WO2021093542A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2021093542A1
WO2021093542A1 PCT/CN2020/122855 CN2020122855W WO2021093542A1 WO 2021093542 A1 WO2021093542 A1 WO 2021093542A1 CN 2020122855 W CN2020122855 W CN 2020122855W WO 2021093542 A1 WO2021093542 A1 WO 2021093542A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical lens
optical
object side
conditional formula
Prior art date
Application number
PCT/CN2020/122855
Other languages
English (en)
French (fr)
Inventor
王义龙
刘绪明
曾昊杰
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Priority to US17/198,294 priority Critical patent/US11966028B2/en
Publication of WO2021093542A1 publication Critical patent/WO2021093542A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the invention relates to the technical field of lens imaging, in particular to an optical lens and imaging equipment.
  • the purpose of the present invention is to provide an optical lens and imaging device, which at least has the advantages of a small outer diameter of a head, a small volume, and a high pixel, so as to meet the high screen-to-body ratio requirements of mobile phones.
  • an embodiment of the present invention provides an optical lens that includes: a diaphragm; a first lens with positive refractive power and a convex surface on the object side; and a lens with negative refractive power from the object side to the imaging surface along the optical axis.
  • the second lens has a concave image side surface; the third lens with positive refractive power has a convex object side surface and the image side surface has a concave surface; the fourth lens with positive refractive power has a concave object side surface and the image side surface has a convex surface;
  • optical lens commonly used in mobile phones on the market now has the smallest outer diameter of the head size
  • the optical lens provided by the present invention has a reasonable setting of the diaphragm and each lens, and at the same time has a small entrance pupil diameter, so that the outer diameter of the head of the lens can be achieved. It can better meet the high screen-to-body ratio of mobile phones.
  • the present invention provides an imaging device including an imaging element and the optical lens provided in the first aspect, and the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens provided by the present invention adopts five lenses with specific refractive power, and adopts specific surface shape matching and reasonable optical power distribution, and has a more compact structure while satisfying high pixels.
  • the lens miniaturization and the balance of high pixels are well realized, and at the same time, a larger area of scenery can be shot, which brings great convenience to the post-cutting.
  • the optical lens of the present invention enhances the depth and space of the imaged picture. , With better imaging quality.
  • FIG. 1 is a schematic diagram of the structure of the optical lens in the first embodiment of the present invention
  • Fig. 3 is a distortion curve diagram of the optical lens in the first embodiment of the present invention.
  • FIG. 5 is a graph of lateral chromatic aberration of the optical lens in the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the optical lens in the second embodiment of the present invention.
  • FIG. 7 is a curve diagram of field curvature of the optical lens in the second embodiment of the present invention.
  • FIG. 8 is a distortion curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the structure of the optical lens in the third embodiment of the present invention.
  • FIG. 13 is a distortion curve diagram of the optical lens in the third embodiment of the present invention.
  • 15 is a graph of lateral chromatic aberration of the optical lens in the third embodiment of the present invention.
  • 16 is a schematic diagram of the structure of the optical lens in the fourth embodiment of the present invention.
  • FIG. 17 is a curve diagram of field curvature of the optical lens in the fourth embodiment of the present invention.
  • FIG. 18 is a distortion curve diagram of the optical lens in the fourth embodiment of the present invention.
  • 19 is a graph of chromatic aberration of on-axis point spherical aberration of the optical lens in the fourth embodiment of the present invention.
  • FIG. 21 is a schematic diagram of the structure of the imaging device in the fifth embodiment of the present invention.
  • the present invention provides an optical lens, which includes an aperture along the optical axis from the object side to the imaging surface in order: a diaphragm; a first lens with positive refractive power, and a convex surface on the object side; a second lens with negative refractive power, which The image side surface is concave; the third lens with positive refractive power has a convex object side surface and the image side surface is concave; the fourth lens with positive refractive power has a concave object side surface and the image side surface is convex; The fifth lens with negative refractive power, the object side is concave at the near optical axis, and the image side surface is concave at the near optical axis; among them, the entrance pupil diameter of the optical lens EPD ⁇ 1.58mm; the entrance pupil of the optical lens reaches The on-axis projection distance of the effective diameter edge distance of the object side surface of the first lens is greater than 0.17 mm.
  • the head size of the optical lens commonly used in mobile phones on the market now has the smallest outer diameter
  • the optical lens provided by the present invention has a reasonable setting of the diaphragm and each lens, and at the same time has a smaller entrance pupil diameter, so that the outer diameter of the lens head can be achieved.
  • it can better meet the "comprehensive" needs of the full screen of mobile phones.
  • the optical lens satisfies the following conditional formula:
  • TC1 represents the center thickness of the first lens
  • ET1 represents the edge thickness of the first lens. Satisfying conditional formula (1) can make the viewing angle depth of the optical system be reduced to about 0.95, which is conducive to the realization of the smaller size of the outer diameter of the head It can better meet the "comprehensive" needs of the full screen of mobile phones.
