WO2021184164A1 - 光学系统、摄像模组及电子装置 - Google Patents

光学系统、摄像模组及电子装置 Download PDF

Info

Publication number
WO2021184164A1
WO2021184164A1 PCT/CN2020/079515 CN2020079515W WO2021184164A1 WO 2021184164 A1 WO2021184164 A1 WO 2021184164A1 CN 2020079515 W CN2020079515 W CN 2020079515W WO 2021184164 A1 WO2021184164 A1 WO 2021184164A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
lens unit
object side
image side
Prior art date
Application number
PCT/CN2020/079515
Other languages
English (en)
French (fr)
Inventor
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to US17/611,148 priority Critical patent/US12092801B2/en
Priority to PCT/CN2020/079515 priority patent/WO2021184164A1/zh
Priority to EP20924985.3A priority patent/EP3929646A4/en
Publication of WO2021184164A1 publication Critical patent/WO2021184164A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens

Definitions

  • the present invention relates to the field of photography, in particular to an optical system, a camera module and an electronic device.
  • zoom system has the characteristics of high-quality imaging effect and high zoom ratio. It was originally used in digital cameras or camcorders. Today, more and more small-sized camera units are used in other widely used electronic devices. .
  • the drive mechanism used to drive the refractive power unit for zooming movement in a zoom system generally occupies a large space, and as the number of refractive power units that need to move independently increases, the number of drive mechanisms will increase accordingly, which makes it difficult to reduce the size of the system . Therefore, it is often difficult to balance the pursuit of a zoom effect and a miniaturized design at the same time. Therefore, how to further shorten the total length of the optical system to achieve miniaturization on the basis of achieving a wide range of zoom has become one of the problems that the industry wants to solve.
  • an optical system is provided.
  • An optical system from the object side to the image side, includes:
  • the first lens unit with positive refractive power
  • the third lens unit with positive refractive power is the third lens unit with positive refractive power
  • the fourth lens unit with positive refractive power is the fourth lens unit with positive refractive power
  • the positions of the first lens unit and the fourth lens unit are both kept fixed relative to the imaging surface of the optical system, and both the second lens unit and the third lens unit can be relative to the first lens unit along the The optical axis direction of the optical system moves; when the optical system zooms from the short focal end to the long focal end, the distance between the first lens unit and the second lens unit increases, and the third lens The distance between the unit and the fourth lens unit also increases.
  • a camera module includes a photosensitive element and the above-mentioned optical system, and the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a fixing part and the above-mentioned camera module, and the camera module is arranged on the fixing part.
  • FIG. 1 is a schematic diagram of the optical system of the first embodiment of the application at a short focal end
  • FIG. 2 is a schematic diagram of the optical system of the first embodiment of the application when it is at a middle focal point;
  • FIG. 3 is a schematic diagram of the optical system of the first embodiment of the application at a telephoto end;
  • FIG. 4 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the first embodiment at the short focal end corresponding to FIG. 1;
  • FIG. 5 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the first embodiment is at the middle focal end corresponding to FIG. 2;
  • FIG. 6 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the first embodiment at the telephoto end corresponding to FIG. 3;
  • FIG. 7 is a schematic diagram of the optical system of the second embodiment of the application at a short focal end
  • FIG. 8 is a schematic diagram of the optical system according to the second embodiment of the application when it is at a mid-focus end;
  • FIG. 9 is a schematic diagram of the optical system of the second embodiment of the application at a telephoto end
  • FIG. 10 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the second embodiment at the short focal end corresponding to FIG. 7;
  • FIG. 11 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the second embodiment at the middle focal end corresponding to FIG. 8;
  • FIG. 12 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the second embodiment at the telephoto end corresponding to FIG. 9;
  • FIG. 13 is a schematic diagram of the optical system of the third embodiment of the application at a short focal end
  • FIG. 14 is a schematic diagram of the optical system according to the third embodiment of the application when it is at a mid-focus end;
  • 15 is a schematic diagram of the optical system of the third embodiment of the application at a telephoto end;
  • FIG. 16 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the third embodiment at the short focal end corresponding to FIG. 13;
