WO2021128564A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2021128564A1
WO2021128564A1 PCT/CN2020/076472 CN2020076472W WO2021128564A1 WO 2021128564 A1 WO2021128564 A1 WO 2021128564A1 CN 2020076472 W CN2020076472 W CN 2020076472W WO 2021128564 A1 WO2021128564 A1 WO 2021128564A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
conditional formula
object side
Prior art date
Application number
PCT/CN2020/076472
Other languages
English (en)
French (fr)
Inventor
于笑枝
曾昊杰
刘绪明
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Priority to US17/038,082 priority Critical patent/US11450136B2/en
Publication of WO2021128564A1 publication Critical patent/WO2021128564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present invention relates to the technical field of lens imaging, in particular to an optical lens and imaging equipment.
  • the optical lens used in under-screen fingerprint recognition still has disadvantages such as poor imaging quality and large distortion, which leads to the problem of low fingerprint recognition rate, making the smartphone experience poor, and due to the large Part of the fingerprint optical lens under the screen uses high refractive index materials, which makes the production cost relatively high and is not suitable for market application.
  • the purpose of the present invention is to provide an optical lens and imaging device.
  • the optical lens has at least the characteristics of high imaging quality, small size and small distortion, which can effectively improve the fingerprint recognition rate and better meet the needs of full screen.
  • an embodiment of the present invention provides an optical lens that includes, in order from the object side to the image side along the optical axis: a flat glass, a first lens, an aperture, a second lens, a third lens, and an infrared filter.
  • One lens has negative refractive power.
  • the object side of the first lens is concave at the near optical axis and has at least one inflection point.
  • the image side of the first lens is concave; the second lens has positive refractive power.
  • the object side surface is convex, and the image side surface is convex;
  • the third lens has positive refractive power, and the image side surface of the third lens is convex;
  • the first lens, the second lens and the third lens are all made of materials with a refractive index less than or equal to 1.70;
  • the optical lens satisfies the conditional formula: 1.5 ⁇ f3/f ⁇ 2.2, f3 represents the effective focal length of the third lens, and f represents the effective focal length of the optical lens.
  • an embodiment of the present invention also provides an imaging device, including the optical lens and imaging element provided in the first aspect, and the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens and imaging equipment provided by the present invention are reasonably set through the diaphragm and each lens. While satisfying the high-quality resolution quality, it also has the characteristics of small size, small distortion, high relative contrast, etc., effectively The fingerprint recognition rate is improved, and it is more suitable for the full screen design requirements of mobile phones.
  • the optical lens satisfies the conditional formula: 1.5 ⁇ f3/f ⁇ 2.2, which can make the third lens have a larger positive refractive power, which is beneficial to improve the resolution of the optical lens.
  • FIG. 1 is a schematic diagram of the structure of the optical lens in the first embodiment of the present invention
  • FIG. 2 is a field curvature curve diagram of the optical lens in the first embodiment of the present invention, in which the horizontal axis in the figure represents the offset (unit: millimeter), and the vertical axis represents the object height (unit: millimeter);
  • FIG. 3 is a distortion curve diagram of the optical lens in the first embodiment of the present invention, in which the horizontal axis in the figure represents the distortion percentage, and the vertical axis represents the object height (unit: millimeter);
  • FIG. 4 is a graph of relative illuminance of the optical lens in the first embodiment of the present invention, in which the horizontal axis in the figure represents the object height (unit: millimeter), and the vertical axis represents the relative illuminance value;
  • FIG. 5 is a schematic diagram of the structure of the optical lens in the second embodiment of the present invention.
  • Fig. 6 is a field curvature curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 7 is a distortion curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 8 is a graph of relative illuminance of the optical lens in the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the optical lens in the third embodiment of the present invention.
  • FIG. 11 is a distortion curve diagram of the optical lens in the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the structure of the optical lens in the fourth embodiment of the present invention.
  • FIG. 15 is a distortion curve diagram of the optical lens in the fourth embodiment of the present invention.
  • 16 is a graph of relative illuminance of the optical lens in the fourth embodiment of the present invention.
  • FIG. 17 is a schematic diagram of the structure of the imaging device in the fifth embodiment of the present invention.
  • An embodiment of the present invention provides an optical lens, which includes a flat glass, a first lens, a diaphragm, a second lens, a third lens, and an infrared filter in order from the object side to the image side along the optical axis.
  • the first lens has negative refractive power, the object side of the first lens is concave at the near optical axis and has at least one inflection point, the image side of the first lens is concave; the second lens has positive refractive power, and the second lens The object side of the lens is convex, and the image side is convex; the third lens has positive refractive power, and the image side of the third lens is convex; the first lens, the second lens and the third lens are all made of materials with a refractive index less than or equal to 1.70 ;
  • the optical lens satisfies the conditional formula: 1.5 ⁇ f3/f ⁇ 2.2; where f3 represents the effective focal length of the third lens, and f represents the effective focal length of the optical lens.
  • the optical lens provided by the present invention is reasonably set through the diaphragm and each lens, which not only meets the high-quality resolution quality, but also has the characteristics of small size, small distortion and high relative contrast, which effectively improves the fingerprint recognition rate and is more suitable for mobile phones Full-screen design requirements, the optical lens meets the conditional formula: 1.5 ⁇ f3/f ⁇ 2.2, which can make the third lens have a larger positive refractive power, which is beneficial to improve the resolution of the optical lens.