  • the optical lens satisfies the following conditional formula:
  • TC1 represents the center thickness of the first lens
  • DM1 represents the diameter of the first lens. Satisfying the conditional formula (2) can enable the first lens to have a larger positive refractive power, which is beneficial to shorten the total length of the lens, and facilitates the trend of miniaturization of the lens.
  • the optical lens satisfies the following conditional formula:
  • f1 represents the effective focal length of the first lens
  • f represents the effective focal length of the optical lens.
  • the conditional formula (3) is satisfied, so that the first lens has a larger positive refractive power, which is beneficial to shorten the total length of the lens.
  • the optical lens satisfies the following conditional formula:
  • f123 represents the effective focal length of the first lens to the third lens
  • f represents the effective focal length of the optical lens. Satisfying the conditional formula (4) can realize a reasonable distribution of the optical power of the first lens, the second lens and the third lens, slow down the trend of light turning, reduce the correction of advanced aberrations, and reduce the difficulty of the overall lens aberration correction .
  • the optical lens satisfies the following conditional formula:
  • SAG11 represents the sagittal height of the object side surface of the first lens
  • SAG12 represents the sagittal height of the image side surface of the first lens
  • the optical lens satisfies the following conditional formula:
  • V1 represents the Abbe number of the first lens
  • V2 represents the Abbe number of the second lens
  • V3 represents the Abbe number of the third lens. Satisfying the conditional expressions (6) and (7) is beneficial to the correction of chromatic aberration and the improvement of lens resolution.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the radius of curvature of the object side surface of the third lens
  • R32 represents the radius of curvature of the image side surface of the third lens. Satisfying the conditional formula (8) can enable the third lens to provide positive refractive power, converge the light, reduce the total length of the system, and facilitate miniaturization.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the radius of curvature of the object side surface of the third lens
  • DM31 represents the diameter of the object side surface of the third lens. Satisfying the conditional formula (9) is conducive to lens molding and has a high mass production yield.
  • the optical lens satisfies the following conditional formula:
  • R11 represents the radius of curvature of the object side surface of the first lens
  • R12 represents the radius of curvature of the image side surface of the first lens.
  • the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are all plastic aspheric lenses.
  • Each lens adopts aspherical lenses, and the use of aspherical lenses has at least the following three advantages:
  • the lens has better imaging quality; 2. The structure of the lens is more compact; 3. The total optical length of the lens is shorter.
  • z is the distance vector height of the aspheric surface at a height h along the optical axis direction from the vertex of the aspheric surface
  • c is the paraxial curvature radius of the surface
  • k is the quadric surface coefficient
  • a 2i is the 2i-th order non-spherical surface. Spherical surface coefficient.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • the optical lens 100 includes a stop ST, a first lens L1, a second lens L2, and a third lens along the optical axis from the object side to the imaging surface.
  • the first lens L1 is a plastic aspheric lens with positive refractive power, the object side surface S1 of the first lens is convex, and the image side surface S2 of the first lens is concave;
  • the second lens L2 is a plastic aspheric lens with negative refractive power, the object side surface S3 of the second lens is convex, and the image side surface S4 of the second lens is concave;
  • the third lens L3 is a plastic aspheric lens with positive refractive power, the object side S5 of the third lens is convex, and the image side S6 of the third lens is concave;
  • the fourth lens L4 is a plastic aspheric lens with positive refractive power, the object side S7 of the fourth lens is concave, and the image side S8 of the fourth lens is convex;
  • the fifth lens L5 is a plastic aspheric lens with negative refractive power, the object side S9 of the fifth lens is concave at the near optical axis, and the image side S10 of the fifth lens is concave at the near optical axis;
  • the entrance pupil diameter EPD of the optical lens 100 is ⁇ 1.58 mm; the on-axis projection distance from the entrance pupil of the optical lens 100 to the effective diameter edge of the object side S1 of the first lens is greater than 0.17 mm.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 may all be glass lenses, or may also be a combination of plastic lenses and glass lenses.
  • FIG. 6 a schematic diagram of the structure of the optical lens 200 provided in this embodiment.
  • the structure of the optical lens 200 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the difference lies in the following:
  • the image side surface S2 of the first lens of the lens 200 is a convex surface
  • the object side surface S3 of the second lens is a concave surface
  • the radius of curvature and material selection of each lens are different.
  • the curves of curvature of field, distortion, on-axis point spherical aberration, and lateral chromatic aberration of the optical lens 200 are shown in Figs. 7, 8, 9 and 10, respectively. From Figs. 7 to 10, It can be seen that the curvature of field, distortion, and chromatic aberration of the optical lens 200 are all well corrected.
  • FIG. 11 a schematic diagram of the structure of the optical lens 300 provided in this embodiment.
  • the structure of the optical lens 300 in this embodiment is substantially the same as the structure of the optical lens 100 in the first embodiment.
  • the difference lies in:
  • the radii of curvature and materials of each lens of the optical mirror 300 are different.
  • the curves of curvature of field, distortion, on-axis point spherical aberration, and lateral chromatic aberration of the optical lens 300 are shown in Figure 12, Figure 13, Figure 14, and Figure 15, respectively. From Figures 12 to 15 It can be seen that the curvature of field, distortion, and chromatic aberration of the optical lens 300 are all well corrected.
