WO2022111437A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2022111437A1
WO2022111437A1 PCT/CN2021/132263 CN2021132263W WO2022111437A1 WO 2022111437 A1 WO2022111437 A1 WO 2022111437A1 CN 2021132263 W CN2021132263 W CN 2021132263W WO 2022111437 A1 WO2022111437 A1 WO 2022111437A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
concave
Prior art date
Application number
PCT/CN2021/132263
Other languages
English (en)
French (fr)
Inventor
王义龙
刘绪明
曾昊杰
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2022111437A1 publication Critical patent/WO2022111437A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
  • the purpose of the present invention is to provide an optical lens and an imaging device for solving the above problems.
  • the present invention provides an optical lens, which sequentially includes from the object side to the imaging surface along the optical axis: a first lens with negative refractive power, whose object side is convex, and whose image side is concave;
  • the second lens of power its image side is concave;
  • the fourth lens with positive power, its object side and The image sides are all convex;
  • the fifth lens with positive refractive power has a concave object side at the near optical axis, and its image side is convex;
  • the sixth lens with negative power has a concave object side, and its image side is convex.
  • the side surface is concave at the near optical axis;
  • the seventh lens with negative refractive power its object side surface is convex at the near optical axis, and its image side surface is concave at the near optical axis;
  • the first lens and the sixth lens It is a glass aspherical lens, and the second lens, the third lens, the fourth lens, the fifth lens and the seventh lens are all plastic aspherical lenses.
  • the present invention provides an imaging device, comprising an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging device provided by the present invention use seven lenses with a specific refractive power, and are matched with aspherical lenses mixed with glass and plastic, so that the lens can meet the requirements of high pixels and at the same time have a more compact structure. Therefore, the miniaturization of the lens and the balance of high pixels are better achieved, and at the same time, a larger area of the scene can be captured, which brings great convenience to the later cropping. A sense of space, with better imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical lens in a first embodiment of the present invention
  • Fig. 2 is the field curvature curve diagram of the optical lens in the first embodiment of the present invention
  • Fig. 3 is the distortion curve diagram of the optical lens in the first embodiment of the present invention.
  • FIG. 5 is a field curvature diagram of an optical lens in a second embodiment of the present invention.
  • Fig. 6 is the distortion curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 7 is a graph of on-axis spherical aberration and chromatic aberration of an optical lens in a second embodiment of the present invention.
  • FIG. 8 is a field curvature diagram of an optical lens in a third embodiment of the present invention.
  • Fig. 9 is the distortion curve diagram of the optical lens in the third embodiment of the present invention.
  • FIG. 10 is a graph of on-axis point spherical aberration chromatic aberration of the optical lens in the third embodiment of the present invention.
  • FIG. 11 is a field curvature diagram of an optical lens in a fourth embodiment of the present invention.
  • FIG. 13 is a graph of on-axis point spherical aberration chromatic aberration of the optical lens in the fourth embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an imaging device provided by a fifth embodiment of the present invention.
  • the invention provides an optical lens, which sequentially includes from the object side to the imaging surface along the optical axis: a first lens with negative refractive power, whose object side is convex, and whose image side is concave; a second lens with negative refractive power Lens, its image side is concave; the third lens with positive refractive power, its object side is convex, its image side is concave; diaphragm; the fourth lens with positive refractive power, its object side and image side are convex ; The fifth lens with positive refractive power, its object side is concave at the near optical axis, and its image side is convex; the sixth lens with negative refractive power, its object side is concave, and its image side is at the near optical axis is concave; the seventh lens with negative refractive power, its object side is convex at the near optical axis, and its image side is concave at the near optical axis; wherein, the first lens and the sixth lens are glass asp
  • the optical lens satisfies the following conditional formula:
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens
  • f3 represents the focal length of the third lens
  • f represents the focal length of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • ET1 represents the edge thickness of the first lens
  • ET2 represents the edge thickness of the second lens
  • ET3 represents the edge thickness of the third lens
  • CT1 represents the center thickness of the first lens
  • CT2 represents the center thickness of the second lens
  • CT3 represents the first lens thickness.
  • the central thickness of the triplet. Satisfying the conditional formula (2) can reduce the light turning change of the light entering the lens, reduce the introduction of advanced aberrations into the system, and reduce the design difficulty.
  • the optical lens satisfies the following conditional formula:
  • CT6 represents the center thickness of the sixth lens
  • ET6 represents the edge thickness of the sixth lens
  • SAG61 represents the edge sag of the object side of the sixth lens
  • SAG62 represents the edge sag of the image side of the sixth lens.
  • the optical lens satisfies the following conditional formula:
  • f4 represents the focal length of the fourth lens
  • f represents the focal length of the optical lens. Satisfying the conditional formula (5) increases the projection height of the light on the fourth lens, thereby effectively improving the spherical aberration and achieving the best image quality in the center.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the curvature of the object side surface of the third lens
  • R32 represents the curvature of the image side surface of the third lens. Satisfying the conditional formula (6) enables the third lens to provide positive refractive power, which can converge the light, reduce the total length of the system, and facilitate the realization of the miniaturization of the lens.