  • the optical lens is used, the user's fingerprints are in direct contact with the flat glass.
  • the flat glass not only plays an optical role in the optical lens, but also protects the optical lens.
  • the optical lens satisfies the following conditional formula:
  • Vd2 represents the Abbe number of the second lens
  • Vd3 represents the Abbe number of the third lens. Satisfying the conditional formula (1) is conducive to the improvement of the resolution of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • Nd1 represents the refractive index of the first lens
  • Nd2 represents the refractive index of the second lens
  • Nd3 represents the refractive index of the third lens. Satisfying the conditional expressions (2) to (4) ensures that each lens has a small refractive index, which is beneficial to the correction of field curvature and distortion, and the three lenses are made of low refractive index materials, which can effectively reduce the production cost.
  • the optical lens satisfies the following conditional formula:
  • TC1 represents the center thickness of the first lens
  • SDM11 represents the half diameter of the object side of the first lens
  • ET1 represents the edge thickness of the first lens. Satisfying the conditional formula (5) is conducive to reducing the size of the head of the lens, thereby shortening the total length of the lens, and realizing the miniaturization of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • f1 represents the effective focal length of the first lens
  • f2 represents the effective focal length of the second lens
  • f3 represents the effective focal length of the third lens. Satisfying the conditional formula (6) can realize reasonable control of the optical power of the first lens, the second lens and the third lens, reduce the correction of advanced aberrations, and reduce the difficulty of the aberration correction of the overall optical lens.
  • the optical lens satisfies the following conditional formula:
  • MTC1 represents the maximum thickness of the first lens parallel to the optical axis direction
  • TC1 represents the central thickness of the first lens. Satisfying the conditional formula (7) can make the size of the first lens smaller, which is conducive to the miniaturization of the lens, and is conducive to the molding of the first lens and improves the mass production rate.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the radius of curvature of the object side surface of the third lens
  • R32 represents the radius of curvature of the image side surface of the third lens. Satisfying the conditional formula (8) can enable the third lens to provide positive refractive power and converge the light, which is beneficial to the correction of field curvature and distortion, and improves the resolution of the lens.
  • the optical lens satisfies the following conditional formula:
  • R31 represents the radius of curvature of the object side surface of the third lens
  • SDM31 represents the half diameter of the object side surface of the third lens. Satisfying the conditional formula (9) can make the aperture of the third lens smaller, which is beneficial to the correction of distortion and aberration, and is beneficial to the molding of the third lens, which improves the mass production rate.
  • the optical lens satisfies the following conditional formula:
  • R11 represents the radius of curvature of the object side surface of the first lens
  • f1 represents the effective focal length of the first lens. Satisfying the conditional formula (10) can reasonably control the optical power of the first lens, which is beneficial to the correction of the peripheral field of view aberration and the improvement of the relative illuminance of the peripheral field of view.
  • the optical lens satisfies the following conditional formula:
  • IMC23 represents the distance between the image side surface of the second lens and the object side surface of the third lens along the optical axis
  • TC3 represents the center thickness of the third lens. Satisfying the conditional formula (11) is conducive to reasonably distributing the interval between the lenses, adjusting the light distribution, and improving the relative contrast of the lens.
  • the optical lens satisfies the following conditional formula:
  • R21 represents the radius of curvature of the object side surface of the second lens
  • R22 represents the radius of curvature of the image side surface of the second lens.
  • z is the height of the distance vector from the vertex of the aspheric surface when the aspheric surface is at a height of h along the optical axis direction
  • c is the paraxial curvature radius of the surface
  • k is the quadric coefficient
  • A2i is the 2i-th order aspheric surface Surface coefficient.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the parameter table of each embodiment please refer to the parameter table of each embodiment.
  • the optical lens 100 includes a plate glass G1, a first lens L1, an aperture ST, and a second lens in order from the object side to the imaging surface along the optical axis.
  • the first lens L1 is a plastic aspheric lens with negative refractive power, the object side S3 of the first lens is concave at the near optical axis, the image side S4 of the first lens is concave; and the object side S3 of the first lens has A reflex point, the vertical distance from the reflex point to the optical axis is 0.610 mm, and the sagittal height of the reflex point relative to the center of the object side S3 of the first lens is -0.055 mm.
  • the second lens L2 is a plastic aspheric lens with positive refractive power, the object side surface S5 of the second lens is convex, and the image side surface S6 of the second lens is convex.
  • the third lens L3 is a plastic aspheric lens with positive refractive power.
  • the object side S7 of the third lens is convex near the optical axis and has at least one inflection point. This inflection point is conducive to improving the contrast of the peripheral field of view. ;
  • the image side surface S8 of the third lens is convex.
  • At least one of the first lens L1, the second lens L2, and the third lens L3 may be a glass lens.
  • each lens in the optical lens 100 provided in this embodiment is shown in Table 1, where R represents the radius of curvature, d represents the distance between the optical surfaces, Nd represents the d-line refractive index of the material, and Vd represents the Abbe number of the material.
  • the curves of field curvature, distortion, and relative illuminance of the optical lens 100 are shown in Figure 2, Figure 3, and Figure 4, respectively (the field of view and the object height can be converted, and most of the lens design limits are The angle of view, and the optical lens in this embodiment limits the height of the photograph, that is, the height of the fingerprint collection area, and the design is expanded. The height of the object in the figure is more intuitive).
