WO2020258914A1 - 一种成像透镜系统 - Google Patents
一种成像透镜系统 Download PDFInfo
- Publication number
- WO2020258914A1 WO2020258914A1 PCT/CN2020/077782 CN2020077782W WO2020258914A1 WO 2020258914 A1 WO2020258914 A1 WO 2020258914A1 CN 2020077782 W CN2020077782 W CN 2020077782W WO 2020258914 A1 WO2020258914 A1 WO 2020258914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens system
- imaging lens
- imaging
- sag
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/004—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/04—Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/34—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
- G02B9/58—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -
Definitions
- the present invention relates to the technical field of optical imaging, in particular to an imaging lens system.
- the lens is an important part of the optical imaging system. It is now one of the standard configurations of mobile phones, tablets, security monitoring equipment, and driving recorders. In recent years, with the continuous development of mobile information technology, the demand for terminals has continued to increase, and the number of lenses mounted on the terminals has also increased.
- imaging lens systems With users’ enthusiasm for thinner and lighter terminals, and in the pursuit of better imaging effects, this requires imaging lens systems to meet both miniaturization and wide viewing angles.
- imaging lens systems currently on the market It is impossible to achieve a good balance between miniaturization and wide viewing angles, resulting in the realization of the miniaturization of the lens, the viewing angle is often sacrificed, or after the wide viewing angle of the lens is realized, there are often large defects.
- the purpose of the present invention is to provide an imaging lens system to solve the problem of the imaging lens system in the prior art that cannot achieve the balance between miniaturization and wide viewing angle.
- an imaging lens system in an embodiment of the present invention from the object side to the imaging surface, it includes:
- the first lens with negative refractive power has a concave surface on the object side
- a third lens with positive refractive power the image side surface of which is convex
- the fourth lens with negative refractive power has a concave image side surface.
- the imaging lens system in the embodiment of the present invention may also have the following additional technical features:
- the imaging lens system satisfies the following conditional formula:
- f represents the focal length of the imaging lens system
- f 1 represents the effective focal length of the first lens
- the imaging lens system satisfies the following conditional formula:
- f 2 represents the effective focal length of the second lens
- f 3 represents the effective focal length of the third lens
- the imaging lens system satisfies the following conditional formula:
- SAG 11 represents the sagittal height of the object side surface of the first lens
- SAG 12 represents the sagittal height of the image side surface of the first lens
- SAG 41 represents the sagittal height of the object side surface of the fourth lens
- SAG 42 represents The vector height of the image side surface of the fourth lens.
- the imaging lens system satisfies the following conditional formula:
- Rdf0.7 represents the angle of the position passed by the 0.7 field of view of the imaging lens system on the object side surface of the fourth lens.
- the imaging lens system satisfies the following conditional formula:
- ND 4 represents the refractive index of the fourth lens
- ND 3 represents the refractive index of the third lens
- VD 4 represents the Abbe number of the fourth lens
- VD 3 represents the Abbe number of the third lens number.
- the imaging lens system satisfies the following conditional formula:
- SAG 22 represents the sagittal height of the image-side surface of the second lens
- SAG 21 represents the sagittal height of the object-side surface of the second lens
- the imaging lens system satisfies the following conditional formula:
- R 32 represents the radius of the image side surface of the third lens
- R 22 represents the radius of the image side surface of the second lens
- R 31 represents the radius of the object side surface of the third lens
- R 21 represents The radius of the object side surface of the second lens.
- each lens is an aspheric lens.
- the aspheric lens in the imaging lens system satisfies the following equation:
- z represents the distance of the surface from the surface vertex in the optical axis direction
- c represents the curvature of the surface vertex
- k represents the quadric surface coefficient
- h represents the distance from the optical axis to the surface
- B, C, D, E, F, G, H, L and J represent the fourth-order, sixth-order, eighth-order, tenth-order, twelfth-order, fourteenth-order, sixteenth-order, eighteenth-order, and twentieth-order surface coefficients, respectively.
- the imaging lens system of the present invention adopts four lenses with specific refractive power, and adopts specific surface shapes and their matching, which meets wide viewing angles and has a more compact structure, thereby better achieving lens miniaturization and wide viewing angles. It also makes the focal length of the system very short, so that the system has a larger field of view, can shoot a larger area of the scene, which brings great convenience to the post-cutting, and the imaging lens system of this design is enhanced In order to improve the depth and space of the imaging picture, it has better imaging quality.
- FIG. 1a is a schematic structural diagram of an imaging lens system in a first embodiment of the present invention
- Fig. 1b is a graph of the spherical aberration curve of the imaging lens system on the axis in the first embodiment of the present invention
- 1c is a graph of lateral chromatic aberration of the imaging lens system in the first embodiment of the present invention.
- 1d is a curve diagram of field curvature and distortion of the imaging lens system in the first embodiment of the present invention
- Fig. 2a is a schematic structural diagram of an imaging lens system in a second embodiment of the present invention.
- 2b is a graph of the spherical aberration curve of the imaging lens system in the second embodiment of the present invention.
- 2c is a graph of lateral chromatic aberration of the imaging lens system in the second embodiment of the present invention.
- 2d is a curve diagram of field curvature and distortion of the imaging lens system in the second embodiment of the present invention.
- Fig. 3a is a schematic structural diagram of an imaging lens system in a third embodiment of the present invention.