  • 17 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the third embodiment is at the middle focal end corresponding to FIG. 14;
  • FIG. 18 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the third embodiment is at the telephoto end corresponding to FIG. 15;
  • 19 is a schematic diagram of the optical system of the fourth embodiment of the application at a short focal end
  • FIG. 20 is a schematic diagram of the optical system according to the fourth embodiment of this application when it is at a mid-focus end;
  • FIG. 21 is a schematic diagram of the optical system of the fourth embodiment of the application at a telephoto end
  • FIG. 22 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the fourth embodiment at the short focal end corresponding to FIG. 19;
  • FIG. 23 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the fourth embodiment is at the middle focal end corresponding to FIG. 20;
  • FIG. 24 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the fourth embodiment is at the telephoto end corresponding to FIG. 21;
  • 25 is a schematic diagram of the optical system of the fifth embodiment of the application at a short focal end
  • FIG. 26 is a schematic diagram of the optical system of the fifth embodiment of this application when it is at a mid-focus end;
  • FIG. 27 is a schematic diagram of the optical system of the fifth embodiment of the application at a telephoto end
  • FIG. 29 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the optical system in the fifth embodiment at the middle focal end corresponding to FIG. 26;
  • FIG. 30 is a longitudinal spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the optical system in the fifth embodiment is at the telephoto end corresponding to FIG. 27;
  • FIG. 31 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 32 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • the optical system 10 sequentially includes a first lens unit 110 having a positive refractive power and a fixed arrangement, and a second lens unit having a negative refractive power and a movable arrangement from the object side to the image side. 120.
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 in turn from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • Each lens in the optical system 10 is coaxially arranged with the stop STO, that is, the optical axis of each lens and the center of the stop STO are located on the same straight line, and this straight line can be referred to as the optical axis of the optical system 10.
  • the first lens L1 includes an object side surface S1 and an image side surface S2
  • the second lens L2 includes an object side surface S3 and an image side surface S4
  • the third lens L3 includes an object side surface S5 and an image side surface S6,
  • the fourth lens L4 includes an object side surface S7 and an image side surface.
  • S8 the fifth lens L5 includes the object side S9 and the image side S10
  • the sixth lens L6 includes the object side S11 and the image side S12
  • the seventh lens L7 includes the object side S13 and the image side S14
  • the eighth lens L8 includes the object side S15 and Like the side S16.
  • the optical system 10 has a virtual imaging surface S17, and the imaging surface S17 is located on the image side of the fourth lens unit 140.
  • the imaging surface S17 of the optical system 10 coincides with the photosensitive surface of the photosensitive element.
  • the photosensitive surface of the photosensitive element can be regarded as the imaging surface S17, and the effective photosensitive area of the photosensitive surface is the effective imaging area of the imaging surface S17.
  • the first lens unit 110 and the fourth lens unit 140 are both fixed relative to the imaging surface S17 of the system, and the second lens unit 120 and the third lens unit 130 can respectively be relative to the first lens unit 110.
  • the optical axis direction of the optical system 10 is moved so that the optical system 10 realizes optical zooming. That is, the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by the clamping member and move along the optical system 10 as a whole.
  • the fifth lens L5, the sixth lens L6, the seventh lens L7 and the stop STO can be fixed together by the clamping member and move synchronously along the optical axis direction of the optical system 10 as a whole.
  • the zoom design enables the optical system 10 to switch between the short focal end and the long focal end.
  • the system When the optical system 10 is at the short focal end, the system will have a large viewing angle; and when the optical system 10 is at the long focal end, the system Will have telephoto characteristics.
  • the second lens unit 120 will be far away from the first lens unit 110, while the third lens unit 130 and the fourth lens unit 140 will also be far away from the system.
  • the short focal length is switched to the long focal length, the second lens unit 120 and the third lens unit 130 will gradually approach.
  • the first lens unit 110 closest to the object side and the fourth lens unit 140 closest to the image side are both kept fixed, but only by the movement of the second lens unit 120 and the third lens unit 130.
