WO2021208277A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2021208277A1
WO2021208277A1 PCT/CN2020/101749 CN2020101749W WO2021208277A1 WO 2021208277 A1 WO2021208277 A1 WO 2021208277A1 CN 2020101749 W CN2020101749 W CN 2020101749W WO 2021208277 A1 WO2021208277 A1 WO 2021208277A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
object side
image side
Prior art date
Application number
PCT/CN2020/101749
Other languages
English (en)
French (fr)
Inventor
刘绪明
徐丽丽
曾昊杰
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2021208277A1 publication Critical patent/WO2021208277A1/zh
Priority to US17/962,500 priority Critical patent/US20230049672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of optical lenses, and more specifically, to an optical lens and imaging equipment.
  • optical lenses have become the standard of portable electronic devices.
  • the optical lens has even become the primary consideration for consumers when purchasing portable electronic devices.
  • optical lenses have continued to develop in the direction of high performance.
  • the object of the present invention is to provide an optical lens and imaging device.
  • the optical lens has at least the characteristics of high imaging quality and low ghost energy, which can better meet the high-quality imaging requirements of portable electronic devices.
  • an embodiment of the present invention provides an optical lens, which includes an aperture, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a second lens in order from the object side to the image side along the optical axis.
  • the first lens has positive refractive power, the object side of the first lens is convex; the second lens has negative refractive power, and the image side of the second lens is concave; the third lens has positive refractive power, The object side and the image side of the third lens are both convex and have no reflex inflection points; the fourth lens has positive refractive power, the object side of the fourth lens is concave, and the image side of the fourth lens is convex at the near optical axis;
  • the fifth lens has negative refractive power, the object side of the fifth lens is convex at the near optical axis, and the image side of the fifth lens is concave at the near optical axis;
  • the sixth lens has negative refractive power, and the sixth lens has a negative refractive power.
  • the object side is concave at the near optical axis; among them, the optical lens satisfies the following conditional formula:
  • SAG8D 0.5 represents the sagittal height at 1/2 the aperture of the image side of the fourth lens
  • SAG8D 1 represents the sagittal height at the full aperture of the image side of the fourth lens.
  • an embodiment of the present invention also provides an imaging device, including an imaging element and the optical lens provided in the first aspect.
  • the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging device provided by the present invention can change the incident angle of the ghost image by reasonably matching the lens shape and refractive power combination between the lenses, and by adjusting the surface shape of the fourth lens.
  • the optical lens and imaging device can change the incident angle of the ghost image by reasonably matching the lens shape and refractive power combination between the lenses, and by adjusting the surface shape of the fourth lens.
  • FIG. 1 shows the optical path diagram of the inner anti-ghost image of the fourth lens of the six-piece optical lens in the prior art
  • FIG. 2 is a schematic structural diagram of an optical lens provided by the first embodiment of the present invention.
  • FIG. 3 is a distortion curve diagram of the optical lens provided by the first embodiment of the present invention.
  • FIG. 5 is an optical path diagram of an internal reflection ghost image of a fourth lens of the optical lens provided by the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical lens provided by a second embodiment of the present invention.
  • FIG. 7 is a distortion curve diagram of the optical lens provided by the second embodiment of the present invention.
  • FIG. 9 is an optical path diagram of the internal reflection ghost image of the fourth lens of the optical lens provided by the second embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an optical lens provided by a third embodiment of the present invention.
  • FIG. 11 is a distortion curve diagram of the optical lens provided by the third embodiment of the present invention.
  • FIG 13 is an optical path diagram of the internal reflection ghost image of the fourth lens of the optical lens provided by the third embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the structure of the imaging device in the fourth embodiment of the present invention.
  • the refractive index Nd of commonly used plastic materials is generally between 1.5 and 1.7.
  • the critical angle theorem ⁇ c arcsin(1/Nd)
  • the critical angle ⁇ of light entering the optically dense medium into the optically thinner medium is obtained.
  • the range of c is 36° ⁇ 42°.
  • the detailed reflection path is shown in Figure 1.
  • the secondary reflection angle of the object side inside the fourth lens is more than 42°, which is greater than the critical angle, resulting in total reflection and high ghosting energy.
  • the coating process alone cannot improve the total reflection ghosting. Phenomenon, so it has a great impact on image quality.
  • the present invention provides an optical lens that includes an aperture, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side along the optical axis.
  • Lens and filter in order from the object side to the image side along the optical axis.
  • the first lens has positive refractive power, and its object side surface is convex.
  • the second lens has negative refractive power, and its image side surface is concave.
  • the third lens has a positive refractive power, and both the object side and the image side are convex and there is no reflex inflection point.
  • the fourth lens has positive refractive power, the object side is concave, and the image side is convex at the near optical axis.
  • the fifth lens has negative refractive power, the object side is convex at the near optical axis, and the image side is concave at the near optical axis.
  • the shape of the fifth lens can effectively correct the aberration of the optical lens, thereby effectively controlling the exit angle of the light.
  • the sixth lens has negative refractive power, and its object side is concave at the near optical axis.
  • optical lens satisfies the following conditional formula:
  • SAG8D 0.5 represents the sagittal height at 1/2 the aperture of the image side of the fourth lens
  • SAG8D 1 represents the sagittal height at the full aperture of the image side of the fourth lens.
  • the reflection angle of incident light in the middle field of view (for example, the field of view is about 20°) on the image side of the fourth lens can be reduced, so that the light reflected twice is on the object side.
  • the incident angle is reduced to less than the critical angle, so that total reflection is not formed on the object side inside the fourth lens.