  • the optical lens satisfies the following conditional formula:
  • ET5 represents the edge thickness of the fifth lens
  • ET6 represents the edge thickness of the sixth lens
  • ET7 represents the edge thickness of the seventh lens
  • CT5 represents the center thickness of the fifth lens
  • CT6 represents the center thickness of the sixth lens
  • CT7 represents the first The central thickness of the seven lenses. Satisfying the conditional formula (7), the distribution of the lenses of the fifth lens, the sixth lens and the seventh lens is relatively uniform and the shape is smooth, which is conducive to lens molding and improves the mass production rate of products.
  • the optical lens satisfies the following conditional formula:
  • SAG11 represents the edge sag of the object side surface of the first lens.
  • the object side of the first lens can be made to be flat, and the first lens can be used as the camera front cover of the mobile phone, so that the components of the mobile phone can be reduced, and the requirement of cost reduction can be achieved.
  • the optical lens satisfies the following conditional formula:
  • ND6 represents the refractive index of the sixth lens
  • VD6 represents the Abbe number of the sixth lens.
  • the optical lens satisfies the following conditional formula:
  • FOV represents the maximum field of view of the optical lens
  • ImgH represents the maximum half-image height of the optical lens on the imaging plane.
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the following examples are only preferred embodiments of the present invention, but the embodiments of the present invention are not only limited by the following examples, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovations of the present invention, All should be regarded as equivalent replacement modes, and all are included in the protection scope of the present invention.
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
  • c is the paraxial curvature radius of the surface
  • k is the quadratic surface coefficient
  • a 2i is the 2i-order a Spherical coefficient.
  • FIG. 1 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 sequentially includes a first lens L1 , a second lens L2 , a first lens L1 , a second lens L2 , a first lens L1 , a second lens L2 Three lenses L3, diaphragm ST, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7 and infrared filter G1.
  • the first lens L1 has a negative refractive power, the object side S1 of the first lens is a convex surface close to a plane, and the image side S2 of the first lens is a concave surface;
  • the second lens L2 has negative refractive power, the object side S3 of the second lens is concave at the near optical axis, and the image side S4 of the second lens is concave;
  • the third lens L3 has positive refractive power, the object side S5 of the third lens is convex, and the image side S6 of the third lens is concave;
  • the fourth lens L4 has positive refractive power, and both the object side S7 and the image side S8 of the fourth lens are convex;
  • the fifth lens L5 has positive refractive power, the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 of the fifth lens is convex;
  • the sixth lens L6 has negative refractive power, the object side S11 of the sixth lens is concave, and the image side S12 of the sixth lens is concave at the near optical axis;
  • the seventh lens L7 has negative refractive power, the object side S13 of the seventh lens is convex at the near optical axis, and the image side S14 of the seventh lens is concave at the near optical axis.
  • the first lens L1 and the sixth lens L6 are glass aspherical lenses; the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5 and the seventh lens L7 are all plastic aspherical lenses Lenses, or both can be plastic non-curved lenses.
  • Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens 100 in this embodiment.
  • FIG. 2 , FIG. 3 , and FIG. 4 are respectively a field curvature graph, a distortion graph, and an on-axis spherical aberration graph of the optical lens 100 according to the first embodiment.
  • the field curvature curve in FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
  • the horizontal axis in the figure represents the offset (unit: mm), and the vertical axis represents the field angle (unit: degree). It can be seen from Figure 2 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.3mm, indicating that the field curvature of the optical lens is well corrected.
  • the distortion curve in FIG. 3 represents the distortion at different image heights on the imaging plane, the horizontal axis represents the f- ⁇ distortion percentage, and the vertical axis represents the field angle (unit: degree). It can be seen from Figure 3 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within 10%, indicating that the distortion of the optical lens is well corrected.
  • the on-axis spherical aberration curve in FIG. 4 represents the aberration on the optical axis at the imaging plane, the horizontal axis in the figure represents the offset (unit: mm), and the vertical axis represents the normalized beam radius. It can be seen from Figure 4 that the offset of the on-axis point spherical aberration is controlled within ⁇ 0.02mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the structure of the optical lens in this embodiment is basically the same as that of the optical lens 100 in the first embodiment, and the difference lies in that the curvature radius and material selection of each lens are different.
  • Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens in this embodiment.
  • FIG. 5 , FIG. 6 and FIG. 7 are respectively a field curvature graph, a distortion graph and a spherical aberration graph of the on-axis point of the optical lens according to the second embodiment.
  • Figure 5 shows the degree of curvature of the meridional image plane and sagittal image plane. It can be seen from Figure 5 that the field curvature of the meridional and sagittal image planes is controlled within ⁇ 0.3mm, indicating that the field curvature of the optical lens is well corrected.