  • the optical system 10 can reasonably control the deflection angle of the incident light during zooming, and can well correct aberrations, thereby having a good zooming effect.
  • the components near the first lens unit 110 closest to the object side are most affected by the temperature, and the above-mentioned optical system 10 does not need to provide a driving mechanism for the first lens unit 110, so it can be avoided
  • the drive mechanism in the system is too close to the object side and is affected by the external temperature, resulting in aging and damage, ensuring the normal operation of the zoom function.
  • the above-mentioned optical system 10 does not need to provide a driving mechanism for the fourth lens unit 140, which facilitates the assembly and assembly of the optical system 10 and the photosensitive element on the image side, and can prevent the fourth lens unit 140 from interacting with the photosensitive element during the zoom movement.
  • the object side and the image side of the first lens L1, the second lens L2, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are all spherical, while the third lens L3, the fourth lens L3, and the fourth lens L7 are spherical.
  • Both the object side surface and the image side surface of the lens L4 and the eighth lens L8 are aspherical surfaces.
  • the manufacturing process of the spherical lens is simple and the manufacturing cost is low.
  • the aspheric lens can further help the optical system 10 to eliminate aberrations and solve the problem of distortion of the field of view. It is beneficial to the miniaturization design of the optical system 10.
  • the object side surface of any lens in the optical system 10 may be a spherical surface or an aspheric surface
  • the image side surface of any lens may be a spherical surface or an aspheric surface.
  • the specific shapes of the spherical and aspherical surfaces in the embodiments are not limited to the shapes of the spherical and aspherical surfaces shown in the drawings, and the drawings are mainly for reference rather than being drawn strictly to scale.
  • the lens closest to the image side in the system is reasonably designed as an aspheric lens, the lens effectively corrects the aberrations generated by each lens on the object side, thereby helping the system to maintain high image quality.
  • the calculation of the aspheric surface can refer to the aspheric formula:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the apex of the aspheric surface
  • k is the conic coefficient
  • Ai is the aspheric surface The coefficient corresponding to the higher order term of the i-th term in the face formula.
  • the surface when the object side or image side of a certain lens is aspherical, can be an overall convex surface or a concave surface structure; or the surface can also be designed to have inflection points. At this time, the shape of the surface from the center to the edge will change. For example, the surface is convex at the center and concave at the edge.
  • one side of the lens is convex at the paraxial position (the central area of the side)
  • the area of the side of the lens near the optical axis is convex
  • the area near the maximum effective half-aperture of the side surface is a concave surface.
  • the shape of the side surface from the center (at the optical axis) to the edge direction can be a pure convex surface; or a convex surface from the center first
  • the shape transitions to a concave shape, and then becomes convex when approaching the maximum effective half-aperture.
  • the multiple shapes and structures (concave-convex relationship) on the side are not fully reflected, but other situations can be derived from the above examples and should also be regarded as The content recorded in this application.
  • the material of the spherical lens in the optical system 10 (the lens with both the object side and the image side being spherical) is made of glass, instead of the non-spherical lens (at least one of the object side and the image side is aspheric)
  • the materials are all plastic.
  • the material of each lens in the optical system 10 is glass.
  • the material of each lens in the optical system 10 is plastic.
  • the glass lens can withstand higher temperatures and has excellent optical effects, while the plastic lens can reduce the weight of the optical system 10 and reduce the manufacturing cost.
  • the material of the first lens L1 is glass, and the material of the other lenses in the optical system 10 is plastic.
  • the material of the lens near the object side in the optical system 10 is glass, these lenses are close to The glass lens on the object side has a good resistance to extreme environments, and is not easily affected by the object environment and aging. Therefore, when the optical system 10 is exposed to high temperatures and other extreme environments, this structure can be better balanced The optical performance and production cost of the system.
  • the configuration relationship of the lens materials in the optical system 10 is not limited to the foregoing embodiment, and the material of any lens in the system may be plastic or glass.