- 3b is a graph of the spherical aberration curve of the imaging lens system on the axis in the third embodiment of the present invention.
- 3c is a graph of lateral chromatic aberration of the imaging lens system in the third embodiment of the present invention.
- 3d is a curve diagram of field curvature and distortion of the imaging lens system in the third embodiment of the present invention.
- FIG. 4a is a schematic diagram of the structure of an imaging lens system in a fourth embodiment of the present invention.
- 4b is a graph of the spherical aberration curve of the imaging lens system on the axis in the fourth embodiment of the present invention.
- 4c is a graph of lateral chromatic aberration of the imaging lens system in the fourth embodiment of the present invention.
- 4d is a curve diagram of field curvature and distortion of the imaging lens system in the fourth embodiment of the present invention.
- First lens 1 Diaphragm 2 Second lens 3 Third lens 4 Fourth lens 5 Infrared filter 6 Object side of the first lens S2 First lens image side S3 Second lens object side S5 Second lens image side S6 Third lens object side S7 Third lens image side S8 Fourth lens object side S9 Fourth lens image side S10 Diaphragm surface S4 Infrared filter surface S11 Imaging surface S12
- Fig. 1a shows the imaging lens system in the first embodiment of the present invention. From the object side to the imaging surface, it includes a first lens 1, an aperture 2, and a second positive optical power. Lens 3, third lens 4 with positive refractive power, fourth lens 5 with negative refractive power, and infrared filter 6. Among them, the object side surface of the first lens 1 is concave, the image side surface of the third lens 4 is convex, and the image side surface of the fourth lens 5 is concave.
- the first lens 1, the second lens 3, the third lens 4, and the fourth lens 5 are all aspherical lenses, and the surface expression of the aspherical lenses is:
- z represents the distance of the surface from the surface vertex in the optical axis direction
- c represents the curvature of the surface vertex
- k represents the quadric surface coefficient
- h represents the distance from the optical axis to the surface
- B, C, D, E, F, G, H, L and J represent the fourth-order, sixth-order, eighth-order, tenth-order, twelfth-order, fourteenth-order, sixteenth-order, eighteenth-order, and twentieth-order surface coefficients respectively, and their values are shown in the table below.
- the imaging lens system satisfies the following conditional formula:
- f represents the focal length of the imaging lens system
- f1 represents the effective focal length of the first lens. Satisfying the conditional formula (1) can make the first lens bear a larger negative refractive power to diverge the light of the large field of view, and enter the optical system smoothly and without too much light turning, so as to ensure the In the case of field angle, there is no excessive high-level aberration to correct.
- the imaging lens system satisfies the following conditional formula:
- f 2 represents the effective focal length of the second lens
- f 3 represents the effective focal length of the third lens. Satisfying the conditional formula (2), the optical power can be distributed reasonably, so that the relative aperture of each lens of the system as a whole is small and reasonable, and aberration can be corrected well.
- the imaging lens system satisfies the following conditional formula:
- SAG 11 represents the vector height of the object side surface of the first lens
- SAG 12 represents the vector height of the image side surface of the first lens
- SAG 41 represents the vector height of the object side surface of the fourth lens
- SAG 42 represents the image side of the fourth lens The vector height of the surface. Satisfying conditional formula (3) can effectively shorten the total optical length of the lens and promote the miniaturization of the lens.
- the imaging lens system satisfies the following conditional formula:
- Rdf0.7 represents the angle at which the 0.7 field of view of the imaging lens system passes through the position on the object side surface of the fourth lens. Satisfying the conditional formula (4), the ghost image energy of the system on this surface can be reduced by orders of magnitude, and the ghost image of the system can be well improved.
- the imaging lens system satisfies the following conditional formula:
- ND 4 represents the refractive index of the fourth lens
- ND 3 represents the refractive index of the third lens
- VD 4 represents the Abbe number of the fourth lens
- VD 3 represents the Abbe number of the third lens.
- the imaging lens system satisfies the following conditional formula:
- SAG 22 represents the vector height of the image side surface of the second lens
- SAG 21 represents the vector height of the object side surface of the second lens. Satisfying the conditional formula (6) is conducive to the deflection of light in the large field of view and reduces the difficulty of system aberration correction due to spherical aberration in the off-axis field of view.
- the imaging lens system satisfies the following conditional formula:
- R 32 represents the radius of the image side surface of the third lens
- R 22 represents the radius of the image side surface of the second lens
- R 31 represents the radius of the object side surface of the third lens
- R 21 represents the object side of the second lens The radius of the surface. Satisfying the conditional formula (7) can effectively shorten the system length and achieve miniaturization.
- Table 1-1 shows the relevant parameters of each lens in the imaging lens system in this embodiment, where R represents the radius of curvature, d represents the distance between the optical surfaces, nd represents the refractive index of the material, and Vd represents the Abbe of the material number.
- Table 1-2 shows the surface coefficients of each aspheric surface of the imaging lens system in this embodiment.
- Figures 1b, 1c, and 1d show the on-axis spherical aberration curve, lateral chromatic aberration curve, field curvature and distortion curve of the imaging lens system in this embodiment. It can be seen from 1b to 1d, On-axis point spherical aberration, lateral chromatic aberration, curvature of field and distortion are all well corrected.
