lens can be configured with sufficient positive refractive power, which can help light enter the optical imaging system better ; At the same time, it is also conducive to reducing the overall length of the optical imaging system to achieve miniaturization, while ensuring good imaging quality.
  • the effective focal length of the fifth lens is f5
  • the effective focal length of the optical imaging system is f
  • the optical imaging system satisfies the following relationship: f5/f ⁇ -0.5.
  • f5/f can be -0.95, -0.90, -0.85, -0.80, -0.75, -0.70, -0.65, -0.60, or -0.55.
  • ImgH half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system is ImgH, and the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis is TTL, and optical imaging
  • TTL distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis
  • optical imaging The system satisfies the following relationship: ImgH/TTL ⁇ 0.6.
  • ImgH/TTL can be 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, or 0.72.
  • the radius of curvature of the object side surface of the third lens at the optical axis is R5
  • the radius of curvature of the image side surface of the third lens at the optical axis is R6, and the optical imaging system satisfies the following relationship: -1 ⁇ R5/ R6 ⁇ 1.4.
  • R5/R6 can be -0.15, 0.05, 0.25, 0.45, 0.65, 0.85, 1.05, 1.25, 1.35, or 1.36.
  • the third lens has positive or negative refractive power.
  • the dispersion coefficient of the first lens is V1
  • the dispersion coefficient of the second lens is V2
  • the optical imaging system satisfies the following relationship: 0.3 ⁇ V2/V1 ⁇ 1.
  • V2/V1 can be 0.32, 0.37, 0.42, 0.47, 0.52, 0.57, 0.62, 0.67, 0.72, 0.77, 0.82, 0.87, 0.92, 0.97, or 1.0.
  • the thickness of the first lens on the optical axis is CT1
  • the distance from the object side of the first lens to the image side of the fifth lens on the optical axis is OAL
  • the optical imaging system satisfies the following relationship: CT1 /OAL ⁇ 0.21.
  • CT1/OAL can be 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, or 0.20.
  • the thickness of the first lens on the optical axis can not be too large, thereby It is beneficial to shorten the total length of the optical imaging system and meet the application requirements of thin and light electronic devices.
  • the maximum angle of view of the optical imaging system is FOV
  • the entrance pupil diameter of the optical imaging system is EPD
  • the optical imaging system satisfies the following relationship: 0.7 ⁇ tan(FOV/2)/EPD ⁇ 1.6.
  • tan(FOV/2)/EPD can be 0.70, 0.80, 0.90, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, or 1.55.
  • the lens surface of each lens is aspherical.
  • the optical imaging system further includes a filter for filtering infrared light and/or a protective glass for protecting the photosensitive element, wherein the photosensitive element is located on the imaging surface.
  • the optical imaging system may use multiple lenses, such as the five lenses described above.
  • multiple lenses such as the five lenses described above.
  • the optical imaging system By optimizing the aperture, curvature, and shape of the first lens, and reasonably distributing the focal length, refractive power, surface shape, thickness of each lens, and the on-axis distance between each lens, it provides a way to ensure a large field of view and good imaging At the same time of quality, the optical imaging system with a smaller head diameter can better meet the application requirements of thin and light electronic equipment.
  • the optical imaging system is not limited to including five lenses, and if necessary, the optical imaging system may also include other numbers of lenses.
  • FIG. 1 shows a schematic diagram of the structure of the optical imaging system of Embodiment 1.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and convex at the circumference, and the image side S2 is convex at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is concave at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. Convex at the circumference.
  • the third lens L3 has negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis. Convex at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis.
  • the circumference is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter out infrared light in the external light incident on the optical imaging system to avoid imaging distortion.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the optical imaging system of Example 1.
  • the first lens The unit of the distance from the object side to the imaging surface of the optical imaging system on the optical axis, the radius of curvature, the thickness, and the effective focal length of each lens are millimeters (mm).
  • the reference wavelength is 555nm.
  • the first lens L1 to the fifth lens L5 are all plastic aspheric lenses, and each aspheric surface type is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the lens aspheric surfaces S1-S10 in Example 1.
  • the half of the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the optical imaging system of this embodiment is 2.297mm. Therefore, in combination with the data in Table 1 and Table 2, it can be seen that the optical imaging system in Embodiment 1 satisfies:
  • SD11/SD12 0.9, where SD11 is the maximum effective half diameter of the first lens L1 on the object side S1, and SD12 is the maximum effective half diameter of the first lens L1 on the image side S2;
  • FOV 100°, where FOV is the maximum field of view of the optical imaging system
  • SD11/SD52 0.26, where SD11 is the maximum effective half-aperture of the first lens L1 on the object side S1, and SD52 is the maximum effective half-aperture of the fifth lens L5 on the image side S10;
  • SD11/ImgH 0.22, where SD11 is the maximum effective half-aperture of the object side S1 of the first lens L1, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface S13 of the optical imaging system;
  • R1/f1 0.77, where R1 is the radius of curvature of the object side surface S1 of the first lens L1 at the optical axis, and f1 is the effective focal length of the first lens L1;
  • f5/f -0.98, where f5 is the effective focal length of the fifth lens L5, and f is the effective focal length of the optical imaging system;
  • ImgH/TTL 0.71, where ImgH is half of the diagonal length of the effective pixel area on the imaging surface S13 of the optical imaging system, and TTL is the object side surface S1 of the first lens L1 to the imaging surface S13 of the optical imaging system on the optical axis distance;
  • R5/R6 1.16, where R5 is the radius of curvature of the object side surface S5 of the third lens L3 at the optical axis, and R6 is the radius of curvature of the third lens L3 image side surface S6 at the optical axis;
  • V2/V1 0.36, where V1 is the dispersion coefficient of the first lens L1, and V2 is the dispersion coefficient of the second lens L2;
  • CT1/OAL 0.2, where CT1 is the thickness of the first lens L1 on the optical axis, and OAL is the distance from the object side S1 of the first lens L1 to the image side S10 of the fifth lens L5 on the optical axis;
  • Figure 2A shows the longitudinal spherical aberration curve of the optical imaging system of Example 1, which respectively indicate the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the optical imaging system;
  • Figure 2B shows the implementation The astigmatism curve of the optical imaging system of Example 1, which represents meridional field curvature and sagittal field curvature;
  • Figure 2C shows the distortion curve of the optical imaging system of Example 1, which represents the distortion rate under different image heights . According to FIGS. 2A to 2C, it can be seen that the optical imaging system given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and convex at the circumference.