  • Part of the energy of the light is consumed with the refraction at the object side, thereby reducing the reflection at the object side.
  • the energy of the light that is, the energy of the ghost image is weakened, and the curved shape of the image side surface of the fourth lens can be reasonably limited by the conditional formula (1), thereby effectively improving the ghost image and improving the imaging quality.
  • the optical lens satisfies the following formula:
  • R 7 represents the radius of curvature of the object side surface of the fourth lens
  • D 7 represents the diameter of the object side surface of the fourth lens
  • conditional formula (2) When conditional formula (2) is satisfied, it indicates that the object side of the fourth lens is smoother at the near optical axis, so that the reflection angle of the secondary reflected light on the object side of the fourth lens is increased, and at the same time, it is ensured that it is not greater than the critical angle, thus The ghost image is reflected outside the image plane to reduce the energy of the ghost image; through the restriction of conditional formula (2), the curved shape of the object side surface of the fourth lens can be further reasonably limited, thereby effectively improving the ghost image and improving the imaging quality.
  • the optical power of the first lens of the optical lens used in portable electronic equipment is usually large, but the aperture is small, resulting in a high degree of eccentricity sensitivity of the first lens (the degree of influence of the eccentricity of the optical axis of the lens on the overall imaging) is high , The processing is difficult and the product yield is low.
  • the optical lens satisfies the following conditional formula:
  • f. 1 represents the focal length of the first lens
  • f denotes a focal length of the third lens.
  • f denotes a focal length optical lens
  • R 1 represents the radius of curvature of the object side surface of the first lens
  • D i represents the entrance pupil diameter of the optical lens.
  • the eccentricity sensitivity of the first lens can be shared with the third lens. Even if the third lens has a relatively large aperture, the eccentricity sensitivity will not be very large.
  • the decentering sensitivity of the first lens and the third lens can greatly reduce the difficulty of production and processing, so that the production yield of the lens can be effectively improved while ensuring high imaging quality.
  • the aperture of the first lens can be reasonably limited, because the larger the aperture, the lower the sensitivity, thereby reducing the sensitivity of the first lens, and alleviating the production quality caused by the high sensitivity of the first lens L1.
  • the problem of low rate is satisfied.
  • the optical lens satisfies the following conditional formula:
  • IH represents the actual half image height of the optical lens
  • represents the half field angle of the optical lens
  • Conditional formula (5) limits the distortion of the optical lens.
  • IH/tan ⁇ >4.13mm the distortion of the lens is prevented from increasing in the negative direction.
  • IH/tan ⁇ 4.18mm the distortion can be prevented from increasing excessively in the positive direction. Thereby reducing the difficulty of correcting distortion.
  • the optical lens satisfies the following conditional formula:
  • DT represents the aperture of the optical lens
  • D 1 represents the diameter of the object side of the first lens.
  • the optical lens satisfies the following conditional formula:
  • DT represents the aperture of the optical lens
  • IH represents the actual half image height of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • SAG5 i represents the sagittal height at the distance of imm from the object side of the third lens to the optical axis
  • SAG5 j represents the sagittal height at the distance of jmm from the object side of the third lens to the optical axis
  • SAG6 i represents the The distance between the image side surface of the three lenses and the optical axis is the sagittal height at imm
  • SAG6 j represents the sagittal height at the distance jmm from the image side of the third lens to the optical axis.
  • Conditional expression (8) and conditional expression (9) reasonably limit the curved shape of the third lens, so that the object side surface of the third lens and the image side surface of the third lens have no inflection point of inflection, avoiding the decentering sensitivity change Big.
  • the optical lens satisfies the following conditional formula:
  • f 1 represents the focal length of the first lens
  • f 2 represents the focal length of the second lens.
  • the optical lens satisfies the following conditional formula:
  • ⁇ 12 represents the inclination angle of the edge surface of the image side surface of the sixth lens (the angle between the surface edge tangent and the optical axis), and ⁇ ⁇ represents the chief ray incident angle of the optical lens, which is also the incident angle of the imaging surface.
  • ⁇ 12 / ⁇ ⁇ > 0, the chief ray angle of incidence (ChiefRayAngle, CRA) can be effectively controlled; when ⁇ 12 / ⁇ ⁇ ⁇ 0.15, it can prevent the inclination of the edge surface of the image side surface of the sixth lens from becoming larger. ghost image.
  • the optical lens satisfies the following conditional formula:
  • R 8 represents the radius of curvature of the image side surface of the fourth lens
  • D 8 represents the diameter of the image side surface of the fourth lens.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens may be aspherical lenses.
  • the use of aspherical lenses can effectively reduce the number of lenses, correct aberrations, and provide better optical performance.
  • each aspheric surface type of the optical lens 100 may satisfy the following equation:
  • z is the height of the distance vector from the apex of the aspheric surface when the aspheric surface is at the height of h along the optical axis direction
  • c is the paraxial curvature radius of the surface
  • k is the conic coefficient conic
  • a 2i is the 2i-order aspheric surface Surface coefficient.
  • the optical lens provided in this embodiment effectively reduces the lens shape and refractive power of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens.
  • the eccentric sensitivity of the optical lens reduces the influence of ghost images on imaging, and achieves the effects of high pixels, clear imaging and high product yield.
  • the thickness, radius of curvature, and material of each lens of the optical lens are different.
  • the parameter table in each embodiment please refer to the parameter table in each embodiment.
  • FIG. 2 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 includes a stop ST, a first lens L1, and a second lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has positive refractive power, the object side surface S1 of the first lens is a convex surface, and the image side surface S2 of the first lens is a concave surface;
  • the second lens L2 has negative refractive power, and the image side surface S4 of the second lens is concave;