- the imaging lens system in this embodiment uses four lenses with specific refractive powers, and uses specific surface shapes and combinations to meet wide viewing angles and a more compact structure, thereby achieving a better lens miniature
- this design The imaging lens system enhances the sense of depth and space of the imaging picture, and has a better imaging quality.
- each lens of the imaging lens system adopts aspherical lenses, which has the following advantages:
- FIG. 2a shows the imaging lens system in the second embodiment of the present invention.
- the imaging lens system in this embodiment is different from the imaging lens system in the first embodiment in that the imaging lens system in this embodiment
- the lens system adopts the lens parameters shown in Table 2-1 and Table 2-2 below.
- Table 2-1 shows the relevant parameters of each lens in the imaging lens system in this embodiment.
- Table 2-2 shows the area coefficients of each aspherical surface of the imaging lens system in this embodiment.
- Figures 2b, 2c, and 2d show the on-axis spherical aberration curve, lateral chromatic aberration curve, field curvature and distortion curve of the imaging lens system in this embodiment. It can be seen from 2b to 2d, On-axis point spherical aberration, lateral chromatic aberration, curvature of field and distortion are all well corrected.
- FIG. 3a shows the imaging lens system in the third embodiment of the present invention.
- the imaging lens system in this embodiment is different from the imaging lens system in the first embodiment in that the imaging lens system in this embodiment
- the lens system adopts the lens parameters shown in Table 3-1 and Table 3-2 below.
- Table 3-1 shows the relevant parameters of each lens in the imaging lens system in this embodiment.
- Table 3-2 shows the area coefficients of each aspheric surface of the imaging lens system in this embodiment.
- Figures 3b, 3c, and 3d show the on-axis spherical aberration curve, lateral chromatic aberration curve, field curvature and distortion curve of the imaging lens system in this embodiment, which can be seen from 3b to 3d, On-axis point spherical aberration, lateral chromatic aberration, curvature of field and distortion are all well corrected.
- FIG. 4a shows the imaging lens system in the fourth embodiment of the present invention.
- the imaging lens system in this embodiment is different from the imaging lens system in the first embodiment in that the imaging lens system in this embodiment
- the lens system uses the lens parameters shown in Table 4-1 and Table 4-2 below.
- Table 4-1 shows the relevant parameters of each lens in the imaging lens system in this embodiment.
- Table 4-2 shows the area coefficients of each aspheric surface of the imaging lens system in this embodiment.
- Figures 4b, 4c, and 4d show the on-axis spherical aberration curve, lateral chromatic aberration curve, field curvature and distortion curve of the imaging lens system in this embodiment. It can be seen from 4b to 4d, On-axis point spherical aberration, lateral chromatic aberration, curvature of field and distortion are all well corrected.
