WO2021087661A1 - 光学透镜组、取像装置及电子装置 - Google Patents

光学透镜组、取像装置及电子装置 Download PDF

Info

Publication number
WO2021087661A1
WO2021087661A1 PCT/CN2019/115318 CN2019115318W WO2021087661A1 WO 2021087661 A1 WO2021087661 A1 WO 2021087661A1 CN 2019115318 W CN2019115318 W CN 2019115318W WO 2021087661 A1 WO2021087661 A1 WO 2021087661A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
lens group
optical axis
object side
Prior art date
Application number
PCT/CN2019/115318
Other languages
English (en)
French (fr)
Inventor
谢晗
刘彬彬
李明
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2019/115318 priority Critical patent/WO2021087661A1/zh
Priority to US17/606,359 priority patent/US20220196989A1/en
Priority to EP19951684.0A priority patent/EP3901682A4/en
Publication of WO2021087661A1 publication Critical patent/WO2021087661A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • This application relates to the field of optical imaging technology, in particular to an optical lens group, an image capturing device and an electronic device.
  • the traditional optical lens In order to ensure the image quality, the traditional optical lens is usually large in size and long in total length, making it difficult to mount on ultra-thin electronic products; in addition, the traditional optical lens has weak adaptability to dark scenes, and the resulting shooting The picture is dark and cannot meet the user's professional shooting needs.
  • an optical lens group is provided.
  • An optical lens group which includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in order from the object side to the image side along the optical axis, wherein,
  • the first lens has a positive refractive power, and its object side surface is convex at the optical axis;
  • the second lens has optical power
  • the third lens has optical power, and its object side surface is convex at the optical axis, and its image side surface is concave at the optical axis;
  • the fourth lens has optical power
  • the fifth lens has refractive power, and its object side surface is convex at the optical axis, and its image side surface is concave at the optical axis;
  • the sixth lens has negative refractive power, and its object side surface is convex at the optical axis, and its image side surface is concave at the optical axis. At least one of the object side surface and the image side surface of the sixth lens includes at least one Recurve point
  • optical lens group satisfies the following relationship:
  • FNO is the number of apertures of the optical lens group
  • f123 is the combined focal length of the first lens
  • f456 is the fourth lens, the fifth lens and The combined focal length of the sixth lens.
  • An image capturing device comprising the optical lens group described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the optical lens group.
  • An electronic device includes a housing and the imaging device described in the above embodiments, and the imaging device is installed on the housing.
  • FIG. 1 shows a schematic diagram of the structure of the optical lens group of Embodiment 1 of the present application
  • 2A to 2D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a chief ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 1;
  • FIG. 3 shows a schematic diagram of the structure of the optical lens group of Embodiment 2 of the present application
  • 4A to 4D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a principal ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an optical lens group according to Embodiment 3 of the present application.
  • 6A to 6D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a chief ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical lens group according to Embodiment 4 of the present application.
  • 8A to 8D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a principal ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an optical lens group according to Embodiment 5 of the present application.
  • 10A to 10D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a chief ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 5;
  • FIG. 11 shows a schematic diagram of the structure of an optical lens group according to Embodiment 6 of the present application.
  • 12A to 12D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a chief ray incident angle curve diagram on the imaging surface of the optical lens group of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of an optical lens group according to Embodiment 7 of the present application.
  • 14A to 14D are respectively a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, a distortion curve diagram, and a chief ray incident angle curve diagram on the imaging surface of the optical lens group of Example 7.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the traditional six-element optical lens group guarantees the image quality while the total length of the lens group is usually longer, so that the lens equipped with this lens group cannot be mounted on ultra-thin electronic products.
  • the traditional six-element The aperture of the optical lens group is often smaller, and the low-light shooting ability is weak, and it is difficult to shoot brighter images.
  • an embodiment of the present application provides a configuration with a large aperture, high image quality, and can meet miniaturization and ultra-thin applications
  • the required optical lens group includes six lenses with refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and an imaging surface on the image side of the sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens has a positive refractive power and assumes the role of mainly converging light, and the object side of the first lens is convex at the optical axis, which is beneficial to adjust the shape and refractive power of the first lens, thereby balancing the two surfaces of the first lens The curvature configuration.
  • the second lens has refractive power.
  • the second lens has positive refractive power, it can cooperate with the first lens to further shorten the total length of the lens.
  • it has negative refractive power it can correct part of the aberrations generated by the first lens to make the system Has a higher resolution.
  • the third lens has refractive power, and the object side surface of the third lens is convex on the optical axis, and the image side surface is concave on the optical axis, which is beneficial to correct the aberrations generated by the first and second lenses and improve the imaging quality.
  • the fourth lens has refractive power, and the image side surface of the fourth lens is convex off-axis, which helps reduce the distortion of the off-axis field of view, avoid imaging distortion, and also help correct aberrations.
  • the fifth lens has refractive power, and the object side of the fifth lens is convex at the optical axis, and the image side is concave at the optical axis, which is beneficial to further correct aberrations. At the same time, the image side of the fifth lens is off-axis.
  • a convex surface is conducive to cooperating with the sixth lens to reduce the incidence angle of the chief ray of the off-axis field of view, and improve the matching degree with the traditional photosensitive element.
  • the sixth lens can have negative refractive power, so that the back focal length of the lens group can be shortened, which facilitates the installation of the lens equipped with the optical lens group of the present application in an ultra-thin electronic device; at the same time, the object side of the sixth lens is on the optical
  • the axis is convex, which is beneficial to adjust the shape and refractive power of the sixth lens to further correct aberrations; the image side of the sixth lens is concave at the optical axis, so that the optical lens group can be configured with a proper back focus.
  • At least one of the object side surface and the image side surface of the sixth lens includes at least one inflection point to effectively suppress the angle of the off-axis field of view light incident on the photosensitive element, so that it can match the photosensitive element more accurately Element, thereby improving the light receiving efficiency of the photosensitive element.
  • the optical lens group satisfies the following relationship: FNO ⁇ 1.8; where FNO is the aperture number of the optical lens group.
  • FNO can be 1.4, 1.5, 1.6, 1.7, or 1.8.
  • the optical lens group satisfies the following relationship: -1 ⁇ f123/f456 ⁇ 0; where f123 is the combined focal length of the first lens, the second lens and the third lens, and f456 is the fourth lens, the fifth lens and the first lens.
  • f123/f456 can be -0.95, -0.65, -0.35, -0.25, -0.20, -0.15, -0.10, or -0.05.
  • the first, second and third lenses can provide sufficient positive refractive power to better converge the light, and at the same time, the fourth, fifth and sixth lenses can provide suitable
  • the negative refractive power of the lens can correct the spherical aberration caused by the first lens, the second lens and the third lens, reduce the field curvature and distortion of the optical lens group, and improve the resolution ability of the optical lens group.
  • the light emitted or reflected by the subject enters the optical lens group from the object side direction, and passes through the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in sequence And the sixth lens, finally converge on the imaging surface.
  • the above-mentioned optical lens group by reasonably distributing the optical power, surface shape and effective focal length of each lens, can effectively increase the aperture of the optical lens group while ensuring the imaging quality of the optical lens group, thereby enhancing the optical lens group Low-light shooting capabilities to improve the quality of shooting.
  • both the object side surface and the image side surface of the sixth lens are set to be aspherical surfaces.
  • the optical lens group satisfies the following relationship: TTL/ImgH ⁇ 1.7; where TTL is the distance from the object side of the first lens to the imaging surface of the optical lens group on the optical axis, and ImgH is the optical lens group Half of the diagonal length of the effective pixel area on the imaging surface.
  • TTL/ImgH can be 1.378, 1.428, 1.458, 1.488, 1.518, 1.548, 1.578, or 1.608. Under the condition that the above relationship is satisfied, the total length of the optical lens group can be effectively shortened, and the miniaturization and ultra-thinness of the lens can be realized.
  • the optical lens group satisfies the following relational expression: EPD/TTL>0.45; where EPD is the entrance pupil diameter of the optical lens group, and TTL is the distance between the object side of the first lens and the imaging surface of the optical lens group. The distance on the axis.
  • EPD/TTL can be 0.451, 0.455, 0.459, 0.464, 0.484, 0.504, 0.524, 0.544, 0.564, or 0.584.
  • the optical lens group can be made to have a larger clear aperture while effectively shortening the total length of the optical lens group, thereby realizing the miniaturization and ultra-thinness of the lens.
  • the optical lens group satisfies the following relational expression: 0.3 ⁇ R5/R6 ⁇ 3.5; where R5 is the radius of curvature of the object side surface of the third lens at the optical axis, and R6 is the image side surface of the third lens at the optical axis.
  • the radius of curvature at. R5/R6 can be 0.328, 0.348, 0.368, 0.768, 1.168, 1.568, 2.068, 2.568, 3.068, or 3.368.
  • the third lens can be designed as a meniscus lens with a convex surface facing the object side, so as to achieve a good compensation effect on the spherical aberration and astigmatism of the optical lens group and ensure the imaging quality.
  • the optical lens group satisfies the following relationship: 1 ⁇ R9/f+R10/f ⁇ 2; where R9 is the radius of curvature of the fifth lens object side surface at the optical axis, and R10 is the fifth lens image