  • FIG. 2 the meridian field curvature and sagittal field curvature of this embodiment are within ⁇ 0.15 mm, indicating that the field curvature is well corrected.
  • Fig. 3 that the distortion of this embodiment is within ⁇ 1.2%, indicating that the distortion is well corrected.
  • the structure of the optical lens 200 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the difference lies in the following:
  • the thickness of the plate glass G1 of the lens 200 is different
  • the object side S7 of the third lens is concave as a whole, and there is at least one point of inflection, and the radius of curvature and material selection of each lens are different.
  • the vertical distance from the inflection point of the object side S3 of the first lens of the optical lens 200 to the optical axis is 0.395 mm
  • the deflection of the inflection point relative to the center of the object side S3 of the first lens is -0.020 mm.
  • the curves of field curvature, distortion and relative illuminance of the optical lens 200 are shown in FIG. 6, FIG. 7, and FIG. 8, respectively.
  • the meridian field curvature and sagittal field curvature of this embodiment are within ⁇ 0.35 mm, indicating that the field curvature is well corrected.
  • the amount of distortion in this embodiment is within ⁇ 1.2%, indicating that the distortion is well corrected.
  • the relative illuminance at the height of 2.55 mm of the measured object reaches more than 70%, and the relative illuminance of the peripheral field of view is also higher, indicating that the relative illuminance of the optical lens 200 has been improved well.
  • FIG. 9 a schematic diagram of the structure of the optical lens 300 provided in this embodiment.
  • the structure of the optical lens 300 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the difference lies in the following:
  • the thickness of the plate glass G1 of the lens 300 is different
  • the object side surface S7 of the third lens is concave as a whole, and there is at least one point of inflection, and the radius of curvature and material selection of each lens are different.
  • the vertical distance from the inflection point of the object side S3 of the first lens of the optical lens 300 to the optical axis is 0.425 mm, and the deflection of the inflection point relative to the center of the object side S3 of the first lens is -0.028 mm.
  • the curves of field curvature, distortion, and relative illuminance of the optical lens 300 are shown in FIG. 10, FIG. 11, and FIG. 12, respectively.
  • the meridian field curvature and sagittal field curvature of this embodiment are within ⁇ 0.1 mm, indicating that the field curvature is well corrected.
  • the amount of distortion in this embodiment is within ⁇ 1.2%, indicating that the distortion is well corrected.
  • the relative illuminance at the height of 2.55 mm of the measured object reaches more than 68%, and the relative illuminance of the peripheral field of view is also higher, indicating that the relative illuminance of the optical lens 300 has been improved well.
  • FIG. 13 a schematic diagram of the structure of the optical lens 400 provided in this embodiment.
  • the structure of the optical lens 400 in this embodiment is substantially the same as that of the optical lens 100 in the first embodiment.
  • the difference lies in:
  • the curvature radius and material selection of each lens of the lens 400 are different.
  • the vertical distance from the inflection point of the object side S3 of the first lens of the optical lens 400 to the optical axis is 0.585 mm
  • the deflection of the inflection point relative to the center of the object side S3 of the first lens is -0.048 mm.
  • the curves of field curvature, distortion and relative illuminance of the optical lens 400 are shown in FIG. 14, FIG. 15, and FIG. 16, respectively.
  • the meridian field curvature and sagittal field curvature of this embodiment are within ⁇ 0.1 mm, indicating that the field curvature is well corrected.
  • the amount of distortion in this embodiment is within ⁇ 1.2%, indicating that the distortion is well corrected.
  • the relative illuminance at the height of 2.55mm of the measured object reaches more than 70%, and the relative illuminance of the peripheral field of view is also higher, indicating that the relative illuminance of the optical lens 400 has been improved well.
  • Table 9 shows the above four embodiments and their corresponding optical characteristics, which mainly include the effective focal length f of the optical lens, the number of apertures F#, the entrance pupil diameter EPD, the total optical length TTL and the field of view 2 ⁇ , and the correspondence with each of the above conditions The numerical value.
  • Example The first embodiment Second embodiment The third embodiment Fourth embodiment f(mm) 0.4106 0.449 0.441 0.402 F# 1.55 1.5 1.5 1.55 TTL(mm) 4.945 5.159 5.159 4.945 2 ⁇ (°) 130.8 125.1 125.7 132.0 EPD(mm) 0.265 0.3 0.294 0.259 Vd2/Vd3 1 0.997 1 1 TC1/ET1-TC1/SDM11 0.510 0.684 0.603 0.508
  • the optical lens provided by this embodiment has at least the following advantages:
  • the optical lens provided by the embodiment of the present invention satisfies high-quality resolution quality, while having a larger field of view, smaller distortion and higher relative contrast, which improves the fingerprint recognition rate of users and can be better adapted to Mobile phone full screen design requirements
  • the first lens, the second lens and the third lens are all made of low refractive index materials, which greatly reduces the production cost of the optical lens, and adopts a specific surface shape and Its combination makes the structure of the lens more compact and the volume of the lens more compact while satisfying the large field of view.
  • the optical lens When the optical lens is in use, the user's fingerprints are in direct contact with the flat glass.
  • the flat glass not only plays an optical role in the optical lens, but also protects the optical lens.
  • FIG. 17 a schematic structural diagram of an imaging device 500 provided in this embodiment, which includes the optical lens (such as the optical lens 100) and the imaging element 510 in any of the above embodiments.