- optical characteristics include system focal length f, aperture number F#, total optical length TTL, and field angle 2 ⁇ .
- Example 1 Example 2
- Example 3 Example 4 f(mm) 1.379 1.464 1.2 1.3
- the imaging lens of any of the foregoing Embodiments 1 to 4 can be used in terminal devices such as mobile phones, tablets, security monitoring equipment, and driving recorders.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明提供一种成像透镜系统,从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧表面为凹面;具有正光焦度的第二透镜;具有正光焦度的第三透镜,其像侧表面为凸面;以及具有负光焦度的第四透镜,其像侧表面为凹面。本发明中的成像透镜系统,采用四片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑,从而较好的实现了镜头微型化和广视角的均衡,同时还使系统焦距很短,以使系统具有更大的视场角,可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外此设计的成像透镜系统增强了成像画面的纵深感和空间感,具有更好的成像质量。
Description
本申请要求于2019年6月24日提交中国专利局、申请号为2019105466462、发明名称为“一种成像透镜系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及光学成像技术领域,特别涉及一种成像透镜系统。
镜头是光学成像系统中的重要组成部分,是现在手机、平板、安防监控设备、行车记录仪等终端的标配之一。近几年,随着移动信息技术的不断发展,终端的需求量不断增加,同时终端上搭载的镜头数量也越来越多。
随着用户对轻薄化终端的热衷,同时为了追求更佳的成像效果,这就要求成像透镜系统既要满足微型化也要具备广视角,然而,现有技术当中,目前市场上的成像透镜系统均无法较好的实现微型化和广视角的均衡,导致在实现镜头微型化后,往往会牺牲视角,或者在实现镜头广视角后,往往会存在体积较大的缺陷。
发明内容
基于此,本发明的目的是提供一种成像透镜系统,以解决现有技术当中成像透镜系统无法较好的实现微型化和广视角的均衡问题。
根据本发明实施例当中的一种成像透镜系统,从物侧到成像面依次包括:
具有负光焦度的第一透镜,其物侧表面为凹面;
具有正光焦度的第二透镜;
具有正光焦度的第三透镜,其像侧表面为凸面;以及
具有负光焦度的第四透镜,其像侧表面为凹面。
另外,根据本发明实施例中的成像透镜系统,还可以具有如下附加的技术特 征:
进一步地,所述成像透镜系统满足以下条件式:
-9≤f
1/f≤-1.5;
其中,f表示所述成像透镜系统的焦距,f
1表示所述第一透镜的有效焦距。
进一步地,所述成像透镜系统满足以下条件式:
-0.3≤f
3/f
2≤1;
其中,f
2表示所述第二透镜的有效焦距,f
3表示所述第三透镜的有效焦距。
进一步地,所述成像透镜系统满足以下条件式:
-0.3≤(SAG
11-SAG
12)/(SAG
42-SAG
41)≤0.7;
其中,SAG
11表示所述第一透镜的物侧表面的矢高,SAG
12表示所述第一透镜的像侧表面的矢高,SAG
41表示所述第四透镜的物侧表面的矢高,SAG
42表示所述第四透镜的像侧表面的矢高。
进一步地,所述成像透镜系统满足以下条件式:
Rdf0.7≤22°;
其中,Rdf0.7表示所述成像透镜系统的0.7视场在所述第四透镜的物侧表面所通过位置的角度。
进一步地,所述成像透镜系统满足以下条件式:
(ND
4-ND
3)/(VD
4-VD
3)<0;
其中,ND
4表示所述第四透镜的折射率,ND
3表示所述第三透镜的折射率,VD
4表示所述第四透镜的阿贝数,VD
3表示所述第三透镜的阿贝数。
进一步地,所述成像透镜系统满足以下条件式:
-0.43≤SAG
22-SAG
21≤-0.21;
其中,SAG
22表示所述第二透镜的像侧表面的矢高,SAG
21表示所述第二透镜的物侧表面的矢高。
进一步地,所述成像透镜系统满足以下条件式:
-0.1≤(R
32-R
22)/(R
31-R
21)≤138;
其中,R
32表示所述第三透镜的像侧表面的半径,R
22表示所述第二透镜的像 侧表面的半径,R
31表示所述第三透镜的物侧表面的半径,R
21表示所述第二透镜的物侧表面的半径。
进一步地,各透镜均为非球面镜片。
进一步地,所述成像透镜系统中的非球面镜片满足下列方程:
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H、L和J分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶、十八阶和二十阶曲面系数。
本发明中的成像透镜系统,采用四片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑,从而较好的实现了镜头微型化和广视角的均衡,同时还使系统焦距很短,以使系统具有更大的视场角,可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外此设计的成像透镜系统增强了成像画面的纵深感和空间感,具有更好的成像质量。
图1a为本发明第一实施例中的成像透镜系统的结构示意图;
图1b为本发明第一实施例中的成像透镜系统的轴上点球差曲线图;
图1c为本发明第一实施例中的成像透镜系统的横向色差曲线图;
图1d为本发明第一实施例中的成像透镜系统的场曲和畸变曲线图;
图2a为本发明第二实施例中的成像透镜系统的结构示意图;
图2b为本发明第二实施例中的成像透镜系统的轴上点球差曲线图;
图2c为本发明第二实施例中的成像透镜系统的横向色差曲线图;
图2d为本发明第二实施例中的成像透镜系统的场曲和畸变曲线图;
图3a为本发明第三实施例中的成像透镜系统的结构示意图;
图3b为本发明第三实施例中的成像透镜系统的轴上点球差曲线图;
图3c为本发明第三实施例中的成像透镜系统的横向色差曲线图;
图3d为本发明第三实施例中的成像透镜系统的场曲和畸变曲线图;
图4a为本发明第四实施例中的成像透镜系统的结构示意图;
图4b为本发明第四实施例中的成像透镜系统的轴上点球差曲线图;
图4c为本发明第四实施例中的成像透镜系统的横向色差曲线图;
图4d为本发明第四实施例中的成像透镜系统的场曲和畸变曲线图。
主要元件符号说明:
第一透镜 | 1 | 光阑 | 2 |