  • the radius of curvature of the side surface at the optical axis, f is the effective focal length of the optical lens group.
  • (R9/f+R10/f) can be 1.437, 1.487, 1.537, 1.587, 1.637, 1.687, 1.737, 1.787, 1.837, 1.887, 1.937, 1.987, or 1.996.
  • the shape of the fifth lens can be reasonably optimized to further correct the aberration and curvature of field of the optical lens group, and improve the imaging quality.
  • the optical lens group satisfies the following relationship: MAX(cra) ⁇ 38.5°; where MAX(cra) is the maximum incident angle of the chief ray on the imaging surface of the optical lens group.
  • MAX(cra) can be 31.5°, 32.5°, 33.5°, 34.5°, 35.5°, 36.5°, 37.5° or 38.5°.
  • the increase in the incidence angle of the chief ray of the off-axis field of view can be effectively suppressed, so that the chief ray can more accurately match the photosensitive element with ultra-high pixels, thereby improving the light energy receiving efficiency of the photosensitive element.
  • the optical lens group satisfies the following relationship: f1/OAL>0.7; where f1 is the effective focal length of the first lens, and OAL is the object side of the first lens to the image side of the sixth lens on the optical axis On the distance.
  • f1/OAL can be 0.743, 0.943, 1.143, 1.343, 1.543, 1.743, 1.943, or 2.143.
  • the first lens can have sufficient positive refractive power, which is beneficial to compress the total length of the optical lens group and realize the miniaturization of the lens; if the ratio of the two is less than or equal to 0.7, it will lead to the first lens.
  • the refractive power of the lens is reduced or the total length of the optical lens group is not fully compressed, which is not conducive to the miniaturization of the lens.
  • the optical lens group satisfies the following relationship: 0.3 ⁇ T34/P ⁇ 0.5; where T34 is the distance on the optical axis from the image side surface of the third lens to the object side surface of the fourth lens, and P is the first The distance from the object side of the three lens to the image side of the fourth lens on the optical axis.
  • T34/P can be 0.333, 0.343, 0.353, 0.363, 0.373, 0.383, 0.393, 0.403, 0.413, 0.423, or 0.433.
  • the air gap between the third lens and the fourth lens can be optimized to provide sufficient space for the surface adjustment of the image side surface of the third lens and the object side surface of the fourth lens; at the same time, if the ratio of the two is Less than or equal to 0.3, it will make the third lens and the fourth lens too compact, which is not conducive to the flexible adjustment of the surface shape of the two; if the ratio of the two is greater than or equal to 0.5, the third lens and the fourth lens will be too scattered , Is not conducive to the miniaturization and ultra-thinness of the lens.
  • the optical lens group satisfies the following relationship:
  • MIN(T56)/MAX(T56) can be 0.063, 0.093, 0.153, 0.253, 0.303, 0.353, 0.403, 0.453, 0.503, or 0.534. Under the condition that the above relationship is satisfied, the concave and convex of the fifth lens and the sixth lens can be made in the same direction, and the configuration is more compact, which is more conducive to the miniaturization of the optical lens group.
  • the optical lens group satisfies the following relationship:
  • the refractive power and center thickness of each lens can be reasonably optimized, so as to ensure the quality of the optical lens composition while effectively shortening
  • the total length of the optical lens group realizes the miniaturization of the lens.
  • the optical lens group is further provided with an aperture stop, and the aperture stop may be provided between the object side of the optical lens group and the first lens, or between the first lens and the sixth lens.
  • the aperture stop is located between the object side of the optical lens group and the first lens, so as to effectively prevent the chief ray incident angle from increasing excessively, so that the optical lens group can better match the photosensitive element of traditional specifications.
  • the aperture stop can also be located on the surface of any one of the first lens to the sixth lens (for example, the object side and the image side), and form an functional relationship with the lens, for example, by coating the surface of the lens. Cover the light-blocking coating to form an aperture stop on the surface; or fix the surface of the lens by a clamp.
  • the clamp structure on the surface can limit the width of the imaging beam of the object point on the axis, so as to be on the surface An aperture stop is formed.
  • the lens surface of each lens is aspherical, thereby improving the flexibility of lens design, effectively correcting aberrations, and improving the imaging resolution of the optical lens group .
  • the object side surface and the image side surface of each lens of the optical lens group may also be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application.
  • the surface of each lens in the optical lens group may be an aspheric surface or any combination of spherical surfaces.
  • the material of each lens in the optical lens group may be glass or plastic.
  • the plastic lens can reduce the weight of the optical lens group and reduce the production cost, while the glass lens can make the optical lens group. It has excellent optical performance and high temperature resistance. It should be noted that the material of each lens in the optical lens group can also be any combination of glass and plastic, and it does not have to be all glass or all plastic.
  • the optical lens group further includes a filter for filtering infrared light and/or a protective glass for protecting the photosensitive element, wherein the photosensitive element is located on the imaging surface of the optical lens group.
  • the imaging surface may be the photosensitive surface of the photosensitive element.
  • the optical lens group of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • FNO large aperture
  • the optical lens group is not limited to including six lenses. If necessary, the optical lens group may also include other numbers of lenses.
  • FIG. 1 shows a schematic diagram of the structure of the optical lens group of Embodiment 1.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S15.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side surface S8 is convex at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • the material of the infrared filter L7 is glass.
  • the infrared filter L7 can be part of the optical lens group and assembled with each lens, or can also be installed when the optical lens group and the photosensitive element are assembled.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the optical lens group of Example 1, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens. The distance from the object side of the latter lens to the optical axis.
  • the reference wavelength in Table 1 is 555nm.
  • the aspheric surface type in each lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 shows the coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 of the higher order terms that can be used for the lens aspheric surfaces S1-S12 in Example 1.
  • the half of the diagonal length ImgH of the effective pixel area on the imaging surface S15 of the optical lens group of this embodiment is 3.4 mm. Therefore, in combination with the data in Table 1 and Table 2, it can be seen that the optical lens group in embodiment 1 satisfies:
  • FNO 1.8, where FNO is the aperture number of the optical lens group
  • f123/f456 -0.198, where f123 is the combined focal length of the first lens L1, the second lens L2, and the third lens L3, and f456 is the combined focal length of the fourth lens L4, the fifth lens L5, and the sixth lens L6;
  • TTL/ImgH 1.422, where TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S15 of the optical lens group on the optical axis, and ImgH is the diagonal length of the effective pixel area on the imaging surface S15 of the optical lens group half;
  • EPD/TTL 0.461, where EPD is the entrance pupil diameter of the optical lens group, and TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S15 of the optical lens group on the optical axis;
  • R5/R6 2.876, where R5 is the radius of curvature of the object side surface S5 of the third lens L3 at the optical axis, and R6 is the radius of curvature of the third lens L3 image side surface S6 at the optical axis;
  • R9/f+R10/f 1.604, where R9 is the radius of curvature of the fifth lens L5 on the object side surface S9 at the optical axis, R10 is the curvature radius of the fifth lens L5 on the image side surface S10 at the optical axis, and f is the optical lens The effective focal length of the group;
  • MAX(cra) 34.3°, where MAX(cra) is the maximum incident angle of the chief ray on the imaging surface of the optical lens group;
  • f1/OAL 1.904, where f1 is the effective focal length of the first lens L1, and OAL is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis;
  • T34/P 0.414, where T34 is the distance from the image side surface S6 of the third lens L3 to the object side surface S7 of the fourth lens L4 on the optical axis, and P is the distance from the object side surface S5 of the third lens L3 to the fourth lens L4 The distance of the image side S8 on the optical axis;
  • MIN(T56)/MAX(T56) 0.534, where MIN(T56) is the minimum distance between the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 in the direction parallel to the optical axis, MAX(T56 ) Is the maximum distance from the image side surface S10 of the fifth lens L5 to the object side surface S11 of the sixth lens L6 in a direction parallel to the optical axis;
  • FIG. 2A shows the longitudinal spherical aberration curve of the optical lens group of Example 1, which respectively indicate the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the optical lens group;
  • FIG. 2B shows the implementation The astigmatism curve of the optical lens unit of Example 1, which represents the meridional curvature of field and the sagittal field curvature;
  • FIG. 2C shows the distortion curve of the optical lens unit of Example 1, which represents the distortion rate under different image heights.
  • 2D shows the chief ray (chief ray angle) incident angle curve on the image plane S15 composed of the optical lens of Example 1, which represents the angle at which the chief ray is incident on the photosensitive element under different image heights. According to FIG. 2A to FIG. 2D, it can be seen that the optical lens group given in Example 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic diagram of the structure of the optical lens group of Embodiment 2 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side surface S8 is convex at the optical axis and convex at the circumference.
  • the fifth lens L5 has a negative refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the optical lens group of Example 2, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm);
  • Table 4 shows the coefficients of higher order terms that can be used for the aspheric surface S1-S12 of the lens in Example 2, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 5 shows the relevant parameter values of the optical lens group given in Example 2.
  • the reference wavelength is 555nm.
  • FIG. 4A shows the longitudinal spherical aberration curve of the optical lens group of Embodiment 2, and the focusing points of light of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 4B shows the astigmatism curve of the optical lens group of Embodiment 2 , which represents meridional field curvature and sagittal field curvature;
  • Figure 4C shows the distortion curve of the optical lens group of Example 2, which represents the distortion rate under different image heights;