  • Figure 6 shows the distortion at different image heights on the imaging surface. It can be seen from Figure 6 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within 10%, indicating that the distortion of the optical lens is well corrected.
  • Figure 7 shows the aberration on the optical axis at the imaging plane. It can be seen from Figure 7 that the offset of the point spherical aberration on the axis is controlled within ⁇ 0.05mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
  • the structure of the optical lens in this embodiment is substantially the same as the structure of the optical lens 100 in the first embodiment, and the difference lies in that the curvature radius and material selection of each lens are different.
  • Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens in this embodiment.
  • FIG. 8 , FIG. 9 and FIG. 10 are respectively a field curvature graph, a distortion graph, and an on-axis spherical aberration graph of the optical lens according to the third embodiment.
  • Figure 8 shows the degree of curvature of the meridional image plane and sagittal image plane. It can be seen from Figure 8 that the field curvature of the meridional and sagittal image planes is controlled within ⁇ 0.1mm, indicating that the field curvature of the optical lens is well corrected.
  • Figure 9 shows the distortion at different image heights on the imaging plane. It can be seen from Figure 9 that the f- ⁇ distortion at different image heights on the imaging plane is controlled within 10%, indicating that the distortion of the optical lens is well corrected.
  • Figure 10 shows the aberration on the optical axis at the imaging plane. It can be seen from Figure 10 that the offset of the point spherical aberration on the axis is controlled within ⁇ 0.02mm, indicating that the optical lens can effectively correct the aberration of the edge field of view and the secondary spectrum of the entire image plane.
  • the structure of the optical lens in this embodiment is roughly the same as the structure of the optical lens 100 in the first embodiment, the difference is that the curvature radius and material selection of each lens are different.
  • FIG. 11 , FIG. 12 and FIG. 13 are respectively a field curvature graph, a distortion graph, and an on-axis spherical aberration graph of the optical lens according to the fourth embodiment.
  • Figure 11 shows the degree of curvature of the meridional and sagittal image planes. It can be seen from Figure 11 that the field curvature of the meridional and sagittal image planes is controlled within ⁇ 0.3mm, indicating that the optical lens has good field curvature correction.
  • Figure 12 shows the distortion at different image heights on the imaging plane. It can be seen from Figure 12 that the f- ⁇ distortion at different image heights on the imaging plane is controlled within 10%, indicating that the distortion of the optical lens is well corrected.
  • Figure 13 shows the aberration on the optical axis at the imaging plane. It can be seen from Figure 13 that the offset of the point spherical aberration on the axis is controlled within ⁇ 0.05mm, indicating that the optical lens can effectively correct the aberration of the edge field of view and the secondary spectrum of the entire image plane.
  • Table 9 shows the optical characteristics corresponding to the above four embodiments, mainly including the focal length f of the system, the aperture number F#, the total optical length TTL, and the field of view angle FOV, as well as the values corresponding to each of the above conditional expressions.
  • Example Example 1 Example 2 Example 3 Example 4 f(mm) 2.786 2.875 2.842 3.028 F# 2.28 2.28 2.28 2.28 TTL(mm) 7.22 7.78 7.9 7.88 FOV 148° 150° 150° 152° ImgH(mm) 4.0 4.0 4.0 (f1+f2+f3)/f -5.22 -1.862 -1.322 -1.306
  • the optical lens provided by the present invention has the following advantages:
  • the lens can capture more spatial information, and the clarity of the picture is high, which can Matching 48 million pixel imaging chip.
  • a fifth embodiment of the present invention provides a schematic structural diagram of an imaging device 500 .
  • the imaging device 500 includes an imaging element 510 and an optical lens (eg, the optical lens 100 ) in any of the foregoing embodiments.