  • the structure of the optical lens 400 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment. The difference is that:
  • the image side surface S2 of the first lens of the optical lens 400 is a convex surface, and the object side surface S3 of the second lens is a concave surface, and the radius of curvature and material selection of each lens are different.
  • the curves of field curvature, distortion, on-axis point spherical aberration, and lateral chromatic aberration of the optical lens 400 are shown in Figure 17, Figure 18, Figure 19, and Figure 20, respectively. From Figures 17 to 20, It can be seen that the curvature of field, distortion, and chromatic aberration of the optical lens 400 are all well corrected.
  • Table 9 shows the corresponding optical characteristics of the above four embodiments, which mainly include the system focal length f, the number of apertures F#, the total optical length TTL and the field of view 2 ⁇ , and the numerical values corresponding to each of the above-mentioned conditional expressions.
  • Example Example 1 Example 2 Example 3 Example 4 f(mm) 3.67 3.698 3.73 3.88 F# 2.45 2.45 2.45 2.45 TTL(mm) 4.56 4.51 4.82 4.62 2 ⁇ 82.2° 82.2° 82.2° 82.2° EPD(mm) 1.494 1.5 1.51 1.579 TC1/ET1 1.273 1.3577 1.198 1.5 TC1/DM1 0.546 0.543 0.537 0.51 f1/f 0.951 0.837 2 0.75 f123/f 1.1724 1.154 1.386 0.84 SAG11-SAG12 0.184 0.226 0.142 0.28 V1/(V2-V3) -13 -13 -13 -13 R31/R32 0.8856 0.9853 0.779 0.093 R31/DM31 2.3 2.0 1.23 2.4 R11/R12 0.19 0.12 0.573 0.12
  • the optical lens provided by this embodiment has at least the following advantages:
  • the head size of the optical lens commonly used in mobile phones on the market now has the smallest outer diameter
  • the optical lens provided by the present invention has a reasonable setting of the diaphragm and each lens, and at the same time has a small entrance pupil diameter, so that the outer diameter of the head of the lens can be achieved. It can meet the needs of high screen-to-body ratio, and can better meet the "comprehensive" needs of the full screen of mobile phones.
  • the optical lens of this design enhances the depth and space of the imaged picture, and has a better imaging quality.
  • optical lens in each of the above embodiments can be applied to terminals such as mobile phones, tablets, and cameras.
  • the fifth embodiment of the present invention also provides an imaging device 500.
  • the imaging device 500 includes an imaging element 510 and an optical lens (for example, the optical lens 100) in any of the foregoing embodiments.
  • the imaging element 510 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 500 may be a smart phone, a Pad, or any other portable electronic device loaded with an optical lens 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(100,200,300,400),从物侧到成像面(S13)依次包括:光阑(ST);具有正光焦度的第一透镜(L1),其物侧面(S1)为凸面;具有负光焦度的第二透镜(L2),其像侧面(S4)为凹面;具有正光焦度的第三透镜(L3),其物侧面(S5)为凸面,像侧面(S6)为凹面;具有正光焦度的第四透镜(L4),其像侧面(S8)为凸面,物侧面(S7)为凹面;具有负光焦度的第五透镜(L5),其物侧面(S9)在近光轴处为凹面,像侧面(S10)在近光轴处为凹面;其中,光学镜头(100,200,300,400)的入瞳直径EPD<1.58mm;光学镜头(100,200,300,400)的入瞳到第一透镜(L1)的物侧面(S1)的有效径边缘距离在轴上投影距离大于0.17mm。光学镜头(100,200,300,400)采用五片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,使得第一透镜(L1)的有效成像区域变小,使屏幕上镜头的进光区域变小,能够更好的满足手机全面屏的需求。