  • Figure 4D shows the example 2
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIGS. 4A to 4D, it can be seen that the optical lens group given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic diagram of the structure of the optical lens group of Embodiment 3 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is convex at the optical axis and the circumference is convex
  • the image side surface S2 is convex at the optical axis and the circumference is convex.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is concave at the optical axis and concave at the circumference
  • the image side S4 is convex at the optical axis and convex at the circumference.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side surface S8 is convex at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and convex at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the optical lens group of Example 3.
  • the radius of curvature and thickness The effective focal length of each lens is in millimeters (mm);
  • Table 7 shows the higher order term coefficients that can be used for the lens aspheric surface S1-S12 in Example 3, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 8 shows the relevant parameter values of the optical lens group given in Example 3.
  • the reference wavelength is 555nm.
  • FIG. 6A shows the longitudinal spherical aberration curve of the optical lens group of Embodiment 3, and the focusing points of light of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 6B shows the astigmatism curve of the optical lens group of Embodiment 3 , which represents meridional field curvature and sagittal field curvature;
  • Figure 6C shows the distortion curve of the optical lens group of Example 3, which represents the distortion rate under different image heights;
  • Figure 6D shows the example 3
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIGS. 6A to 6D, it can be seen that the optical lens group given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic diagram of the structure of the optical lens group of Embodiment 4 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is convex at the optical axis and concave at the circumference
  • the image side surface S8 is concave at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the optical lens group of Example 4.
  • the radius of curvature, thickness The effective focal length of each lens is in millimeters (mm);
  • Table 10 shows the higher order term coefficients that can be used in the aspheric surface S1-S12 of the lens in Example 4, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 11 shows the relevant parameter values of the optical lens group given in Example 4.
  • the reference wavelength is 555nm.
  • FIG. 8A shows the longitudinal spherical aberration curve of the optical lens group of embodiment 4, and the focusing points of light of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 8B shows the astigmatism curve of the optical lens group of embodiment 4 , Which represents meridional field curvature and sagittal field curvature;
  • Figure 8C shows the distortion curve of the optical lens group of Example 4, which represents the distortion rate under different image heights;
  • Figure 8D shows the example 4
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIGS. 8A to 8D, it can be seen that the optical lens group given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical lens group according to Embodiment 5 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a positive refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a negative refractive power.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side surface S8 is convex at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the optical lens group of Example 5.
  • the radius of curvature, thickness The unit of the effective focal length of each lens is millimeter (mm);
  • Table 13 shows the higher order term coefficients that can be used in the aspheric surface S1-S12 of the lens in Example 5, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 14 shows the relevant parameter values of the optical lens group given in Example 5.
  • the reference wavelength is 555nm.
  • FIG. 10A shows the longitudinal spherical aberration curve of the optical lens group of Embodiment 5, and the focusing points of light rays of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 10B shows the astigmatism curve of the optical lens group of Embodiment 5 , which represents meridional field curvature and sagittal field curvature;
  • Figure 10C shows the distortion curve of the optical lens group of Example 5, which represents the distortion rate under different image heights;
  • Figure 10D shows the example 5
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIG. 10A to FIG. 10D, it can be seen that the optical lens group given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic diagram of the structure of the optical lens group of Embodiment 6 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 is convex at the optical axis and concave at the circumference.
  • the image side surface S8 is concave at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens group of Example 6, where the radius of curvature and thickness , The effective focal length of each lens is in millimeters (mm);
  • Table 16 shows the higher order term coefficients that can be used in the lens aspheric surface S1-S12 in Example 6, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 17 shows the relevant parameter values of the optical lens group given in Example 6.
  • the reference wavelength is 555nm.
  • FIG. 12A shows the longitudinal spherical aberration curve of the optical lens group of Example 6, and the focusing points of light of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 12B shows the astigmatism curve of the optical lens group of Example 6 , Which represents the meridional field curvature and sagittal field curvature;
  • Figure 12C shows the distortion curve of the optical lens group of Example 6, which represents the distortion rate under different image heights;
  • Figure 12D shows the example 6
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIGS. 12A to 12D, it can be seen that the optical lens group given in Example 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical lens group according to Embodiment 7 of the present application.
  • the optical lens group includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a positive refractive power.
  • the object side surface S1 is convex at the optical axis and convex at the circumference, and the image side S2 is concave at the optical axis and concave at the circumference.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is convex at the optical axis and the circumference is convex
  • the image side surface S4 is convex at the optical axis and the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 is convex at the optical axis and concave at the circumference.
  • the image side surface S6 is concave at the optical axis and concave at the circumference.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 is convex at the optical axis and concave at the circumference.
  • the image side surface S8 is convex at the optical axis and convex at the circumference.
  • the fifth lens L5 has a positive refractive power.
  • the object side surface S9 is convex at the optical axis and concave at the circumference.
  • the image side surface S10 is concave at the optical axis and convex at the circumference.
  • the sixth lens L6 has a negative refractive power.
  • the object side surface S11 is convex at the optical axis and concave at the circumference.
  • the image side surface S12 is concave at the optical axis and convex at the circumference.
  • each lens of the first lens L1 to the sixth lens L6 are aspherical.
  • the design of the aspherical surface can solve the problem of distortion of the field of view, and can also make the lens smaller, thinner and flat. Achieve excellent optical imaging effect, and further make the optical lens group have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all plastic, and the plastic lens can reduce the weight of the optical lens group and at the same time reduce the production cost.
  • a stop STO is also provided between the object OBJ and the first lens L1 to further improve the imaging quality of the optical lens group.
  • the optical lens group further includes a filter L7 having an object side surface S13 and an image side surface S14.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the filter L7 is an infrared filter, which is used to filter out the infrared light in the external light incident to the optical lens group to avoid imaging distortion.
  • Table 18 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the optical lens group of Example 7, where the radius of curvature and thickness
  • the unit of the effective focal length of each lens is millimeter (mm)
  • Table 19 shows the higher order term coefficients that can be used for the aspheric surface S1-S12 of the lens in Example 7, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined
  • Table 20 shows the relevant parameter values of the optical lens group given in Example 7.
  • the reference wavelength is 555nm.
  • FIG. 14A shows the longitudinal spherical aberration curve of the optical lens group of Example 7, and the focusing points of light of different wavelengths are deviated after passing through the optical lens group;
  • FIG. 14B shows the astigmatism curve of the optical lens group of Example 7 , Which represents meridional field curvature and sagittal field curvature;
  • Figure 14C shows the distortion curve of the optical lens group of Example 7, which represents the distortion rate under different image heights;
  • Figure 14D shows the example 7
  • the optical lens composes the chief ray incident angle curve on the image plane S15, which represents the angle at which the chief ray enters the photosensitive element under different image heights. According to FIGS. 14A to 14D, it can be seen that the optical lens group given in Example 7 can achieve good imaging quality.
  • the present application also provides an image capturing device, including the optical lens group as described above; and a photosensitive element, which is arranged on the image side of the optical lens group to receive the light carrying image information formed by the optical system.
  • the photosensitive element may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the above-mentioned image capturing device uses the aforementioned optical lens group to capture clear and bright images even in low light conditions. At the same time, the image capturing device also has the characteristics of miniaturization, which is convenient to adapt to limited size such as thin and light electronic equipment. installation.
  • the present application also provides an electronic device, including a housing, and the image capturing device as described above.
  • the image capturing device is installed on the housing to capture images.
  • the image capturing device is arranged in the casing and exposed from the casing to capture images.
  • the casing can provide protection against dust, water, and drop of the image capturing device.
  • the casing is provided with holes corresponding to the image capturing device. Make light penetrate into or out of the shell from the hole.
  • the above-mentioned electronic device has the characteristics of light and thin structure, and the image capturing device as described above can be used to capture bright, defocused and high-definition images, which can meet the user's multi-scene and professional shooting requirements.
  • the "electronic device” used in the embodiments of the present application may include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Abstract