  • the image side S2 is concave at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is concave at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. It is concave at the circumference.
  • the third lens L3 has a positive refractive power.
  • the object side S5 and the image side S6 are both aspherical.
  • the object side S5 is convex at the optical axis and concave at the circumference.
  • the image side S6 is concave at the optical axis.
  • the circumference is convex.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis.
  • the circumference is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical imaging system to avoid imaging distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 2, where the radius of curvature, thickness, and effective focal length of each lens The units of are all millimeters (mm);
  • Table 4 shows the coefficients of higher order terms that can be used for the lens aspheric surface S1-S10 in Example 2, where the aspheric surface type can be defined by the formula (1) given in Example 1.
  • Table 5 shows the numerical values of the relevant parameters of the optical imaging system given in Example 2.
  • the reference wavelength is 555nm.
  • FIGS. 4A to 4C shows the longitudinal spherical aberration curve of the optical imaging system of Embodiment 2, which respectively indicate the deviation of the focal point of light of different wavelengths after passing through the optical imaging system;
  • FIG. 4B shows the astigmatism of the optical imaging system of Embodiment 2 The curve represents the meridional field curvature and the sagittal field curvature;
  • FIG. 4C shows the distortion curve of the optical imaging system of Embodiment 2, which represents the distortion rate under different image heights. According to FIGS. 4A to 4C, it can be seen that the optical imaging system given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and convex at the circumference.
  • the image side S2 is concave at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is concave at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. It is concave at the circumference.
  • the third lens L3 has positive refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and convex at the circumference, and the image side S6 is convex at the optical axis.
  • the circumference is convex.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis.
  • the circumference is concave.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter out infrared light in the external light incident on the optical imaging system to avoid imaging distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 3.
  • the radius of curvature, thickness, and effective focal length of each lens The units of are all millimeters (mm);
  • Table 7 shows the coefficients of the higher order terms that can be used for the lens aspheric surface S1-S10 in Example 3, where the aspheric surface type can be defined by the formula (1) given in Example 1.
  • Table 8 shows the numerical values of the relevant parameters of the optical imaging system given in Example 3.
  • the reference wavelength is 555nm.
  • FIG. 6A shows the longitudinal spherical aberration curve of the optical imaging system of Embodiment 3, which respectively indicate the deviation of the focal point of light of different wavelengths after passing through the optical imaging system
  • FIG. 6B shows the astigmatism of the optical imaging system of Embodiment 3
  • the curve represents the meridional field curvature and the sagittal field curvature
  • FIG. 6C shows the distortion curve of the optical imaging system of Embodiment 3, which represents the distortion rate under different image heights. It can be seen from FIGS. 6A to 6C that the optical imaging system given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and concave at the circumference.
  • the image side S2 is convex at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is concave at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. It is concave at the circumference.
  • the third lens L3 has negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis. Convex at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis.
  • the circumference is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also arranged between the first lens L1 and the second lens L2 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter out infrared light in the external light incident on the optical imaging system to avoid imaging distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 4, where the radius of curvature, thickness, and effective focal length of each lens The units of are all millimeters (mm);
  • Table 10 shows the coefficients of higher order terms that can be used for the aspheric surface S1-S10 of the lens in Example 4, where the aspheric surface type can be defined by the formula (1) given in Example 1.
  • Table 11 shows the numerical values of the relevant parameters of the optical imaging system given in Example 4.
  • the reference wavelength is 555nm.
  • FIG. 8A shows the longitudinal spherical aberration curve of the optical imaging system of Embodiment 4, which respectively indicate the deviation of the focal point of light of different wavelengths after passing through the optical imaging system
  • FIG. 8B shows the astigmatism of the optical imaging system of Embodiment 4 The curve represents the meridional field curvature and the sagittal field curvature
  • FIG. 8C shows the distortion curve of the optical imaging system of Embodiment 4, which represents the distortion rate under different image heights. It can be seen from FIGS. 8A to 8C that the optical imaging system given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and convex at the circumference, and the image side S2 is convex at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. It is concave at the circumference.
  • the third lens L3 has negative refractive power, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and convex at the circumference, and the image side S6 is concave at the optical axis. Convex at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis.
  • the circumference is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical imaging system to avoid imaging distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 5.
  • the radius of curvature, thickness, and effective focal length of each lens The units of are all millimeters (mm);
  • Table 13 shows the coefficients of higher order terms that can be used for the lens aspheric surface S1-S10 in Example 5, where the aspheric surface type can be defined by the formula (1) given in Example 1.
