TWI753815B - 成像透鏡組、成像裝置及電子裝置 - Google Patents

成像透鏡組、成像裝置及電子裝置 Download PDF

Info

Publication number
TWI753815B
TWI753815B TW110113328A TW110113328A TWI753815B TW I753815 B TWI753815 B TW I753815B TW 110113328 A TW110113328 A TW 110113328A TW 110113328 A TW110113328 A TW 110113328A TW I753815 B TWI753815 B TW I753815B
Authority
TW
Taiwan
Prior art keywords
lens
imaging
image
optical axis
lens group
Prior art date
Application number
TW110113328A
Other languages
English (en)
Other versions
TW202240234A (zh
Inventor
黃雅歆
Original Assignee
新鉅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新鉅科技股份有限公司 filed Critical 新鉅科技股份有限公司
Priority to TW110113328A priority Critical patent/TWI753815B/zh
Priority to CN202110538182.8A priority patent/CN115220178B/zh
Priority to US17/374,998 priority patent/US20220334358A1/en
Application granted granted Critical
Publication of TWI753815B publication Critical patent/TWI753815B/zh
Publication of TW202240234A publication Critical patent/TW202240234A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本發明為一種成像透鏡組,由物側至像側依序包含:一第一透鏡,具有負屈折力;一光圈;一第二透鏡,具有正屈折力;以及一第三透鏡,具有正屈折力;其中該成像透鏡組中具屈折力的透鏡總數為三片,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:1.82<TD/BFL<3.8與3.10<sin(HFOV)/EPD<8.12,藉以有助於縮短被攝物至成像面之間的距離且能有效蒐集大角度光線,達到薄型化及具辨識的功效。