  • the imaging element 510 may be a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 500 may be a camera, a mobile terminal, or any other electronic device loaded with an optical lens.
  • the mobile terminal may be a terminal device such as a smart phone, a smart tablet, or a smart reader.
  • the imaging device 500 provided in this embodiment includes an optical lens. Since the optical lens has the advantages of small size, large field of view, small distortion and high relative contrast, the fingerprint recognition rate of the imaging device 500 is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(100、200、300、400)及成像设备(500),沿光轴从物侧到像侧依次包括:平板玻璃(G1);具有负光焦度的第一透镜(L1);光阑(ST);具有正光焦度的第二透镜(L2);具有正光焦度的第三透镜(L3);红外滤光片(G2)。第一透镜(L1)的物侧面近光轴处为凹面,且至少有一个反曲点,其像侧面为凹面;第二透镜(L2)的物侧面为凸面,其像侧面为凸面;第三透镜(L3)的像侧面为凸面。光学镜头(100、200、300、400)及成像设备(500)能提高用户指纹识别率,降低生产成本,适用于手机全面屏设计需求。

Description

光学镜头及成像设备
本申请要求于2019年12月25日提交中国专利局、申请号为2019113523645、发明名称为“光学镜头及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
背景技术
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着超薄化、全面屏、超高清成像等方向发展。随着全面屏概念的流行,屏下指纹识别技术应运而生,由于光学式屏下指纹识别系统具备体积小、总长短的优势,已被广泛应用于各种全面屏手机中。随着消费者对全面屏手机的消费需求不断提升,用于屏下指纹识别的光学镜头需求量不断上升。
然而在现有技术中,用于屏下指纹识别中的光学镜头仍然存在成像质量差和畸变大等缺点,从而导致指纹识别率偏低的问题,使得智能手机的体验感不佳,而且由于大部分屏下指纹的光学镜头采用高折射率材料,使得生产成本较大,不适于市场的推广应用。
发明内容
基于此,本发明的目的在于提供一种光学镜头及成像设备,光学镜头至少具有成像品质高、体积小和畸变小等特点,能够有效地提升指纹识别率,更好地适合全面屏的需求。
本发明实施例通过以下技术方案来实现上述目的:
第一方面,本发明实施例提供一种光学镜头,沿光轴从物侧到像侧依次包括:平板玻璃、第一透镜、光阑、第二透镜、第三透镜以及红外滤光片,第一透镜具有负光焦度,第一透镜的物侧面在近光轴处为凹面且具有至少一个反曲点,第一透镜的像侧面为凹面;第二透镜具有正光焦度,第二透镜的物侧面为凸面,其像侧面为凸面;第三透镜具有正光焦度,第三透镜的像侧面为凸面;第一透镜、第二透镜和第三透镜均采用折射率小于或等于1.70材料;其中,光学镜头满足条件式:1.5<f3/f<2.2,f3表示第三透镜的有效焦距,f表示光学镜头的有效焦距。
第二方面,本发明实施例还提供一种成像设备,包括第一方面提供的光学镜头及成像元件,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备通过光阑及各透镜合理设置,在满足高质量解像品质的同时,还具有体积小、畸变小、相对照度高等特点,有效地提升了指纹识别率,更适用于手机全面屏设计需求,光学镜头满足条件式:1.5<f3/f<2.2,可使第三透镜具有较大的正光焦度,有利于提高光学镜头的解像力。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图,其中,图中横轴表示偏移量(单位:毫米), 纵轴表示物高(单位:毫米);
图3为本发明第一实施例中的光学镜头的畸变曲线图,其中,图中横轴表示畸变百分比,纵轴表示物高(单位:毫米);
图4为本发明第一实施例中的光学镜头的相对照度曲线图,其中,图中横轴表示物高(单位:毫米),纵轴表示相对照度值;
图5为本发明第二实施例中的光学镜头的结构示意图;
图6为本发明第二实施例中的光学镜头的场曲曲线图;
图7为本发明第二实施例中的光学镜头的畸变曲线图;
图8为本发明第二实施例中的光学镜头的相对照度曲线图;
图9为本发明第三实施例中的光学镜头的结构示意图;
图10为本发明第三实施例中的光学镜头的场曲曲线图;
图11为本发明第三实施例中的光学镜头的畸变曲线图;
图12为本发明第三实施例中的光学镜头的相对照度曲线图;
图13为本发明第四实施例中的光学镜头的结构示意图;
图14为本发明第四实施例中的光学镜头的场曲曲线图;
图15为本发明第四实施例中的光学镜头的畸变曲线图;
图16为本发明第四实施例中的光学镜头的相对照度曲线图;
图17为本发明第五实施例中的成像设备的结构示意图。
主要元件符号说明:
Figure PCTCN2020076472-appb-000001
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于更好地理解本发明,下面将结合相关实施例附图对本发明进行进一步地解释。附图中给出了本发明的实施例,但本发明并不仅限于上述的优选实施例。相反,提供这些实施例的目的是为了使本发明 的公开面更加得充分。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明实施例提供了一种光学镜头,沿光轴从物侧到像侧依次包括:平板玻璃,第一透镜,光阑,第二透镜,第三透镜,红外滤光片。第一透镜具有负光焦度,第一透镜的物侧面在近光轴处为凹面且具有至少一个反曲点,第一透镜的像侧面为凹面;第二透镜具有正光焦度,第二透镜的物侧面为凸面,其像侧面为凸面;第三透镜具有正光焦度,第三透镜的像侧面为凸面;第一透镜、第二透镜和第三透镜均采用折射率小于或等于1.70的材料;光学镜头满足条件式:1.5<f3/f<2.2;其中,f3表示第三透镜的有效焦距,f表示光学镜头的有效焦距。