  • Table 14 shows the numerical values of the relevant parameters of the optical imaging system given in Example 5.
  • the reference wavelength is 555nm.
  • FIGS. 10A to 10C shows the longitudinal spherical aberration curve of the optical imaging system of Embodiment 5, which respectively indicate the deviation of the focal point of light of different wavelengths after passing through the optical imaging system;
  • FIG. 10B shows the astigmatism of the optical imaging system of Embodiment 5 The curve represents the meridional field curvature and the sagittal field curvature;
  • FIG. 10C shows the distortion curve of the optical imaging system of Embodiment 5, which represents the distortion rate under different image heights. According to FIGS. 10A to 10C, it can be seen that the optical imaging system given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • the optical imaging system includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a positive refractive power.
  • the object side S1 and the image side S2 are both aspherical.
  • the object side S1 is convex at the optical axis and convex at the circumference, and the image side S2 is convex at the optical axis.
  • the circumference is convex.
  • the second lens L2 has negative refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is concave at the optical axis and concave at the circumference, and the image side S4 is concave at the optical axis. Convex at the circumference.
  • the third lens L3 has negative refractive power, and the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and convex at the circumference, and the image side S6 is concave at the optical axis. Convex at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is convex at the optical axis and convex at the circumference, and the image side S8 is convex at the optical axis.
  • the circumference is concave.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical imaging system.
  • the optical imaging system further includes a filter L6 having an object side surface S11 and an image side surface S12.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter L6 is an infrared filter, which is used to filter out infrared light in the external light incident on the optical imaging system to avoid imaging distortion.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number, and effective focal length of each lens of the optical imaging system of Example 6, where the radius of curvature, thickness, and effective focal length of each lens
  • the units of are all millimeters (mm);
  • Table 16 shows the coefficients of higher order terms that can be used for the lens aspheric surface S1-S10 in Example 6, where the aspheric surface type can be defined by the formula (1) given in Example 1.
  • Table 17 shows the numerical values of the relevant parameters of the optical imaging system given in Example 6.
  • the reference wavelength is 555nm.
  • FIG. 12A shows the longitudinal spherical aberration curve of the optical imaging system of Embodiment 6, which respectively indicate the deviation of the focal point of light of different wavelengths after passing through the optical imaging system;
  • FIG. 12B shows the astigmatism of the optical imaging system of Embodiment 6 The curve represents the meridional field curvature and the sagittal field curvature;
  • FIG. 12C shows the distortion curve of the optical imaging system of Example 6, which represents the distortion rate under different image heights. It can be seen from FIGS. 10A to 10C that the optical imaging system given in Embodiment 6 can achieve good imaging quality.
  • the present application also provides an image capturing device, including the optical imaging system as described above; and a photosensitive element, which is arranged on the image side of the optical imaging system to receive the light carrying image information formed by the optical imaging system.