  • the imaging element 510 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 500 may be a smart phone, a tablet computer, a camera, or any other terminal device equipped with the above-mentioned optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(100)及成像设备(500),光学镜头(100)从物侧到成像面依次包括:具有负光焦度的第一透镜(L1),其物侧面(S1)为凸面;具有负光焦度的第二透镜(L2),其像侧面(S4)为凹面;具有正光焦度的第三透镜(L3),其物侧面(S5)为凸面,像侧面(S6)为凹面;光阑(ST);具有正光焦度的第四透镜(L4),其物侧面(S7)为凸面,像侧面(S8)为凸面;具有正光焦度的第五透镜(L5),其物侧面(S9)在近光轴处为凹面,像侧面(S10)在近光轴处为凸面;具有负光焦度的第六透镜(L6),其物侧面(S11)为凹面,像侧面(S12)为凹面;具有负光焦度的第七透镜(L7),其物侧面(S13)在近光轴处为凸面,像侧面(S14)在近光轴处为凹面。光学镜头(100)采用七片玻塑混合镜片,并且采用特定的表面形状及其搭配,使光学系统捕捉到的画面更具空间纵深感和更多的空间信息。

Description

光学镜头及成像设备
交叉引用
本申请要求2020年11月24日递交的发明名称为:“光学镜头及成像设备”的申请号202011325126.8的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及透镜成像技术领域,特别是涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、平板、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配,甚至成为消费者购买电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着轻薄化、超高清成像等方向发展,这就对搭载在便携式电子设备上的摄像镜头提出了更高的要求。由于广角镜头的用途很广泛,对于近距离拍摄大范围景物非常有用,并且容易得到视觉冲击力强烈的画面,所以广角镜头得以在手机等电子设备上广泛应用。
然而,目前市场上大多数广角镜头的体积较大且像素不高,难以满足便携式电子设备的轻薄化与高清成像需求。
发明内容
为此,本发明的目的在于提出一种光学镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧面为凸面,其像侧面为凹面;具有负光焦度的第二透镜,其像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,其像侧面为凹面;光阑;具有正光焦度的第四透镜,其物侧面和像侧面均为凸面;具有正光焦度的第五透镜,其物侧面在近光轴处为凹面,其像侧面为凸面;具有负光焦度的第六透镜,其物侧面为凹面,其像侧面在近光轴处为凹面;具有负光焦度的第七透镜,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面;其中,第一透镜和第六透镜为玻璃非球面镜片,第二透镜、第三透镜、第四透镜、第五透镜以及第七透镜均为塑胶非球面镜片。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,采用七片具有特定屈折力的镜片, 并且通过玻塑混合的非球面镜片搭配,使镜头在满足高像素的同时结构更加紧凑,从而较好地实现了镜头小型化和高像素的均衡,同时可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外本发明的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图;
图3为本发明第一实施例中的光学镜头的畸变曲线图;
图4为本发明第一实施例中的光学镜头的轴上点球差色差曲线图;
图5为本发明第二实施例中的光学镜头的场曲曲线图;
图6为本发明第二实施例中的光学镜头的畸变曲线图;
图7为本发明第二实施例中的光学镜头的轴上点球差色差曲线图;
图8为本发明第三实施例中的光学镜头的场曲曲线图;
图9为本发明第三实施例中的光学镜头的畸变曲线图;
图10为本发明第三实施例中的光学镜头的轴上点球差色差曲线图;
图11为本发明第四实施例中的光学镜头的场曲曲线图;
图12为本发明第四实施例中的光学镜头的畸变曲线图;
图13为本发明第四实施例中的光学镜头的轴上点球差色差曲线图;
图14为本发明第五实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种光学镜头,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧面为凸面,其像侧面为凹面;具有负光焦度的第二透镜,其像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,其像侧面为凹面;光阑;具有正光焦度的第四透镜,其物侧面和像侧面均为凸面;具有正光焦度的第五透镜,其物侧面在近光轴处为凹面,其像侧面为凸 面;具有负光焦度的第六透镜,其物侧面为凹面,其像侧面在近光轴处为凹面;具有负光焦度的第七透镜,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面;其中,第一透镜和第六透镜为玻璃非球面镜片,第二透镜、第三透镜、第四透镜、第五透镜以及第七透镜均为塑胶非球面镜片。其中,第一透镜和第六透镜为玻璃非球面镜片,第二透镜、第三透镜、第四透镜、第五透镜以及第七透镜均为塑胶非球面镜片。
在一些实施方式中,光学镜头满足以下条件式:
-5.5<(f1+f2+f3)/f<-1.0;         (1)
其中,f1表示第一透镜的焦距,f2表示第二透镜的焦距,f3表示第三透镜的焦距,f表示光学镜头的焦距。满足条件式(1),通过合理控制光阑前透镜的焦距占比,能够有效改善光学系统的f-θ畸变。
在一些实施方式中,光学镜头满足以下条件式:
0.20<(ET1+ET2+ET3)/(CT1+CT2+CT3)<0.50;         (2)
其中,ET1表示第一透镜的边缘厚度,ET2表示第二透镜的边缘厚度,ET3表示第三透镜的边缘厚度,CT1表示第一透镜的中心厚度,CT2表示第二透镜的中心厚度,CT3表示第三透镜的中心厚度。满足条件式(2),可减小光线进入镜片的光线转折变化,减小高级像差引入系统,减小设计难度。
在一些实施方式中,光学镜头满足以下条件式:
-1.5<(CT6-ET6)/CT6<-1.0;           (3)
-0.30mm<SAG61-SAG62<0.05mm;           (4)