一种光学透镜组、取像装置和电子装置。光学透镜组沿着光轴由物侧至像侧依序包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6);第一透镜(L1)具有正光焦度,物侧面(S1)于光轴处为凸面;第二透镜(L2)至第五透镜(L5)均具有光焦度,其中第三透镜(L3)物侧面(S5)于光轴处为凸面,像侧面(S6)于光轴处为凹面;第五透镜(L5)物侧面(S9)于光轴处为凸面,像侧面(S10)于光轴处为凹面;第六透镜(L6)具有负光焦度,物侧面(S11)于光轴处为凸面,像侧面(S12)于光轴处为凹面,第六透镜(L6)的物侧面(S11)与像侧面(S12)中至少一个表面包含至少一个反曲点;光学透镜组的光圈数FNO满足FNO≤1.8;第一透镜(L1)、第二透镜(L2)和第三透镜(L3)的组合焦距f123和第四透镜(L4)、第五透镜(L5)和第六透镜(L6)的组合焦距f456满足-1<f123/f456<0。

Description

光学透镜组、取像装置及电子装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种光学透镜组、取像装置及电子装置。
背景技术
近年来,随着科技的发展,具有摄像功能的便携式电子产品得到人们更多的青睐。半导体工艺技术的进步使得CMOS芯片等感光元件的像素尺寸越来越小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化镜头俨然成为目前市场上的主流。
传统的光学镜头为了保证成像质量,通常尺寸较大,且总长较长,难以搭载在超薄型的电子产品上;除此之外,传统光学镜头的暗光场景适应能力较弱,得到的拍摄画面较暗,无法满足用户的专业化拍摄需求。
发明内容
根据本申请的各种实施例,提供一种光学透镜组。
一种光学透镜组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其中,
所述第一透镜具有正光焦度,且其物侧面于光轴处为凸面;
所述第二透镜具有光焦度;
所述第三透镜具有光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面;
所述第四透镜具有光焦度;
所述第五透镜具有光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面;
所述第六透镜具有负光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,所述第六透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点;
所述光学透镜组满足下列关系式:
FNO≤1.8;
-1<f123/f456<0;
其中,FNO为所述光学透镜组的光圈数,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,f456为所述第四透镜、所述第五透镜和所述第六透镜的组合焦距。
一种取像装置,包括上述实施例所述的光学透镜组;以及感光元件,所述感光元件设于所述光学透镜组的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像装置,所述取像装置安装在所述壳体上。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的光学透镜组的结构示意图;
图2A至图2D分别为实施例1的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图3示出了本申请实施例2的光学透镜组的结构示意图;
图4A至图4D分别为实施例2的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图5示出了本申请实施例3的光学透镜组的结构示意图;
图6A至图6D分别为实施例3的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图7示出了本申请实施例4的光学透镜组的结构示意图;
图8A至图8D分别为实施例4的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图9示出了本申请实施例5的光学透镜组的结构示意图;
图10A至图10D分别为实施例5的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图11示出了本申请实施例6的光学透镜组的结构示意图;
图12A至图12D分别为实施例6的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图;
图13示出了本申请实施例7的光学透镜组的结构示意图;
图14A至图14D分别为实施例7的光学透镜组的纵向球差曲线图、像散曲线图、畸变曲线图以及成像面上的主光线入射角度曲线图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实 施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的六片式光学透镜组在保证成像质量的同时,透镜组的总长通常较长,从而装配有该透镜组的镜头无法搭载至超薄型的电子产品,除此之外,传统的六片式光学透镜组的光圈往往也较小,暗光拍摄能力较弱,难以拍摄得到更加明亮的图像。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得到的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应是发明人在本申请过程中对本申请做出的贡献。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9、图11和图13,本申请实施例提供一种配置有大光圈、成像质量高且能满足小型化、超薄化应用需求的光学透镜组。该光学透镜组包括六片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及位于第六透镜像侧的成像面。该六片透镜沿着光轴从物侧至像侧依序排列。
第一透镜具有正光焦度,承担主要汇聚光线的作用,且第一透镜的物侧面于光轴处为凸面,有利于调整第一透镜的形状以及光焦度大小,从而平衡第一透镜两表面的曲率配置。
第二透镜具有光焦度,当第二透镜具有正光焦度时,能与第一透镜配合以进一步缩短镜头总长,具有负光焦度时,可以修正部分第一透镜产生的像差,使系统具有较高的分辨率。
第三透镜具有光焦度,且第三透镜的物侧面于光轴处为凸面,像侧面 于光轴处为凹面,有利于修正第一、第二透镜产生的像差,提高成像品质。
第四透镜具有光焦度,且第四透镜的像侧表面于离轴处为凸面,从而有利于减小离轴视场的畸变,避免成像失真,同时也有利于修正像差。
第五透镜具有光焦度,且第五透镜的物侧面于光轴处为凸面,像侧面于光轴处为凹面,有利于进一步修正像差,同时第五透镜的像侧面于离轴处为一凸面,有利于配合第六透镜减小离轴视场的主光线入射角,提高与传统感光元件的匹配度。
第六透镜可具有负光焦度,从而能够缩短透镜组的后焦距,有利于将装配有本申请光学透镜组的镜头设置于超薄型的电子设备;同时,第六透镜的物侧面于光轴处为凸面,有利于调控第六透镜的形状以及光焦度大小,以进一步修正像差;第六透镜的像侧面于光轴处为凹面,从而能够为光学透镜组配置合适的后焦距实现镜头的小型化;第六透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点,以有效地压制离轴视场的光线入射至感光元件上的角度,使其更精准地匹配感光元件,从而提高感光元件的光能接收效率。
具体的,光学透镜组满足下列关系式:FNO≤1.8;其中,FNO为光学透镜组的光圈数。FNO可以是1.4、1.5、1.6、1.7或1.8。通过控制光学透镜组的光圈数满足上述关系,可以在保证光学透镜组小型化的情况下,使光学透镜组的具有较大的入瞳孔径,以增加进光量,获得更为清晰明亮的图像,满足如夜景、星空等暗光场景的拍摄需求;另外,FNO越小,还表示光学透镜组具备更佳的虚化效果,能够给用户带来更好的视觉体验。
具体的,光学透镜组满足下列关系式:-1<f123/f456<0;其中,f123为第一透镜、第二透镜和第三透镜的组合焦距,f456为第四透镜、第五透镜和第六透镜的组合焦距。f123/f456可以是-0.95、-0.65、-0.35、-0.25、-0.20、-0.15、-0.10或-0.05。在满足上述关系的条件下,可以使第一、第二和第三透镜提供足够的正光焦度,以对光线起更好的汇聚作用,同时可以使第四、第五和第六透镜提供适合的负光焦度,以修正由第一透镜、第二透镜和第三透镜产生的球差,减小光学透镜组的场曲和畸变,提高光学透镜组的解析能力。
当上述光学透镜组用于成像时,被摄物体发出或者反射的光线从物侧方向进入光学透镜组,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述光学透镜组,通过合理分配各透镜的光焦度、面型以及各透镜的有效焦距,可以在保证光学透镜组的成像质量的同时有效增大光学透镜组的光圈,从而增强光学透镜组的暗光拍摄能力,提升拍摄画质。
在示例性实施方式中,第六透镜的物侧面和像侧面均设置为非球面。通过将第六透镜的物侧面和像侧面均设置为非球面,可以有效地修正像差,提升光学透镜组的成像解析度。
在示例性实施方式中,光学透镜组满足下列关系式:TTL/ImgH≤1.7; 其中,TTL为第一透镜的物侧面至光学透镜组的成像面在光轴上的距离,ImgH为光学透镜组的成像面上有效像素区域对角线长的一半。TTL/ImgH可以是1.378、1.428、1.458、1.488、1.518、1.548、1.578或1.608。在满足上述关系的条件下,可以有效缩短光学透镜组的总长,实现镜头的小型化、超薄化。
在示例性实施方式中,光学透镜组满足下列关系式:EPD/TTL>0.45;其中,EPD为光学透镜组的入瞳直径,TTL为第一透镜的物侧面至光学透镜组的成像面在光轴上的距离。EPD/TTL可以是0.451、0.455、0.459、0.464、0.484、0.504、0.524、0.544、0.564或0.584。在满足上述关系的条件下,可以使光学透镜组在具备较大通光口径的同时,有效缩短光学透镜组的总长,从而实现镜头的小型化、超薄化。
在示例性实施方式中,光学透镜组满足下列关系式:0.3<R5/R6<3.5;其中,R5为第三透镜物侧面于光轴处的曲率半径,R6为第三透镜像侧面于光轴处的曲率半径。R5/R6可以是0.328、0.348、0.368、0.768、1.168、1.568、2.068、2.568、3.068或3.368。在满足上述关系的条件下,可以将第三透镜设计成凸面朝向物侧的弯月形透镜,从而可以对光学透镜组的球差以及像散实现良好的补偿作用,保证成像质量。