  • the photosensitive element may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the above-mentioned image capturing device using the optical imaging system described above, can capture wide-view images with small aberrations and high resolution. At the same time, the image capturing device also has the characteristics of miniaturization, which is convenient for adapting to thin and light electronic equipment, etc. Size-restricted device.
  • the present application also provides an electronic device including a housing and the image capturing device as described above, and the image capturing device is installed on the housing to capture images.
  • the image capturing device is arranged in the casing and exposed from the casing to capture images.
  • the casing can provide protection against dust, water, and drop of the image capturing device.
  • the casing is provided with holes corresponding to the image capturing device. Make light penetrate into or out of the shell from the hole.
  • the above-mentioned electronic device has the characteristics of light and thin structure.
  • the image capturing device described above can be used to capture images with a wide angle and good imaging quality, which can meet the shooting needs of cameras for mobile phones, vehicles, surveillance, and medical equipment.
  • the "electronic device” used in the embodiments of this application may include, but is not limited to, set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular network, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video) broadcasting handheld, DVB-H) network digital television network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal's wireless interface to receive/transmit communication signals.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area network
  • WLAN wireless local area network
  • AM-FM amplitude modulation-frequency modulation
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Abstract

一种光学成像系统,沿着光轴由物侧至像侧依序包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)和第五透镜(L5)。第一透镜(L1)具有正光焦度,其物侧面(S1)于光轴处为凸面;第二透镜(L2)具有光焦度,其像侧面(S4)于光轴处为凸面;第三透镜(L3)具有光焦度;第四透镜(L4)具有正光焦度,其像侧面(S8)于光轴处为凸面。第五透镜(L5)具有负光焦度,其物侧面(S9)于光轴处为凸面,其像侧面(S10)于光轴处为凹面,第五透镜(L5)的物侧面(S9)与像侧面(S10)中至少一个表面包含至少一个反曲点。物侧与第五透镜(L5)之间设置有光阑(STO)。第一透镜(L1)物侧面(S1)的最大有效半口径SD11和第一透镜(L1)像侧面(S2)的最大有效半口径SD12满足SD11/SD12<1.1,光学成像系统的最大视场角FOV满足80°≤FOV≤120°。还涉及一种取像装置和电子装置。

Description

光学成像系统、取像装置及电子装置 技术领域
本发明涉及光学成像技术领域,特别是涉及一种光学成像系统、取像装置及电子装置。
背景技术
近年来,随着科技的发展,具有摄像功能的便携式电子产品得到人们更多的青睐。其中,广角镜头具有更大的拍摄视野,可以在有限距离范围内拍摄出大场面或全景照片,更能满足用户的需求。
然而,随着CMOS芯片技术的发展,芯片的像素尺寸越来越小,对相配套的光学成像系统的成像质量要求也越来越高。传统的广角镜头为了保证成像质量,在扩大视角范围的同时,其镜头头部通常做的比较大,从而难以满足电子产品轻薄小型化的应用需求。
发明内容
根据本申请的各种实施例,提供一种光学成像系统。
一种光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,
所述第一透镜具有正光焦度,且其物侧面于光轴处为凸面;
所述第二透镜具有光焦度,且其像侧面于光轴处为凸面;
所述第三透镜具有光焦度;
所述第四透镜具有正光焦度,且其像侧面于光轴处为凸面;
所述第五透镜具有负光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,所述第五透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点;
所述光学成像系统的物侧与所述第五透镜之间设置有光阑;
所述光学成像系统满足下列关系式:
SD11/SD12<1.1;
80°≤FOV≤120°;
其中,SD11为所述第一透镜物侧面的最大有效半口径,SD12为所述第一透镜像侧面的最大有效半口径,FOV为所述光学成像系统的最大视场角。
一种取像装置,包括上述实施例所述的光学成像系统;以及感光元件,所述感光元件设于所述光学成像系统的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像装置,所述取像装置安装在所述壳体上。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请实施例1的光学成像系统的结构示意图;
图2A至图2C分别为实施例1的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3为本申请实施例2的光学成像系统的结构示意图;
图4A至图4C分别为实施例2的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5为本申请实施例3的光学成像系统的结构示意图;
图6A至图6C分别为实施例3的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7为本申请实施例4的光学成像系统的结构示意图;
图8A至图8C分别为实施例4的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9为本申请实施例5的光学成像系统的结构示意图;
图10A至图10C分别为实施例5的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11为本申请实施例6的光学成像系统的结构示意图;
图12A至图12C分别为实施例6的光学成像系统的纵向球差曲线图、像散曲线图以及畸变曲线图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多 不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的广角镜头,为了保证广视角及成像质量,其第一片透镜的口径通常比较大,难以满足轻薄型电子产品的应用需求;除此之外,传统广角镜头的第一片透镜的边缘形状弯曲程度也较大,因此透镜的量产成型工艺不高。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得到的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应是发明人在本申请过程中对本申请做出的贡献。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9和图11,本申请实施例的光学成像系统包括五片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。该五片透镜沿着光轴从物侧至像侧依序排列。