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 of the third lens are both convex and have no reflex inflection point;
  • the fourth lens L4 has a positive refractive power, the object side surface S7 of the fourth lens is a concave surface, and the image side surface S8 of the fourth lens is a convex surface at the near optical axis;
  • the fifth lens L5 has negative refractive power, the object side surface S9 of the fifth lens is convex at the near optical axis, and the image side surface S10 of the fifth lens is concave at the near optical axis;
  • the sixth lens L6 has negative refractive power, and the object side surface S11 of the sixth lens is concave at the near optical axis.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are aspheric lenses.
  • the design parameters of the optical lens 100 provided in this embodiment are shown in Table 1:
  • the aspheric surface parameters of each lens in the optical lens 100 are shown in Table 2.
  • FIGS. 3, 4, and 5 show the distortion curve diagram, the vertical axis chromatic aberration curve diagram, and the internal reflection ghost optical path diagram of the fourth lens L4, respectively, of the optical lens 100.
  • the optical distortion can be seen from FIG. 3 Control within 0.75%, indicating that the distortion of the optical lens 100 is well corrected; from Figure 4, it can be seen that the vertical chromatic aberration at different wavelengths is controlled within 1.5 microns (the measured data is less than 1.2 microns), indicating the optical lens 100
  • the vertical axis chromatic aberration is well corrected; as can be seen from Figure 5, the secondary reflection angle of the ghost image of the fourth lens L4 on the object side S7 of the fourth lens is 34°, which does not reach the critical angle, and total reflection will not occur. , So the ghost energy can be effectively reduced.
  • FIG. 6 it is a schematic diagram of the structure of the optical lens 200 provided by this embodiment.
  • the optical lens 200 of this embodiment is substantially the same as the above-mentioned first embodiment, and the difference lies mainly in the design parameters.
  • the design parameters of the optical lens 200 provided in this embodiment are shown in Table 3:
  • the aspheric parameters of each lens in the optical lens 200 are shown in Table 4.
  • Figure 7 Please refer to Figure 7, Figure 8, and Figure 9, which show the distortion curve of the optical lens 200, the vertical axis chromatic aberration curve, and the internal reflection ghost optical path diagram of the fourth lens L4.
  • the optical distortion can be seen from Figure 7 Control within 0.75%, indicating that the distortion of the optical lens 200 is well corrected; from Figure 8 it can be seen that the vertical chromatic aberration at different wavelengths is controlled within 1.5 microns (the measured data is less than 1.2 microns), indicating the optical lens 200
  • the vertical axis chromatic aberration is well corrected; as can be seen from Fig. 9, the secondary reflection angle of the ghost image of the fourth lens L4 on the object side S7 of the fourth lens is 33.5°, which does not reach the critical angle and total reflection will not occur. , So the ghost energy can be effectively reduced.
  • FIG. 10 it is a schematic diagram of the structure of the optical lens 300 provided by this embodiment.
  • the optical lens 300 of this embodiment is substantially the same as the above-mentioned first embodiment, with the main difference being: the fourth lens L4 and the fifth lens L5.
  • the object side S7 of the fourth lens is smoother, which is beneficial to reduce the energy of the internal reflection ghost image of the fourth lens L4.
  • the object side surface S9 of the fifth lens has a large edge recursion, that is, a large change in edge curvature, which is beneficial to the correction of aberrations.
  • the design parameters of the optical lens 300 provided in this embodiment are shown in Table 5.
  • the aspheric parameters of each lens in the optical lens 300 are shown in Table 6.
  • Figure 11 Please refer to Figure 11, Figure 12 and Figure 13, showing the distortion curve of the optical lens 300, the vertical axis chromatic aberration curve and the fourth lens L4 internal reflection ghost light path diagram, from Figure 11 we can see the optical distortion control Within 0.5%, it indicates that the distortion of the optical lens 300 is well corrected; from Figure 12, it can be seen that the vertical chromatic aberration at different wavelengths is controlled within 1.5 microns (the measured data is less than 1.2 microns), indicating the verticality of the optical lens 300 The axial chromatic aberration is well corrected; it can be seen from Figure 13 that the secondary reflection angle of the ghost image of the fourth lens L4 on the object side S7 of the fourth lens is 35°, which does not reach the critical angle, and total reflection will not occur. So the ghost energy can be effectively reduced.
  • Table 7 shows the corresponding optical characteristics of the optical lenses provided in the above three embodiments, including the focal length f of the optical lens, the number of apertures F#, the total optical length TTL and the field of view 2 ⁇ , as well as each of the foregoing The relevant value corresponding to the conditional expression.
  • the vertical axis chromatic aberration of the optical lens in each embodiment is less than 1.5 microns (the measured data is less than 1.2 microns), and the distortion is less than 1%, indicating the imaging of the lens
  • the picture has small distortion and high definition; from the perspective of the ghost reflection path of the fourth lens L4, the incident angle of the secondary reflection inside the fourth lens L4 is less than the critical angle, which effectively avoids total reflection and greatly reduces ghosts. Image energy makes the image quality higher.
  • the optical lens provided by the embodiment of the present invention effectively corrects the ghost image of the optical lens through a reasonable combination of the lens shape and the optical power between the lenses. Therefore, the optical lens provided by the embodiment of the present invention It has the advantages of low ghost energy and high imaging quality. It has good applicability to portable electronic devices and can effectively improve the user's camera experience.
  • FIG. 14 a schematic structural diagram of an imaging device 400 provided in this embodiment, which includes the optical lens (for example, the optical lens 100) and the imaging element 401 in any of the above embodiments.
  • the imaging element 401 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 400 may be a camera, a mobile terminal, or any other electronic device loaded with an optical lens.
  • the mobile terminal may be a terminal device such as a smart phone, a smart tablet, or a smart reader.
  • the imaging device 400 provided in this embodiment includes an optical lens. Since the optical lens has the advantages of low ghost energy, wide viewing angle, high imaging quality, and high production yield, the imaging device 400 has low ghost energy, wide viewing angle, and high imaging quality. And the advantage of high production yield.