第二透镜 | 3 | 第三透镜 | 4 |
第四透镜 | 5 | 红外滤光片 | 6 |
第一透镜物侧面 | S2 | 第一透镜像侧面 | S3 |
第二透镜物侧面 | S5 | 第二透镜像侧面 | S6 |
第三透镜物侧面 | S7 | 第三透镜像侧面 | S8 |
第四透镜物侧面 | S9 | 第四透镜像侧面 | S10 |
光阑表面 | S4 | 红外滤光片表面 | S11 |
成像面 | S12 |
如下具体实施方式将结合上述附图进一步说明本发明。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1
请参阅图1a,所示为本发明第一实施例中的成像透镜系统,从物侧到成像面依次包括具有负光焦度的第一透镜1、光阑2、具有正光焦度的第二透镜3、具有正光焦度的第三透镜4、具有负光焦度的第四透镜5及红外滤光片6。其中,第一透镜1的物侧表面为凹面,第三透镜4的像侧表面为凸面,第四透镜5的像侧表面为凹面。
在本实施例当中,第一透镜1、第二透镜3、第三透镜4及第四透镜5均为非球面镜片,且非球面镜片的面型表达式为:
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H、L和J分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶、十八阶和二十阶曲面系数,其取值见下文表格所示。
进一步地,所述成像透镜系统满足以下条件式:
-9≤f
1/f≤-1.5……………..(1);
其中,f表示成像透镜系统的焦距,f1表示第一透镜的有效焦距。满足条件式(1),可使得第一透镜承担较大的负光焦度,以将大视场光线发散,以平滑且没有太大的光线转折情况下进入光学系统,这样可以保证在大视场角的情况下没有过大的高级像差去矫正。
进一步地,所述成像透镜系统满足以下条件式:
-0.3≤f
3/f
2≤1……………..(2);
其中,f
2表示第二透镜的有效焦距,f
3表示第三透镜的有效焦距。满足条件式(2),可合理分配光焦度,使系统整体各个镜片所承担的相对孔径较小且合理,可以很好对像差矫正。
进一步地,所述成像透镜系统满足以下条件式:
-0.3≤(SAG
11-SAG
12)/(SAG
42-SAG
41)≤0.7……………..(3);
其中,SAG
11表示第一透镜的物侧表面的矢高,SAG
12表示第一透镜的像侧 表面的矢高,SAG
41表示第四透镜的物侧表面的矢高,SAG
42表示第四透镜的像侧表面的矢高。满足条件式(3),可有效地缩短镜头的光学总长,促进镜头小型化。
进一步地,所述成像透镜系统满足以下条件式:
Rdf0.7≤22°……………..(4);
其中,Rdf0.7表示成像透镜系统的0.7视场在第四透镜的物侧表面所通过位置的角度。满足条件式(4),可以对系统在此面上的鬼像能量在数量级上下降,系统的鬼像得到很好的改善。
进一步地,所述成像透镜系统满足以下条件式:
(ND
4-ND
3)/(VD
4-VD
3)<0……………..(5);
其中,ND
4表示第四透镜的折射率,ND
3表示第三透镜的折射率,VD
4表示第四透镜的阿贝数,VD
3表示第三透镜的阿贝数。满足条件式(5),可有效的矫正系统的色差和慧差。
进一步地,所述成像透镜系统满足以下条件式:
-0.43≤SAG
22-SAG
21≤-0.21……………..(6);
其中,SAG
22表示第二透镜的像侧表面的矢高,SAG
21表示第二透镜的物侧表面的矢高。满足条件式(6),有利于大视场光线的偏折,减小轴外视场由于球差造成系统像差矫正的难度。
进一步地,所述成像透镜系统满足以下条件式:
-0.1≤(R
32-R
22)/(R
31-R
21)≤138……………..(7);
其中,R
32表示第三透镜的像侧表面的半径,R
22表示第二透镜的像侧表面的半径,R
31表示第三透镜的物侧表面的半径,R
21表示第二透镜的物侧表面的半径。满足条件式(7),可有效缩短系统长度,实现小型化。
请参阅表1-1,所示为本实施例当中的成像透镜系统中各个镜片的相关参数,其中R代表曲率半径,d代表光学表面间距,nd代表材料的折射率,Vd代表材料的阿贝数。
表1-1:
表面序号 | 表面名称 | R | d | nd | Vd |
S1 | 物面 | — | |||
S2 | 第一透镜1物侧面 | -5.3164 | 0.2777 | 1.54 | 55.9 |
S3 | 第一透镜1像侧面 | 6.7666 | 0.5075 | ||
S4 | 光阑2表面 | Infinity | 0.1374 | ||
S5 | 第二透镜3物侧面 | 9.0514 | 0.8248 | 1.54 | 55.9 |
S6 | 第二透镜3像侧面 | -57.9145 | 0.0923 | ||
S7 | 第三透镜4物侧面 | 1.0446 | 0.6609 | 1.54 | 55.9 |
S8 | 第三透镜4像侧面 | -0.8697 | 0.0300 | ||
S9 | 第四透镜5物侧面 | 1.5629 | 0.2850 | 1.66 | 20.3 |
S10 | 第四透镜5像侧面 | 0.5541 | 0.2000 | ||
S11 | 红外滤光片6表面 | Infinity | 0.21 | 1.51 | 64 |
S12 | 成像面 | 0.6174 |
请参阅表1-2,所示为本实施例中的成像透镜系统的各非球面的面型系数。
表1-2:
请查阅图1b、1c、1d,所示为在本实施例中的成像透镜系统的轴上点球差曲线图、横向色差曲线图、场曲和畸变曲线图,由1b至1d可以看出,轴上点球差、横向色差、场曲及畸变都被良好校正。
综上,本实施例当中的成像透镜系统,采用四片具有特定屈折力的镜片,并且采用特定的表面形状及其搭配,在满足广视角的同时结构更紧凑,从而较好的实现了镜头微型化和广视角的均衡,同时还使系统焦距很短,以使系统具有更大的视场角,可以拍摄到更大面积的景物,对后期的裁切带来了巨大便利,另外此 设计的成像透镜系统增强了成像画面的纵深感和空间感,具有更好的成像质量。此外,成像透镜系统各透镜均采用非球面镜片,采用非球面镜片有以下几个优点:
1.使系统具有更好的成像质量;
2.使系统更为紧凑;
3.使系统总长更短。
实施例2
请参阅图2a,所示为本发明第二实施例当中的成像透镜系统,本实施例当中的成像透镜系统与第一实施例当中的成像透镜系统的不同之处在于,本实施例当中的成像透镜系统采用以下表2-1和表2-2所示的镜片参数。
请参阅表2-1,所示为本实施例当中的成像透镜系统中各个镜片的相关参数。
表2-1:
表面序号 | 表面名称 | R | d | nd | Vd |
S1 | 物面 | — | |||
S2 | 第一透镜1物侧面 | -7694.12 | 0.30 | 1.54 | 55.9 |
S3 | 第一透镜1像侧面 | 7.20 | 0.38 | ||
S4 | 光阑2表面 | Infinity | 0.14 | ||
S5 | 第二透镜3物侧面 | -8.10 | 0.50 | 1.54 | 55.9 |
S6 | 第二透镜3像侧面 | 1.86 | 0.03 | ||