本发明提供的光学镜头通过光阑及各透镜合理设置,在满足高质量解像品质的同时,还具有体积小、畸变小和相对照度高等特点,有效地提升了指纹识别率,更适用于手机全面屏设计需求,光学镜头满足条件式:1.5<f3/f<2.2,可使第三透镜具有较大的正光焦度,有利于提高光学镜头的解像力。光学镜头被使用时,用户的指纹与平板玻璃直接接触,平板玻璃除了在光学镜头中起到光学作用,同时兼备保护光学镜头的作用。
在一些实施方式中,光学镜头满足以下条件式:
0.9<Vd2/Vd3<1;                                                         (1)
其中,Vd2表示第二透镜的阿贝数,Vd3表示第三透镜的阿贝数。满足条件式(1),有利于光学镜头解像力的提升。
在一些实施方式中,光学镜头满足以下条件式:
1.0<Nd1<1.65;                                                           (2)
1.0<Nd2<1.55;                                                           (3)
1.0<Nd3<1.55;                                                           (4)
其中,Nd1表示第一透镜的折射率,Nd2表示第二透镜的折射率,Nd3表示第三透镜的折射率。满足条件式(2)至(4),保证各个透镜具有较小的折射率,有利于场曲和畸变的矫正,并且三个透镜均采用低折射率的材料,可以有效降低生产成本。
在一些实施方式中,光学镜头满足以下条件式:
0.4<(TC1/ET1)-(TC1/SDM11)<0.9;                                          (5)
其中,TC1表示第一透镜的中心厚度,SDM11表示第一透镜的物侧面的半口径,ET1表示第一透镜的边缘厚度。满足条件式(5),有利于实现镜头的头部尺寸做小,进而缩短镜头总长,实现光学镜头的小型化。
在一些实施方式中,光学镜头满足以下条件式:
1.0mm<f1+f2+f3<2.1mm;                                                    (6)
其中,f1表示第一透镜的有效焦距,f2表示第二透镜的有效焦距,f3表示第三透镜的有效焦距。满足条件式(6),可实现合理的控制第一透镜、第二透镜以及第三透镜的光焦度,减少高级像差的矫正,降 低整体光学镜头的像差矫正难度。
在一些实施方式中,光学镜头满足以下条件式:
1.2<MTC1/TC1<1.6;                                                       (7)
其中,MTC1表示第一透镜平行于光轴方向的最大厚度,TC1表示第一透镜的中心厚度。满足条件式(7),可使第一透镜尺寸做小,有利于镜头小型化,且有利于第一透镜的成型,提高量产率。
在一些实施方式中,光学镜头满足以下条件式:
0.2<(R31+R32)/(R31-R32)<0.5;                                              (8)
其中,R31表示第三透镜的物侧面的曲率半径,R32表示第三透镜的像侧面的曲率半径。满足条件式(8),可使第三透镜提供正光焦度,对光线起汇聚作用,有利于场曲和畸变的矫正,提升镜头的解像力。
在一些实施方式中,光学镜头满足以下条件式:
1.6<R31/SDM31<4.3;                                                       (9)
其中,R31表示第三透镜的物侧面的曲率半径,SDM31表示第三透镜的物侧面的半口径。满足条件式(9),可使第三透镜的口径做小,有利于畸变和像差的矫正,并且有利于第三透镜的成型,提高量产率。
在一些实施方式中,光学镜头满足以下条件式:
-2.1<R11/f1<-1.5                                                         (10)
其中,R11表示第一透镜的物侧面的曲率半径,f1表示第一透镜的有效焦距。满足条件式(10),能够合理地控制第一透镜的光焦度,有利于周边视场像差的矫正和周边视场相对照度的提升。
在一些实施方式中,光学镜头满足以下条件式:
0.3mm<IMC23+TC3<0.4mm;                                              (11)
其中,IMC23表示第二透镜的像侧面与第三透镜的物侧面沿光轴的间距,TC3表示第三透镜的中心厚度。满足条件式(11),有利于合理分配透镜之间的间隔,调节光线分布,提升镜头的相对照度。
在一些实施方式中,光学镜头满足以下条件式:
-1.9<R21/R22<-0.2;                                                       (12)
其中,R21表示第二透镜的物侧面的曲率半径,R22表示第二透镜的像侧面的曲率半径。满足条件式(12),可有效地控制光线的光焦度,减缓光线转折的走势,降低像差矫正难度,提升镜头的相对照度和解像能力。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2020076472-appb-000002
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A2i为第2i阶的非球面面型系数。
在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
本发明第一实施例提供的光学镜头100结构示意图请参阅图1,该光学镜头100沿光轴从物侧到成像面依次包括:平板玻璃G1、第一透镜L1、光阑ST、第二透镜L2、第三透镜L3以及红外滤光片G2。
第一透镜L1为具有负光焦度的塑胶非球面透镜,第一透镜的物侧面S3在近光轴处为凹面,第一透镜的像侧面S4为凹面;且第一透镜的物侧面S3有一个反曲点,该反曲点至光轴的垂直距离为0.610mm,该反曲点相对第一透镜的物侧面S3中心的矢高为-0.055mm。
第二透镜L2为具有正光焦度的塑胶非球面透镜,第二透镜的物侧面S5为凸面,第二透镜的像侧面S6为凸面。
第三透镜L3为具有正光焦度的塑胶非球面透镜,第三透镜的物侧面S7近光轴处为凸面,且至少有一个反曲点,此反曲点有利于周边视场相对照度的提高;第三透镜的像侧面S8为凸面。
在一些实施方式中,第一透镜L1、第二透镜L2以及第三透镜L3中至少有一者可以为玻璃透镜。
本实施例提供的光学镜头100中各个镜片的相关参数如表1所示,其中R代表曲率半径,d代表光学表面间距,Nd代表材料的d线折射率,Vd代表材料的阿贝数。
表1
Figure PCTCN2020076472-appb-000003
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
Figure PCTCN2020076472-appb-000004
Figure PCTCN2020076472-appb-000005