在示例性实施方式中,光学透镜组满足下列关系式:1<R9/f+R10/f<2;其中,R9为第五透镜物侧面于光轴处的曲率半径,R10为第五透镜像侧面于光轴处的曲率半径,f为光学透镜组的有效焦距。(R9/f+R10/f)可以是1.437、1.487、1.537、1.587、1.637、1.687、1.737、1.787、1.837、1.887、1.937、1.987或1.996。在满足上述关系的条件下,可以对第五透镜的形状进行合理优化,以进一步修正光学透镜组的像差和场曲,提升成像质量。
在示例性实施方式中,光学透镜组满足下列关系式:MAX(cra)≤38.5°;其中,MAX(cra)为光学透镜组的成像面上主光线的最大入射角度。MAX(cra)可以是31.5°、32.5°、33.5°、34.5°、35.5°、36.5°、37.5°或38.5°。在满足上述关系的条件下,可以有效抑制轴外视场的主光线入射角增大,使主光线能够更精准的匹配超高像素的感光元件,从而提高感光元件的光能接收效率。
在示例性实施方式中,光学透镜组满足下列关系式:f1/OAL>0.7;其中,f1为第一透镜的有效焦距,OAL为第一透镜的物侧面至第六透镜的像侧面在光轴上的距离。f1/OAL可以是0.743、0.943、1.143、1.343、1.543、1.743、1.943或2.143。在满足上述关系的条件下,可以使第一透镜具有足够的正光焦度,从而有利于压缩光学透镜组的总长,实现镜头的小型化;若二者的比值小于等于0.7,则会导致第一透镜的折光能力降低或使光学透镜组的总长压缩不充分,不利于镜头的小型化。
在示例性实施方式中,光学透镜组满足下列关系式:0.3<T34/P<0.5;其中,T34为第三透镜的像侧面至第四透镜的物侧面在光轴上的距离,P 为第三透镜的物侧面至第四透镜的像侧面在光轴上的距离。T34/P可以是0.333、0.343、0.353、0.363、0.373、0.383、0.393、0.403、0.413、0.423或0.433。在满足上述关系的条件下,可以优化第三透镜和第四透镜之间的空气间隙,为第三透镜像侧面和第四透镜物侧面的面型调整提供充分的空间;同时若二者的比值小于等于0.3,则会使第三透镜与第四透镜过于紧凑,不利于二者表面面型的灵活调整;若二者的比值大于等于0.5,则又会使第三透镜与第四透镜过于分散,不利于镜头的小型化、超薄化。
在示例性实施方式中,光学透镜组满足下列关系式:
MIN(T56)/MAX(T56)<0.54;其中,MIN(T56)为第五透镜的像侧面至第六透镜的物侧面在平行于光轴方向上的最小距离,MAX(T56)为第五透镜的像侧面至第六透镜的物侧面在平行于光轴方向上的最大距离。MIN(T56)/MAX(T56)可以是0.063、0.093、0.153、0.253、0.303、0.353、0.403、0.453、0.503或0.534。在满足上述关系的条件下,可以使第五透镜和第六透镜的凹凸同向,配置更为紧凑,更有利于实现光学透镜组的小型化。
在示例性实施方式中,光学透镜组满足下列关系式:
|f1/CT1|+|f2/CT2|+|f3/CT3|+|f4/CT4|+|f5/CT5|+|f6/CT6|>141;其中,f1、f2、f3、f4、f5和f6分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜各自的有效焦距,CT1、CT2、CT3、CT4、CT5和CT6分别为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜各自在光轴上的厚度。通过控制各个透镜的有效焦距与各个透镜在光轴上的厚度满足上述关系,可以对各透镜的光焦度大小以及中心厚度进行合理优化,从而能够在保证光学透镜组成像品质的同时,有效缩短光学透镜组的总长,实现镜头的小型化。
在示例性实施方式中,光学透镜组还设置有孔径光阑,孔径光阑可以设于光学透镜组的物侧与第一透镜之间,或第一透镜与第六透镜之间。优选的,孔径光阑位于光学透镜组的物侧与第一透镜之间,以有效抑制主光线入射角过度增大,使得光学透镜组更好地与传统规格的感光元件匹配。
在另一些实施例中,孔径光阑也可位于第一透镜至第六透镜中任一透镜的表面上(例如物侧面和像侧面),与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
在示例性实施方式中,第一透镜至第六透镜中,各透镜的透镜表面均为非球面,从而可以提高透镜设计的灵活性,并有效地校正像差,提升光学透镜组的成像解析度。在另一些实施例中,光学透镜组的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学透镜组中各透镜的表面可以是非球面或球面的任意组合。
在示例性实施方式中,光学透镜组中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少光学透镜组的重量并降低生产成本,而玻璃材质的透镜可使光学透镜组具备优良的光学性能以及较高的耐温的特性。需要注意的是,光学透镜组中各透镜的材质也可以玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,光学透镜组还包括用于滤除红外光线的滤光片和/或用于保护感光元件的保护玻璃,其中感光元件位于光学透镜组的成像面上。进一步的,该成像面可以为感光元件的感光表面。
本申请的上述实施方式的光学透镜组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜焦距、光焦度、面型、厚度以及各透镜之间的轴上间距等,可以保证上述光学透镜组的总长较小且具备超大光圈(FNO可以为1.4),同时还具有较高的成像质量,从而更好地满足手机、平板等轻薄型电子设备的适配需求和暗光拍摄需求。可以理解的是,虽然在实施方式中以六个透镜为例进行了描述,但是该光学透镜组不限于包括六个透镜,如果需要,该光学透镜组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学透镜组的具体实施例。
实施例1
以下参照图1至图2D描述本申请实施例1的光学透镜组。
图1示出了实施例1的光学透镜组的结构示意图。如图1所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有负光焦度,其物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。具体的,红外滤光片L7的材质为玻璃。红外滤光片L7可以属于光学透镜组的一部分,与各透镜一同装配,或者也可在光学透镜组与感光元件装配时一同安装。
表1示出了实施例1的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。表1的参考波长为555nm。
表1
Figure PCTCN2019115318-appb-000001
各透镜中的非球面面型由以下公式限定:
Figure PCTCN2019115318-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了 可用于实施例1中透镜非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2019115318-appb-000003
本实施例光学透镜组的成像面S15上有效像素区域对角线长的一半ImgH为3.4mm,因此结合表1和表2中的数据可知,实施例1中的光学透镜组满足:
FNO=1.8,其中,FNO为光学透镜组的光圈数;
f123/f456=-0.198,其中,f123为第一透镜L1、第二透镜L2和第三透镜L3的组合焦距,f456为第四透镜L4、第五透镜L5和第六透镜L6的组合焦距;
TTL/ImgH=1.422,其中TTL为第一透镜L1的物侧面S1至光学透镜组的成像面S15在光轴上的距离,ImgH为光学透镜组的成像面S15上有效像素区域对角线长的一半;
EPD/TTL=0.461,其中,EPD为光学透镜组的入瞳直径,TTL为第一透镜L1的物侧面S1至光学透镜组的成像面S15在光轴上的距离;
R5/R6=2.876,其中,R5为第三透镜L3物侧面S5于光轴处的曲率半径,R6为第三透镜L3像侧面S6于光轴处的曲率半径;
R9/f+R10/f=1.604,其中,R9为第五透镜L5物侧面S9于光轴处的曲 率半径,R10为第五透镜L5像侧面S10于光轴处的曲率半径,f为光学透镜组的有效焦距;
MAX(cra)=34.3°,其中,MAX(cra)为光学透镜组的成像面上主光线的最大入射角度;
f1/OAL=1.904,其中,f1为第一透镜L1的有效焦距,OAL为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12在光轴上的距离;
T34/P=0.414,其中,T34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7在光轴上的距离,P为第三透镜L3的物侧面S5至第四透镜L4的像侧面S8在光轴上的距离;
MIN(T56)/MAX(T56)=0.534,其中,MIN(T56)为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11在平行于光轴方向上的最小距离,MAX(T56)为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11在平行于光轴方向上的最大距离;
|f1/CT1|+|f2/CT2|+|f3/CT3|+|f4/CT4|+|f5/CT5|+|f6/CT6|=178.109,其中,f1、f2、f3、f4、f5和f6分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6各自的有效焦距,CT1、CT2、CT3、CT4、CT5和CT6分别为第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6各自在光轴上的厚度。