第一透镜具有正光焦度,其物侧面于光轴处为凸面;第二透镜具有光 焦度,其像侧面于光轴处为凸面;第三透镜具有光焦度;第四透镜具有正光焦度,其像侧面于光轴处为凸面;第五透镜具有负光焦度,其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,第五透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点。通过设置反曲点可以有效地压制离轴视场的光线入射至感光元件上的角度,同时可进一步修正离轴视场的像差,提高成像质量。
光学成像系统的物侧与第五透镜之间设置有光阑,以进一步提升光学成像系统的成像质量。光阑可以是孔径光阑或视场光阑。
具体的,光学成像系统满足下列关系式:SD11/SD12<1.1;其中,SD11为第一透镜物侧面的最大有效半口径,SD12为第一透镜像侧面的最大有效半口径。SD11/SD12可以是0.90、0.93、0.95、0.98、1.01、1.04或1.07。通过控制第一透镜物侧面的最大有效半口径与第一透镜像侧面的最大有效半口径满足上述关系,可以减小第一透镜物侧面和像侧面的口径大小差异,保证第一透镜物侧面的口径不会过大,降低了光学成像系统的敏感性。更重要的,通过控制SD11和SD12的比值处于上述范围,可以更好地限制第一透镜的物侧面口径,进而使得具备该光学成像系统的镜头头部口径较小,实现镜头模组的小型化。
具体的,光学成像系统还满足下列关系式:80°≤FOV≤120°;其中,FOV为光学成像系统的最大视场角。FOV可以是80°、83°、87°、90°、93°、96°、99°或100°。通过控制光学成像系统的最大视场角满足上述关系,有利于扩大镜头拍摄的范围,增加拍摄场景,使用户获得更好的拍摄体验。优选的,光学成像系统的最大视场角FOV满足80°≤FOV≤100°,从而可以有效减小影像周边的畸变。
当上述光学成像系统用于成像时,被摄物体发出或者反射的光线从物侧方向进入光学成像系统,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,最终汇聚到成像面上。
上述光学成像系统,在保证较大视场角的同时,对第一透镜的口径、曲率以及形状进行优化,减小了第一透镜的口径,使得光学成像系统的头部尺寸变小,具备更优的加工性能,可以更好地满足轻薄型电子设备的应用需求;同时通过合理分配各透镜的光焦度、面型以及各透镜间的间距,可以减小所述光学成像系统的像差,保证所述光学成像系统的成像质量。
在示例性实施方式中,光阑设于光学成像系统的物侧与第一透镜之间。通过将光阑前置,可以有效抑制主光线入射角过度增大,从而使得光学成像系统更好地与传统规格的感光芯片匹配。
在示例性实施方式中,第一透镜物侧面最大有效口径顶点的切线与光 轴法线的夹角为θ,光学成像系统满足下列关系式:|θ|<20°。|θ|可以是0.3°、3.3°6.3°、9.3°、12.3°、15.3°、16.3°或19.8°。通过压低第一透镜物侧面最大有效口径顶点的切线与光轴法线的夹角,可以在保证光学成像系统实现广角化的同时,方便第一透镜的加工,有利于镜头的组装和量产。
在示例性实施方式中,第一透镜物侧面的最大有效半口径为SD11,第五透镜像侧面的最大有效半口径为SD52,光学成像系统满足下列关系式:SD11/SD52<0.4。SD11/SD52可以是0.24、0.26、0.28、0.30、0.32、0.34、0.36或0.38。通过优化第一透镜物侧面的口径大小,有利于实现光学成像系统的小型化,满足镜头的小头部设计。
在示例性实施方式中,第一透镜物侧面的最大有效半口径为SD11,光学成像系统的成像面上有效像素区域对角线长的一半为ImgH,光学成像系统满足下列关系式:SD11/ImgH≤0.27。SD11/ImgH可以是0.20、0.21、0.22、0.23、0.24、0.25、0.26或0.27。通过控制第一透镜物侧面的最大有效半口径与光学成像系统的成像面上有效像素区域对角线长的一半满足上述关系,可使镜头在搭配同等尺寸的感光芯片时,具有更小的头部口径,有利于实现镜头的小型化,更好地满足轻薄型电子设备的应用需求。
在示例性实施方式中,第一透镜物侧面于光轴处的曲率半径为R1,第一透镜的有效焦距为f1,光学成像系统满足下列关系式:0.3<R1/f1<0.8。R1/f1可以是0.31、0.36、0.41、0.46、0.51、0.56、0.61、0.66、0.71、0.76或0.78。通过控制第一透镜物侧面于光轴处的曲率半径与第一透镜的有效焦距满足上述关系,可以为第一透镜配置足够的正光焦度,从而可以帮助光线更好地入射到光学成像系统中;同时,也有利于在缩短光学成像系统总长实现小型化的同时,保证良好的成像质量。
在示例性实施方式中,第五透镜的有效焦距为f5,光学成像系统的有效焦距为f,光学成像系统满足下列关系式:f5/f<-0.5。f5/f可以是-0.95、-0.90、-0.85、-0.80、-0.75、-0.70、-0.65、-0.60或-0.55。通过控制第五透镜的有效焦距和光学成像系统的有效焦距满足上述关系,有利于修正光学成像系统的像差和场曲,从而使系统能够维持较佳的光学性能。
在示例性实施方式中,光学成像系统的成像面上有效像素区域对角线长的一半为ImgH,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离为TTL,光学成像系统满足下列关系式:ImgH/TTL≥0.6。ImgH/TTL可以是0.60、0.61、0.62、0.63、0.64、0.65、0.66、0.67、0.68、0.69、0.70、0.71或0.72。通过控制光学成像系统的成像面上有效像素区域对角 线长的一半与第一透镜的物侧面至光学成像系统的成像面在光轴上的距离满足上述关系,有利于压缩光学成像系统的总长,实现镜头的小型化。
在示例性实施方式中,第三透镜物侧面于光轴处的曲率半径为R5,第三透镜像侧面于光轴处的曲率半径为R6,光学成像系统满足下列关系式:-1<R5/R6<1.4。R5/R6可以是-0.15、0.05、0.25、0.45、0.65、0.85、1.05、1.25、1.35或1.36。第三透镜具备正或负的光焦度,通过优化第三透镜物侧面和像侧面的曲率半径,有利于消减光学成像系统的像差,提高镜头的解析能力。
在示例性实施方式中,第一透镜的色散系数为V1,第二透镜的色散系数为V2,光学成像系统满足下列关系式:0.3<V2/V1≤1。V2/V1可以是0.32、0.37、0.42、0.47、0.52、0.57、0.62、0.67、0.72、0.77、0.82、0.87、0.92、0.97或1.0。通过控制第一透镜的色散系数和第二透镜的色散系数满足上述关系,有利于降低系统色差,提升光学成像系统的成像质量。
在示例性实施方式中,第一透镜在光轴上的厚度为CT1,第一透镜的物侧面至第五透镜的像侧面在光轴上的距离为OAL,光学成像系统满足下列关系式:CT1/OAL<0.21。CT1/OAL可以是0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19或0.20。通过控制第一透镜在光轴上的厚度与第一透镜物侧面至第五透镜像侧面在光轴上的距离满足上述关系,可以使得第一透镜在光轴上的厚度不会过大,从而有利于缩短光学成像系统的总长,满足轻薄型电子设备的应用需求。
在示例性实施方式中,光学成像系统的最大视场角为FOV,光学成像系统的入瞳直径为EPD,光学成像系统满足下列关系式:0.7≤tan(FOV/2)/EPD<1.6。tan(FOV/2)/EPD可以是0.70、0.80、0.90、1.0、1.1、1.2、1.3、1.4、1.5或1.55。通过控制光学成像系统的最大视场角与光学成像系统的入瞳直径满足上述关系,可以有效增大光学成像系统的视场角,从而更好地满足用户的使用体验。
在示例性实施方式中,第一透镜至第五透镜中,各透镜的透镜表面均为非球面。通过将各透镜的透镜表面设置为非球面,有利于光学成像系统的像差修正,提升光学成像系统所成的像的解析度。
在示例性实施方式中,光学成像系统还包括用于滤除红外光线的滤光片和/或用于保护感光元件的保护玻璃,其中感光元件位于成像面上。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的五片。通过优化第一透镜的口径、曲率、形状,并合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,提供一种在 保证大视场角、良好的成像质量的同时,头部口径较小的光学成像系统,以更好的满足轻薄型电子设备的应用需求。可以理解的是,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像系统不限于包括五个透镜,如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2C描述本申请实施例1的光学成像系统。