在本实施例中,光学镜头100的场曲、畸变和相对照度的曲线图分别如图2、图3和图4所示(视场角和物高可以转换,大多数镜头设计时限定的是视场角,而本实施例中的光学镜头是通过限定拍照高度,即指纹采集区域高度,展开设计,图中用物高表示更直观)。由图2可以看出,本实施例的子午场曲和弧矢场曲在±0.15mm内,说明场曲得到良好地校正。由图3可以看出,本实施例的畸变在±1.2%内,说明畸变得到良好地校正。由图4可以看出,被测物高2.55mm处的相对照度达到70%以上,周边视场相对照度也较高,说明光学镜头100的相对照度得到良好地提升。
第二实施例
本实施例提供的光学镜头200的结构示意图请参阅图5,本实施例中的光学镜头200与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头200的平板玻璃G1厚度不同,第三透镜的物侧面S7整体为凹面,且至少有一个反曲点,以及各透镜的曲率半径、材料选择不同。在本实施例中,光学镜头200的第一透镜的物侧面S3的反曲点至光轴的垂直距离为0.395mm,该反曲点相对第一透镜的物侧面S3中心的失高为-0.020mm。
本实施例提供的光学镜头200中各个镜片的相关参数如表3所示。
表3
Figure PCTCN2020076472-appb-000006
Figure PCTCN2020076472-appb-000007
本实施例中的光学镜头200的各非球面的面型系数如表4所示。
表4
Figure PCTCN2020076472-appb-000008
在本实施例中,光学镜头200的场曲、畸变和相对照度的曲线图分别如图6、图7和图8所示。由图6可以看出,本实施例的子午场曲和弧矢场曲在±0.35mm内,说明场曲得到良好地校正。由图7可以看出,本实施例的畸变量在±1.2%内,说明畸变得到良好地校正。由图8可以看出,被测物高2.55mm处的相对照度达到70%以上,周边视场相对照度也较高,说明光学镜头200的相对照度得到良好地提升。
第三实施例
本实施例提供的光学镜头300的结构示意图请参阅图9,本实施例中的光学镜头300与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头300的平板玻璃G1的厚度不同,第三透镜的物侧面S7整体为凹面,且至少有一个反曲点,以及各透镜的曲率半径、材料选择不同。在本实施例中,光学镜头300的第一透镜的物侧面S3的反曲点至光轴的垂直距离为0.425mm,该反曲点相对第一透镜的物侧面S3中心的失高为-0.028mm。
本实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
Figure PCTCN2020076472-appb-000009
Figure PCTCN2020076472-appb-000010
本实施例中的光学镜头300的各非球面的面型系数如表6所示。
表6
Figure PCTCN2020076472-appb-000011
在本实施例中,光学镜头300的场曲、畸变和相对照度的曲线图分别如图10、图11和图12所示。由图10可以看出,本实施例的子午场曲和弧矢场曲在±0.1mm内,说明场曲得到良好地校正。由图11可以看出,本实施例的畸变量在±1.2%内,说明畸变得到良好地校正。由图12可以看出,被测物高2.55mm处的相对照度达到68%以上,周边视场相对照度也较高,说明光学镜头300的相对照度得到良好地提升。
第四实施例
本实施例提供的光学镜头400的结构示意图请参阅图13,本实施例中的光学镜头400与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头400的各透镜的曲率半径、材料选择不同。在本实施例中,光学镜头400的第一透镜的物侧面S3的反曲点至光轴的垂直距离为0.585mm,该反曲点相对第一透镜的物侧面S3中心的失高为-0.048mm。
本实施例提供的光学镜头400中各个镜片的相关参数如表7所示。
表7
Figure PCTCN2020076472-appb-000012
Figure PCTCN2020076472-appb-000013
本实施例中的光学镜头400的各非球面的面型系数如表8所示。
表8
Figure PCTCN2020076472-appb-000014
在本实施例中,光学镜头400的场曲、畸变和相对照度的曲线图分别如图14、图15和图16所示。由图14可以看出,本实施例的子午场曲和弧矢场曲在±0.1mm内,说明场曲得到良好地校正。由图15可以看出,本实施例的畸变量在±1.2%内,说明畸变得到良好地校正。由图16可以看出,被测物高2.55mm处的相对照度达到70%以上,周边视场相对照度也较高,说明光学镜头400的相对照度得到良好地提升。
表9是上述四个实施例及其对应的光学特性,主要包括光学镜头的有效焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角2θ,以及与上述每个条件式对应的数值。
表9
实施例 第一实施例 第二实施例 第三实施例 第四实施例
f(mm) 0.4106 0.449 0.441 0.402
F# 1.55 1.5 1.5 1.55
TTL(mm) 4.945 5.159 5.159 4.945
2θ(°) 130.8 125.1 125.7 132.0
EPD(mm) 0.265 0.3 0.294 0.259
Vd2/Vd3 1 0.997 1 1
TC1/ET1-TC1/SDM11 0.510 0.684 0.603 0.508
f3/f 1.609 2.107 2.109 1.568
f1+f2+f3(mm) 1.768 1.112 1.082 2.056
MTC1/TC1 1.477 1.294 1.374 1.508
(R31+R32)/(R31-R32) 0.237 0.488 0.294 0.222
R31/SDM31 1.835 4.272 3.031 1.695
R11/f1 -1.582 -2.023 -1.642 -1.769
IMC23+TC3(mm) 0.385 0.346 0.367 0.388
R21/R22 -0.487 -1.878 -1.582 -0.255
综上,本实施例提供的光学镜头至少具有以下优点:
(1)本发明实施例提供的光学镜头满足高质量解像品质同时,具有较大的视场角、较小的畸变和较高的相对照度,提高用户指纹识别率,能够更好的适用于手机全面屏设计需求。
(2)采用具有特定光焦度的三片塑胶非球面镜片,第一透镜、第二透镜和第三透镜均采用低折射率材料,大大降低光学镜头的生产成本,并且采用特定的表面形状及其搭配,在满足大视场的同时使得镜头的结构更紧凑,镜头的体积更小型化。
(3)光学镜头在使用时,用户指纹与平板玻璃直接接触,平板玻璃除了在光学镜头中起到光学作用,同时兼备保护光学镜头的作用。
第五实施例