Description

光学镜头及成像设备
相关申请的交叉引用
本申请要求于2019年11月12日提交的申请号为201911097437.0的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
技术领域
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、平板、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着超薄化、全面屏、超高清成像等方向发展,这就对搭载在便携式电子设备上的摄像镜头提出了更高的要求。近几年,随着消费者对手机全面屏的热衷,前置镜头除了高像素的需求外,更加追求视觉上的简约;但是现有的摄像镜头由于头部外径及整体体积较大,所以出现了“刘海屏”,然而,刘海的区域较大,即手机屏幕上的开口区域较大,屏占比无法进一步提高。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,至少具有头部外径小、体积小、像素高等优点,以适应手机的高屏占比需求。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明实施例提供一种光学镜头,沿光轴从物侧到成像面依次包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面;具有负光焦度的第二透镜,其像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;具有负光焦度的第五透镜,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面;其中,光学镜头的入瞳直径EPD<1.58mm;光学镜头的入瞳到第一透镜的物侧面的有效径边缘距离在轴上投影距离大于0.17mm。
现在市面上常见的应用于手机上的光学镜头的头部尺寸外径最小达到
Figure PCTCN2020122855-appb-000001
而本发明提供的光学镜头由于光阑及各透镜设置合理,同时具有较小的入瞳直径,使镜头的头部外径可以做到
Figure PCTCN2020122855-appb-000002
能够更好的满足手机的高屏占比需求。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相较于现有技术,本发明提供的光学镜头采用五片具有特定屈折力的镜片,并且采用特定的表面形状搭配和合理的光焦度分配,在满足高像素的同时结构更加紧凑,从而较好地实现了镜头小型化和高像素的均衡,同时可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外本发明的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
附图说明
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图;
图3为本发明第一实施例中的光学镜头的畸变曲线图;
图4为本发明第一实施例中的光学镜头的轴上点球差色差曲线图;
图5为本发明第一实施例中的光学镜头的横向色差曲线图;
图6为本发明第二实施例中的光学镜头的结构示意图;
图7为本发明第二实施例中的光学镜头的场曲曲线图;
图8为本发明第二实施例中的光学镜头的畸变曲线图;
图9为本发明第二实施例中的光学镜头的轴上点球差色差曲线图;
图10为本发明第二实施例中的光学镜头的横向色差曲线图;
图11为本发明第三实施例中的光学镜头的结构示意图;
图12为本发明第三实施例中的光学镜头的场曲曲线图;
图13为本发明第三实施例中的光学镜头的畸变曲线图;
图14为本发明第三实施例中的光学镜头的轴上点球差色差曲线图;
图15为本发明第三实施例中的光学镜头的横向色差曲线图;
图16为本发明第四实施例中的光学镜头的结构示意图;
图17为本发明第四实施例中的光学镜头的场曲曲线图;
图18为本发明第四实施例中的光学镜头的畸变曲线图;
图19为本发明第四实施例中的光学镜头的轴上点球差色差曲线图;
图20为本发明第四实施例中的光学镜头的横向色差曲线图;
图21为本发明第五实施例中成像设备的结构示意图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明提供一种光学镜头,沿光轴从物侧到成像面依次包括:光阑;具有正光焦度的第一透镜,其物侧表面为凸面;具有负光焦度的第二透镜,其像侧表面为凹面;具有正光焦度的第三透镜,其物侧表面为凸面,像侧表面为凹面;具有正光焦度的第四透镜,其物侧面为凹面,像侧表面为凸面;具有负光焦度的第五透镜,其物侧面在近光轴处为凹面,像侧表面在近光轴处为凹面;其中,光学镜头的入瞳直径EPD<1.58mm;光学镜头的入瞳到第一透镜的物侧面的有效径边缘距离在轴上投影距离大于0.17mm。
现在市面上常见的应用于手机上的光学镜头的头部尺寸外径最小达到
Figure PCTCN2020122855-appb-000003
而本发明提供的光学镜头由于光阑及各透镜间设置合理,同时具有较小的入瞳直径,使镜头的头部外径可以做到
Figure PCTCN2020122855-appb-000004
满足高屏占比的需求,能够更好的满足手机全面屏的“全面”需求。
在一些实施方式中,光学镜头满足以下条件式:
1.1<TC1/ET1<1.6;      (1)
其中,TC1表示第一透镜的中心厚度,ET1表示第一透镜的边缘厚度。满足条件式(1),可使得光学系统的视角深度变小至0.95左右,有利于实现镜头的头部外径尺寸做小,最小可达
Figure PCTCN2020122855-appb-000005
能够更好的满足手机全面屏的“全面”需求。
在一些实施方式中,光学镜头满足以下条件式:
0.5<TC1/DM1<0.6;    (2)
其中,TC1表示第一透镜的中心厚度,DM1表示第一透镜的直径。满足条件式(2),可使第一透镜具有较大的正光焦度,有利于缩短镜头的总长,利于实现镜头的小型化的趋势。
在一些实施方式中,光学镜头满足以下条件式:
0.7<f1/f<2.1;    (3)
其中,f1表示第一透镜的有效焦距,f表示光学镜头的有效焦距。满足条件式(3),使第一透镜具有较大的正光焦度,有利于缩短镜头的总长。
在一些实施方式中,光学镜头满足以下条件式:
0.8<f123/f<1.4;     (4)
其中,f123表示第一透镜至第三透镜的有效焦距,f表示光学镜头的有效焦距。满足条件式(4),能够实现合理的分配第一透镜、第二透镜以及第三透镜的光焦度,减缓光线转折的走势,降低高级像差的矫正,减小整体镜头像差矫正的难度。
在一些实施方式中,光学镜头满足以下条件式:
0.1<SAG11-SAG12<0.3;      (5)
其中,SAG11表示第一透镜的物侧面的矢高,SAG12表示第一透镜的像侧面的矢高。满足条件式(5),可有效地减小光学系统的视角深度,从而减小镜头所对应的手机屏幕的开窗尺寸,最小可达1.85mm,有效地解决现有技术当中镜头所对应的手机屏幕上开窗尺寸无法做小的技术问题。
在一些实施方式中,光学镜头满足以下条件式:
V1/(V2-V3)<-10;     (6)
V2=23.52;     (7)
其中,V1表示第一透镜的阿贝数,V2表示第二透镜的阿贝数,V3表示第三透镜的阿贝数。满足条件式(6)和(7),有利于色差的矫正和镜头解像力的提升。
在一些实施方式中,所述光学镜头满足以下条件式:
0<R31/R32<1;    (8)