图1示出了实施例1的光学成像系统的结构示意图。如图1所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凸面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处为凹面,像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离、曲率半径、 厚度、各透镜的有效焦距的单位均为毫米(mm)。参考波长为555nm。
表1
Figure PCTCN2019111957-appb-000001
由表1可知,在本实施例中,第一透镜L1至第五透镜L5均采用塑料非球面透镜,各非球面面型由以下公式限定:
Figure PCTCN2019111957-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2019111957-appb-000003
Figure PCTCN2019111957-appb-000004
本实施例光学成像系统的成像面S13上有效像素区域对角线长的一半ImgH为2.297mm,因此结合表1和表2中的数据可知,实施例1中的光学成像系统满足:
SD11/SD12=0.9,其中,SD11为第一透镜L1物侧面S1的最大有效半口径,SD12为第一透镜L1像侧面S2的最大有效半口径;
FOV=100°,其中,FOV为光学成像系统的最大视场角;
|θ|=7.2 °,其中,θ为第一透镜L1物侧面S1最大有效口径顶点的切线与光轴法线的夹角;
SD11/SD52=0.26,其中,SD11为第一透镜L1物侧面S1的最大有效半口径,SD52为第五透镜L5像侧面S10的最大有效半口径;
SD11/ImgH=0.22,其中,SD11为第一透镜L1物侧面S1的最大有效半口径,ImgH为光学成像系统的成像面S13上有效像素区域对角线长的一半;
R1/f1=0.77,其中,R1为第一透镜L1物侧面S1于光轴处的曲率半径,f1为第一透镜L1的有效焦距;
f5/f=-0.98,其中,f5为第五透镜L5的有效焦距,f为光学成像系统的有效焦距;
ImgH/TTL=0.71,其中,ImgH为光学成像系统的成像面S13上有效像素区域对角线长的一半,TTL为第一透镜L1的物侧面S1至光学成像系统的成像面S13在光轴上的距离;
R5/R6=1.16,其中,R5为第三透镜L3物侧面S5于光轴处的曲率半径,R6为第三透镜L3像侧面S6于光轴处的曲率半径;
V2/V1=0.36,其中,V1为第一透镜L1的色散系数,V2为第二透镜L2的色散系数;
CT1/OAL=0.2,其中,CT1为第一透镜L1在光轴上的厚度,OAL为第一透镜L1的物侧面S1至第五透镜L5的像侧面S10在光轴上的距离;
tan(FOV/2)/EPD=1.22,其中,FOV为光学成像系统的最大视场角, EPD为光学成像系统的入瞳直径。
图2A示出了实施例1的光学成像系统的纵向球差曲线,其分别表示波长为470nm、510nm、555nm、610nm以及650nm的光线经由光学成像系统后的会聚焦点偏离;图2B示出了实施例1的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图2A至图2C可知,实施例1给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述本申请实施例2的光学成像系统。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的光学成像系统的结构示意图。
如图3所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处为凹面,像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表3示出了实施例2的光学成像系统各透镜的表面类型、曲率半径、 厚度、材质、折射率、阿贝数及各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表4示出了可用于实施例2中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的光学成像系统的相关参数的数值。参考波长为555nm。
表3
Figure PCTCN2019111957-appb-000005
表4
Figure PCTCN2019111957-appb-000006
Figure PCTCN2019111957-appb-000007
表5
f(mm) 2.31 SD11/ImgH 0.21
FNO 2.4 R1/f1 0.54
FOV(度) 87 f5/f -0.70
ImgH(mm) 2.30 ImgH/TTL 0.69
TTL(mm) 3.32 R5/R6 0.25
SD11/SD12 1.01 V2/V1 0.42
|θ|(度) 14.4 CT1/OAL 0.16
SD11/SD52 0.26 tan(FOV/2)/EPD(mm -1) 0.99
图4A示出了实施例2的光学成像系统的纵向球差曲线,其分别表示不同波长的光线经由光学成像系统后的会聚焦点偏离;图4B示出了实施例2的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图4A至图4C可知,实施例2给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述本申请实施例3的光学成像系统。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的光学成像系统的结构示意图。
如图5所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3具有正光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凸面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其 中物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凹面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表6示出了实施例3的光学成像系统各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表7示出了可用于实施例3中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的光学成像系统的相关参数的数值。参考波长为555nm。
表6
Figure PCTCN2019111957-appb-000008
表7
Figure PCTCN2019111957-appb-000009
Figure PCTCN2019111957-appb-000010
表8
f(mm) 3.04 SD11/ImgH 0.23
FNO 2.4 R1/f1 0.53
FOV(度) 83.2 f5/f -0.59
ImgH(mm) 2.82 ImgH/TTL 0.68
TTL(mm) 4.17 R5/R6 -0.05
SD11/SD12 1.02 V2/V1 1.00
|θ|(度) 16.3 CT1/OAL 0.15
SD11/SD52 0.30 tan(FOV/2)/EPD(mm -1) 0.70
图6A示出了实施例3的光学成像系统的纵向球差曲线,其分别表示不同波长的光线经由光学成像系统后的会聚焦点偏离;图6B示出了实施例3的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图6A至图6C可知,实施例3给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述本申请实施例4的光学成像系统。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申 请实施例4的光学成像系统的结构示意图。
如图7所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凹面,像侧面S2于光轴处为凸面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处为凹面,像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第一透镜L1与第二透镜L2之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表9示出了实施例4的光学成像系统各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表10示出了可用于实施例4中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的光学成像系统的相关参数的数值。参考波长为555nm。
表9
Figure PCTCN2019111957-appb-000011
Figure PCTCN2019111957-appb-000012
表10
Figure PCTCN2019111957-appb-000013
表11
f(mm) 2.09 SD11/ImgH 0.27
FNO 1.85 R1/f1 0.31
FOV(度) 92.7 f5/f -0.80
ImgH(mm) 2.30 ImgH/TTL 0.68