本实施例提供的一种成像设备500的结构示意图请参阅图17,包括上述任一实施例中的光学镜头(例如光学镜头100)及成像元件510。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备500可以是相机、移动终端以及其他任意一种形态的装载了光学镜头的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本实施例提供的成像设备500包括光学镜头,由于光学镜头具有小体积、大视场、畸变小以和相对照度高等优点,成像设备500的指纹识别率高。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到像侧依次包括:平板玻璃、第一透镜、光阑、第二透镜、第三透镜以及红外滤光片;
    所述第一透镜具有负光焦度,所述第一透镜的物侧面在近光轴处为凹面且具有至少一个反曲点,所述第一透镜的像侧面为凹面;
    所述第二透镜具有正光焦度,所述第二透镜的物侧面为凸面,其像侧面为凸面;
    所述第三透镜具有正光焦度,所述第三透镜的像侧面为凸面;
    所述第一透镜、所述第二透镜和所述第三透镜均采用折射率小于或等于1.70的材料;
    其中,所述光学镜头满足条件式:1.5<f3/f<2.2,f3表示所述第三透镜的有效焦距,f表示所述光学镜头的有效焦距。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.9<Vd2/Vd3<1;
    其中,Vd2表示所述第二透镜的阿贝数,Vd3表示所述第三透镜的阿贝数。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.0<Nd1<1.65;
    1.0<Nd2<1.55;
    1.0<Nd3<1.55;
    其中,Nd1表示所述第一透镜的折射率,Nd2表示所述第二透镜的折射率,Nd3表示所述第三透镜的折射率。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.4<(TC1/ET1)-(TC1/SDM11)<0.9;
    其中,TC1表示所述第一透镜的中心厚度,SDM11表示所述第一透镜的物侧面的半口径,ET1表示所述第一透镜的边缘厚度。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.0mm<f1+f2+f3<2.1mm;
    其中,f1表示所述第一透镜的有效焦距,f2表示所述第二透镜的有效焦距,f3表示所述第三透镜的有效焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.2<MTC1/TC1<1.6;
    其中,MTC1表示所述第一透镜平行于所述光轴方向的最大厚度,TC1表示所述第一透镜的中心厚度。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.2<(R31+R32)/(R31-R32)<0.5;
    其中,R31表示所述第三透镜的物侧面的曲率半径,R32表示所述第三透镜的像侧面的曲率半径。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.6<R31/SDM31<4.3;
    其中,R31表示所述第三透镜的物侧面的曲率半径,SDM31表示所述第三透镜的物侧面的半口径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -2.1<R11/f1<-1.5;
    其中,R11表示所述第一透镜的物侧面的曲率半径,f1表示所述第一透镜的有效焦距。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.3mm<IMC23+TC3<0.4mm;
    其中,IMC23表示所述第二透镜的像侧面与所述第三透镜的物侧面沿所述光轴的间距,TC3表示所述第三透镜的中心厚度。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -1.9<R21/R22<-0.2;
    其中,R21表示所述第二透镜的物侧面的曲率半径,R22表示所述第二透镜的像侧面的曲率半径。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜以及所述第三透镜均为塑胶非球面镜片。
  13. 一种成像设备,其特征在于,包括如权利要求1-12任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2020/076472 2019-12-25 2020-02-24 光学镜头及成像设备 WO2021128564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/038,082 US11450136B2 (en) 2019-12-25 2020-09-30 Optical lens, fingerprint recognition module and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911352364.5A CN110764234B (zh) 2019-12-25 2019-12-25 光学镜头及成像设备
CN201911352364.5 2019-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,082 Continuation-In-Part US11450136B2 (en) 2019-12-25 2020-09-30 Optical lens, fingerprint recognition module and mobile terminal

Publications (1)

Publication Number Publication Date
WO2021128564A1 true WO2021128564A1 (zh) 2021-07-01

Family

ID=69341554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076472 WO2021128564A1 (zh) 2019-12-25 2020-02-24 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN110764234B (zh)
WO (1) WO2021128564A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390220A (zh) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 一种车载镜头和车载系统