Description

成像透鏡組、成像裝置及電子裝置
本發明係與透鏡組有關,特別是指一種應用於電子裝置上的成像透鏡組及成像裝置。
以每個生物獨有的生物特徵作為根據的生物辨識(Biometric)系統,因其具有唯一性、普遍性、永久性、可測性、方便性、接受性、及不可欺性等,因此常被使用在目前市面上現有的行動裝置上,甚至亦可使用在未來的電子裝置上。然而,目前行動裝置所搭配的生物辨識系統多採用電容原理,其雖然可以降低生物辨識系統所需的體積,但是電路結構過於複雜,使得製造成本過高,相對的產品單價也偏高。
目前雖然有利用光學成像原理的傳統生物辨識系統,如指紋辨識、靜脈辨識等,但傳統生物辨識系統存在體積過大的問題,使得搭載有生物辨識系統的電子裝置不易小型化,也更不易攜帶。
有鑑於此,如何提供一種成像透鏡組及成像裝置,可以作為生物辨識系統之用並可搭載在電子裝置上,使該電子裝置可小型化以便於攜帶即是目前急欲克服之技術瓶頸。
本發明的目的在於提供一種成像透鏡組、成像裝置及電子裝置。其中成像透鏡組主要是由三片具屈折力的透鏡所組成,當滿足特定條件時,本發明所提供的成像透鏡組就能同時滿足體積小型化的需求及提升成像品質。
本發明所提供之一種成像透鏡組,由物側至像側依序包含:一第一透鏡,具有負屈折力,該第一透鏡的物側表面近光軸處為凹面,該第一透鏡的物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,該第二透鏡的物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,該第三透鏡的物側表面與像側表面至少一表面為非球面;其中該成像透鏡組中具屈折力的透鏡總數為三片,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:1.82<TD/BFL<3.8與3.10<sin(HFOV)/EPD<8.12。
本發明功效在於:當上述三片具屈折力透鏡搭配1.82<TD/BFL<3.8時,則滿足體積小型化的需求。更佳地,亦可滿足下列條件:2.05<TD/BFL<3.7。當上述三片具屈折力透鏡搭配3.10<sin(HFOV)/EPD<8.12時,則有助於縮短被攝物至成像面之間的距離且能有效蒐集大角度光線,達到薄型化及具辨識的功效。更佳地,亦可滿足下列條件:3.48<sin(HFOV)/EPD<7.44。
較佳地,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.06<TD/EPD<12.97。藉此,可使成像透鏡組在大光圈與薄型化間取得平衡。更佳地,亦可滿足下列條件:4.57<TD/EPD<11.89。
較佳地,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:0.36公釐<BFL<0.58公釐。藉此,滿足體積小型化的需求。更佳 地,亦可滿足下列條件:0.37公釐<BFL<0.56公釐。
較佳地,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:0.11<EPD<0.29。藉此,則可有效提升系統照度及光學特性。更佳地,亦可滿足下列條件:0.13<EPD<0.27。
較佳地,該成像透鏡組中最大視角的一半為HFOV,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,該成像透鏡組的焦距為f,並滿足下列條件:4.36<sin(HFOV)/(BFL*f)<11.64。藉此,可確保透鏡系統有足夠之視角以獲得所需的取像範圍。更佳地,亦可滿足下列條件:4.61<sin(HFOV)/(BFL*f)<11.11。
較佳地,該成像透鏡組中最大視角的一半為HFOV,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.83<TD/(EPD*sin(HFOV))<12.45。藉此,可確保透鏡系統有足夠之視角以獲得所需的取像範圍。更佳地,亦可滿足下列條件:5.09<TD/(EPD*sin(HFOV))<11.88。
本發明另外所提供之一種成像裝置,由物側至像側依序包含:一平板元件;一成像透鏡組;以及一影像感測器;其中該成像透鏡組由物側至像側依序包含:一第一透鏡,具有負屈折力,該第一透鏡的物側表面近光軸處為凹面,該第一透鏡的物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,該第二透鏡的物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,該第三透鏡的物側表面與像側表面至少一表面為非球面;其中該成像透鏡組中具屈折力的透鏡總數為三片,該成像透鏡組中最大視角的一半為HFOV,該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該平板元件的物側表面至成像面於光軸上的距離為OTL,並滿足下 列條件:0.34<sin(HFOV)/OPL<0.71與0.25<TD/OTL<0.44。
本發明功效在於:當上述三片具屈折力透鏡搭配0.34<sin(HFOV)/OPL<0.71時,則有助於縮短被攝物至成像面之間的距離且能有效蒐集大角度光線,達到薄型化及具辨識的功效。更佳地,亦可滿足下列條件:0.39<sin(HFOV)/OPL<0.65。當上述三片具屈折力透鏡搭配0.25<TD/OTL<0.44時,則滿足體積小型化的需求。更佳地,亦可滿足下列條件:0.28<TD/OTL<0.42。
較佳地,該平板元件的物側表面至成像面於光軸上的距離為OTL,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:12.11<OTL/EPD<30。藉此,可使成像裝置在大光圈與薄型化間取得平衡。更佳地,亦可滿足下列條件:13.63<OTL/EPD<28.84。
較佳地,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,並滿足下列條件:0.42<TD/OPL<1.04。藉此,滿足體積小型化的需求。更佳地,亦可滿足下列條件:0.48<TD/OPL<0.95。
較佳地,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:0.36公釐<BFL<0.58公釐。藉此,滿足體積小型化的需求。更佳地,亦可滿足下列條件:0.37公釐<BFL<0.56公釐。
較佳地,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:1.82<TD/BFL<3.8。藉此,滿足體積小型化的需求。更佳地,亦可滿足下列條件:2.05<TD/BFL<3.7。
較佳地,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.06<TD/EPD<12.97。藉此,可使成像裝置組在大光圈與薄型化間取得平衡。更佳 地,亦可滿足下列條件:4.57<TD/EPD<11.89。
較佳地,該平板元件的物側表面至成像面於光軸上的距離為OTL,並滿足下列條件:2.84公釐<OTL<4.35公釐。藉此,滿足體積小型化的需求。更佳地,亦可滿足下列條件:2.99公釐<OTL<4.16公釐。
較佳地,該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,並滿足下列條件:1.35公釐<OPL<2.66公釐。藉此,滿足體積小型化的需求。更佳地,亦可滿足下列條件:1.52公釐<OPL<2.43公釐。
較佳地,該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:3.1<sin(HFOV)/EPD<8.12。藉此,則有助於縮短被攝物至成像面之間的距離且能有效蒐集大角度光線,達到薄型化及具辨識的功效。更佳地,亦可滿足下列條件:3.48<sin(HFOV)/EPD<7.44。
較佳地,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:0.11<EPD<0.29。藉此,則可有效提升系統照度及光學特性。更佳地,亦可滿足下列條件:0.13<EPD<0.27。
較佳地,該成像透鏡組中最大視角的一半為HFOV,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,該成像透鏡組的焦距為f,並滿足下列條件:4.36<sin(HFOV)/(BFL*f)<11.64。藉此,可確保透鏡系統有足夠之視角以獲得所需的取像範圍。更佳地,亦可滿足下列條件:4.61<sin(HFOV)/(BFL*f)<11.11。
較佳地,該成像透鏡組中最大視角的一半為HFOV,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.83<TD/(EPD*sin(HFOV))<12.45。藉此,可確保透鏡系統有足夠之視角以獲得所需的取像範圍。更佳地,亦可滿足下列條件:5.09<TD/(EPD*sin(HFOV))<11.88。
上述各成像透鏡組或各成像裝置,其中該成像透鏡組的焦距為f, 並滿足下列條件:0.19(公釐)<f<0.41(公釐)。更佳地,亦可滿足下列條件:0.21(公釐)<f<0.39(公釐)。
上述各成像透鏡組或各成像裝置,其中該成像透鏡組的光圈值(f-number)為Fno,並滿足下列條件:1.33<Fno<1.74。更佳地,亦可滿足下列條件:1.41<Fno<1.66。