其中,R31表示第三透镜的物侧面的曲率半径,R32表示第三透镜的像侧面的曲率半径。满足条件式(8),可使第三透镜提供正光焦度,对光线起到汇聚作用,使系统的总长减小,利于小型化。
在一些实施方式中,光学镜头满足以下条件式:
1.2<R31/DM31<2.6;     (9)
其中,R31表示第三透镜的物侧面的曲率半径,DM31表示第三透镜的物侧面的直径。满足条件式(9),有利于镜片成型,量产良率较高。
在一些实施方式中,光学镜头满足以下条件式:
0.1<R11/R12<0.6;      (10)
其中,R11表示第一透镜的物侧面的曲率半径,R12表示第一透镜的像侧面的曲率半径。满足条件式(10),可减小第一透镜的有效直径,缩小头部尺寸。
在一些实施方式中,第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜均为塑胶非球面镜片。各透镜均采用非球面镜片,采用非球面镜片至少具有以下三个优点:
1.镜头具有更好的成像质量;2.镜头的结构更为紧凑;3.镜头的光学总长更短。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2020122855-appb-000006
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A 2i为第2i阶的非球面面型系数。
在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
本发明第一实施例提供的光学镜头100结构示意图请参阅图1,该光学镜头100沿光轴从物侧到成像面依次包括:光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及红外滤光片G1。
第一透镜L1为具有正光焦度塑胶非球面透镜,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2为具有负光焦度塑胶非球面透镜,第二透镜的物侧面S3为凸面,第二透镜 的像侧面S4为凹面;
第三透镜L3为具有正光焦度塑胶非球面透镜,第三透镜的物侧面S5为凸面,第三透镜的像侧面S6为凹面;
第四透镜L4为具有正光焦度塑胶非球面透镜,第四透镜的物侧面S7为凹面,第四透镜的像侧面S8为凸面;
第五透镜L5为具有负光焦度塑胶非球面透镜,第五透镜的物侧面S9在近光轴处为凹面,第五透镜的像侧面S10在近光轴处为凹面;
在本实施例中,光学镜头100的入瞳直径EPD<1.58mm;该光学镜头100的入瞳到第一透镜的物侧面S1的有效径边缘距离在轴上投影距离大于0.17mm。
在一些实施方式中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5也可均为玻璃镜片,或者也可以是塑胶镜片和玻璃镜片的组合。
表1
Figure PCTCN2020122855-appb-000007
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16 A 18 A 20
S1 -0.39206 -0.02109 0.136323 -0.37381 0.236975 1.496053 -5.75625 9.948582 -8.64525 3.023064
S2 -81.0571 -0.14217 0.149877 0.033171 -0.91181 -0.08491 4.208622 2.144105 -13.1916 8.541888
S3 0 -0.1359 0.481958 -1.04684 0.410585 1.376978 0.66312 -2.21877 0.020723 0.768906
S4 6.204578 -0.0273 0.20896 -0.41393 0.709261 -1.25275 0.233429 5.370508 -9.89845 5.707015
S5 0.690906 -0.17739 0.080799 0.2349 -1.40717 2.853683 -1.88136 -2.19131 4.210459 -1.95797
S6 0 -0.16342 0.133151 -0.18726 0.1456 -0.06085 0.096963 -0.15236 0.100958 -0.02411
S7 -6.35652 -0.11724 0.100143 -0.07307 0.007872 -0.00965 0.01347 0.008068 -0.0088 0.001694
S8 -0.55694 0.055402 0.030638 0.002734 -0.00167 2.43E-05 -0.0004 -6.1E-05 0.000125 -2.1E-05
S9 -0.74975 0.086011 -0.00566 0.000209 6.94E-05 -8.5E-06 -9.3E-07 4.59E-07 -4.5E-08 1.76E-09
S10 2.47542 -0.05458 0.013861 -0.00328 0.000357 -4.9E-06 -2.5E-06 -3.1E-07 1.43E-07 -1E-08
在本实施例中,光学镜头100的场曲、畸变、轴上点球差色差和横向色差的曲线图分别如图2、图3、图4和图5所示,由图2至图4可以看出,场曲、畸变和色差都被良好地校正。
第二实施例
本实施例提供的光学镜头200的结构示意图请参阅图6,本实施例中的光学镜头200与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头200的第一透镜的像侧面S2为凸面,第二透镜的物侧面S3为凹面,以及各透镜的曲率半径及材料选择不同。
本实施例提供光学镜头200中各个镜片的相关参数如表3所示。
表3
Figure PCTCN2020122855-appb-000008
本实施例中的光学镜头200的各非球面的面型系数如表4所示。
表4
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16 A 18 A 20
S1 -0.40713 -0.01544 0.129098 -0.36539 0.24211 1.484939 -5.77427 9.945184 -8.62706 2.99846
S2 -188.733 -0.14845 0.144098 0.016345 -0.91754 -0.12966 3.991556 1.86152 -12.8428 8.210556
S3 0 -0.12963 0.482534 -1.03066 0.390991 1.271013 0.465357 -2.30873 0.258062 0.69229
S4 7.019988 -0.01953 0.23263 -0.41578 0.699897 -1.23393 0.235559 5.405667 -9.6722 5.230547
S5 0.47501 -0.17744 0.077406 0.225143 -1.40166 2.85991 -1.88266 -2.19768 4.20485 -1.9484
S6 0 -0.1652 0.141139 -0.19426 0.143606 -0.05893 0.100532 -0.15161 0.098592 -0.02364
S7 3.072917 -0.12507 0.103008 -0.07234 0.008033 -0.00936 0.013568 0.008022 -0.00887 0.001696