  • the optical system 10 further includes an infrared cut filter L9.
  • the infrared cut filter L9 is arranged on the image side of the fourth lens unit 140 and is relatively fixed to the first lens unit 110 and the fourth lens unit 140. set up.
  • the infrared cut filter L9 is used to filter out the infrared light and prevent the infrared light from reaching the imaging surface S17 of the system, thereby preventing the infrared light from interfering with normal imaging.
  • the infrared cut filter L9 can be assembled with each lens as a part of the optical system 10. In other embodiments, the infrared cut filter L9 is not a component of the optical system 10.
  • the infrared cut filter L9 can be installed in the optical system 10 and the photosensitive element to form a camera module. Between the system 10 and the photosensitive element. In some embodiments, the infrared cut filter L9 may also be arranged on the object side of the first lens L1. In addition, in some embodiments, the infrared cut filter L9 may not be provided, but an infrared filter film is provided on any one of the first lens L1 to the fifth lens L5 to achieve the function of filtering infrared light. By setting the infrared cut filter L9 or the infrared filter film on the surface of the lens, the phenomenon of false colors or ripples due to the interference of infrared light can be avoided, and the effective resolution and color reproduction can be improved at the same time.
  • the first lens unit 110 and the fourth lens unit 140 include but are not limited to a case of one lens, and the second lens unit 120 and the third lens unit 130 include but are not limited to a case of three lenses.
  • the optical system 10 also satisfies the following relationships:
  • fc/fd is 1.50, 1.60, 1.80, 2.00, 2.20, 2.50, 2.80, or 3.00.
  • g1 is the distance on the optical axis from the lens surface closest to the object side in the first lens unit 110 to the lens surface closest to the image side
  • g2 is the second The distance on the optical axis from the lens surface closest to the object side in the lens unit 120 to the lens surface closest to the image side
  • g3 is the lens surface closest to the object side in the third lens unit 130 to the lens surface closest to the image side
  • the distance on the optical axis, g4 is the distance on the optical axis from the lens surface closest to the object side in the fourth lens unit 140 to the lens surface closest to the image side
  • fd is the focal length of the optical system 10 at the short focal end.
  • (G1+g2+g3+g4)/fd in some embodiments is 0.45, 0.50, 0.60, 0.70, 0.80, or 0.85.
  • (g1+g2+g3+g4)/fd ⁇ 0.3 it will be unfavorable to correct the aberration of the system, and the total length of the system will be too short to reduce the thickness of each lens and increase the processing cost.
  • f3/fd is 1.00, 1.10, 1.20, 1.40, 1.50, 1.60, 1.70, or 1.80.
  • is 1.80, 1.90, 2.00, 2.10, or 2.15.
  • the refractive power of the first lens unit 110 is too strong, and it is difficult to correct the distortion generated by the first lens unit 110; when f1/
  • f2/fc is -0.50, -0.49, -0.47, -0.45, or -0.43.
  • d2/d3 is 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50.
  • TTL is the total optical length of the optical system 10
  • fc is the focal length when the optical system 10 is at the telephoto end.
  • the TTL/fc in some embodiments is 1.15, 1.20, 1.25, 1.30, 1.35, or 1.40.
  • R16/f4 in some embodiments is 0.40, 0.43, 0.45, 0.50, 0.55, 0.58, 0.60, or 0.62.
  • R16/f4 ⁇ 0.3 the radius of curvature of the object side surface S15 of the eighth lens L8 is too small, resulting in a complex surface shape of the surface and increasing processing difficulty.
  • the optical system 10 in some embodiments has only one long focal end position and one short focal end position, that is, the system can only switch between these two positions.
  • the optical system 10 also has a middle focal end position. At this time, the system can switch between the three positions of the long focal end, the middle focal end, and the short focal end.
  • the focal length of the optical system 10 at the long focal end is greater than the focal length at the middle focal end, and the focal length of the optical system 10 at the middle focal end is greater than the focal length at the short focal end.
  • the switching of the optical system 10 between the aforementioned different focal lengths is realized by the zoom movement of the second lens unit 120 and the third lens unit 130.