Abstract

一种光学镜头(100,200,300)及成像设备(400),光学镜头(100,200,300)沿光轴从物侧到像侧依次包括:光阑(ST)、第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)、第六透镜(L6)以及滤光片(G);光学镜头(100,200,300)满足以下条件式:SAG8D 0.5/SAG8D 1>0.35;其中,SAG8D 0.5表示第四透镜(L4)的像侧面(S8)1/2口径处的矢高,SAG8D 1表示第四透镜(L4)的像侧面(S8)全口径处的矢高。有效地降低了鬼像对成像质量的影响,同时实现了高清晰的成像效果,具有成像品质高的优点,能够有效提升用户的摄像体验。

Description

光学镜头及成像设备
相关申请的交叉引用
本申请要求于2020年04月13日提交中国专利局的申请号为CN202010282954.1、名称为“光学镜头及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学镜头技术领域,更具体地,涉及一种光学镜头及成像设备。
背景技术
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,光学镜头已经成为了便携式电子设备的标配,光学镜头甚至已经成为消费者购买便携式电子设备时首要考虑的指标。近年来,随着设计水平、制造加工技术的不断发展,光学镜头不断地向高性能的方向发展。
然而,随着人们对像质的要求不断提高,一方面,镜头的结构会相应复杂,导致加工难度加大,产品的良率不高;另一方面,环境光对成像质量的影响也随之加大,这使得镜头在保证成像品质的同时,产品的良率低且难以消除鬼像的影响。
发明内容
基于此,本发明的目的在于提供一种光学镜头及成像设备,光学镜头至少具有成像品质高、鬼像能量低的特点,能够更好地适合便携式电子设备的高品质成像需求。
本发明实施例通过以下技术方案来实现上述目的:
一方面,本发明实施例提供了一种光学镜头,沿光轴从物侧到像侧依次包括:光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及滤光片;第一透镜具有正光焦度,第一透镜的物侧面为凸面;第二透镜具有负光焦度,第二透镜的像侧面为凹面;第三透镜具有正光焦度,第三透镜的物侧面和像侧面均为凸面且均无反曲拐点;第四透镜具有正光焦度,第四透镜的物侧面为凹面,第四透镜的像侧面在近光轴处为凸面;第五透镜具有负光焦度,第五透镜的 物侧面在近光轴处为凸面,第五透镜的像侧面在近光轴处为凹面;第六透镜具有负光焦度,第六透镜的物侧面在近光轴处为凹面;其中,光学镜头满足以下条件式:
SAG8D 0.5/SAG8D 1>0.35;
其中,SAG8D 0.5表示第四透镜的像侧面1/2口径处的矢高,SAG8D 1表示第四透镜的像侧面全口径处的矢高。
第二方面,本发明实施例还提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,通过合理的搭配各透镜之间的镜片形状与光焦度组合,以及通过调整第四透镜的面型来改变鬼像的入射角,避免第四透镜在中间视场产生全反射鬼像,有效地降低了鬼像对成像质量的影响,同时实现了高清晰的成像效果,具有成像品质高的优点,能够有效提升用户的摄像体验。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1示出了现有技术中六片式光学镜头的第四透镜的内反鬼像光路图;
图2为本发明第一实施例提供的光学镜头的结构示意图;
图3为本发明第一实施例提供的光学镜头的畸变曲线图;
图4为本发明第一实施例提供的光学镜头的垂轴色差曲线图;
图5为本发明第一实施例提供的光学镜头的第四透镜的内反射鬼像光路图;
图6为本发明第二实施例提供的光学镜头的结构示意图;
图7为本发明第二实施例提供的光学镜头的畸变曲线图;
图8为本发明第二实施例提供的光学镜头的垂轴色差曲线图;
图9为本发明第二实施例提供的光学镜头的第四透镜的内反射鬼像光路图;
图10为本发明第三实施例提供的光学镜头的结构示意图;
图11为本发明第三实施例提供的光学镜头的畸变曲线图;
图12为本发明第三实施例提供的光学镜头的垂轴色差曲线图;
图13为本发明第三实施例提供的光学镜头的第四透镜的内反射鬼像光路图;
图14为本发明第四实施例中的成像设备的结构示意图。
附图标记:
光阑 ST 第一透镜 L1
第二透镜 L2 第三透镜 L3
第四透镜 L4 第五透镜 L5
第六透镜 L6 滤光片 G
第一透镜的物侧面 S1 第一透镜的像侧面 S2
第二透镜的物侧面 S3 第二透镜的像侧面 S4
第三透镜的物侧面 S5 第三透镜的像侧面 S6
第四透镜的物侧面 S7 第四透镜的像侧面 S8
第五透镜的物侧面 S9 第五透镜的像侧面 S10
第六透镜的物侧面 S11 第六透镜的像侧面 S12
滤光片的物侧面 S13 滤光片的像侧面 S14
成像面 S15 成像设备 400
成像元件 401 光学镜头 100、200、300
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供该实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在光学中,目前常使用的塑胶材料折射率Nd一般在1.5-1.7之间,根据临界角定理θ c=arcsin(1/Nd),得出光线自光密介质入射光疏介质的临界角θ c的范围为36°~42°,具体到透镜内 部时,入射至透镜内部的光线在透镜的像侧面发生一次反射,然后在透镜的物侧面发生二次反射,当二次反射角度大于临界角(例如42°)时,则会发生全反射。发明人在对现有镜头的研究中发现,现有技术中的六片式镜头的第四透镜的曲面较弯,在中间视场普遍存在全反射鬼像,详细反射路径见图1所示,其在第四透镜的内部的物侧面的二次反射角度达到42°以上,已大于临界角,导致发生全反射,鬼影能量很高,目前仅靠镀膜工艺无法改善这种全反射鬼影的现象,所以对成像质量影响很大。
基于此,本发明提供一种光学镜头,该光学镜头沿光轴从物侧到像侧依次包括光阑、第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜以及滤光片。
第一透镜具有正光焦度,其物侧面为凸面。
第二透镜具有负光焦度,其像侧面为凹面。
第三透镜具有正光焦度,其物侧面和像侧面均为凸面且均无反曲拐点。
第四透镜具有正光焦度,其物侧面为凹面,像侧面在近光轴处为凸面。
第五透镜具有负光焦度,其物侧面在近光轴处为凸面,像侧面在近光轴处为凹面。第五透镜的形状可有效修正光学透镜的像差,从而有效地控制光线的出射角度。
第六透镜具有负光焦度,其物侧面在近光轴处为凹面。
光学镜头满足以下条件式:
SAG8D 0.5/SAG8D 1>0.35;       (1)
其中,SAG8D 0.5表示第四透镜的像侧面1/2口径处的矢高,SAG8D 1表示第四透镜的像侧面全口径处的矢高。
满足条件式(1)时,能够使中间视场(如视场角为20°左右)的入射光线在第四透镜的像侧面的反射角度减小,从而使其二次反射的光线在物侧面的入射角相应减小至小于临界角,从而不至于在第四透镜的内部的物侧面形成全反射,光线的一部分能量随着物侧面处发生的折射而消耗,从而减弱了在物侧面处的反射光线的能量,即,减弱了鬼像的能量,通过条件式(1)可以合理地限定第四透镜像侧面的曲面形状,从而有效地改善鬼像,提高成像质量。
在一些实施例中,光学镜头满足以下条式:
R 7/D 7<-0.7;         (2)
其中,R 7表示第四透镜的物侧面的曲率半径,D 7表示第四透镜的物侧面的直径。