S7 | 第三透镜4物侧面 | 0.82 | 0.88 | 1.54 | 55.9 |
S8 | 第三透镜4像侧面 | -0.61 | 0.03 | ||
S9 | 第四透镜5物侧面 | 1.31 | 0.28 | 1.66 | 20.3 |
S10 | 第四透镜5像侧面 | 0.48 | 0.20 | ||
S11 | 红外滤光片6表面 | Infinity | 0.21 | 1.51 | 64 |
S12 | 成像面 | Infinity | 0.62 |
请参阅表2-2,所示为本实施例中的成像透镜系统的各非球面的面型系数。
表2-2:
请查阅图2b、2c、2d,所示为在本实施例中的成像透镜系统的轴上点球差曲线图、横向色差曲线图、场曲和畸变曲线图,由2b至2d可以看出,轴上点球差、横向色差、场曲及畸变都被良好校正。
实施例3
请参阅图3a,所示为本发明第三实施例当中的成像透镜系统,本实施例当中的成像透镜系统与第一实施例当中的成像透镜系统的不同之处在于,本实施例当中的成像透镜系统采用以下表3-1和表3-2所示的镜片参数。
请参阅表3-1,所示为本实施例当中的成像透镜系统中各个镜片的相关参数。
表3-1:
表面序号 | 表面名称 | R | d | nd | Vd |
S1 | 物面 | — | |||
S2 | 第一透镜1物侧面 | -2.0073 | 0.2500 | 1.54 | 55.9 |
S3 | 第一透镜1像侧面 | 2.0198 | 0.4971 | ||
S4 | 光阑2表面 | Infinity | 0.0680 | ||
S5 | 第二透镜3物侧面 | 2.1224 | 0.8632 | 1.54 | 55.9 |
S6 | 第二透镜3像侧面 | -8.7917 | 0.1607 | ||
S7 | 第三透镜4物侧面 | 0.8299 | 0.7200 | 1.54 | 55.9 |
S8 | 第三透镜4像侧面 | -1.0127 | 0.0300 | ||
S9 | 第四透镜5物侧面 | 12.8772 | 0.2850 | 1.66 | 20.3 |
S10 | 第四透镜5像侧面 | 0.7772 | 0.2000 | ||
S11 | 红外滤光片6表面 | Infinity | 0.2100 | 1.51 | 64 |
S12 | 成像面 | Infinity | 0.6174 |
请参阅表3-2,所示为本实施例中的成像透镜系统的各非球面的面型系数。
表3-2:
表面编号 | k | B | C | D | E | F | G | H | L | J |
S2 | 917918.1 | 0.483 | -0.673 | 0.503 | 0.051 | -0.085 | -0.228 | -0.061 | 0.438 | -0.219 |
S3 | -146.0 | 1.365 | -1.498 | -2.749 | 14.916 | -20.273 | 180.295 | -58.325 | -2852.069 | 6033.480 |
S5 | -0.135 | 1.460 | -51.398 | 597.570 | -3295.317 | 8328.015 | -7209.935 | 0.000 | 0.000 | -0.135 |
S6 | -1.226 | 2.302 | -3.832 | 1.836 | -1.089 | 21.153 | -49.500 | 37.895 | -8.824 | -1.226 |
S7 | 0.229 | -0.264 | 0.080 | 0.220 | -0.339 | -0.277 | 0.740 | -0.926 | 0.127 | 0.229 |
S8 | 0.186 | -0.274 | -0.489 | 0.348 | 0.111 | -0.101 | -0.287 | -0.027 | 0.662 | 0.186 |
S9 | -0.545 | -0.197 | 0.118 | 0.184 | 0.027 | 0.028 | 0.207 | 0.159 | -0.075 | -0.545 |
S10 | -0.277 | 0.320 | -0.129 | 0.086 | -0.009 | -0.030 | -0.005 | 0.045 | -0.015 | -0.277 |
请查阅图3b、3c、3d,所示为在本实施例中的成像透镜系统的轴上点球差曲线图、横向色差曲线图、场曲和畸变曲线图,由3b至3d可以看出,轴上点球差、横向色差、场曲及畸变都被良好校正。
实施例4
请参阅图4a,所示为本发明第四实施例当中的成像透镜系统,本实施例当中的成像透镜系统与第一实施例当中的成像透镜系统的不同之处在于,本实施例当中的成像透镜系统采用以下表4-1和表4-2所示的镜片参数。
请参阅表4-1,所示为本实施例当中的成像透镜系统中各个镜片的相关参数。
表4-1:
表面序号 | 表面名称 | R | d | nd | Vd |
S1 | 物 | — | |||
S2 | 第一透镜1物侧面 | 27.47898 | 0.40246 | 1.54 | 55.9 |
S3 | 第一透镜1像侧面 | 2.70125 | 0.43209 | ||
S4 | 光阑2表面 | Infinity | 0.05604 | ||
S5 | 第二透镜3物侧面 | -15.33571 | 0.62384 | 1.54 | 55.9 |
S6 | 第二透镜3像侧面 | -20.71368 | 0.06117 | ||
S7 | 第三透镜4物侧面 | 1.25035 | 0.69802 | 1.54 | 55.9 |
S8 | 第三透镜4像侧面 | -0.73685 | 0.03000 | ||
S9 | 第四透镜5物侧面 | 1.24790 | 0.28496 | 1.66 | 20.3 |
S10 | 第四透镜5像侧面 | 0.55862 | 0.20000 | ||
S11 | 红外滤光片6表面 | Infinity | 0.21000 | 1.51 | 64 |
S12 | 成像面 | Infinity | 0.61744 |
请参阅表4-2,所示为本实施例中的成像透镜系统的各非球面的面型系数。
表4-2:
请查阅图4b、4c、4d,所示为在本实施例中的成像透镜系统的轴上点球差曲线图、横向色差曲线图、场曲和畸变曲线图,由4b至4d可以看出,轴上点球差、横向色差、场曲及畸变都被良好校正。
请参阅表5,所示为上述四个实施例中各自对应的光学特性及各条件式对应的数值,光学特性包括系统焦距f、光圈数F#、光学总长TTL、及视场角2θ。
表5:
光学特性或条件式 | 实施例1 | 实施例2 | 实施例3 | 实施例4 |
f(mm) | 1.379 | 1.464 | 1.2 | 1.3 |
F# | 2.2 | 2.2 | 2.2 | 2.2 |
TTL(mm) | 3.84 | 3.584 | 3.9 | 3.61 |
2θ | 115° | 115° | 155° | 115° |
f 1/f | -2.4 | -4 | -9 | -1.5 |
f 3/f 2 | 0.08 | -0.3 | 0.3 | 1 |