CN116859559A (zh) * 2023-06-27 2023-10-10 东莞市融光光学有限公司 一种扩角外挂镜头及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764234B (zh) * 2019-12-25 2020-03-31 江西联益光学有限公司 光学镜头及成像设备
US11450136B2 (en) 2019-12-25 2022-09-20 Jiangxi Lianyi Optics Co., Ltd. Optical lens, fingerprint recognition module and mobile terminal
TWI716293B (zh) * 2020-03-10 2021-01-11 新鉅科技股份有限公司 近距離成像用微型鏡頭組
CN112666687B (zh) * 2021-03-17 2021-07-06 江西联益光学有限公司 光学镜头及成像设备
TWI753815B (zh) * 2021-04-14 2022-01-21 新鉅科技股份有限公司 成像透鏡組、成像裝置及電子裝置
CN113467050B (zh) * 2021-06-30 2022-04-15 湖北华鑫光电有限公司 一种3p超广角镜头
CN113777759A (zh) * 2021-10-14 2021-12-10 辽宁中蓝光电科技有限公司 一种指纹识别光学镜头
TWI815574B (zh) * 2022-07-26 2023-09-11 新鉅科技股份有限公司 成像透鏡組
CN116560044B (zh) * 2023-07-11 2023-10-27 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223085A (ja) * 2008-03-18 2009-10-01 Olympus Corp 撮像装置及びそれを用いた静脈認証装置
CN109196521A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备
CN209388019U (zh) * 2018-03-31 2019-09-13 金佶科技股份有限公司 取像装置
TWI679449B (zh) * 2018-12-03 2019-12-11 大立光電股份有限公司 光學取像透鏡組、取像裝置及電子裝置
CN110764234A (zh) * 2019-12-25 2020-02-07 江西联益光学有限公司 光学镜头及成像设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699681B1 (ko) * 2014-10-28 2017-02-09 주식회사 코렌 촬영 렌즈 광학계
CN208460036U (zh) * 2018-07-25 2019-02-01 中山联合光电科技股份有限公司 一种手机屏幕下的新型指纹识别成像系统
TWM569426U (zh) * 2018-08-13 2018-11-01 印芯科技股份有限公司 光學成像鏡組以及指紋辨識裝置
EP3798896B1 (en) * 2018-08-21 2022-11-23 Shenzhen Goodix Technology Co., Ltd. Lens system, fingerprint recognition apparatus, and terminal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223085A (ja) * 2008-03-18 2009-10-01 Olympus Corp 撮像装置及びそれを用いた静脈認証装置
CN209388019U (zh) * 2018-03-31 2019-09-13 金佶科技股份有限公司 取像装置
CN109196521A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备
TWI679449B (zh) * 2018-12-03 2019-12-11 大立光電股份有限公司 光學取像透鏡組、取像裝置及電子裝置
CN110764234A (zh) * 2019-12-25 2020-02-07 江西联益光学有限公司 光学镜头及成像设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390220A (zh) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 一种车载镜头和车载系统
CN116859559A (zh) * 2023-06-27 2023-10-10 东莞市融光光学有限公司 一种扩角外挂镜头及装置
CN116859559B (zh) * 2023-06-27 2024-02-06 东莞市融光光学有限公司 一种扩角外挂镜头及装置

Also Published As

Publication number Publication date
CN110764234A (zh) 2020-02-07
CN110764234B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021128564A1 (zh) 光学镜头及成像设备
US9915809B1 (en) Optical camera lens
WO2020140520A1 (zh) 摄像光学镜头
CN107966794B (zh) 摄像光学镜头
CN107991761B (zh) 摄像光学镜头
CN109613680B (zh) 摄像光学镜头
CN109856779B (zh) 摄像光学镜头
WO2020140595A1 (zh) 摄像光学镜头
CN109613681B (zh) 摄像光学镜头
CN108254875B (zh) 摄像光学镜头
CN108562997B (zh) 摄像光学镜头
CN111399196B (zh) 摄像光学镜头
CN110398824B (zh) 摄像光学镜头
CN108152933B (zh) 摄像光学镜头
CN110361848B (zh) 摄像光学镜头
WO2020134264A1 (zh) 摄像光学镜头
CN107918190B (zh) 摄像光学镜头
CN107797249B (zh) 摄像光学镜头
WO2022057048A1 (zh) 摄像光学镜头
CN110262010B (zh) 摄像光学镜头
CN110286472B (zh) 摄像光学镜头
WO2020134269A1 (zh) 摄像光学镜头
CN110007431B (zh) 摄像光学镜头
CN109839727B (zh) 摄像光学镜头
CN109061832B (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904903

Country of ref document: EP

Kind code of ref document: A1