S8 -0.56986 0.052052 0.027514 0.003029 -0.00152 6E-05 -0.0004 -6.8E-05 0.000123 -2.1E-05
S9 -0.75059 0.085556 -0.00565 0.000214 6.93E-05 -8.7E-06 -9.7E-07 4.54E-07 -4.5E-08 1.91E-09
S10 2.542262 -0.05489 0.013786 -0.00327 0.000358 -5E-06 -2.6E-06 -3.1E-07 1.43E-07 -1E-08
在本实施例中,光学镜头200的场曲、畸变、轴上点球差色差和横向色差的曲线图分别如图7、图8、图9和图10所示,由图7至图10可以看出,光学镜头200的场曲、畸变和色差都被良好地校正。
第三实施例
本实施例提供的光学镜头300的结构示意图请参阅图11,本实施例中的光学镜头300的结构与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜300各透镜的曲率半径及材料选择不同。
本实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
Figure PCTCN2020122855-appb-000009
本实施例中的光学镜头300的各非球面的面型系数如表6所示。
表6
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16 A 18 A 20
S1 -0.63182 -0.03001 0.100047 -0.36027 0.271894 1.522021 -5.83458 9.853537 -8.72833 3.292438
S2 -41.3126 -0.17135 0.033739 0.005274 -0.81596 -0.09162 3.864177 1.595596 -13.3432 9.532291
S3 0 -0.16276 0.439832 -1.10246 0.35572 1.266839 0.508362 -2.38672 -0.05036 1.338827
S4 5.996281 -0.04452 0.247835 -0.45171 0.570975 -1.3474 0.318781 5.695779 -9.63255 4.755165
S5 -2.94706 -0.19012 0.102352 0.231254 -1.43117 2.856035 -1.85548 -2.18037 4.199156 -1.96339
S6 0 -0.1504 0.119549 -0.19579 0.147303 -0.05426 0.101007 -0.15028 0.105608 -0.0294
S7 -301.851 -0.0917 0.116345 -0.06897 0.007549 -0.01106 0.01243 0.007633 -0.00883 0.001845
S8 -0.55446 0.054684 0.028528 0.004 -0.00127 7.03E-05 -0.00041 -7.2E-05 0.000119 -2.5E-05
S9 -0.74639 0.079575 -0.00541 0.00031 8.8E-05 -7.6E-06 -1.6E-06 1.46E-07 -1.4E-07 -2.1E-08
S10 2.758012 -0.04846 0.014175 -0.00322 0.000361 -5E-06 -2.7E-06 -3.3E-07 1.4E-07 -1.1E-08
在本实施例中,光学镜头300的场曲、畸变、轴上点球差色和横向色差的曲线图分别如图12、图13、图14和图15所示,由图12至图15可以看出,光学镜头300的场曲、畸变和色差都被良好地校正。
第四实施例
本实施例提供的的光学镜头400的机构示意图请参阅图16,本实施例中的光学镜头400与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头400的第一透镜的像侧面S2为凸面,第二透镜的物侧面S3为凹面,以及各透镜的曲率半径及材料选择不同。
本实施例中的光学镜头400中各个镜片的相关参数如表7所示。
表7
Figure PCTCN2020122855-appb-000010
本实施例中的光学镜头400的各非球面的面型系数如表8所示。
表8
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16 A 18 A 20
S1 -0.33977 -0.37486 0.234352 1.488403 -5.77027 9.930254 -8.65936 3.033959 -0.37486 0.234352
S2 -296.264 -0.00115 -0.95744 -0.14461 4.112522 1.985673 -13.3702 8.50504 -0.00115 -0.95744
S3 0 -1.0459 0.389174 1.313046 0.541677 -2.37574 -0.0616 0.890675 -1.0459 0.389174
S4 12.29556 -0.37019 0.710017 -1.28777 0.263713 5.554211 -9.70324 5.159746 -0.37019 0.710017
S5 14.35936 0.231796 -1.40035 2.875745 -1.86729 -2.19711 4.198312 -1.94135 0.231796 -1.40035
S6 0 -0.17123 0.165534 -0.04579 0.10214 -0.15634 0.091096 -0.03659 -0.17123 0.165534
S7 10.02503 -0.04272 0.027205 -0.00777 0.007151 0.00623 -0.00757 0.006317 -0.04272 0.027205
S8 -0.60126 0.001926 -0.00145 0.000117 -0.00039 -6.4E-05 0.000123 -2.2E-05 0.001926 -0.00145
S9 -0.73437 0.000302 8.73E-05 -6.1E-06 -8.3E-07 4.42E-07 -5.4E-08 -5.1E-09 0.000302 8.73E-05
S10 1.726209 -0.00321 0.000359 -5.6E-06 -2.6E-06 -3.1E-07 1.43E-07 -1E-08 -0.00321 0.000359
在本实施例中,光学镜头400的场曲、畸变、轴上点球差色差和横向色差的曲线图分别如图17、图18、图19和图20所示,由图17至图20可以看出,光学镜头400的场曲、畸变和色差都被良好地校正。
表9是上述四个实施例对应的光学特性,主要包括系统焦距f、光圈数F#、光学总长TTL及视场角2θ,以及与上述每个条件式对应的数值。
表9
实施例 实施例1 实施例2 实施例3 实施例4
f(mm) 3.67 3.698 3.73 3.88
F# 2.45 2.45 2.45 2.45
TTL(mm) 4.56 4.51 4.82 4.62
82.2° 82.2° 82.2° 82.2°
EPD(mm) 1.494 1.5 1.51 1.579
TC1/ET1 1.273 1.3577 1.198 1.5