满足条件式(2)时,表明第四透镜的物侧面在近光轴处较平滑,使得二次反射的光线在第四透镜的物侧面的反射角增大,同时保证不大于临界角,从而将鬼像反射到像面以外,降低鬼像的能量;通过条件式(2)的限定,可以进一步合理地限定第四透镜的物侧面的曲面形状,从而有效地改善鬼像,提高成像质量。
现有技术中用于便携式电子设备的光学镜头的第一透镜的光焦度通常较大,但口径小,导致第一透镜的偏心敏感度(镜片的光轴偏心对整体成像的影响程度)高,加工难度大,产品良率低。在一些实施方式中,光学镜头满足以下条件式:
-0.12<(1/f 1-1/f 3)/(1/f)<0.2;          (3)
R 1/D i>0.98;                           (4)
其中,f 1表示第一透镜的焦距,f 3表示第三透镜的焦距,f表示光学镜头的焦距,R 1表示第一透镜物侧面的曲率半径,D i表示光学镜头的入瞳直径。
在一些实施方式中,满足条件式(3)时,可将第一透镜的偏心敏感度分担到第三透镜上,即使第三透镜口径相对较大,偏心敏感度不会很大,通过平衡第一透镜与第三透镜的偏心敏感度,可极大地降低生产加工的难度,使得在保证高成像品质的同时有效提升镜头的生产良率。
满足条件式(4)时,能够合理限定第一透镜的口径,因为口径越大,敏感度越低,从而降低第一透镜的敏感度,缓解了因第一透镜L1敏感度高造成的生产良率低的问题。
进一步的,在一些实施方式中,光学镜头满足以下条件式:
4.13mm<IH/tanθ<4.18mm;               (5)
其中,IH表示光学镜头的实际半像高,θ表示光学镜头的半视场角。
条件式(5)限定了光学镜头的畸变,当IH/tanθ>4.13mm时,避免镜头的畸变朝负方向增大,当IH/tanθ<4.18mm时,可避免畸变朝正方向过分增大,从而降低了矫正畸变的难度。
在一些实施方式中,光学镜头满足以下条件式:
1<DT/D 1<1.02;                         (6)
其中,DT表示光学镜头的光阑口径,D 1表示第一透镜物侧面的直径。当DT/D 1>1时,表明光学镜头的视场角较大,拍摄场景更宽阔;当DT/D 1<1.02时,则降低了像差的修正难度。
在一些实施方式中,光学镜头满足以下条件式:
0.46<DT/IH<0.49;                       (7)
其中,DT表示光学镜头的光阑口径,IH表示光学镜头的实际半像高。当DT/IH>0.46时,有效保证光学镜头的通光量;当DT/IH<0.49时,可获得高像素、高成像质量的光学镜头,满足现代人对拍摄的高要求。
在一些实施方式中,光学镜头满足以下条件式:
SAG5 i-SAG5 j<0;                     (8)
SAG6 i-SAG6 j<0;                     (9)
其中,j=i+0.1,SAG5 i表示第三透镜的物侧面距光轴距离为imm处的矢高,SAG5 j表示第三透镜的物侧面距光轴距离为jmm处的矢高,SAG6 i表示第三透镜的像侧面距光轴距离为imm处的矢高,SAG6 j表示第三透镜的像侧面距光轴距离为jmm处的矢高。条件式(8)和条件式(9)合理限定了第三透镜的曲面形状,使得第三透镜的物侧面和第三透镜的像侧面的表面面型均无反曲拐点,避免偏心敏感度变大。
在一些实施方式中,光学镜头满足以下条件式:
-1<f 1/f 2<-0.3;                           (10)
其中,f 1表示第一透镜的焦距,f 2表示第二透镜的焦距。当f 1/f 2>-1时,可避免第一透镜的光焦度和偏心敏感度变大;当f 1/f 2<-0.3,可降低场曲的修正难度。
在一些实施方式中,光学镜头满足以下条件式:
0<θ 12λ<0.15;                           (11)
其中,θ 12表示第六透镜的像侧面的边缘面倾角(面边缘切线与光轴的夹角),θ λ表示光学镜头的主光线入射角,也是成像面入射角。当θ 12λ>0时,可有效的控制主光线入射角(ChiefRayAngle,CRA);当θ 12λ<0.15时,可避免第六透镜的像侧面的边缘面倾角变大,出现鬼像。
在一些实施方式中,光学镜头满足以下条件式:
-0.5<R 8/D 8<-0.3;                        (12)
其中,R 8表示第四透镜像侧面的曲率半径,D 8表示第四透镜像侧面的直径。当R 8/D 8<-0.3时,表明第四透镜的像侧面曲率半径较大,有利于降低鬼像的能量;当R 8/D 8>-0.5,可以有效限定第四透镜的像侧面的口径,降低偏心敏感度。
作为一种实施方式,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜可以是非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。
本实施例中,作为一种方式,当光学镜头中的各个透镜均为非球面透镜时,光学镜头100的各个非球面面型可以均满足如下方程式:
Figure PCTCN2020101749-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为圆锥系数conic,A 2i为第2i阶的非球面面型系数。
本实施例提供的光学镜头通过5合理的搭配第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜之间的镜片形状与光焦度组合,有效的降低了光学镜头的偏心敏感度,减少了鬼像对成像的影响,实现了高像素、成像清晰且产品良率高的效果。
在以下每个实施例中,光学镜头的各个透镜的厚度、曲率半径、材质部分有所不同,具体不同可参见各实施例中的参数表。
第一实施例
请参照图2,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到像侧依次包括光阑ST、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6以及滤光片G。
第一透镜L1具有正光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜的像侧面S4为凹面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5和像侧面S6均为凸面且均无反曲拐点;
第四透镜L4具有正光焦度,第四透镜的物侧面S7为凹面,第四透镜的像侧面S8在近光轴处为凸面;
第五透镜L5具有负光焦度,第五透镜的物侧面S9在近光轴处为凸面,第五透镜的像侧面S10在近光轴处为凹面;
第六透镜L6具有负光焦度,第六透镜的物侧面S11在近光轴处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6是非球面镜片。
具体的,本实施例提供的光学镜头100的设计参数如表1所示:
表1
Figure PCTCN2020101749-appb-000002
Figure PCTCN2020101749-appb-000003
本实施例中,光学镜头100中各个透镜的非球面参数如表2所示。
表2
Figure PCTCN2020101749-appb-000004
Figure PCTCN2020101749-appb-000005
请参照图3、图4及图5,所示分别为光学镜头100的畸变曲线图、垂轴色差曲线图以及第四透镜L4的内反射鬼像光路图,从图3中可以看出光学畸变控制在0.75%以内,说明光学镜头100的畸变得到良好的矫正;从图4中可以看出不同波长处的垂轴色差控制在1.5微米以内(实测数据为小于1.2微米),说明光学镜头100的垂轴色差得到良好的矫正;从图5中可以看出,第四透镜L4的鬼像在第四透镜的物侧面S7的二次反射角度为34°,未达到临界角,不会发生全反射,所以鬼像能量得以有效降低。