  • the optical system 10 can not only switch between the above two or three focal lengths.
  • the second lens unit 120 and the third lens unit 130 It can remain motionless at any reasonable position within the moving range, so that the optical system 10 has the ability to continuously zoom, and thus has more focal length options.
  • the second lens unit 120 and the third lens unit 130 may be provided with driving mechanisms such as a voice coil motor and a magnet, respectively, so that the two can move independently, thereby achieving a zoom effect.
  • each lens in the second lens unit 120 is assembled in a lens barrel, and the lens barrel is provided with a coil electrically connected to the driving chip, and the optical system 10 is also provided with the coil.
  • the corresponding magnet drives the lens barrel to move through the magnetic force between the energized coil and the magnet.
  • the lenses and the diaphragm STO in the third lens unit 130 are assembled in another lens barrel, and the lens barrel is provided with a coil electrically connected to the driving chip, and the optical system 10 is also provided with a corresponding coil.
  • the magnet through the magnetic force between the energized coil and the magnet, drives the lens barrel to move.
  • the optical system 10 includes a fixed first lens unit 110 having a positive refractive power, and a movable first lens unit 110 having a negative refractive power from the object side to the image side.
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • the first lens unit 110 and the fourth lens unit 140 are both fixedly arranged relative to the imaging surface of the optical system 10, and the optical system 10 realizes optical zooming through the movement of the second lens unit 120 and the third lens unit 130.
  • the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by a clamping piece and form an integral edge.
  • the optical axis direction of the optical system 10 moves synchronously, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the stop STO can be fixed together by a clamping member and synchronized as a whole along the optical axis direction of the optical system 10 move.
  • the second lens unit 120 will be far away from the first lens unit 110, and the third lens unit 130 and the fourth lens unit 140 will also be far away.
  • the first lens unit 110 closest to the object side and the fourth lens unit 140 closest to the image side are both kept fixed, and only through the movement of the second lens unit 120 and the third lens unit 130 To realize the system switching between the short focal end and the long focal end, so as to reduce the number of driving mechanisms and make the structure of the system more compact, thereby promoting the miniaturized design of the system and reducing the production cost.
  • the optical system 10 can reasonably control the deflection angle of the incident light during zooming, and can well correct aberrations, thereby having a good zooming effect.
  • the components near the first lens unit 110 closest to the object side are most affected by the temperature, and the above-mentioned optical system 10 does not need to provide a driving mechanism for the first lens unit 110, so it can be avoided
  • the drive mechanism in the system is too close to the object side and is affected by the external temperature, resulting in aging and damage, ensuring the normal operation of the zoom function.
  • the above-mentioned optical system 10 does not need to provide a driving mechanism for the fourth lens unit 140, which facilitates the assembly and assembly of the optical system 10 and the photosensitive element on the image side, and can prevent the fourth lens unit 140 from interacting with the photosensitive element during the zoom movement.
  • FIG. 1 is a schematic diagram of the optical system 10 of the first embodiment at a short focal end
  • FIG. 2 is a schematic diagram of the optical system 10 of the first embodiment at a medium focal end
  • Figure 6 is the longitudinal spherical aberration diagram (mm) and astigmatism diagram of the optical system 10 at the telephoto end corresponding to Figure 3 Figure (mm) and distortion map (%).
  • the ordinate of each astigmatism map and distortion map is half of the diagonal length of the imaging surface S17 of the optical system 10 to the effective imaging area, and the unit is mm.
  • the astigmatism diagram and the distortion diagram in the following embodiments are graphs at a wavelength of 555 nm.
  • the above figures 1, 2 and 3 respectively show the positional relationship of the lenses of the optical system 10 at a short focal end, a middle focal end and a long focal end.
  • the optical system 10 includes but is not limited to the above three focal length states. Switch between.