上述各成像透鏡組或各成像裝置,其中該成像透鏡組中最大視場角為FOV,並滿足下列條件:124.74(度)<FOV<180.95(度)。更佳地,亦可滿足下列條件:131.67(度)<FOV<172.73(度)。
本發明另外所提供之一種電子裝置,包含:前述各成像裝置;一控制單元,電連接至該成像裝置;以及一儲存單元,電連接至該控制單元。
100、200、300、400、500、600、700、800、900、1000、1100、1200:光圈
110、210、310、410、510、610、710、810、910、1010、1110、1210:第一透鏡
111、211、311、411、511、611、711、811、911、1011、1111、1211:物側表面
112、212、312、412、512、612、712、812、912、1012、1112、1212:像側表面
120、220、320、420、520、620、720、820、920、1020、1120、1220:第二透鏡
121、221、321、421、521、621、721、821、921、1021、1121、1221:物側表面
122、222、322、422、522、622、722、822、922、1022、1122、1222:像側表面
130、230、330、430、530、630、730、830、930、1030、1130、1230:第三透鏡
131、231、331、431、531、631、731、831、931、1031、1131、1231:物側表面
132、232、332、432、532、632、732、832、932、1032、1132、1232:像側表面
150、250、350、450、550、650、750、850、950、1050、1150、1250:平板元件
151:物側表面
160、260、360、460、560、660、760、860、960、1060、1160、1260:紅外線濾除濾光元件
170、270、370、470、570、670、770、870、970、1070、1170、1270:成像面
180、280、380、480、580、680、780、880、980、1080、1180、1280:影像感測器
190、290、390、490、590、690、790、890、990、1090、1190、1290:光軸
10:電子裝置
11:成像裝置
12:控制單元
13:儲存單元
14:成像透鏡組
O:被攝物
f:成像透鏡組的整體焦距
Fno:光圈值
FOV:成像透鏡組的最大視角
EPD:成像透鏡組的入射瞳孔徑
TD:第一透鏡的物側表面至第三透鏡的像側表面於光軸上的距離
OTL:平板元件的物側表面至成像面於光軸上的距離
HFOV:成像透鏡組中最大視角的一半
OPL:平板元件的物側表面至第一透鏡的物側表面於光軸上的距離
BFL:第三透鏡的像側表面至成像面於光軸上的距離
圖1A係本發明第一實施例之成像透鏡組的示意圖。
圖1B由左至右依序為第一實施例的像面彎曲及歪曲收差曲線圖。
圖1C係本發明第一實施例之成像裝置的示意圖。
圖2A係本發明第二實施例之成像透鏡組的示意圖。
圖2B由左至右依序為第二實施例的像面彎曲及歪曲收差曲線圖。
圖2C係本發明第二實施例之成像裝置的示意圖。
圖3A係本發明第三實施例之成像透鏡組的示意圖。
圖3B由左至右依序為第三實施例的像面彎曲及歪曲收差曲線圖。
圖3C係本發明第三實施例之成像裝置的示意圖。
圖4A係本發明第四實施例之成像透鏡組的示意圖。
圖4B由左至右依序為第四實施例的像面彎曲及歪曲收差曲線圖。
圖4C係本發明第四實施例之成像裝置的示意圖。
圖5A係本發明第五實施例之成像透鏡組的示意圖。
圖5B由左至右依序為第五實施例的像面彎曲及歪曲收差曲線圖。
圖5C係本發明第五實施例之成像裝置的示意圖。
圖6A係本發明第六實施例之成像透鏡組的示意圖。
圖6B由左至右依序為第六實施例的像面彎曲及歪曲收差曲線圖。
圖6C係本發明第六實施例之成像裝置的示意圖。
圖7A係本發明第七實施例之成像透鏡組的示意圖。
圖7B由左至右依序為第七實施例的像面彎曲及歪曲收差曲線圖。
圖7C係本發明第七實施例之成像裝置的示意圖。
圖8A係本發明第八實施例之成像透鏡組的示意圖。
圖8B由左至右依序為第八實施例的像面彎曲及歪曲收差曲線圖。
圖8C係本發明第八實施例之成像裝置的示意圖。
圖9A係本發明第九實施例之成像透鏡組的示意圖。
圖9B由左至右依序為第九實施例的像面彎曲及歪曲收差曲線圖。
圖9C係本發明第九實施例之成像裝置的示意圖。
圖10A係本發明第十實施例之成像透鏡組的示意圖。
圖10B由左至右依序為第十實施例的像面彎曲及歪曲收差曲線圖。
圖10C係本發明第十實施例之成像裝置的示意圖。
圖11A係本發明第十一實施例之成像透鏡組的示意圖。
圖11B由左至右依序為第十一實施例的像面彎曲及歪曲收差曲線圖。
圖11C係本發明第十一實施例之成像裝置的示意圖。
圖12A係本發明第十二實施例之成像透鏡組的示意圖。
圖12B由左至右依序為第十二實施例的像面彎曲及歪曲收差曲線圖。
圖12C係本發明第十二實施例之成像裝置的示意圖。
圖13係本發明第一實施例包含成像透鏡組的成像裝置安裝在電子裝置上的示意圖。
圖14係圖13的剖面側視示意圖。
<第一實施例>
請參照圖1A、圖1B及圖1C,其中圖1A繪示依照本發明第一實施例之成像透鏡組的示意圖,圖1B由左至右依序為第一實施例的像面彎曲及歪曲收差曲線圖,圖1C係本發明第一實施例之成像裝置的示意圖。由圖1A可知,成像透鏡組由物側至像側依序包含第一透鏡110、光圈100、第二透鏡120、第三透鏡130、紅外線濾除濾光元件160、以及成像面170。該成像透鏡組中具屈折力的透鏡為三片。由圖1C可知,成像裝置由物側至像側依序包含平板元件150、前述成像透鏡組(圖上未標)與影像感測器180。其中該影像感測器180設置於成像面170上。
該平板元件150為玻璃材質,其設置於一被攝物O及該第一透鏡110之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件150可以由其他材質製成。
該第一透鏡110具有負屈折力,且為塑膠材質,其物側表面111近光軸190處為凹面,其像側表面112近光軸190處為凹面,且該物側表面111及像側表面112皆為非球面。
該第二透鏡120具有正屈折力,且為塑膠材質,其物側表面121近光軸190處為凸面,其像側表面122近光軸190處為凸面,且該物側表面121及像側表面122皆為非球面。
該第三透鏡130具有正屈折力,且為塑膠材質,其物側表面131近光軸190處為凸面,其像側表面132近光軸190處為凸面,且該物側表面131及像側表面132皆為非球面。
該紅外線濾除濾光元件160為玻璃材質,其設置於該第三透鏡130及成像面170間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件160也可形成於透鏡表面,該紅外線濾除濾光元件160也可以由其他材質製成。
上述各透鏡的非球面的曲線方程式表示如下:
Figure 110113328-A0305-02-0011-1
其中z為沿光軸190方向在高度為h的位置以表面頂點作參考的位置值;c是透鏡表面靠近光軸190的曲率,並為曲率半徑(R)的倒數(c=1/R),R為透鏡表面靠近光軸190的曲率半徑,h是透鏡表面距離光軸190的垂直距離,k為圓錐係數(conic constant),而A、B、C、D、E、F、G……為高階非球面係數。
第一實施例中,成像透鏡組的焦距為f,成像透鏡組的光圈值(f-number)為Fno,成像透鏡組中最大視場角為FOV,其數值如下:f=0.25(公釐);Fno=1.52;以及FOV=164.5(度)。
第一實施例中,該第一透鏡110的物側表面111至該第三透鏡130的像側表面132於光軸190上的距離為TD,該第三透鏡130的像側表面132至該成像面170於光軸190上的距離為BFL,並滿足下列條件:TD/BFL=2.90。
第一實施例中,該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:sin(HFOV)/EPD=6.01。
第一實施例中,該第一透鏡110的物側表面111至該第三透鏡130的像側表面132於光軸190上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:TD/EPD=6.61。
第一實施例中,該第三透鏡130的像側表面132至該成像面170於 光軸190上的距離為BFL,並滿足下列條件:BFL=0.38公釐。
第一實施例中,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:EPD=0.16。
第一實施例中,該成像透鏡組中最大視角的一半為HFOV,該第三透鏡130的像側表面132至成像面170於光軸190上的距離為BFL,該成像透鏡組的焦距為f,並滿足下列條件:sin(HFOV)/(BFL*f)=10.54。
第一實施例中,該成像透鏡組中最大視角的一半為HFOV,該第一透鏡110的物側表面111至該第三透鏡130的像側表面132於光軸190上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:TD/(EPD*sin(HFOV))=6.67。
第一實施例中,該成像透鏡組中最大視角的一半為HFOV,該平板元件150的物側表面151至該第一透鏡110的物側表面111於光軸190上的距離為OPL,並滿足下列條件:sin(HFOV)/OPL=0.59。