图2A示出了实施例1的光学透镜组的纵向球差曲线,其分别表示波长为470nm、510nm、555nm、610nm以及650nm的光线经由光学透镜组后的会聚焦点偏离;图2B示出了实施例1的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图2C示出了实施例1的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图2D示出了实施例1的光学透镜组成像面S15上的主光线(chief ray angle)入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图2A至图2D可知,实施例1给出的光学透镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述本申请实施例2的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的光学透镜组的结构示意图。
如图3所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表3示出了实施例2的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表4示出了可用于实施例2中透镜非球面S1-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的光学透镜组的相关参数数值。参考波长为555nm。
表3
Figure PCTCN2019115318-appb-000004
Figure PCTCN2019115318-appb-000005
表4
Figure PCTCN2019115318-appb-000006
表5
Figure PCTCN2019115318-appb-000007
图4A示出了实施例2的光学透镜组的纵向球差曲线,其分别不同波长 的光线经由光学透镜组后的会聚焦点偏离;图4B示出了实施例2的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图4C示出了实施例2的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图4D示出了实施例2的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图4A至图4D可知,实施例2给出的光学透镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述本申请实施例3的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的光学透镜组的结构示意图。
如图5所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凸面,于圆周处为凸面。
第二透镜L2具有负光焦度,其物侧面S3于光轴处为凹面,于圆周处为凹面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有负光焦度,其物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凸面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表6示出了实施例3的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表7示出了 可用于实施例3中透镜非球面S1-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的光学透镜组的相关参数数值。参考波长为555nm。
表6
Figure PCTCN2019115318-appb-000008
表7
Figure PCTCN2019115318-appb-000009
Figure PCTCN2019115318-appb-000010
表8
Figure PCTCN2019115318-appb-000011
图6A示出了实施例3的光学透镜组的纵向球差曲线,其分别不同波长的光线经由光学透镜组后的会聚焦点偏离;图6B示出了实施例3的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图6C示出了实施例3的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图6D示出了实施例3的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图6A至图6D可知,实施例3给出的光学透镜组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述本申请实施例4的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的光学透镜组的结构示意图。
如图7所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7于光轴处为凸面,于圆周处 为凹面,像侧面S8于光轴处为凹面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表9示出了实施例4的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表10示出了可用于实施例4中透镜非球面S1-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的光学透镜组的相关参数数值。参考波长为555nm。
表9
Figure PCTCN2019115318-appb-000012
Figure PCTCN2019115318-appb-000013
表10
Figure PCTCN2019115318-appb-000014
表11
Figure PCTCN2019115318-appb-000015
图8A示出了实施例4的光学透镜组的纵向球差曲线,其分别不同波长的光线经由光学透镜组后的会聚焦点偏离;图8B示出了实施例4的光学透 镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图8C示出了实施例4的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图8D示出了实施例4的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图8A至图8D可知,实施例4给出的光学透镜组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述本申请实施例5的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的光学透镜组的结构示意图。
如图9所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有正光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有负光焦度,其物侧面S7于光轴处为凹面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表12示出了实施例5的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表13示出了可用于实施例5中透镜非球面S1-S12的高次项系数,其中非球面面型可由 实施例1中给出的公式(1)限定;表14示出了实施例5中给出的光学透镜组的相关参数数值。参考波长为555nm。
表12
Figure PCTCN2019115318-appb-000016
表13
Figure PCTCN2019115318-appb-000017
Figure PCTCN2019115318-appb-000018
表14
Figure PCTCN2019115318-appb-000019
图10A示出了实施例5的光学透镜组的纵向球差曲线,其分别不同波长的光线经由光学透镜组后的会聚焦点偏离;图10B示出了实施例5的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图10C示出了实施例5的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图10D示出了实施例5的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图10A至图10D可知,实施例5给出的光学透镜组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述本申请实施例6的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的光学透镜组的结构示意图。
如图11所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7于光轴处为凸面,于圆周处为凹面,像侧面S8于光轴处为凹面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表15示出了实施例6的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表16示出了可用于实施例6中透镜非球面S1-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的光学透镜组的相关参数数值。参考波长为555nm。
表15
Figure PCTCN2019115318-appb-000020
Figure PCTCN2019115318-appb-000021
表16
Figure PCTCN2019115318-appb-000022
表17
Figure PCTCN2019115318-appb-000023
图12A示出了实施例6的光学透镜组的纵向球差曲线,其分别不同波长的光线经由光学透镜组后的会聚焦点偏离;图12B示出了实施例6的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图12C示出 了实施例6的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图12D示出了实施例6的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图12A至图12D可知,实施例6给出的光学透镜组能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述本申请实施例7的光学透镜组。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图13示出了本申请实施例7的光学透镜组的结构示意图。