其中,CT6表示第六透镜的中心厚度,ET6表示第六透镜的边缘厚度,SAG61表示第六透镜的物侧面的边缘矢高,SAG62表示第六透镜的像侧面的边缘矢高。满足条件式(3)和(4),通过合理的设置第六透镜的面型形状,能够有效的改善场曲,提高系统的成像质量,使光学系统具备更好的解像力。
在一些实施方式中,光学镜头满足以下条件式:
0.8<f4/f<1.0;             (5)
其中,f4表示第四透镜的焦距,f表示光学镜头的焦距。满足条件式(5),使光线在第四透镜的投射高度增大,进而可以有效改善球差,使中心成像质量达到最好。
在一些实施方式中,所述光学镜头满足以下条件式:
1.10<R31/R32<2.40;            (6)
其中,R31表示第三透镜的物侧面的曲率,R32表示第三透镜的像侧面的曲率。满足条件式(6),可使第三透镜提供正的光焦度,对光线起到汇聚作用,使系统的总长减小,利于镜头小型化的实现。
在一些实施方式中,光学镜头满足以下条件式:
0.95<(ET5+ET6+ET7)/(CT5+CT6+CT7)<1.10;       (7)
其中,ET5表示第五透镜的边缘厚度,ET6表示第六透镜的边缘厚度,ET7表示第七透镜 的边缘厚度,CT5表示第五透镜的中心厚度,CT6表示第六透镜的中心厚度,CT7表示第七透镜的中心厚度。满足条件式(7),使第五透镜、第六透镜、第七透镜各镜片的分布比较均匀,形状平滑,有利于镜片成型,提高产品的量产率。
在一些实施方式中,光学镜头满足以下条件式:
0mm<SAG11<0.12mm;               (8)
其中,SAG11表示第一透镜的物侧面的边缘矢高。满足条件式(8),可使第一透镜的物侧面趋于平面,并且将第一镜片作为手机摄像前端盖板,这样就可以减少手机组件,达到降低成本的要求。
在一些实施方式中,光学镜头满足以下条件式:
ND6≥1.66;            (9)
VD6≤18.8;            (10)
其中,ND6表示第六透镜的折射率,VD6表示第六透镜的阿贝数。满足条件式(9)和(10),能够合理限定第六透镜的选材,可有效改善色差和系统的解像力。
在一些实施方式中,光学镜头满足以下条件式:
140°<FOV<160°;           (11)
3.8mm<ImgH<4.2mm;             (12)
其中,FOV表示光学镜头的最大视场角,ImgH表示光学镜头在成像面上的最大半像高。满足条件式(11)和(12),表明光学镜头具有大广视角、且成像面较大,能够拍摄到更大面积的景物,满足便携式电子设备的使用需求。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2021132263-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A 2i为第2i阶的非球面面型系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四 透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及红外滤光片G1。
第一透镜L1具有负光焦度,第一透镜的物侧面S1为接近平面的凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜的物侧面S3在近光轴处为凹面,第二透镜的像侧面S4为凹面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凹面;
第四透镜L4具有正光焦度,第四透镜的物侧面S7和像侧面S8均为凸面;
第五透镜L5具有正光焦度,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在为凸面;
第六透镜L6具有负光焦度,第六透镜的物侧面S11为凹面,第六透镜的像侧面S12在近光轴处为凹面;
第七透镜L7具有负光焦度,第七透镜的物侧面S13在近光轴处为凸面,第七透镜的像侧面S14在近光轴处为凹面。
在一些实施方式中,第一透镜L1、第六透镜L6为玻璃非球面镜片;第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第七透镜L7均为塑胶非球面镜片,或者也可以均为塑胶非曲面镜片。
本实施例提供的光学镜头100中各个镜片的相关参数如表1所示。
表1
Figure PCTCN2021132263-appb-000002
Figure PCTCN2021132263-appb-000003
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 -644.113 -6.458E-04 2.214E-04 -1.628E-05 8.310E-07 2.450E-07 -6.000E-09 -1.000E-09
S2 -49.0971 4.501E-02 -3.922E-03 -8.343E-04 -2.676E-05 9.414E-06 5.553E-06 -2.030E-07
S3 -4414 6.603E-02 -9.576E-03 3.265E-04 1.420E-04 -3.306E-05 -1.316E-05 2.317E-06
S4 -0.31374 -3.741E-02 8.505E-04 -2.507E-03 6.944E-04 5.982E-04 4.569E-05 -1.220E-04
S5 0.023579 -9.777E-02 -2.467E-02 1.169E-02 4.258E-03 -6.934E-04 -9.197E-04 -6.416E-04
S6 -2.44763 5.897E-02 -5.399E-03 2.300E-02 4.056E-03 2.351E-03 2.150E-02 -1.397E-02
S7 -4.93745 1.514E-02 -4.966E-03 1.717E-03 1.080E-02 -5.285E-03 2.292E-02 -3.092E-02
S8 1.646481 2.516E-02 -1.595E-02 3.486E-02 -1.210E-02 -3.028E-03 1.494E-02 -7.295E-03
S9 4.684647 3.408E-02 2.702E-03 -2.896E-03 -3.908E-03 9.005E-04 1.140E-03 -4.235E-04
S10 -0.04685 5.262E-02 2.274E-03 1.163E-04 1.483E-03 -1.030E-03 -7.835E-04 5.280E-04
S11 -832.743 -1.156E-01 -5.441E-03 -6.555E-03 -6.071E-04 3.483E-04 3.183E-04 1.219E-04
S12 0.218487 -6.643E-02 2.694E-03 6.002E-04 8.710E-05 3.000E-06 -2.100E-06 -1.000E-07
S13 -127.111 1.552E-03 -2.299E-03 -4.658E-04 -4.100E-06 9.200E-06 1.400E-06 -1.000E-07