第一實施例中,該第一透鏡110的物側表面111至該第三透鏡130的像側表面132於光軸190上的距離為TD,該平板元件150的物側表面151至成像面170於光軸190上的距離為OTL,並滿足下列條件:TD/OTL=0.35。
第一實施例中,該平板元件150的物側表面151至成像面170於光軸190上的距離為OTL,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:OTL/EPD=19.11。
第一實施例中,該第一透鏡110的物側表面111至該第三透鏡130的像側表面132於光軸190上的距離為TD,該平板元件150的物側表面151至該第一透鏡110的物側表面111於光軸190上的距離為OPL,並滿足下列條件:TD/OPL=0.65。
第一實施例中,該平板元件150的物側表面151至成像面170於光 軸190上的距離為OTL,並滿足下列條件:OTL=3.15公釐。
第一實施例中,該平板元件150的物側表面151至該第一透鏡110的物側表面111於光軸190上的距離為OPL,並滿足下列條件:OPL=1.69公釐。
再配合參照下列表1及表2。
Figure 110113328-A0305-02-0013-3
Figure 110113328-A0305-02-0013-4
表1為圖1A第一實施例詳細的結構數據,其中曲率半徑、厚度、間隙及焦距的單位為mm,且表面0-12依序表示由物側至像側的表面,其中表面0為被攝物O與平板元件150物側表面151之間的間隙;表面5為光圈100與第二透鏡120物側表面121之間的間隙;表面1、3、6、8、10分別為平板元件150、第一透鏡110、第二透鏡120、第三透鏡130、紅外線濾除濾光元件160在光軸190上的厚度;表面2、4、7、9、11分別為平板元件150與第一透鏡110之間的間隙、第一透鏡110與光圈100之間的間隙、第二透鏡120與第三透鏡130之間的間隙、第三透鏡130與紅外線濾除濾光元件160之間的間隙、紅外線濾除濾光元件160與成像面170之間的間隙。表2為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A、B、C、D、E、F、G……為高階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像面彎曲曲線圖,表格中數據的定義皆與第一實施例的表1、及表2的定義相同,在此不加贅述。
<第二實施例>
請參照圖2A、圖2B及圖2C,其中圖2A繪示依照本發明第二實施例之成像透鏡組的示意圖,圖2B由左至右依序為第二實施例的像面彎曲及歪曲收差曲線圖,圖2C係本發明第二實施例之成像裝置的示意圖。由圖2A可知,成像透鏡組由物側至像側依序包含第一透鏡210、光圈200、第二透鏡220、第三透鏡230、紅外線濾除濾光元件260、以及成像面270。該成像透鏡組中具屈折力的透鏡為三片。由圖2C可知,成像裝置由物側至像側依序包含平板元件250、前述成像透鏡組(圖上未標)與影像感測器280。其中該影像感測器280設置於成像面270上。
該平板元件250為玻璃材質,其設置於一被攝物O及該第一透鏡210之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件250可以由其他材質製成。
該第一透鏡210具有負屈折力,且為塑膠材質,其物側表面211近光軸290處為凹面,其像側表面212近光軸290處為凹面,且該物側表面211及像側表面212皆為非球面。
該第二透鏡220具有正屈折力,且為塑膠材質,其物側表面221近光軸290處為凸面,其像側表面222近光軸290處為凹面,且該物側表面221及像側表面222皆為非球面。
該第三透鏡230具有正屈折力,且為塑膠材質,其物側表面231近光軸290處為凸面,其像側表面232近光軸290處為凸面,且該物側表面231及像側表面232皆為非球面。
該紅外線濾除濾光元件260為玻璃材質,其設置於該第三透鏡230及成像面270間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件260也可形成於透鏡表面,該紅外線濾除濾光元件260也可以由其他材質製成。
再配合參照下列表3、以及表4。
Figure 110113328-A0305-02-0015-5
Figure 110113328-A0305-02-0016-6
Figure 110113328-A0305-02-0016-7
第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表3、以及表4可推算出下列數據:
Figure 110113328-A0305-02-0016-8
<第三實施例>
請參照圖3A、圖3B及圖3C,其中圖3A繪示依照本發明第三實施例之成像透鏡組的示意圖,圖3B由左至右依序為第三實施例的像面彎曲及歪曲收差曲線圖,圖3C係本發明第三實施例之成像裝置的示意圖。由圖3A可知,成像透鏡組由物側至像側依序包含第一透鏡310、光圈300、第二透鏡320、第三透 鏡330、紅外線濾除濾光元件360、以及成像面370。該成像透鏡組中具屈折力的透鏡為三片。由圖3C可知,成像裝置由物側至像側依序包含平板元件350、前述成像透鏡組(圖上未標)與影像感測器380。其中該影像感測器380設置於成像面370上。
該平板元件350為玻璃材質,其設置於一被攝物O及該第一透鏡310之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件250可以由其他材質製成。
該第一透鏡310具有負屈折力,且為塑膠材質,其物側表面311近光軸390處為凹面,其像側表面312近光軸390處為凹面,且該物側表面311及像側表面312皆為非球面。
該第二透鏡320具有正屈折力,且為塑膠材質,其物側表面321近光軸390處為凸面,其像側表面322近光軸390處為凹面,且該物側表面321及像側表面322皆為非球面。
該第三透鏡330具有正屈折力,且為塑膠材質,其物側表面331近光軸390處為凸面,其像側表面332近光軸390處為凸面,且該物側表面331及像側表面332皆為非球面。
該紅外線濾除濾光元件360為玻璃材質,其設置於該第三透鏡330及成像面370間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件360也可形成於透鏡表面,該紅外線濾除濾光元件360也可以由其他材質製成。
再配合參照下列表5、以及表6。
Figure 110113328-A0305-02-0017-9
Figure 110113328-A0305-02-0018-10
Figure 110113328-A0305-02-0018-11
第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表5、以及表6可推算出下列數據:
Figure 110113328-A0305-02-0018-13
Figure 110113328-A0305-02-0019-15
<第四實施例>
請參照圖4A、圖4B及圖4C,其中圖4A繪示依照本發明第四實施例之成像透鏡組的示意圖,圖4B由左至右依序為第四實施例的像面彎曲及歪曲收差曲線圖,圖4C係本發明第四實施例之成像裝置的示意圖。由圖4A可知,成像透鏡組由物側至像側依序包含第一透鏡410、光圈400、第二透鏡420、第三透鏡430、紅外線濾除濾光元件460、以及成像面470。該成像透鏡組中具屈折力的透鏡為三片。由圖4C可知,成像裝置由物側至像側依序包含平板元件450、前述成像透鏡組(圖上未標)與影像感測器480。其中該影像感測器480設置於成像面470上。
該平板元件450為玻璃材質,其設置於一被攝物O及該第一透鏡410之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件450可以由其他材質製成。
該第一透鏡410具有負屈折力,且為塑膠材質,其物側表面411近光軸490處為凹面,其像側表面412近光軸490處為凹面,且該物側表面411及像側表面412皆為非球面。
該第二透鏡420具有正屈折力,且為塑膠材質,其物側表面421近光軸490處為凸面,其像側表面422近光軸490處為凸面,且該物側表面421及像側表面422皆為非球面。
該第三透鏡430具有正屈折力,且為塑膠材質,其物側表面431近光軸490處為凹面,其像側表面432近光軸490處為凸面,且該物側表面431及像側表面432皆為非球面。
該紅外線濾除濾光元件460為玻璃材質,其設置於該第三透鏡430及成像面470間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件460也可形成於透鏡表面,該紅外線濾除濾光元件460也可以由其他材質製成。
再配合參照下列表7、以及表8。
Figure 110113328-A0305-02-0020-16
Figure 110113328-A0305-02-0020-17
第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表7、以及表8可推算出下列數據:
Figure 110113328-A0305-02-0021-18
<第五實施例>
請參照圖5A、圖5B及圖5C,其中圖5A繪示依照本發明第五實施例之成像透鏡組的示意圖,圖5B由左至右依序為第五實施例的像面彎曲及歪曲收差曲線圖,圖5C係本發明第五實施例之成像裝置的示意圖。由圖5A可知,成像透鏡組由物側至像側依序包含第一透鏡510、光圈500、第二透鏡520、第三透鏡530、紅外線濾除濾光元件560、以及成像面570。該成像透鏡組中具屈折力的透鏡為三片。由圖5C可知,成像裝置由物側至像側依序包含平板元件550、前述成像透鏡組(圖上未標)與影像感測器580。其中該影像感測器580設置於成像面570上。