第二实施例
如图6所示,为本实施例提供的光学镜头200的结构示意图,本实施例的光学镜头200与上述第一实施例大致相同,不同之处主要在于设计参数不同。
具体的,本实施例提供的光学镜头200的设计参数如表3所示:
表3
Figure PCTCN2020101749-appb-000006
Figure PCTCN2020101749-appb-000007
本实施例中,光学镜头200中各个透镜的非球面参数如表4所示。
表4
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 3.23E-02 1.17E-02 -6.64E-03 2.51E-02 -1.24E-02 -1.71E-03 1.31E-02 -5.81E-03
S2 -2.39E+02 -2.14E-02 9.48E-02 -4.09E-02 -3.28E-02 2.23E-02 1.18E-02 -5.40E-03
S3 -2.69E+01 -7.34E-02 1.18E-01 -7.70E-02 -4.77E-03 -4.74E-03 6.89E-04 -1.12E-04
S4 -9.33E+00 6.72E-03 2.00E-02 4.19E-03 -1.10E-02 -1.21E-02 -9.06E-03 1.02E-02
S5 9.34E+00 -5.77E-02 6.93E-03 -5.37E-02 4.28E-02 2.51E-02 -1.28E-02 -2.13E-04
S6 -1.54E+01 -6.32E-02 -2.39E-03 -4.19E-03 6.20E-03 6.00E-03 -5.11E-03 6.89E-03
S7 -6.60E+00 -7.89E-03 2.57E-02 3.26E-03 -2.48E-03 -5.10E-04 2.63E-04 -3.21E-05
S8 -4.54E+00 -3.00E-02 2.19E-02 -1.42E-03 -1.32E-05 -6.97E-05 -5.26E-07 7.77E-07
S9 8.2E+00 -3.83E-02 -1.40E-02 5.57E-03 -1.15E-03 -1.86E-04 1.38E-05 1.27E-05
S10 -2.85E+01 -1.86E-02 3.43E-05 -9.90E-05 -1.53E-05 5.54E-06 7.29E-07 -1.15E-07
S11 -3.05E-01 -3.17E-03 1.71E-03 -7.93E-06 -6.10E-06 -2.39E-07 2.74E-08 5.84E-10
S12 -1.75E+00 -3.03E-02 3.23E-03 -2.66E-04 1.83E-05 -8.75E-07 -6.96E-08 7.68E-09
请参照图7、图8及图9,所示分别为光学镜头200的畸变曲线图、垂轴色差曲线图、第四透 镜L4的内反射鬼像光路图,从图7中可以看出光学畸变控制在0.75%以内,说明光学镜头200的畸变得到良好的矫正;从图8中可以看出不同波长处的垂轴色差控制在1.5微米以内(实测数据为小于1.2微米),说明光学镜头200的垂轴色差得到良好的矫正;从图9中可以看出,第四透镜L4的鬼像在第四透镜的物侧面S7的二次反射角度为33.5°,未达到临界角,不会发生全反射,所以鬼像能量得以有效降低。
第三实施例
如图10所示,为本实施例提供的光学镜头300的结构示意图,本实施例的光学镜头300与上述第一实施例大致相同,不同之处主要在于:第四透镜L4和第五透镜L5的曲面形状有差异,第四透镜的物侧面S7更平滑,有利于降低第四透镜L4的内反射鬼像的能量。第五透镜的物侧面S9的边缘反曲大,即边缘曲率变化幅度大,有利于像差的矫正。
具体的,本实施例提供的光学镜头300的设计参数如表5所示:
表5
Figure PCTCN2020101749-appb-000008
Figure PCTCN2020101749-appb-000009
本实施例中,光学镜头300中各个透镜的非球面参数如表6所示。
表6
面号 k A 4 A 6 A 8 A 10 A 12 A 14 A 16
S1 -8.09E-03 1.65E-02 -2.96E-03 3.85E-02 -1.66E-02 -1.14E-02 1.80E-02 -9.18E-04
S2 -2.39E+02 -1.68E-02 1.24E-01 -4.47E-02 -3.91E-02 9.73E-03 -5.16E-03 2.10E-02
S3 -3.92E+1 -5.65E-02 1.14E-01 -8.21E-02 -1.25E-02 -1.22E-02 4.09E-03 4.98E-04
S4 -1.08E+01 1.19E-02 1.77E-02 -6.31E-03 -1.64E-02 -4.130E-03 5.26E-03 7.50E-04
S5 2.57E+00 -5.88E-02 3.82E-02 -5.43E-02 2.43E-02 1.58E-02 -1.17E-02 2.05E-03
S6 -3.00E+01 -3.47E-02 -1.31E-02 -1.13E-02 6.03E-03 5.92E-03 -7.98E-03 3.07E-03
S7 -7.65E+01 -1.20E-02 3.33E-03 7.99E-04 -1.99E-03 4.11E-05 4.35E-04 -9.22E-05
S8 -4.47E+00 -4.72E-02 2.09E-02 -7.02E-04 1.70E-04 -8.37E-05 -1.39E-05 2.15E-06
S9 -1.55E+01 -5.96E-02 -6.67E-03 4.80E-03 -7.24E-04 -7.13E-05 7.62E-07 3.82E-06
S10 -8.04E+00 -6.34E-02 8.26E-03 -3.27E-04 -7.66E-05 6.09E-06 1.45E-06 -1.34E-07
S11 -1.23E+00 9.07E-03 1.69E-03 -7.23E-05 -1.18E-05 1.08E-07 1.00E-07 -4.41E-09
S12 -9.28E+01 -1.56E-02 3.69E-03 -5.08E-04 1.94E-05 5.20E-07 -3.87E-09 -1.75E-09
请参照图11、图12及图13,所示为光学镜头300的畸变曲线图、垂轴色差曲线图及第四透镜L4的内反射鬼像光路图,从图11中可以看出光学畸变控制在0.5%以内,说明光学镜头300的畸变得到良好的矫正;从图12中可以看出不同波长处的垂轴色差控制在1.5微米以内(实测数据为小于1.2微米),说明光学镜头300的垂轴色差得到良好的矫正;从图13中可以看出,第四透镜L4的鬼像在第四透镜的物侧面S7的二次反射角度为35°,未达到临界角,不会发生全反射,所以鬼像能量得以有效降低。
请参阅表7,表7为上述三个实施例中提供的光学镜头分别对应的光学特性,包括光学镜头的焦距f、光圈数F#、光学总长TTL和视场角2θ,以及与前述的每个条件式对应的相关数值。
表7
  第一实施例 第二实施例 第三实施例 备注
f(mm) 4.057 4.059 4.038  
F# 2.2 2.2 2.2  
TTL(mm) 5.388 5.434 5.430  
88.1° 88.1° 88.1°  
IH(mm) 4.0 4.0 4.0  