TTL(mm) 3.36 R5/R6 1.33
SD11/SD12 1.05 V2/V1 0.37
|θ|(度) 19.8 CT1/OAL 0.18
SD11/SD52 0.31 tan(FOV/2)/EPD(mm -1) 0.93
图8A示出了实施例4的光学成像系统的纵向球差曲线,其分别表示不同波长的光线经由光学成像系统后的会聚焦点偏离;图8B示出了实施例4的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图8A至图8C可知,实施例4给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述本申请实施例5的光学成像系统。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的光学成像系统的结构示意图。
如图9所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凸面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选 的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表12示出了实施例5的光学成像系统各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表13示出了可用于实施例5中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的光学成像系统的相关参数的数值。参考波长为555nm。
表12
Figure PCTCN2019111957-appb-000014
表13
Figure PCTCN2019111957-appb-000015
Figure PCTCN2019111957-appb-000016
表14
f(mm) 1.60 SD11/ImgH 0.21
FNO 2.2 R1/f1 0.77
FOV(度) 95.5 f5/f -0.80
ImgH(mm) 1.74 ImgH/TTL 0.67
TTL(mm) 2.57 R5/R6 1.22
SD11/SD12 0.95 V2/V1 0.37
|θ|(度) 2.40 CT1/OAL 0.11
SD11/SD52 0.29 tan(FOV/2)/EPD(mm -1) 1.51
图10A示出了实施例5的光学成像系统的纵向球差曲线,其分别表示不同波长的光线经由光学成像系统后的会聚焦点偏离;图10B示出了实施例5的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图10A至图10C可知,实施例5给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述本申请实施例6的光学成像系统。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的光学成像系统的结构示意图。
如图11所示,光学成像系统沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有正光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凸面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凹面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其 中物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,于圆周处为凸面,像侧面S8于光轴处为凸面,于圆周处为凹面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学成像系统的成像质量。
光学成像系统还包括具有物侧面S11和像侧面S12的滤光片L6。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。可选的,滤光片L6为红外滤光片,用以滤除入射至光学成像系统的外界光线中的红外光线,避免成像失真。
表15示出了实施例6的光学成像系统各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数及各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表16示出了可用于实施例6中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的光学成像系统的相关参数的数值。参考波长为555nm。
表15
Figure PCTCN2019111957-appb-000017
表16
Figure PCTCN2019111957-appb-000018
表17
f(mm) 1.99 SD11/ImgH 0.26
FNO 2.2 R1/f1 0.77
FOV(度) 80.0 f5/f -0.95
ImgH(mm) 1.74 ImgH/TTL 0.60
TTL(mm) 2.88 R5/R6 1.36
SD11/SD12 0.97 V2/V1 0.48
|θ|(度) 0.30 CT1/OAL 0.17
SD11/SD52 0.38 tan(FOV/2)/EPD(mm -1) 0.93
图12A示出了实施例6的光学成像系统的纵向球差曲线,其分别表示不同波长的光线经由光学成像系统后的会聚焦点偏离;图12B示出了实施例6的光学成像系统的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同像高情况下的畸变率。根据图10A至图10C可知,实施例6给出的光学成像系统能够实现良好的成像品质。
本申请还提供一种取像装置,包括如前文所述的光学成像系统;以及感光元件,感光元件设于光学成像系统的像侧,以接收由光学成像系统形成的携带图像信息的光。具体的,感光元件可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像装置,利用前文所述的光学成像系统能够拍摄得到像差小且分辨率高的广视角图像,同时该取像装置还具有小型化的特点,方便适配至如轻薄型电子设备等尺寸受限的装置。
本申请还提供一种电子装置,包括壳体以及如前文所述的取像装置,取像装置安装在所述壳体上用以获取图像。
具体的,取像装置设置在壳体内并从壳体暴露以获取图像,壳体可以给取像装置提供防尘、防水防摔等保护,壳体上开设有与取像装置对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置,具有轻薄化的结构特点,利用如前文所述的取像装置可以拍摄得到大广角、成像质量佳的图像,满足如手机、车载、监控、医疗等设备的相机的拍摄需求。
本申请实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,且其物侧面于光轴处为凸面;
    所述第二透镜具有光焦度,且其像侧面于光轴处为凸面;
    所述第三透镜具有光焦度;
    所述第四透镜具有正光焦度,且其像侧面于光轴处为凸面;
    所述第五透镜具有负光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,所述第五透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点;
    所述光学成像系统的物侧与所述第五透镜之间设置有光阑;
    所述光学成像系统满足下列关系式:
    SD11/SD12<1.1;
    80°≤FOV≤120°;
    其中,SD11为所述第一透镜物侧面的最大有效半口径,SD12为所述第一透镜像侧面的最大有效半口径,FOV为所述光学成像系统的最大视场角。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光阑设于所述光学成像系统的物侧与所述第一透镜之间。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    |θ|<20°;
    其中,θ为所述第一透镜物侧面最大有效口径顶点的切线与光轴法线的夹角。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    SD11/SD52<0.4;
    其中,SD11为所述第一透镜物侧面的最大有效半口径,SD52为所述第五透镜像侧面的最大有效半口径。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    SD11/ImgH≤0.27;
    其中,SD11为所述第一透镜物侧面的最大有效半口径,ImgH为所述光学成像系统的成像面上有效像素区域对角线长的一半。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    0.3<R1/f1<0.8;
    其中,R1为所述第一透镜物侧面于光轴处的曲率半径,f1为所述第一透镜的有效焦距。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    f5/f<-0.5;