TC1/DM1 0.546 0.543 0.537 0.51
f1/f 0.951 0.837 2 0.75
f123/f 1.1724 1.154 1.386 0.84
SAG11-SAG12 0.184 0.226 0.142 0.28
V1/(V2-V3) -13 -13 -13 -13
R31/R32 0.8856 0.9853 0.779 0.093
R31/DM31 2.3 2.0 1.23 2.4
R11/R12 0.19 0.12 0.573 0.12
综上,本实施例提供的光学镜头至少具有以下优点:
(1)现在市面上常见的应用于手机上的光学镜头的头部尺寸外径最小达到
Figure PCTCN2020122855-appb-000011
而本发明提供的光学镜头由于光阑及各透镜设置合理,同时具有较小的入瞳直径,使镜头的头部外径可以做到
Figure PCTCN2020122855-appb-000012
能够满足高屏占比的需求,能够更好的满足手机全面屏的“全面”需求。
(2)采用五片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑,从而较好地实现了镜头微型化和广视角的均衡。
(3)可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外,此设计的光学镜头增强了成像画面的纵深感和空间感,具有更好的成像质量。
上述各实施例中的光学镜头均可运用在手机、平板、相机等终端。
第五实施例
请参阅图21,本发明第五实施例还提供了一种成像设备500,该成像设备500包括成像元件510和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备500可以是智能手机、Pad以及其它任意一种形态的装载了光学镜头100的便携式电子设备。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因 此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    光阑;
    具有正光焦度的第一透镜,其物侧面为凸面;
    具有负光焦度的第二透镜,其像侧面为凹面;
    具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凹面;
    具有正光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;以及
    具有负光焦度的第五透镜,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面;
    其中,所述光学镜头的入瞳直径EPD<1.58mm;所述光学镜头的入瞳到所述第一透镜的物侧面的有效径边缘距离在轴上投影距离大于0.17mm。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.1<TC1/ET1<1.6;
    其中,TC1表示所述第一透镜的中心厚度,ET1表示所述第一透镜的边缘厚度。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.5<TC1/DM1<0.6;
    其中,TC1表示所述第一透镜的中心厚度,DM1表示所述第一透镜的直径。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.7<f1/f<2.1;
    其中,f1表示所述第一透镜的有效焦距,f表示所述光学镜头的有效焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.8<f123/f<1.4;
    其中,f123表示所述第一透镜至所述第三透镜的有效焦距,f表示所述光学镜头的有效焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.1<SAG11-SAG12<0.3;
    其中,SAG11表示所述第一透镜的物侧面的矢高,SAG12表示所述第一透镜的像侧面的矢高。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    V1/(V2-V3)<-10;
    V2=23.52;
    其中,V1表示所述第一透镜的阿贝数,V2表示所述第二透镜的阿贝数,V3表示所述第三透镜的阿贝数。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0<R31/R32<1;
    其中,R31表示所述第三透镜的物侧面的曲率半径,R32表示所述第三透镜的像侧面的曲率半径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.2<R31/DM31<2.6;
    其中,R31表示所述第三透镜的物侧面的曲率半径,DM31表示所述第三透镜的物侧面的直径。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.1<R11/R12<0.6;
    其中,R11表示所述第一透镜的物侧面的曲率半径,R12表示所述第一透镜的像侧面的曲率半径。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜均为塑胶非球面镜片。
  12. 一种成像设备,其特征在于,包括如权利要求1-11任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2020/122855 2019-11-12 2020-10-22 光学镜头及成像设备 WO2021093542A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/198,294 US11966028B2 (en) 2019-11-12 2021-03-11 Optical lens, camera module and front camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911097437.0A CN110646924B (zh) 2019-11-12 2019-11-12 光学镜头
CN201911097437.0 2019-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/198,294 Continuation-In-Part US11966028B2 (en) 2019-11-12 2021-03-11 Optical lens, camera module and front camera

Publications (1)

Publication Number Publication Date
WO2021093542A1 true WO2021093542A1 (zh) 2021-05-20

Family

ID=68995803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122855 WO2021093542A1 (zh) 2019-11-12 2020-10-22 光学镜头及成像设备

Country Status (3)

Country Link
US (1) US11966028B2 (zh)
CN (1) CN110646924B (zh)