該平板元件550為玻璃材質,其設置於一被攝物O及該第一透鏡510之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件550可以由其他材質製成。
該第一透鏡510具有負屈折力,且為塑膠材質,其物側表面511近光軸590處為凹面,其像側表面512近光軸590處為凸面,且該物側表面511及像側表面512皆為非球面。
該第二透鏡520具有正屈折力,且為塑膠材質,其物側表面521近光軸590處為凸面,其像側表面522近光軸590處為凸面,且該物側表面521及像側表面522皆為非球面。
該第三透鏡530具有正屈折力,且為塑膠材質,其物側表面531近光軸590處為凸面,其像側表面532近光軸590處為凸面,且該物側表面531及像側表面532皆為非球面。
該紅外線濾除濾光元件560為玻璃材質,其設置於該第三透鏡530及成像面570間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件560也可形成於透鏡表面,該紅外線濾除濾光元件560也可以由其他材質製成。
再配合參照下列表9、以及表10。
Figure 110113328-A0305-02-0022-20
Figure 110113328-A0305-02-0023-56
第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表9、以及表10可推算出下列數據:
Figure 110113328-A0305-02-0023-22
<第六實施例>
請參照圖6A、圖6B及圖6C,其中圖6A繪示依照本發明第六實施例之成像透鏡組的示意圖,圖6B由左至右依序為第六實施例的像面彎曲及歪曲收差曲線圖,圖6C係本發明第六實施例之成像裝置的示意圖。由圖6A可知,成像透鏡組由物側至像側依序包含第一透鏡610、光圈600、第二透鏡620、第三透鏡630、紅外線濾除濾光元件660、以及成像面670。該成像透鏡組中具屈折力的透鏡為三片。由圖6C可知,成像裝置由物側至像側依序包含平板元件650、前述 成像透鏡組(圖上未標)與影像感測器680。其中該影像感測器680設置於成像面670上。
該平板元件650為玻璃材質,其設置於一被攝物O及該第一透鏡610之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件650可以由其他材質製成。
該第一透鏡610具有負屈折力,且為塑膠材質,其物側表面611近光軸690處為凹面,其像側表面612近光軸690處為凸面,且該物側表面611及像側表面612皆為非球面。
該第二透鏡620具有正屈折力,且為塑膠材質,其物側表面621近光軸690處為凸面,其像側表面622近光軸690處為凸面,且該物側表面621及像側表面622皆為非球面。
該第三透鏡630具有正屈折力,且為塑膠材質,其物側表面631近光軸690處為凸面,其像側表面632近光軸690處為凸面,且該物側表面631及像側表面632皆為非球面。
該紅外線濾除濾光元件660為玻璃材質,其設置於該第三透鏡630及成像面670間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件660也可形成於透鏡表面,該紅外線濾除濾光元件660也可以由其他材質製成。
再配合參照下列表11、以及表12。
Figure 110113328-A0305-02-0024-23
Figure 110113328-A0305-02-0025-24
Figure 110113328-A0305-02-0025-25
第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表11、以及表12可推算出下列數據:
Figure 110113328-A0305-02-0025-26
<第七實施例>
請參照圖7A、圖7B及圖7C,其中圖7A繪示依照本發明第七實施例之成像透鏡組的示意圖,圖7B由左至右依序為第七實施例的像面彎曲及歪曲收差曲線圖,圖7C係本發明第七實施例之成像裝置的示意圖。由圖7A可知,成像透鏡組由物側至像側依序包含第一透鏡710、光圈700、第二透鏡720、第三透鏡730、紅外線濾除濾光元件760、以及成像面770。該成像透鏡組中具屈折力的透鏡為三片。由圖7C可知,成像裝置由物側至像側依序包含平板元件750、前述成像透鏡組(圖上未標)與影像感測器780。其中該影像感測器780設置於成像面770上。
該平板元件750為玻璃材質,其設置於一被攝物O及該第一透鏡710之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件750可以由其他材質製成。
該第一透鏡710具有負屈折力,且為塑膠材質,其物側表面711近光軸790處為凹面,其像側表面712近光軸790處為凹面,且該物側表面711及像側表面712皆為非球面。
該第二透鏡720具有正屈折力,且為塑膠材質,其物側表面721近光軸790處為凸面,其像側表面722近光軸790處為凸面,且該物側表面721及像側表面722皆為非球面。
該第三透鏡730具有正屈折力,且為塑膠材質,其物側表面731近光軸790處為凸面,其像側表面732近光軸790處為凸面,且該物側表面731及像側表面732皆為非球面。
該紅外線濾除濾光元件760為玻璃材質,其設置於該第三透鏡730及成像面770間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件760也可形成於透鏡表面,該紅外線濾除濾光元件760也可以由其他材質製成。
再配合參照下列表13、以及表14。
Figure 110113328-A0305-02-0027-27
Figure 110113328-A0305-02-0027-28
第七實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表13、以及表14可推算出下列數據:
Figure 110113328-A0305-02-0028-29
<第八實施例>
請參照圖8A、圖8B及圖8C,其中圖8A繪示依照本發明第八實施例之成像透鏡組的示意圖,圖8B由左至右依序為第八實施例的像面彎曲及歪曲收差曲線圖,圖8C係本發明第八實施例之成像裝置的示意圖。由圖8A可知,成像透鏡組由物側至像側依序包含第一透鏡810、光圈800、第二透鏡820、第三透鏡830、紅外線濾除濾光元件860、以及成像面870。該成像透鏡組中具屈折力的透鏡為三片。由圖8C可知,成像裝置由物側至像側依序包含平板元件850、前述成像透鏡組(圖上未標)與影像感測器880。其中該影像感測器880設置於成像面870上。
該平板元件850為玻璃材質,其設置於一被攝物O及該第一透鏡810之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件850可以由其他材質製成。
該第一透鏡810具有負屈折力,且為塑膠材質,其物側表面811近光軸890處為凹面,其像側表面812近光軸890處為凹面,且該物側表面811及像側表面812皆為非球面。
該第二透鏡820具有正屈折力,且為塑膠材質,其物側表面821近光軸890處為凸面,其像側表面822近光軸890處為凸面,且該物側表面821及像側表面822皆為非球面。
該第三透鏡830具有正屈折力,且為塑膠材質,其物側表面831近光軸890處為凸面,其像側表面832近光軸890處為凸面,且該物側表面831及像側表面832皆為非球面。
該紅外線濾除濾光元件860為玻璃材質,其設置於該第三透鏡830及成像面870間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件860也可形成於透鏡表面,該紅外線濾除濾光元件860也可以由其他材質製成。
再配合參照下列表15、以及表16。
Figure 110113328-A0305-02-0029-30
Figure 110113328-A0305-02-0029-31
Figure 110113328-A0305-02-0030-32
第八實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表15、以及表16可推算出下列數據:
Figure 110113328-A0305-02-0030-33
<第九實施例>
請參照圖9A、圖9B及圖9C,其中圖9A繪示依照本發明第九實施例之成像透鏡組的示意圖,圖9B由左至右依序為第九實施例的像面彎曲及歪曲收差曲線圖,圖9C係本發明第九實施例之成像裝置的示意圖。由圖9A可知,成像透鏡組由物側至像側依序包含第一透鏡910、光圈900、第二透鏡920、第三透鏡930、紅外線濾除濾光元件960、以及成像面970。該成像透鏡組中具屈折力的透鏡為三片。由圖9C可知,成像裝置由物側至像側依序包含平板元件950、前述成像透鏡組(圖上未標)與影像感測器980。其中該影像感測器980設置於成像面970上。
該平板元件950為玻璃材質,其設置於一被攝物O及該第一透鏡910之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件950可以由其他材質製成。
該第一透鏡910具有負屈折力,且為塑膠材質,其物側表面911近光軸990處為凹面,其像側表面912近光軸990處為凹面,且該物側表面911及像側表面912皆為非球面。