S14 -0.39637 -4.260E-02 5.251E-03 -2.981E-04 -1.440E-05 1.200E-06 1.000E-07 0.000E+00
请参阅图2、图3及图4,所示分别为第一实施例的光学镜头100的场曲曲线图、畸变曲线图以及轴上点球差曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度,图中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.3mm以内,说明光学镜头的场曲校正良好。
图3的畸变曲线表示成像面上不同像高处的畸变,图中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面上不同像高处的f-θ畸变控制在10%以内,说明光学镜头的畸变得到良好的校正。
图4的轴上点球差曲线表示成像面处光轴上的像差,图中横轴表示偏移量(单位:mm),纵轴表示归一化光曈半径。从图4中可以看出,轴上点球差的偏移量控制在±0.02mm以内,说明光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第二实施例
本实施例中的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:各透镜的曲率半径及材料选择不同。
本实施例提供光学镜头中各个镜片的相关参数如表3所示。
表3
Figure PCTCN2021132263-appb-000004
Figure PCTCN2021132263-appb-000005
本实施例中的光学镜头的各非球面的面型系数如表4所示。
表4
Figure PCTCN2021132263-appb-000006
请参阅图5、图6及图7,所示分别为第二实施例的光学镜头的场曲曲线图、畸变曲线图以及轴上点球差曲线图。
图5表示子午像面和弧矢像面的弯曲程度,从图5中可以看出,子午像面和弧矢像面的场曲控制在±0.3mm以内,说明光学镜头的场曲校正良好。
图6表示成像面上不同像高处的畸变,从图6中可以看出,成像面上不同像高处的f-θ畸变控制在10%以内,说明光学镜头的畸变得到良好的校正。
图7表示成像面处光轴上的像差,从图7中可以看出,轴上点球差的偏移量控制在±0.05mm以内,说明光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第三实施例
本实施例中的光学镜头的结构与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:各透镜的曲率半径及材料选择不同。
本实施例提供的光学镜头中各个镜片的相关参数如表5所示。
表5
Figure PCTCN2021132263-appb-000007
本实施例中的光学镜头的各非球面的面型系数如表6所示。
表6
Figure PCTCN2021132263-appb-000008
请参阅图8、图9及图10,所示分别为第三实施例的光学镜头的场曲曲线图、畸变曲线图以及轴上点球差曲线图。
图8表示子午像面和弧矢像面的弯曲程度,从图8中可以看出,子午像面和弧矢像面的场曲控制在±0.1mm以内,说明光学镜头的场曲校正良好。
图9表示成像面上不同像高处的畸变,从图9中可以看出,成像面上不同像高处的f-θ畸变控制在10%以内,说明光学镜头的畸变得到良好的校正。
图10表示成像面处光轴上的像差,从图10中可以看出,轴上点球差的偏移量控制在±0.02mm以内,说明光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第四实施例
本实施例中的光学镜头的结构与第一实施例中的光学镜头100的结构大抵相同,不同之处 在于:各透镜的曲率半径及材料选择不同。
本实施例中的光学镜头中各个镜片的相关参数如表7所示。
表7
Figure PCTCN2021132263-appb-000009
本实施例中的光学镜头的各非球面的面型系数如表8所示。
表8
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 -7.02E+02 -1.07E-03 2.02E-04 -1.66E-05 8.27E-07 2.24E-07 -1.20E-08 -2.00E-09
S2 -2.63E+01 4.48E-02 -2.81E-03 -6.30E-04 -1.38E-05 6.87E-06 4.71E-06 -2.64E-07
S3 -4.41E+03 6.37E-02 -1.06E-02 3.10E-04 1.91E-04 -1.78E-05 -1.12E-05 2.01E-06
S4 2.28E-01 -2.76E-02 2.64E-03 -2.55E-03 6.26E-04 6.05E-04 6.56E-05 -1.02E-04
S5 -8.99E-03 -9.76E-02 -2.54E-02 1.12E-02 3.84E-03 -8.47E-04 -9.07E-04 -5.36E-04
S6 -1.40E+00 5.86E-02 -9.39E-03 2.24E-02 7.50E-03 3.44E-03 1.94E-02 -1.85E-02
S7 -6.76E+00 1.18E-02 -7.17E-03 2.29E-03 1.05E-02 -1.27E-02 5.07E-03 1.08E-03
S8 1.70E+00 2.40E-02 -1.69E-02 3.33E-02 -1.24E-02 -4.29E-03 9.79E-03 -1.72E-03
S9 2.41E+01 3.49E-02 5.44E-03 -1.09E-03 -3.81E-03 6.91E-04 1.08E-03 -3.58E-04
S10 -4.85E-02 4.90E-02 5.65E-03 2.12E-03 1.94E-03 -1.05E-03 -8.77E-04 4.65E-04
S11 -2.09E+02 -1.13E-01 -2.96E-03 -6.06E-03 -3.25E-04 4.34E-04 2.98E-04 7.22E-05
S12 -4.24E-01 -6.93E-02 2.26E-03 6.38E-04 1.26E-04 1.53E-05 -3.00E-08 -2.20E-07
S13 -1.93E+01 1.45E-03 -1.98E-03 -4.29E-04 -8.93E-06 7.46E-06 1.15E-06 -7.00E-08
S14 -4.85E-01 -4.21E-02 5.09E-03 -2.89E-04 -1.44E-05 1.27E-06 8.00E-08 -1.00E-08
请参阅图11、图12及图13,所示分别为第四实施例的光学镜头的场曲曲线图、畸变曲线图以及轴上点球差曲线图。
图11表示子午像面和弧矢像面的弯曲程度,从图11中可以看出,子午像面和弧矢像面的场曲控制在±0.3mm以内,说明光学镜头的场曲校正良好。