  • the focal length of the optical system 10 at the long focal end is greater than the focal length at the middle focal end, and the focal length of the optical system 10 at the middle focal end is greater than the focal length at the short focal end.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position, the image side surface S2 is convex at the paraxial position; the object side surface S1 is convex at the circumference, and the image side surface S2 is convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, the image side surface S4 is concave at the paraxial position; the object side surface S3 is concave at the circumference, and the image side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, and the image side surface S6 is concave at the paraxial position; the object side surface S5 is concave at the circumference, and the image side surface S6 is concave at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image side surface S8 is concave at the paraxial position; the object side surface S7 is convex at the circumference, and the image side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 is convex at the paraxial position; the object side surface S9 is convex at the circumference, and the image side surface S10 is convex at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image side surface S12 is concave at the paraxial position; the object side surface S11 is convex at the circumference, and the image side surface S12 is concave at the circumference.
  • the object side surface S13 of the seventh lens L7 is concave at the paraxial position, and the image side surface S14 is concave at the paraxial position; the object side surface S13 is concave at the circumference, and the image side surface S14 is concave at the circumference.
  • the object side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image side surface S16 is concave at the paraxial position; the object side surface S15 is convex at the circumference, and the image side surface S16 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are spherical surfaces.
  • the object side surface and the image side surface of the third lens L3, the fourth lens L4, and the eighth lens L8 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are all glass.
  • the glass lens can withstand extreme temperatures and has excellent and stable optical effects.
  • the materials of the third lens L3, the fourth lens L4 and the eighth lens L8 are all plastic.
  • the first lens unit 110 closest to the object side and the fourth lens unit 140 closest to the image side are both kept fixed, and only through the movement of the second lens unit 120 and the third lens unit 130 To realize the switch between the short focal end and the long focal end of the system, so as to reduce the number of driving mechanisms and make the structure of the system more compact, thereby promoting the miniaturization of the system and reducing the production cost.
  • the optical system 10 can reasonably control the deflection angle of the incident light during zooming, and can well correct aberrations, thereby having a good zooming effect.
  • the components near the first lens unit 110 closest to the object side are most affected by the temperature, and the above-mentioned optical system 10 does not need to provide a driving mechanism for the first lens unit 110, so it can be avoided
  • the drive mechanism in the system is too close to the object side and is affected by the external temperature, resulting in aging and damage, ensuring the normal operation of the zoom function.
  • the above-mentioned optical system 10 does not need to provide a driving mechanism for the fourth lens unit 140, which facilitates the assembly and assembly of the optical system 10 and the photosensitive element on the image side, and can prevent the fourth lens unit 140 from interacting with the photosensitive element during the zoom movement.
  • the optical system 10 also satisfies the following relationships:
  • fc/fd 2.32; where fc is the focal length when the optical system 10 is at the long focal end, and fd is the focal length when the optical system 10 is at the short focal end.
  • g1+g2+g3+g4)/fd 0.81; where g1 is the distance on the optical axis from the lens surface closest to the object side in the first lens unit 110 to the lens surface closest to the image side, and g2 is the second The distance on the optical axis from the lens surface closest to the object side in the lens unit 120 to the lens surface closest to the image side, and g3 is the lens surface closest to the object side in the third lens unit 130 to the lens surface closest to the image side. The distance on the optical axis, g4 is the distance on the optical axis from the lens surface closest to the object side in the fourth lens unit 140 to the lens surface closest to the image side, and fd is the focal length of the optical system 10 at the short focal end.
  • f3/fd 1.51; where f3 is the focal length of the third lens unit 130, and fd is the focal length of the optical system 10 at the short focal end.
  • 2.17; where f1 is the focal length of the first lens unit 110, and f2 is the focal length of the second lens unit 120.
  • f2/fc -0.46; where f2 is the focal length of the second lens unit 120, and fc is the focal length when the optical system 10 is at the telephoto end.
  • the focal length of the second lens unit 120 and the focal length of the system corresponding to the telephoto end can be reasonably configured to ensure that the system can achieve reasonable zooming, that is, the moving distance of the system during zooming is smaller, and the zooming time is longer. Short, less affected by the external environment, so that fast and efficient zooming can be achieved, and it is also beneficial to correct the spherical aberration generated by the second lens unit 120.