該第二透鏡920具有正屈折力,且為塑膠材質,其物側表面921近光軸990處為凸面,其像側表面922近光軸990處為凹面,且該物側表面921及像側表面922皆為非球面。
該第三透鏡930具有正屈折力,且為塑膠材質,其物側表面931近光軸990處為凸面,其像側表面932近光軸990處為凹面,且該物側表面931及像側表面932皆為非球面。
該紅外線濾除濾光元件960為玻璃材質,其設置於該第三透鏡930及成像面970間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件960也可形成於透鏡表面,該紅外線濾除濾光元件960也可以由其他材質製成。
再配合參照下列表17、以及表18。
Figure 110113328-A0305-02-0031-34
Figure 110113328-A0305-02-0032-36
Figure 110113328-A0305-02-0032-37
第九實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表17、以及表18可推算出下列數據:
Figure 110113328-A0305-02-0032-39
<第十實施例>
請參照圖10A、圖10B及圖10C,其中圖10A繪示依照本發明第十實施例之成像透鏡組的示意圖,圖10B由左至右依序為第十實施例的像面彎曲及歪曲收差曲線圖,圖10C係本發明第十實施例之成像裝置的示意圖。由圖10A可知,成像透鏡組由物側至像側依序包含第一透鏡1010、光圈1000、第二透鏡1020、 第三透鏡1030、紅外線濾除濾光元件1060、以及成像面1070。該成像透鏡組中具屈折力的透鏡為三片。由圖10C可知,成像裝置由物側至像側依序包含平板元件1050、前述成像透鏡組(圖上未標)與影像感測器1080。其中該影像感測器1080設置於成像面1070上。
該平板元件1050為玻璃材質,其設置於一被攝物O及該第一透鏡1010之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件1050可以由其他材質製成。
該第一透鏡1010具有負屈折力,且為塑膠材質,其物側表面1011近光軸1090處為凹面,其像側表面1012近光軸1090處為凹面,且該物側表面1011及像側表面1012皆為非球面。
該第二透鏡1020具有正屈折力,且為塑膠材質,其物側表面1021近光軸1090處為凸面,其像側表面1022近光軸1090處為凸面,且該物側表面1021及像側表面1022皆為非球面。
該第三透鏡1030具有正屈折力,且為塑膠材質,其物側表面1031近光軸1090處為凸面,其像側表面1032近光軸1090處為凸面,且該物側表面1031及像側表面1032皆為非球面。
該紅外線濾除濾光元件1060為玻璃材質,其設置於該第三透鏡1030及成像面1070間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件1060也可形成於透鏡表面,該紅外線濾除濾光元件1060也可以由其他材質製成。
再配合參照下列表19、以及表20。
Figure 110113328-A0305-02-0033-41
Figure 110113328-A0305-02-0034-42
Figure 110113328-A0305-02-0034-43
第十實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表19、以及表20可推算出下列數據:
Figure 110113328-A0305-02-0034-44
Figure 110113328-A0305-02-0035-45
<第十一實施例>
請參照圖11A、圖11B及圖11C,其中圖11A繪示依照本發明第十一實施例之成像透鏡組的示意圖,圖11B由左至右依序為第十一實施例的像面彎曲及歪曲收差曲線圖,圖11C係本發明第十一實施例之成像裝置的示意圖。由圖11A可知,成像透鏡組由物側至像側依序包含第一透鏡1110、光圈1100、第二透鏡1120、第三透鏡1130、紅外線濾除濾光元件1160、以及成像面1170。該成像透鏡組中具屈折力的透鏡為三片。由圖11C可知,成像裝置由物側至像側依序包含平板元件1150、前述成像透鏡組(圖上未標)與影像感測器1180。其中該影像感測器1180設置於成像面1170上。
該平板元件1150為玻璃材質,其設置於一被攝物O及該第一透鏡1110之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件1150可以由其他材質製成。
該第一透鏡1110具有負屈折力,且為塑膠材質,其物側表面1111近光軸1190處為凹面,其像側表面1112近光軸1190處為凸面,且該物側表面1111及像側表面1112皆為非球面。
該第二透鏡1120具有正屈折力,且為塑膠材質,其物側表面1121近光軸1190處為凸面,其像側表面1122近光軸1190處為凹面,且該物側表面1121及像側表面1122皆為非球面。
該第三透鏡1130具有正屈折力,且為塑膠材質,其物側表面1131近光軸1190處為凸面,其像側表面1132近光軸1190處為凹面,且該物側表面1131及像側表面1132皆為非球面。
該紅外線濾除濾光元件1160為玻璃材質,其設置於該第三透鏡1130及成像面1170間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件1160也可形成於透鏡表面,該紅外線濾除濾光元件1160也可以由其他材質製成。
再配合參照下列表21、以及表22。
Figure 110113328-A0305-02-0036-46
Figure 110113328-A0305-02-0036-47
Figure 110113328-A0305-02-0037-49
第十一實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表21、以及表22可推算出下列數據:
Figure 110113328-A0305-02-0037-50
<第十二實施例>
請參照圖12A、圖12B及圖12C,其中圖12A繪示依照本發明第十二實施例之成像透鏡組的示意圖,圖12B由左至右依序為第十二實施例的像面彎曲及歪曲收差曲線圖,圖12C係本發明第十二實施例之成像裝置的示意圖。由圖12A可知,成像透鏡組由物側至像側依序包含第一透鏡1210、光圈1200、第二透鏡1220、第三透鏡1230、紅外線濾除濾光元件1260、以及成像面1270。該成像透鏡組中具屈折力的透鏡為三片。由圖12C可知,成像裝置由物側至像側依序包含平板元件1250、前述成像透鏡組(圖上未標)與影像感測器1280。其中該影像感測器1280設置於成像面1270上。
該平板元件1250為玻璃材質,其設置於一被攝物O及該第一透鏡1210之間,且不影響該成像透鏡組的焦距。可以理解,該平板元件1150可以由其他材質製成。
該第一透鏡1210具有負屈折力,且為塑膠材質,其物側表面1211近光軸1290處為凹面,其像側表面1212近光軸1290處為凹面,且該物側表面1211及像側表面1212皆為非球面。
該第二透鏡1220具有正屈折力,且為塑膠材質,其物側表面1221近光軸1290處為凸面,其像側表面1222近光軸1290處為凸面,且該物側表面1221及像側表面1222皆為非球面。
該第三透鏡1230具有正屈折力,且為塑膠材質,其物側表面1231近光軸1290處為凸面,其像側表面1232近光軸1290處為凸面,且該物側表面1231及像側表面1232皆為非球面。
該紅外線濾除濾光元件1260為玻璃材質,其設置於該第三透鏡1230及成像面1270間且不影響該成像透鏡組的焦距。可以理解,該紅外線濾除濾光元件1160也可形成於透鏡表面,該紅外線濾除濾光元件1160也可以由其他材質製成。
再配合參照下列表23、以及表24。
Figure 110113328-A0305-02-0038-51
Figure 110113328-A0305-02-0039-52
Figure 110113328-A0305-02-0039-54
第十二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。
配合表23、以及表24可推算出下列數據:
Figure 110113328-A0305-02-0039-55
<第十三實施例>
請參照圖13及圖14,圖13是本發明第一實施例包含成像透鏡組14的成像裝置11安裝在電子裝置10上的示意圖,但不以此為限,上述各實施例的成像裝置皆可安裝在電子裝置10上,讓該電子裝置10具有指紋辨識的生物辨識系 統。圖14是圖13的剖面側視示意圖。電子裝置10包含成像裝置11、控制單元12以及儲存單元13,該控制單元12電性連接於該成像裝置11,該儲存單元13電性連接至該控制單元12。較佳地,電子裝置10可進一步包含顯示單元(Display Units)、暫儲存單元(RAM)、電池、通訊模組、觸控模組、外殼或其組合。
本發明亦可多方面應用於數位相機、行動裝置、數位平板、智慧型電視與穿戴式裝置等電子裝置中,且前述電子裝置僅是示範性地說明本發明的實際運用例子,並非限制本發明之成像裝置的運用範圍。
100:光圈
110:第一透鏡
120:第二透鏡
130:第三透鏡
160:紅外線濾除濾光元件
170:成像面
190:光軸
TD:第一透鏡的物側表面至第三透鏡的像側表面於光軸上的距離
BFL:第三透鏡的像側表面至成像面於光軸上的距離