如图13所示,光学透镜组沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S15。
第一透镜L1具有正光焦度,其物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5于光轴处为凸面,于圆周处为凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7于光轴处为凸面,于圆周处为凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有正光焦度,其物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
第六透镜L6具有负光焦度,其物侧面S11于光轴处为凸面,于圆周处为凹面,像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1至第六透镜L6的各透镜的物侧面及像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学透镜组具备小型化特性。
第一透镜L1至第六透镜L6的材质均为塑料,塑料材质的透镜能够减少光学透镜组的重量,同时还能降低生产成本。
物体OBJ与第一透镜L1之间还设置有光阑STO,以进一步提升光学透镜组的成像质量。
光学透镜组还包括具有物侧面S13和像侧面S14的滤光片L7。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。进一步的,滤光片L7为红外滤光片,用以滤除入射至光学透镜组的外界光线中的红外光线,避免成像失真。
表18示出了实施例7的光学透镜组的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表19示出了可用于实施例7中透镜非球面S1-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表20示出了实施例7中给出的光学透 镜组的相关参数数值。参考波长为555nm。
表18
Figure PCTCN2019115318-appb-000024
表19
Figure PCTCN2019115318-appb-000025
Figure PCTCN2019115318-appb-000026
表20
Figure PCTCN2019115318-appb-000027
图14A示出了实施例7的光学透镜组的纵向球差曲线,其分别不同波长的光线经由光学透镜组后的会聚焦点偏离;图14B示出了实施例7的光学透镜组的像散曲线,其表示子午像面弯曲和弧矢像面弯曲;图14C示出了实施例7的光学透镜组的畸变曲线,其表示不同像高情况下的畸变率;图14D示出了实施例7的光学透镜组成像面S15上的主光线入射角度曲线,其表示不同像高情况下主光线入射到感光元件的角度。根据图14A至图14D可知,实施例7给出的光学透镜组能够实现良好的成像品质。
本申请还提供一种取像装置,包括如前文所述的光学透镜组;以及感光元件,感光元件设于光学透镜组的像侧,以接收由光学系统形成的携带图像信息的光。具体的,感光元件可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像装置,利用前述光学透镜组即使在暗光条件下也能拍摄得到清晰明亮的图像,同时该取像装置还具有小型化的特点,方便适配至如轻薄型电子设备等尺寸受限的装置。
本申请还提供一种电子装置,包括壳体,以及如前文所述的取像装置,取像装置安装在该壳体上,用以获取图像。
具体的,取像装置设置在壳体内并从壳体暴露以获取图像,壳体可以给取像装置提供防尘、防水防摔等保护,壳体上开设有与取像装置对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置,具有轻薄化的结构特点,利用如前所述的取像装置可以拍摄得到明亮、虚化效果好且清晰度高的图像,满足用户多场景、专业化的拍摄需求。
本申请实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种光学透镜组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度,且其物侧面于光轴处为凸面;
    所述第二透镜具有光焦度;
    所述第三透镜具有光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面;
    所述第四透镜具有光焦度;
    所述第五透镜具有光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面;
    所述第六透镜具有负光焦度,且其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,所述第六透镜的物侧面与像侧面中至少一个表面包含至少一个反曲点;
    所述光学透镜组满足下列关系式:
    FNO≤1.8;
    -1<f123/f456<0;
    其中,FNO为所述光学透镜组的光圈数,f123为所述第一透镜、所述第二透镜和所述第三透镜的组合焦距,f456为所述第四透镜、所述第五透镜和所述第六透镜的组合焦距。
  2. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的物侧面和像侧面均为非球面。
  3. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    TTL/ImgH≤1.7;
    其中,TTL为所述第一透镜的物侧面至所述光学透镜组的成像面在光轴上的距离,ImgH为所述光学透镜组的成像面上有效像素区域对角线长的一半。
  4. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    EPD/TTL>0.45;
    其中,EPD为所述光学透镜组的入瞳直径,TTL为所述第一透镜的物侧面至所述光学透镜组的成像面在光轴上的距离。
  5. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    0.3<R5/R6<3.5;
    其中,R5为所述第三透镜物侧面于光轴处的曲率半径,R6为所述第三透镜像侧面于光轴处的曲率半径。
  6. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组 满足下列关系式:
    1<R9/f+R10/f<2;
    其中,R9为所述第五透镜物侧面于光轴处的曲率半径,R10为所述第五透镜像侧面于光轴处的曲率半径,f为所述光学透镜组的有效焦距。
  7. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    MAX(cra)≤38.5°;
    其中,MAX(cra)为所述光学透镜组的成像面上主光线的最大入射角度。
  8. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    f1/OAL>0.7;
    其中,f1为所述第一透镜的有效焦距,OAL为所述第一透镜的物侧面至所述第六透镜的像侧面在光轴上的距离。
  9. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    0.3<T34/P<0.5;
    其中,T34为所述第三透镜的像侧面至所述第四透镜的物侧面在光轴上的距离,P为所述第三透镜的物侧面至所述第四透镜的像侧面在光轴上的距离。
  10. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    MIN(T56)/MAX(T56)<0.54;
    其中,MIN(T56)为所述第五透镜的像侧面至所述第六透镜的物侧面在平行于光轴方向上的最小距离,MAX(T56)为所述第五透镜的像侧面至所述第六透镜的物侧面在平行于光轴方向上的最大距离。
  11. 根据权利要求1所述的光学透镜组,其特征在于,所述光学透镜组满足下列关系式:
    |f1/CT1|+|f2/CT2|+|f3/CT3|+|f4/CT4|+|f5/CT5|+|f6/CT6|>141;
    其中,f1为所述第一透镜的有效焦距,f2为所述第二透镜的有效焦距,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距,f5为所述第五透镜的有效焦距,f6为所述第六透镜的有效焦距,CT1为所述第一透镜在光轴上的厚度,CT2为所述第二透镜在光轴上的厚度,CT3为所述第三透镜在光轴上的厚度,CT4为所述第四透镜在光轴上的厚度,CT5为所述第五透镜在光轴上的厚度,CT6为所述第六透镜在光轴上的厚度。
  12. 一种取像装置,其特征在于,包括:如权利要求1-11任一项所述的光学透镜组;以及感光元件,所述感光元件设于所述光学透镜组的像侧。
  13. 一种电子装置,其特征在于,包括:壳体;以及如权利要求12所述的取像装置,所述取像装置安装在所述壳体上。
PCT/CN2019/115318 2019-11-04 2019-11-04 光学透镜组、取像装置及电子装置 WO2021087661A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/115318 WO2021087661A1 (zh) 2019-11-04 2019-11-04 光学透镜组、取像装置及电子装置
US17/606,359 US20220196989A1 (en) 2019-11-04 2019-11-04 Optical lens assembly, image capturing apparatus and electronic apparatus
EP19951684.0A EP3901682A4 (en) 2019-11-04 2019-11-04 OPTICAL LENS GROUP, IMAGE CAPTURE DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/115318 WO2021087661A1 (zh) 2019-11-04 2019-11-04 光学透镜组、取像装置及电子装置