SAG8D 0.5/SAG8D 1 0.380 0.501 0.507 条件式(1)
R 7/D 7 -0.757 -1.360 -1.531 条件式(2)
(1/f 1-1/f 3)/(1/f) 0.170 -0.107 0.185 条件式(3)
R 1/D i 0.985 1.087 1.198 条件式(4)
IH/tanθ 4.14 4.14 4.14 条件式(5)
DT/D 1 1.013 1.012 1.006 条件式(6)
DT/IH 0.482 0.478 0.465 条件式(7)
SAG5 i-SAG5 j -0.007 -0.003 -0.005 条件式(8)
SAG6 i-SAG6 j -0.006 -0.022 -0.013 条件式(9)
f 1/f 2 -0.308 -0.442 -0.494 条件式(10)
θ 12λ 0.061 0.084 0.132 条件式(11)
R 8/D 8 -0.452 -0.387 -0.346 条件式(12)
从以上每个实施例的垂轴色差与畸变曲线图可以看出,各实施例中的光学镜头的垂轴色差小于1.5微米(实测数据为小于1.2微米)、畸变小于1%,表明镜头的成像画面失真小,清晰度高;从第四透镜L4的鬼像反射路径来看,第四透镜L4的内部发生二次反射的入射角均小于临界角,有效地避免了全反射,大大降低了鬼像能量,使成像品质更高。
综上,本发明实施例提供的光学镜头,通过合理的搭配各透镜之间的镜片形状与光焦度组合,有效的修正了光学镜头的鬼像,由此,本发明实施例提供的光学镜头具有鬼像能量低、成像品质高的优点,其对便携式电子设备具有良好的适用性,能够有效提升用户的摄像体验。
第四实施例
本实施例提供的一种成像设备400的结构示意图请参阅图14,包括上述任一实施例中的光学镜头(例如光学镜头100)及成像元件401。成像元件401可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备400可以是相机、移动终端以及其他任意一种形态的装载了光学镜头的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本实施例提供的成像设备400包括光学镜头,由于光学镜头具有鬼像能量低、广视角、成像品质高及生产良率高的优点,成像设备400具有鬼像能量低、广视角、成像品质高及生产良率高的优点。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到像侧依次包括:
    光阑;
    具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;
    具有负光焦度的第二透镜,所述第二透镜的像侧面为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面且均无反曲拐点;
    具有正光焦度的第四透镜,所述第四透镜的物侧面为凹面,所述第四透镜的像侧面在近光轴处为凸面;
    具有负光焦度的第五透镜,所述第五透镜的物侧面在近光轴处为凸面,所述第五透镜的像侧面在近光轴处为凹面;
    具有负光焦度的第六透镜,所述第六透镜的物侧面在近光轴处为凹面;
    滤光片;
    其中,所述光学镜头满足以下条件式:
    SAG8D 0.5/SAG8D 1>0.35;
    其中,SAG8D 0.5表示所述第四透镜的像侧面1/2口径处的矢高,SAG8D 1表示所述第四透镜的像侧面全口径处的矢高。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    R 7/D 7<-0.7;
    其中,R 7表示所述第四透镜的物侧面的曲率半径,D 7表示所述第四透镜的物侧面的直径。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -0.12<(1/f 1-1/f 3)/(1/f)<0.2;
    R 1/D i>0.98;
    其中,f 1表示所述第一透镜的焦距,f 3表示所述第三透镜的焦距,f表示所述光学镜头的焦距,R 1表示所述第一透镜的物侧面的曲率半径,D i表示所述光学镜头的入瞳直径。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    4.13mm<IH/tanθ<4.18mm;
    其中,IH表示所述光学镜头的实际半像高,θ表示所述光学镜头的半视场角。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1<DT/D 1<1.02;
    其中,DT表示所述光学镜头的光阑口径,D 1表示所述第一透镜的物侧面的直径。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.46<DT/IH<0.49;
    其中,DT表示所述光学镜头的光阑口径,IH表示所述光学镜头的实际半像高。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    SAG5 i-SAG5 j<0;
    SAG6 i-SAG6 j<0;
    其中,j=i+0.1,SAG5 i表示所述第三透镜的物侧面距光轴距离为i mm处的矢高,SAG5 j表示所述第三透镜的物侧面距光轴距离为j mm处的矢高,SAG6 i表示所述第三透镜的像侧面距光轴距离为i mm处的矢高,SAG6 j表示所述第三透镜的像侧面距光轴距离为j mm处的矢高。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -1<f 1/f 2<-0.3;
    其中,f 1表示所述第一透镜的焦距,f 2表示所述第二透镜的焦距。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0<θ 12λ<0.15;
    其中,θ 12表示所述第六透镜的像侧面的边缘面倾角,θ λ表示所述光学镜头的主光线入射角。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -0.5<R 8/D 8<-0.3;
    其中,R 8表示所述第四透镜的像侧面的曲率半径,D 8表示所述第四透镜的像侧面的直径。
  11. 一种成像设备,其特征在于,包括如权利要求1-10任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2020/101749 2020-04-13 2020-07-14 光学镜头及成像设备 WO2021208277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/962,500 US20230049672A1 (en) 2020-04-13 2022-10-08 Optical lens, camera module and camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010282954.1A CN111190270B (zh) 2020-04-13 2020-04-13 光学镜头及成像设备
CN202010282954.1 2020-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/962,500 Continuation-In-Part US20230049672A1 (en) 2020-04-13 2022-10-08 Optical lens, camera module and camera