Claims (15)

  1. 一種成像透鏡組,由物側至像側依序包含:一第一透鏡,具有負屈折力,該第一透鏡的物側表面近光軸處為凹面,該第一透鏡的物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,該第二透鏡的物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,該第三透鏡的物側表面與像側表面至少一表面為非球面;其中該成像透鏡組中具屈折力的透鏡總數為三片,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,該成像透鏡組的焦距為f,並滿足下列條件:4.36<sin(HFOV)/(BFL*f)<11.64、1.82<TD/BFL<3.8與3.10<sin(HFOV)/EPD<8.12。
  2. 如請求項1所述的成像透鏡組,其中該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.06<TD/EPD<12.97。
  3. 如請求項1所述的成像透鏡組,其中該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:0.36公釐<BFL<0.58公釐。
  4. 如請求項1所述的成像透鏡組,其中該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:2.05<TD/BFL<3.7。
  5. 如請求項1所述的成像透鏡組,其中該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:0.11<EPD<0.29。
  6. 如請求項1所述的成像透鏡組,其中該成像透鏡組中最大視角的一半為HFOV,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:3.48<sin(HFOV)/EPD<7.44。
  7. 如請求項1所述的成像透鏡組,其中該成像透鏡組中最大視角的一半為HFOV,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.83<TD/(EPD*sin(HFOV))<12.45。
  8. 一種成像裝置,由物側至像側依序包含:一平板元件;一成像透鏡組;以及一影像感測器;其中該成像透鏡組由物側至像側依序包含:一第一透鏡,具有負屈折力,該第一透鏡的物側表面近光軸處為凹面,該第一透鏡的物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,該第二透鏡的物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,該第三透鏡的物側表面與像側表面至少一表面為非球面;其中該成像透鏡組中具屈折力的透鏡總數為三片,該成像透鏡組中最大視角的一半為HFOV,該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為 TD,該平板元件的物側表面至成像面於光軸上的距離為OTL,並滿足下列條件:2.84公釐<OTL<4.35公釐、0.34<sin(HFOV)/OPL<0.71與0.25<TD/OTL<0.44。
  9. 如請求項8所述的成像裝置,其中該平板元件的物側表面至成像面於光軸上的距離為OTL,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:12.11<OTL/EPD<30。
  10. 如請求項8所述的成像裝置,其中該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,並滿足下列條件:0.42<TD/OPL<1.04。
  11. 如請求項8所述的成像裝置,其中該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:0.36公釐<BFL<0.58公釐。
  12. 如請求項8所述的成像裝置,其中該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該第三透鏡的像側表面至成像面於光軸上的距離為BFL,並滿足下列條件:1.82<TD/BFL<3.8。
  13. 如請求項8所述的成像裝置,其中該第一透鏡的物側表面至該第三透鏡的像側表面於光軸上的距離為TD,該成像透鏡組的入射瞳孔徑為EPD,並滿足下列條件:4.06<TD/EPD<12.97。
  14. 如請求項8所述的成像裝置,其中該平板元件的物側表面至該第一透鏡的物側表面於光軸上的距離為OPL,並滿足下列條件:1.35公釐<OPL<2.66公釐。
  15. 一種電子裝置,包含:如請求項8所述之成像裝置;一控制單元,電連接至該成像裝置;以及一儲存單元,電連接至該控制單元。
TW110113328A 2021-04-14 2021-04-14 成像透鏡組、成像裝置及電子裝置 TWI753815B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110113328A TWI753815B (zh) 2021-04-14 2021-04-14 成像透鏡組、成像裝置及電子裝置
CN202110538182.8A CN115220178B (zh) 2021-04-14 2021-05-18 成像透镜组、成像装置及电子装置
US17/374,998 US20220334358A1 (en) 2021-04-14 2021-07-14 Optical lens system, imaging device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113328A TWI753815B (zh) 2021-04-14 2021-04-14 成像透鏡組、成像裝置及電子裝置