Publications (1)

Publication Number Publication Date
WO2021087661A1 true WO2021087661A1 (zh) 2021-05-14

Family

ID=75848690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115318 WO2021087661A1 (zh) 2019-11-04 2019-11-04 光学透镜组、取像装置及电子装置

Country Status (3)

Country Link
US (1) US20220196989A1 (zh)
EP (1) EP3901682A4 (zh)
WO (1) WO2021087661A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391429A (zh) * 2021-05-26 2021-09-14 江西晶超光学有限公司 光学系统、摄像头模组及电子设备
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162779A1 (ja) * 2013-04-01 2014-10-09 ソニー株式会社 撮像レンズおよび撮像装置
CN106610518A (zh) * 2015-10-23 2017-05-03 大立光电股份有限公司 影像撷取透镜组、取像装置及电子装置
WO2017180362A1 (en) * 2016-04-15 2017-10-19 Apple Inc. Imaging lens system
CN206946078U (zh) * 2016-12-20 2018-01-30 三星电机株式会社 光学成像系统
CN207164341U (zh) * 2016-10-12 2018-03-30 三星电机株式会社 光学成像系统
US20180113282A1 (en) * 2016-10-21 2018-04-26 Newmax Technology Co., Ltd. Six-piece optical lens system
CN207424363U (zh) * 2016-12-26 2018-05-29 三星电机株式会社 光学成像系统
TWI625567B (zh) * 2017-10-16 2018-06-01 大立光電股份有限公司 成像用光學鏡頭、取像裝置及電子裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162779A1 (ja) * 2013-04-01 2014-10-09 ソニー株式会社 撮像レンズおよび撮像装置
CN106610518A (zh) * 2015-10-23 2017-05-03 大立光电股份有限公司 影像撷取透镜组、取像装置及电子装置
WO2017180362A1 (en) * 2016-04-15 2017-10-19 Apple Inc. Imaging lens system
CN207164341U (zh) * 2016-10-12 2018-03-30 三星电机株式会社 光学成像系统
US20180113282A1 (en) * 2016-10-21 2018-04-26 Newmax Technology Co., Ltd. Six-piece optical lens system
CN206946078U (zh) * 2016-12-20 2018-01-30 三星电机株式会社 光学成像系统
CN207424363U (zh) * 2016-12-26 2018-05-29 三星电机株式会社 光学成像系统
TWI625567B (zh) * 2017-10-16 2018-06-01 大立光電股份有限公司 成像用光學鏡頭、取像裝置及電子裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901682A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
CN113391429A (zh) * 2021-05-26 2021-09-14 江西晶超光学有限公司 光学系统、摄像头模组及电子设备
CN113391429B (zh) * 2021-05-26 2022-08-30 江西晶超光学有限公司 光学系统、摄像头模组及电子设备

Also Published As

Publication number Publication date
US20220196989A1 (en) 2022-06-23
EP3901682A4 (en) 2022-08-10
EP3901682A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2022089344A1 (zh) 光学镜头及成像设备
WO2021233052A1 (zh) 光学镜头及成像设备
WO2022143647A1 (zh) 光学镜头及成像设备
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2022199465A1 (zh) 光学镜头及成像设备
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
WO2022105926A1 (zh) 光学镜头及成像设备
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
WO2021184167A1 (zh) 透镜系统、成像模组及电子装置
CN112433340A (zh) 光学系统、镜头模组和电子设备
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
CN212111955U (zh) 光学系统、镜头模组和电子设备
CN110967805A (zh) 光学摄像镜头组、取像模组及电子装置
CN211478744U (zh) 光学系统、镜头模组和电子设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
WO2021102943A1 (zh) 光学系统、摄像模组及电子装置
CN111427133A (zh) 光学成像系统、取像模组和电子装置
CN210720855U (zh) 光学透镜组、取像装置及电子装置
CN112630944B (zh) 光学镜头及成像设备
CN213122416U (zh) 光学系统、镜头模组和电子设备
WO2022041054A1 (zh) 光学系统、摄像模组和电子设备
CN211786313U (zh) 光学系统、摄像模组和电子设备
WO2021072745A1 (zh) 光学成像系统、取像装置及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951684

Country of ref document: EP

Effective date: 20210722

NENP Non-entry into the national phase

Ref country code: DE