Publications (1)

Publication Number Publication Date
WO2021208277A1 true WO2021208277A1 (zh) 2021-10-21

Family

ID=70708685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101749 WO2021208277A1 (zh) 2020-04-13 2020-07-14 光学镜头及成像设备

Country Status (3)

Country Link
US (1) US20230049672A1 (zh)
CN (1) CN111190270B (zh)
WO (1) WO2021208277A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190270B (zh) * 2020-04-13 2020-07-14 江西联益光学有限公司 光学镜头及成像设备
CN112285896B (zh) * 2020-12-24 2021-03-09 常州市瑞泰光电有限公司 摄像光学镜头
CN112285897B (zh) * 2020-12-25 2021-03-02 常州市瑞泰光电有限公司 摄像光学镜头
CN112666686B (zh) * 2020-12-25 2022-08-23 常州市瑞泰光电有限公司 摄像光学镜头
CN112285900B (zh) * 2020-12-29 2021-05-04 常州市瑞泰光电有限公司 摄像光学镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576296A (zh) * 2013-10-30 2014-02-12 浙江舜宇光学有限公司 一种摄像镜头
CN203606554U (zh) * 2012-03-26 2014-05-21 富士胶片株式会社 成像透镜和提供有成像透镜的成像装置
CN203838391U (zh) * 2012-04-02 2014-09-17 富士胶片株式会社 成像透镜和配备有该成像透镜的成像设备
CN104678537A (zh) * 2013-11-29 2015-06-03 大立光电股份有限公司 摄像透镜组、取像装置及可携式装置
CN105223677A (zh) * 2014-07-01 2016-01-06 大立光电股份有限公司 摄像用光学镜头、取像装置以及电子装置
CN105807407A (zh) * 2014-12-30 2016-07-27 大立光电股份有限公司 成像光学镜片组、取像装置及电子装置
CN107783255A (zh) * 2016-08-29 2018-03-09 株式会社光学逻辑 摄像镜头
CN108681034A (zh) * 2018-06-01 2018-10-19 浙江舜宇光学有限公司 光学成像镜头
US20200096742A1 (en) * 2015-04-15 2020-03-26 Largan Precision Co.,Ltd. Photographing lens assembly, image capturing unit and electronic device
CN111190270A (zh) * 2020-04-13 2020-05-22 江西联益光学有限公司 光学镜头及成像设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257081B2 (ja) * 2013-05-31 2018-01-10 カンタツ株式会社 撮像レンズ
CN107422459B (zh) * 2017-09-13 2020-01-07 浙江舜宇光学有限公司 摄像镜头
US10534160B2 (en) * 2017-12-18 2020-01-14 AAC Technologies Pte. Ltd. Camera optical lens
CN111492289B (zh) * 2017-12-26 2022-06-07 日本电产三协株式会社 广角镜头
CN208239711U (zh) * 2018-05-15 2018-12-14 辽宁中蓝电子科技有限公司 一种小视场角镜头
CN208872934U (zh) * 2018-11-20 2019-05-17 协益电子(苏州)有限公司 一种车载防碰撞前视镜头
CN209055738U (zh) * 2018-12-12 2019-07-02 东莞市科谱达光电科技有限公司 一种35mm定焦工业镜头
CN110727087B9 (zh) * 2019-12-17 2020-04-17 江西联创电子有限公司 广角镜头

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203606554U (zh) * 2012-03-26 2014-05-21 富士胶片株式会社 成像透镜和提供有成像透镜的成像装置
CN203838391U (zh) * 2012-04-02 2014-09-17 富士胶片株式会社 成像透镜和配备有该成像透镜的成像设备
CN103576296A (zh) * 2013-10-30 2014-02-12 浙江舜宇光学有限公司 一种摄像镜头
CN104678537A (zh) * 2013-11-29 2015-06-03 大立光电股份有限公司 摄像透镜组、取像装置及可携式装置
CN105223677A (zh) * 2014-07-01 2016-01-06 大立光电股份有限公司 摄像用光学镜头、取像装置以及电子装置
CN105807407A (zh) * 2014-12-30 2016-07-27 大立光电股份有限公司 成像光学镜片组、取像装置及电子装置
US20200096742A1 (en) * 2015-04-15 2020-03-26 Largan Precision Co.,Ltd. Photographing lens assembly, image capturing unit and electronic device
CN107783255A (zh) * 2016-08-29 2018-03-09 株式会社光学逻辑 摄像镜头
CN108681034A (zh) * 2018-06-01 2018-10-19 浙江舜宇光学有限公司 光学成像镜头
CN111190270A (zh) * 2020-04-13 2020-05-22 江西联益光学有限公司 光学镜头及成像设备

Also Published As

Publication number Publication date
CN111190270A (zh) 2020-05-22
CN111190270B (zh) 2020-07-14
US20230049672A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
WO2021208277A1 (zh) 光学镜头及成像设备
WO2022089344A1 (zh) 光学镜头及成像设备
WO2021093542A1 (zh) 光学镜头及成像设备
WO2021233052A1 (zh) 光学镜头及成像设备
WO2021128564A1 (zh) 光学镜头及成像设备
WO2020140604A1 (zh) 光学成像镜头及成像设备
WO2020088024A1 (zh) 光学成像镜头
WO2022143647A1 (zh) 光学镜头及成像设备
CN112394493B (zh) 光学镜头及成像设备
WO2022089327A1 (zh) 光学镜头及成像设备
WO2021082728A1 (zh) 光学成像镜头
WO2022222926A1 (zh) 光学镜头及成像设备
WO2021120409A1 (zh) 外接镜头
CN114114650B (zh) 光学镜头及成像设备
WO2020140788A1 (zh) 长焦镜头及移动终端
WO2021042954A1 (zh) 摄像镜头组
WO2022199465A1 (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
CN111999859A (zh) 光学成像系统、取像模组和电子装置
WO2020238577A1 (zh) 组合式变焦双摄镜头
CN112987261B (zh) 光学镜头
CN112987256A (zh) 光学系统、摄像模组及电子设备
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN112505902A (zh) 广角镜头及成像设备
WO2021035758A1 (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930844

Country of ref document: EP

Kind code of ref document: A1