    其中,f5为所述第五透镜的有效焦距,f为所述光学成像系统的有效焦距。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    ImgH/TTL≥0.6;
    其中,ImgH为所述光学成像系统的成像面上有效像素区域对角线长的一半,TTL为所述第一透镜的物侧面至所述光学成像系统的成像面在光轴上的距离。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    -1<R5/R6<1.4;
    其中,R5为所述第三透镜物侧面于光轴处的曲率半径,R6为所述第三透镜像侧面于光轴处的曲率半径。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    0.3<V2/V1≤1;
    其中,V1为所述第一透镜的色散系数,V2为所述第二透镜的色散系数。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    CT1/OAL<0.21;
    其中,CT1为所述第一透镜在光轴上的厚度,OAL为所述第一透镜的物侧面至所述第五透镜的像侧面在光轴上的距离。
  12. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足下列关系式:
    0.7≤tan(FOV/2)/EPD<1.6;
    其中,FOV为所述光学成像系统的最大视场角,EPD为所述光学成像系统的入瞳直径。
  13. 一种取像装置,其特征在于,包括:如权利要求1-12任一项所述的光学成像系统;以及感光元件,所述感光元件设于所述光学成像系统的 像侧。
  14. 一种电子装置,其特征在于,包括:壳体;以及如权利要求13所述的取像装置,所述取像装置安装在所述壳体上。
PCT/CN2019/111957 2019-10-18 2019-10-18 光学成像系统、取像装置及电子装置 WO2021072745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/606,040 US20220196988A1 (en) 2019-10-18 2019-10-18 Optical imaging system, image capturing apparatus and electronic apparatus
PCT/CN2019/111957 WO2021072745A1 (zh) 2019-10-18 2019-10-18 光学成像系统、取像装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111957 WO2021072745A1 (zh) 2019-10-18 2019-10-18 光学成像系统、取像装置及电子装置

Publications (1)

Publication Number Publication Date
WO2021072745A1 true WO2021072745A1 (zh) 2021-04-22

Family

ID=75537667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111957 WO2021072745A1 (zh) 2019-10-18 2019-10-18 光学成像系统、取像装置及电子装置

Country Status (2)

Country Link
US (1) US20220196988A1 (zh)
WO (1) WO2021072745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254029A1 (en) * 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US20140063620A1 (en) * 2012-09-05 2014-03-06 Pil Sun Jung Photographing Lens Optical System
US9057868B1 (en) * 2014-03-14 2015-06-16 Glory Science Co., Ltd. Optical lens system
CN104914558A (zh) * 2014-03-14 2015-09-16 光燿科技股份有限公司 成像镜头组
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN107167902A (zh) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 光学成像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN210720853U (zh) * 2019-10-18 2020-06-09 南昌欧菲精密光学制品有限公司 光学成像系统、取像装置及电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254029A1 (en) * 2009-04-07 2010-10-07 Yoshikazu Shinohara Imaging lens, imaging apparatus and portable terminal device
US20140063620A1 (en) * 2012-09-05 2014-03-06 Pil Sun Jung Photographing Lens Optical System
US9057868B1 (en) * 2014-03-14 2015-06-16 Glory Science Co., Ltd. Optical lens system
CN104914558A (zh) * 2014-03-14 2015-09-16 光燿科技股份有限公司 成像镜头组
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN107167902A (zh) * 2017-07-25 2017-09-15 浙江舜宇光学有限公司 光学成像镜头
CN107290843A (zh) * 2017-08-21 2017-10-24 浙江舜宇光学有限公司 光学成像镜头
CN210720853U (zh) * 2019-10-18 2020-06-09 南昌欧菲精密光学制品有限公司 光学成像系统、取像装置及电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Also Published As

Publication number Publication date
US20220196988A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2021233052A1 (zh) 光学镜头及成像设备
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2020073978A1 (zh) 光学透镜组、取像模组和电子装置
CN113805310B (zh) 光学系统、取像模组及电子设备
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
WO2021026869A1 (zh) 光学系统、取像模组及电子装置
WO2021179207A1 (zh) 光学系统、摄像模组及电子装置
WO2022111437A1 (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
CN111338058A (zh) 光学镜头、取像模组及电子装置
WO2022199465A1 (zh) 光学镜头及成像设备
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
CN113900235B (zh) 光学系统、取像模组、电子设备及载具
CN210720853U (zh) 光学成像系统、取像装置及电子装置
CN113900222B (zh) 光学系统、取像模组及电子设备
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2021072745A1 (zh) 光学成像系统、取像装置及电子装置
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
WO2021102943A1 (zh) 光学系统、摄像模组及电子装置
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
CN113741008B (zh) 光学系统、取像模组及电子设备
CN114167587B (zh) 光学系统、取像模组及电子设备
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2021138754A1 (zh) 光学系统、摄像模组及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949462

Country of ref document: EP

Kind code of ref document: A1