图12表示成像面上不同像高处的畸变,从图12中可以看出,成像面上不同像高处的f-θ畸变控制在10%以内,说明光学镜头的畸变得到良好的校正。
图13表示成像面处光轴上的像差,从图13中可以看出,轴上点球差的偏移量控制在±0.05mm以内,说明光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
表9是上述四个实施例对应的光学特性,主要包括系统的焦距f、光圈数F#、光学总长TTL及视场角FOV,以及与上述每个条件式对应的数值。
表9
实施例 实施例1 实施例2 实施例3 实施例4
f(mm) 2.786 2.875 2.842 3.028
F# 2.28 2.28 2.28 2.28
TTL(mm) 7.22 7.78 7.9 7.88
FOV 148° 150° 150° 152°
ImgH(mm) 4.0 4.0 4.0 4.0
(f1+f2+f3)/f -5.22 -1.862 -1.322 -1.306
(ET1+ET2+ET3)/(CT1+CT2+CT3) 0.253 0.458 0.327 0.321
(CT6-ET6)/CT6 -1.051 -1.27 -1.22 -1.162
SAG61-SAG62(mm) -0.124 0.028 -0.180 -0.259
f4/f 0.973 0.934 0.917 0.854
R31/R32 2.161 2.11 1.28 1.273
(ET5+ET6+ET7)/(CT5+CT6+CT7) 1.03 0.97 1.03 1.08
SAG11(mm) 0.105 0.087 0.095 0.110
综上所述,本发明提供的光学镜头具有以下优点:
(1)采用两片玻璃镜片以及五片塑胶镜片搭配,并且通过合理的光焦度组合及特定的表面形状搭配,使镜头能够拍摄获取更多的空间信息,且画面的清晰度较高,能够匹配4800万像素的成像芯片。
(2)可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外,此设计的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
第五实施例
如图14所示,为本发明第五实施例提供一种成像设备500的结构示意图,该成像设备500包括成像元件510和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
该成像设备500可以是智能手机、平板电脑、相机以及其它任意一种形态的装载了上述光学镜头的终端设备。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜以及第七透镜;
    所述第一透镜具有负光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    所述第二透镜具有负光焦度,所述第二透镜的像侧面为凹面;
    所述第三透镜具有正光焦度,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凹面;
    所述第四透镜具有正光焦度,所述第四透镜的物侧面和像侧面均为凸面;
    所述第五透镜具有正光焦度,所述第五透镜的物侧面在近光轴处为凹面,所述第五透镜的像侧面为凸面;
    所述第六透镜具有负光焦度,所述第六透镜的物侧面为凹面,所述第六透镜的像侧面在近光轴处为凹面;
    所述第七透镜具有负光焦度,所述第七透镜的物侧面在近光轴处为凸面,所述第七透镜的像侧面在近光轴处为凹面;
    其中,所述第一透镜和所述第六透镜为玻璃非球面镜片,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第七透镜均为塑胶非球面镜片。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -5.5<(f1+f2+f3)/f<-1.0;
    其中,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距,f3表示所述第三透镜的焦距,f表示所述光学镜头的焦距。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.20<(ET1+ET2+ET3)/(CT1+CT2+CT3)<0.50;
    其中,ET1表示所述第一透镜的边缘厚度,ET2表示所述第二透镜的边缘厚度,ET3表示所述第三透镜的边缘厚度,CT1表示所述第一透镜的中心厚度,CT2表示所述第二透镜的中心厚度,CT3表示所述第三透镜的中心厚度。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -1.5<(CT6-ET6)/CT6<-1.0;
    -0.30mm<SAG61-SAG62<0.05mm;
    其中,CT6表示所述第六透镜的中心厚度,ET6表示所述第六透镜的边缘厚度,SAG61表示所述第六透镜的物侧面的边缘矢高,SAG62表示所述第六透镜的像侧面的边缘矢高。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.8<f4/f<1.0;
    其中,f4表示所述第四透镜的焦距,f表示所述光学镜头的焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.1<R31/R32<2.4;
    其中,R31表示所述第三透镜的物侧面的曲率,R32表示所述第三透镜的像侧面的曲率。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.95<(ET5+ET6+ET7)/(CT5+CT6+CT7)<1.10;
    其中,ET5表示所述第五透镜的边缘厚度,ET6表示所述第六透镜的边缘厚度,ET7表示所述第七透镜的边缘厚度,CT5表示所述第五透镜的中心厚度,CT6表示所述第六透镜的中心厚度,CT7表示所述第七透镜的中心厚度。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0mm<SAG11<0.12mm;
    其中,SAG11表示所述第一透镜的物侧面的边缘矢高。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    ND6≥1.66;
    VD6≤18.8;
    其中,ND6表示所述第六透镜的折射率,VD6表示所述第六透镜的阿贝数。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    140°<FOV<160°;
    3.8mm<ImgH<4.2mm;
    其中,FOV表示所述光学镜头的最大视场角,ImgH表示所述光学镜头在成像面上的最大半像高。