WO (1) WO2021093542A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646924B (zh) * 2019-11-12 2020-05-12 江西联益光学有限公司 光学镜头
TWI750615B (zh) 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
CN111929822B (zh) * 2020-09-03 2021-04-23 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112099206B (zh) * 2020-11-23 2021-02-05 江西联益光学有限公司 光学镜头及成像设备
WO2022198498A1 (zh) * 2021-03-24 2022-09-29 欧菲光集团股份有限公司 成像系统、摄像模组及电子设备
CN112965222B (zh) * 2021-05-18 2021-08-20 江西联益光学有限公司 一种光学镜头
CN114114619A (zh) * 2021-11-17 2022-03-01 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN114647066B (zh) * 2022-05-13 2022-10-21 江西联益光学有限公司 广角镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955223A (zh) * 2011-08-26 2013-03-06 大立光电股份有限公司 影像镜头
US20130293756A1 (en) * 2009-02-25 2013-11-07 Olympus Corporation Image Pickup Optical System and Image Pickup Apparatus Using the Same
CN104898255A (zh) * 2015-02-13 2015-09-09 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
CN106802470A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108761741A (zh) * 2018-08-14 2018-11-06 江苏光腾光学有限公司 光学取像镜头组
CN209297018U (zh) * 2018-12-14 2019-08-23 南昌欧菲精密光学制品有限公司 光学组件、取像模组及移动终端
CN110646924A (zh) * 2019-11-12 2020-01-03 江西联益光学有限公司 光学镜头

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458033B2 (ja) * 1995-10-19 2003-10-20 株式会社リコー ズーム光学系
JP5665229B2 (ja) * 2011-03-30 2015-02-04 カンタツ株式会社 撮像レンズ
CN104914558B (zh) * 2014-03-14 2017-09-01 光燿科技股份有限公司 成像镜头组
TWI712815B (zh) * 2018-03-28 2020-12-11 先進光電科技股份有限公司 光學成像系統(一)
CN108614347B (zh) * 2018-07-19 2019-10-22 浙江舜宇光学有限公司 摄像透镜系统
CN110426813A (zh) * 2019-06-28 2019-11-08 江苏光腾光学有限公司 一种光学镜片组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293756A1 (en) * 2009-02-25 2013-11-07 Olympus Corporation Image Pickup Optical System and Image Pickup Apparatus Using the Same
CN102955223A (zh) * 2011-08-26 2013-03-06 大立光电股份有限公司 影像镜头
CN104898255A (zh) * 2015-02-13 2015-09-09 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
CN106802470A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108761741A (zh) * 2018-08-14 2018-11-06 江苏光腾光学有限公司 光学取像镜头组
CN209297018U (zh) * 2018-12-14 2019-08-23 南昌欧菲精密光学制品有限公司 光学组件、取像模组及移动终端
CN110646924A (zh) * 2019-11-12 2020-01-03 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
US20210199928A1 (en) 2021-07-01
CN110646924A (zh) 2020-01-03
CN110646924B (zh) 2020-05-12
US11966028B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2021093542A1 (zh) 光学镜头及成像设备
WO2022089344A1 (zh) 光学镜头及成像设备
WO2021233052A1 (zh) 光学镜头及成像设备
TW201728948A (zh) 攝像用光學鏡頭組、取像裝置及電子裝置
WO2022143647A1 (zh) 光学镜头及成像设备
WO2020258914A1 (zh) 一种成像透镜系统
CN112394493B (zh) 光学镜头及成像设备
CN113741006B (zh) 光学镜头、摄像模组及电子设备
WO2021208277A1 (zh) 光学镜头及成像设备
WO2022111437A1 (zh) 光学镜头及成像设备
WO2022199465A1 (zh) 光学镜头及成像设备
CN112526730B (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN116338912A (zh) 光学镜头
CN113391430A (zh) 光学系统、镜头模组和电子设备
CN113791490B (zh) 光学镜头及成像设备
CN112987261B (zh) 光学镜头
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN113703139B (zh) 光学镜头及成像设备
CN112630944B (zh) 光学镜头及成像设备
CN114755809B (zh) 光学镜头
CN113534417B (zh) 光学镜头及成像设备
CN111142216A (zh) 光学组件、摄像模组及移动终端
CN114815171B (zh) 光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887332

Country of ref document: EP

Kind code of ref document: A1