(SAG 11-SAG 12)/(SAG 42-SAG 41) | 0.17 | 0.23 | -0.3 | 0.7 |
Rdf0.7 | 21.5° | 21.7° | 21.9° | 22° |
(ND 4-ND 3)/(VD 4-VD 3) | -0.00337 | -0.00337 | -0.00337 | -0.00337 |
SAG 22-SAG 21 | -0.43 | -0.25 | -0.21 | -0.24 |
(R 32-R 22)/(R 31-R 21) | 0.1 | -0.1 | 0.4 | 138 |
需要指出的是,上述实施例1-实施例4当中的任一实施例的成像镜头均可运用在手机、平板、安防监控设备、行车记录仪等终端设备中。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种成像透镜系统,其特征在于,从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧表面为凹面;具有正光焦度的第二透镜;具有正光焦度的第三透镜,其像侧表面为凸面;以及具有负光焦度的第四透镜,其像侧表面为凹面。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:-9≤f 1/f≤-1.5;其中,f表示所述成像透镜系统的焦距,f 1表示所述第一透镜的有效焦距。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:-0.3≤f 3/f 2≤1;其中,f 2表示所述第二透镜的有效焦距,f 3表示所述第三透镜的有效焦距。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:-0.3≤(SAG 11-SAG 12)/(SAG 42-SAG 41)≤0.7;其中,SAG 11表示所述第一透镜的物侧表面的矢高,SAG 12表示所述第一透镜的像侧表面的矢高,SAG 41表示所述第四透镜的物侧表面的矢高,SAG 42表示所述第四透镜的像侧表面的矢高。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:Rdf0.7≤22°;其中,Rdf0.7表示所述成像透镜系统的0.7视场在所述第四透镜的物侧表面所通过位置的角度。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:(ND 4-ND 3)/(VD 4-VD 3)<0;其中,ND 4表示所述第四透镜的折射率,ND 3表示所述第三透镜的折射率,VD 4表示所述第四透镜的阿贝数,VD 3表示所述第三透镜的阿贝数。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:-0.43≤SAG 22-SAG 21≤-0.21;其中,SAG 22表示所述第二透镜的像侧表面的矢高,SAG 21表示所述第二透镜的物侧表面的矢高。
- 根据权利要求1所述的成像透镜系统,其特征在于,所述成像透镜系统满足以下条件式:-0.1≤(R 32-R 22)/(R 31-R 21)≤138;其中,R 32表示所述第三透镜的像侧表面的半径,R 22表示所述第二透镜的像侧表面的半径,R 31表示所述第三透镜的物侧表面的半径,R 21表示所述第二透镜的物侧表面的半径。
- 根据权利要求1所述的成像透镜系统,其特征在于,各透镜均为非球面镜片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/558,503 US20220113495A1 (en) | 2019-06-24 | 2021-12-21 | Imaging lens system, camera module and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910546646.2A CN110333595B (zh) | 2019-06-24 | 2019-06-24 | 一种成像透镜系统 |
CN201910546646.2 | 2019-06-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/558,503 Continuation-In-Part US20220113495A1 (en) | 2019-06-24 | 2021-12-21 | Imaging lens system, camera module and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020258914A1 true WO2020258914A1 (zh) | 2020-12-30 |
Family
ID=68142848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/077782 WO2020258914A1 (zh) | 2019-06-24 | 2020-03-04 | 一种成像透镜系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220113495A1 (zh) |
CN (1) | CN110333595B (zh) |
WO (1) | WO2020258914A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110333595B (zh) * | 2019-06-24 | 2020-11-27 | 江西联益光学有限公司 | 一种成像透镜系统 |
CN110737074A (zh) * | 2019-10-30 | 2020-01-31 | 广东弘景光电科技股份有限公司 | 高像素红外光学系统及其应用的摄像模组 |
TWI730517B (zh) | 2019-11-29 | 2021-06-11 | 大立光電股份有限公司 | 透鏡系統及電子裝置 |
CN111929828B (zh) * | 2020-09-03 | 2022-03-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112946861B (zh) * | 2021-02-05 | 2023-02-24 | 惠州市星聚宇光学有限公司 | 一种红外镜头以及红外成像模组 |
CN112505901B (zh) * | 2021-02-08 | 2021-04-27 | 江西联益光学有限公司 | 光学镜头及成像设备 |
CN114967063A (zh) * | 2022-06-29 | 2022-08-30 | 浙江舜宇光学有限公司 | 光学成像镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013007968A (ja) * | 2011-06-27 | 2013-01-10 | Optical Logic Inc | 撮像レンズ |
JP2017116795A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | 撮像レンズおよび撮像装置 |