  11. 一种成像设备,其特征在于,包括如权利要求1-10任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2021/132263 2020-11-24 2021-11-23 光学镜头及成像设备 WO2022111437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011325126.8 2020-11-24
CN202011325126.8A CN112147764B (zh) 2020-11-24 2020-11-24 光学镜头及成像设备

Publications (1)

Publication Number Publication Date
WO2022111437A1 true WO2022111437A1 (zh) 2022-06-02

Family

ID=73887374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132263 WO2022111437A1 (zh) 2020-11-24 2021-11-23 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN112147764B (zh)
WO (1) WO2022111437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203705A (zh) * 2023-05-04 2023-06-02 江西联创电子有限公司 光学镜头

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147764B (zh) * 2020-11-24 2021-02-23 江西联益光学有限公司 光学镜头及成像设备
CN112799219B (zh) * 2021-03-22 2021-07-16 江西晶超光学有限公司 光学镜组、摄像模组及电子设备
CN117111273B (zh) * 2023-10-20 2024-02-20 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772951A (zh) * 2017-03-02 2017-05-31 舜宇光学(中山)有限公司 一种广角低畸变镜头
CN107942489A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254861A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
US20190339490A1 (en) * 2018-05-07 2019-11-07 Calin Technology Co., Ltd. Wide-angle lens assembly
CN110554489A (zh) * 2018-06-04 2019-12-10 佳凌科技股份有限公司 广角镜头
CN110632743A (zh) * 2019-11-20 2019-12-31 江西联创电子有限公司 光学成像镜头及成像设备
CN112147764A (zh) * 2020-11-24 2020-12-29 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772951A (zh) * 2017-03-02 2017-05-31 舜宇光学(中山)有限公司 一种广角低畸变镜头
CN107942489A (zh) * 2017-10-19 2018-04-20 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108254861A (zh) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 摄像光学镜头
US20190339490A1 (en) * 2018-05-07 2019-11-07 Calin Technology Co., Ltd. Wide-angle lens assembly
CN110554489A (zh) * 2018-06-04 2019-12-10 佳凌科技股份有限公司 广角镜头
CN110632743A (zh) * 2019-11-20 2019-12-31 江西联创电子有限公司 光学成像镜头及成像设备
CN112147764A (zh) * 2020-11-24 2020-12-29 江西联益光学有限公司 光学镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203705A (zh) * 2023-05-04 2023-06-02 江西联创电子有限公司 光学镜头
CN116203705B (zh) * 2023-05-04 2023-09-12 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN112147764A (zh) 2020-12-29
CN112147764B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2022111437A1 (zh) 光学镜头及成像设备
WO2022089344A1 (zh) 光学镜头及成像设备
WO2021093542A1 (zh) 光学镜头及成像设备
WO2022089327A1 (zh) 光学镜头及成像设备
CN112285907B (zh) 光学镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
WO2022222926A1 (zh) 光学镜头及成像设备
CN112596215B (zh) 光学镜头及成像设备
CN112014957B (zh) 光学镜头及成像设备
CN112684594B (zh) 光学镜头及成像设备
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN112526730B (zh) 光学镜头及成像设备
CN113376813B (zh) 光学镜头及成像设备
CN110231702A (zh) 光学镜头及成像设备
WO2020238577A1 (zh) 组合式变焦双摄镜头
CN113820835B (zh) 光学镜头及成像设备
CN113791490B (zh) 光学镜头及成像设备
CN112987261B (zh) 光学镜头
CN211577551U (zh) 光学系统、摄像模组及电子装置
CN210775999U (zh) 光学系统、镜头模组和电子设备
CN112630944B (zh) 光学镜头及成像设备
CN113448062B (zh) 广角镜头及成像设备
CN113589495B (zh) 外置镜头
CN113253429B (zh) 广角镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896938

Country of ref document: EP

Kind code of ref document: A1