Publications (2)

Publication Number Publication Date
TWI753815B true TWI753815B (zh) 2022-01-21
TW202240234A TW202240234A (zh) 2022-10-16

Family

ID=80809057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113328A TWI753815B (zh) 2021-04-14 2021-04-14 成像透鏡組、成像裝置及電子裝置

Country Status (3)

Country Link
US (1) US20220334358A1 (zh)
CN (1) CN115220178B (zh)
TW (1) TWI753815B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117872569B (zh) * 2024-03-13 2024-06-11 江西联益光学有限公司 光学镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427355B (zh) * 2011-02-23 2014-02-21 Largan Precision Co Ltd 廣視角攝影鏡組
US20160205297A1 (en) * 2015-01-09 2016-07-14 Largan Precision Co., Ltd. Compact optical system, image capturing unit and electronic device
CN110764234A (zh) * 2019-12-25 2020-02-07 江西联益光学有限公司 光学镜头及成像设备

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333158B2 (ja) * 2003-02-21 2009-09-16 コニカミノルタオプト株式会社 2焦点撮像レンズ
JP4374224B2 (ja) * 2003-09-16 2009-12-02 Hoya株式会社 広角を包括するズームレンズ系
JP2006220691A (ja) * 2005-02-08 2006-08-24 Nidec Copal Corp 撮像レンズ
JP2009098322A (ja) * 2007-10-16 2009-05-07 Fujinon Corp 撮像レンズおよび撮像装置
US9225888B2 (en) * 2013-11-19 2015-12-29 Largan Precision Co., Ltd. Image capturing array system and fingerprint identification device
CN105824108B (zh) * 2015-01-09 2018-06-19 大立光电股份有限公司 薄型光学系统、取像装置及电子装置
JP6506036B2 (ja) * 2015-02-02 2019-04-24 オリンパス株式会社 撮像機器
CN105988201B (zh) * 2015-04-08 2018-09-07 浙江舜宇光学有限公司 交互式镜头
CN106443977B (zh) * 2015-08-06 2018-10-09 亚太精密工业(深圳)有限公司 广角镜头
CN205080354U (zh) * 2015-09-15 2016-03-09 周光磊 一种桌面超短焦光学模组
JPWO2017064752A1 (ja) * 2015-10-13 2018-08-02 オリンパス株式会社 撮像装置及びそれを備えた光学装置
TWI586999B (zh) * 2015-10-23 2017-06-11 大立光電股份有限公司 影像擷取透鏡組、取像裝置及電子裝置
TWI601994B (zh) * 2015-12-15 2017-10-11 大立光電股份有限公司 取像用光學鏡頭組、取像裝置及電子裝置
US9746648B1 (en) * 2016-02-11 2017-08-29 Newmax Technology Co., Ltd. Four-piece infrared single wavelength lens system
TWI644141B (zh) * 2016-10-14 2018-12-11 大立光電股份有限公司 光學取像系統組、取像裝置及電子裝置
US9897782B1 (en) * 2016-12-09 2018-02-20 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
US10175461B1 (en) * 2017-07-04 2019-01-08 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
US10459199B2 (en) * 2017-07-05 2019-10-29 Newmax Technology Co., Ltd. Five-piece optical lens system with a wide field of view
US10845573B2 (en) * 2018-11-06 2020-11-24 Newmax Technology Co., Ltd. Three-piece compact optical lens system
TWI679449B (zh) * 2018-12-03 2019-12-11 大立光電股份有限公司 光學取像透鏡組、取像裝置及電子裝置
US20200192065A1 (en) * 2018-12-14 2020-06-18 Newmax Technology Co., Ltd. Three-piece infrared single wavelength projection lens system
US20200209552A1 (en) * 2018-12-26 2020-07-02 Newmax Technology Co., Ltd. Three-piece infrared single wavelength lens system
CN111722357B (zh) * 2019-03-19 2022-10-11 信泰光学(深圳)有限公司 光学镜头
TWI691733B (zh) * 2019-04-10 2020-04-21 大立光電股份有限公司 光學攝像透鏡組、指紋辨識模組及電子裝置
CN112147766A (zh) * 2019-06-28 2020-12-29 南昌欧菲精密光学制品有限公司 成像镜头、摄像模组及电子装置
CN110488461B (zh) * 2019-08-16 2021-04-23 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI730517B (zh) * 2019-11-29 2021-06-11 大立光電股份有限公司 透鏡系統及電子裝置
TWI716220B (zh) * 2019-12-11 2021-01-11 新鉅科技股份有限公司 三片式薄型成像鏡片組
CN211653281U (zh) * 2020-01-07 2020-10-09 新巨科技股份有限公司 三片式薄型成像镜片组
US20210215908A1 (en) * 2020-01-10 2021-07-15 Newmax Technology Co., Ltd. Three-piece compact optical lens system
CN212160209U (zh) * 2020-01-19 2020-12-15 深圳阜时科技有限公司 镜头系统、检测模组、光学检测装置及电子设备
CN111399192A (zh) * 2020-05-26 2020-07-10 浙江舜宇光学有限公司 光学成像镜头
TWI745221B (zh) * 2021-01-19 2021-11-01 新鉅科技股份有限公司 成像透鏡組及光學式辨識系統
CN112782835B (zh) * 2021-01-29 2022-04-19 浙江舜宇光学有限公司 光学成像镜头和指纹识别装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427355B (zh) * 2011-02-23 2014-02-21 Largan Precision Co Ltd 廣視角攝影鏡組
US20160205297A1 (en) * 2015-01-09 2016-07-14 Largan Precision Co., Ltd. Compact optical system, image capturing unit and electronic device
CN110764234A (zh) * 2019-12-25 2020-02-07 江西联益光学有限公司 光学镜头及成像设备

Also Published As

Publication number Publication date
TW202240234A (zh) 2022-10-16
US20220334358A1 (en) 2022-10-20
CN115220178A (zh) 2022-10-21
CN115220178B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
US20210199927A1 (en) Optical imaging system
TWI519810B (zh) 廣視角光學鏡頭
TWI467220B (zh) 成像系統鏡頭組
TWI700514B (zh) 光學鏡頭
TWI487939B (zh) 光學攝影鏡組、取像裝置以及可攜式電子裝置
TWI660193B (zh) 光學鏡頭
TWI687733B (zh) 成像鏡片系統、辨識模組及電子裝置
TWI625546B (zh) 攝像光學鏡片系統、取像裝置及電子裝置
CN211653281U (zh) 三片式薄型成像镜片组
CN113391430A (zh) 光学系统、镜头模组和电子设备
TWI753815B (zh) 成像透鏡組、成像裝置及電子裝置
TWI716220B (zh) 三片式薄型成像鏡片組
TW202014754A (zh) 三片式薄型成像鏡片組
CN110737080B (zh) 薄型成像镜片组
TWI747747B (zh) 成像透鏡組及攝像模組
TWI617832B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
TWI696859B (zh) 薄型成像鏡片組
CN105319674B (zh) 成像镜头组
CN111736313A (zh) 光学系统、摄像模组及电子设备
TWI786774B (zh) 成像透鏡組及攝像模組
TWI769900B (zh) 成像透鏡組及攝像模組
TWI783686B (zh) 攝像模組
KR102575936B1 (ko) 고화소 소형 매크로 광학계
TWI778904B (zh) 成像透鏡組及攝像模組
CN212540850U (zh) 光学系统、摄像模组及电子设备