CN207123647U (zh) * | 2017-09-13 | 2018-03-20 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN208459670U (zh) * | 2018-07-06 | 2019-02-01 | 中山联合光电科技股份有限公司 | 一种广角光学塑胶装置 |
CN110333595A (zh) * | 2019-06-24 | 2019-10-15 | 江西联益光学有限公司 | 一种成像透镜系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101356401B1 (ko) * | 2012-04-23 | 2014-01-29 | 주식회사 엔투에이 | 광각 렌즈 시스템 |
KR101412627B1 (ko) * | 2013-09-24 | 2014-06-27 | 주식회사 세코닉스 | 왜곡이 보정된 광각 촬영 렌즈 시스템 |
JP2017037276A (ja) * | 2015-08-14 | 2017-02-16 | キヤノン電子株式会社 | 顕微鏡対物レンズ |
CN207020387U (zh) * | 2017-05-10 | 2018-02-16 | 江西凤凰光学科技有限公司上海分公司 | 一种定焦安防监控镜头 |
CN207336900U (zh) * | 2017-07-25 | 2018-05-08 | 浙江舜宇光学有限公司 | 成像镜头 |
CN107422459B (zh) * | 2017-09-13 | 2020-01-07 | 浙江舜宇光学有限公司 | 摄像镜头 |
WO2019052145A1 (zh) * | 2017-09-13 | 2019-03-21 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN109683291B (zh) * | 2019-02-20 | 2021-05-07 | 宁波舜宇车载光学技术有限公司 | 光学镜头及成像设备 |
TWI688786B (zh) * | 2019-03-26 | 2020-03-21 | 大立光電股份有限公司 | 光學取像系統、取像裝置及電子裝置 |
CN111929828B (zh) * | 2020-09-03 | 2022-03-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
-
2019
- 2019-06-24 CN CN201910546646.2A patent/CN110333595B/zh active Active
-
2020
- 2020-03-04 WO PCT/CN2020/077782 patent/WO2020258914A1/zh active Application Filing
-
2021
- 2021-12-21 US US17/558,503 patent/US20220113495A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013007968A (ja) * | 2011-06-27 | 2013-01-10 | Optical Logic Inc | 撮像レンズ |
JP2017116795A (ja) * | 2015-12-25 | 2017-06-29 | 株式会社タムロン | 撮像レンズおよび撮像装置 |
CN207123647U (zh) * | 2017-09-13 | 2018-03-20 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN208459670U (zh) * | 2018-07-06 | 2019-02-01 | 中山联合光电科技股份有限公司 | 一种广角光学塑胶装置 |
CN110333595A (zh) * | 2019-06-24 | 2019-10-15 | 江西联益光学有限公司 | 一种成像透镜系统 |
Also Published As
Publication number | Publication date |
---|---|
US20220113495A1 (en) | 2022-04-14 |
CN110333595A (zh) | 2019-10-15 |
CN110333595B (zh) | 2020-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020258914A1 (zh) | 一种成像透镜系统 | |
WO2021093542A1 (zh) | 光学镜头及成像设备 | |
WO2022143647A1 (zh) | 光学镜头及成像设备 | |
WO2022089327A1 (zh) | 光学镜头及成像设备 | |
CN110297317B (zh) | 一种成像镜头 | |
CN113741006B (zh) | 光学镜头、摄像模组及电子设备 | |
CN112684594B (zh) | 光学镜头及成像设备 | |
CN113805310A (zh) | 光学系统、取像模组及电子设备 | |
WO2020238577A1 (zh) | 组合式变焦双摄镜头 | |
CN113433656B (zh) | 一种成像系统、镜头模组及电子设备 | |
CN115185071B (zh) | 光学镜头 | |
CN113219628A (zh) | 光学系统、取像模组及电子设备 | |
CN113791490B (zh) | 光学镜头及成像设备 | |
CN114019655B (zh) | 光学镜头、摄像模组及电子设备 | |
CN112505901B (zh) | 光学镜头及成像设备 | |
CN114815172B (zh) | 光学镜头 | |
CN114326052B (zh) | 光学系统、取像模组及电子设备 | |
CN113589495B (zh) | 外置镜头 | |
CN113741008B (zh) | 光学系统、取像模组及电子设备 | |
CN113866943B (zh) | 光学系统、取像模组及电子设备 | |
CN113900226B (zh) | 光学系统、取像模组及电子设备 | |
CN112925086B (zh) | 光学系统、取像模组及电子设备 | |
CN113253429B (zh) | 广角镜头及成像设备 | |
CN113433652B (zh) | 光学系统、镜头模组和电子设备 | |
CN111897104B (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20833150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20833150 Country of ref document: EP Kind code of ref document: A1 |