  • d2/d3 0.51; where d2 is the moving distance of the second lens unit 120 when the optical system 10 zooms from the short focal end to the long focal end, and d3 is the first lens unit 120 when the optical system 10 zooms from the short focal end to the long focal end.
  • TTL/fc 1.37; where TTL is the total optical length of the optical system 10, and fc is the focal length when the optical system 10 is at the telephoto end.
  • R16/f4 0.50; where R16 is the radius of curvature of the object side surface S15 of the eighth lens L8 at the optical axis, and f4 is the focal length of the fourth lens unit 140.
  • the lens parameters of the optical system 10 are given in Table 1, Table 2, and Table 3.
  • the elements from the object side to the image side are arranged in the order of the elements from top to bottom in Table 1.
  • the object located on the object surface can form a clear image on the image surface (imaging surface S17) of the optical system 10
  • the imaging surface S17 can also be understood as the photosensitive surface of the photosensitive element during later assembly.
  • the surface numbers 1 and 2 respectively represent the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number on the optical axis.
  • the first value in the "thickness" parameter column of the lens is the thickness of the lens on the optical axis, and the second value is the thickness of the lens from the image side of the lens to the object side of the latter optical element (lens or diaphragm STO).
  • the value of the aperture STO in the "thickness" parameter column is the distance from the aperture STO to the object side of the latter lens on the optical axis.
  • the centers of the optical axis-level stop STO of each lens are all on the same straight line, and this straight line serves as the optical axis of the optical system 10.
  • D1 in the table is the distance on the optical axis between the first lens unit 110 and the second lens unit 120, that is, the distance from the image side surface S2 of the first lens L1 to the object side surface S3 of the second lens L2 on the optical axis;
  • D2 is the distance on the optical axis between the second lens unit 120 and the third lens unit 130, that is, the distance on the optical axis from the image side surface S8 of the fourth lens L4 to the object side surface S9 of the fifth lens L5;
  • the distance between the three lens unit 130 and the fourth lens unit 140 on the optical axis that is, the distance from the image side surface S14 of the seventh lens L7 to the object side surface S15 of the eighth lens L8 on the optical axis.
  • Figures 1 to 3 respectively show the position of the lens under three different system focal lengths in the first embodiment, which are a short focal end position shown in Fig. 1, a middle focal end position shown in Fig. 2, and a middle focal end position shown in Fig. 3 respectively.
  • the system is at the short focal end, center The value at the focal end and telephoto end position.
  • the total optical length TTL of the optical system 10 is 41 mm, and the total optical length is the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the system on the optical axis.
  • the infrared cut filter L9 in Table 1 is not a component of the optical system 10.
  • the total optical length TTL of the optical system 10 is still 41 mm, and the image side surface S16 of the eighth lens L8 is to the imaging surface
  • the distance of S17 is still 12.60mm.
  • Table 2 shows the values of D1, D2, and D3 of the optical system 10 at the aforementioned short focal end, middle focal end, and long focal end, and the unit of the value is mm.
  • K in Table 3 is the conic coefficient, and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface formula.
  • the refractive index, Abbe number, and focal length of each lens are all numerical values at a wavelength of 587.56 nm.
  • the calculation of the relational expression and the lens structure of each embodiment are based on the lens parameters (the first embodiment corresponds to the parameter data in Table 1, Table 2, and Table 3).
  • the optical system 10 sequentially from the object side to the image side includes a fixed first lens unit 110 having a positive refractive power, a negative refractive power and movable set
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 in turn from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • the first lens unit 110 and the fourth lens unit 140 are both fixedly arranged with respect to the imaging surface of the optical system 10, and the optical system 10 realizes optical zooming through the movement of the second lens unit 120 and the third lens unit 130.
  • the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by a clamping piece and form an integral edge.
  • the optical axis direction of the optical system 10 moves synchronously, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the stop STO can be fixed together by a clamping member and synchronized as a whole along the optical axis direction of the optical system 10 move.
  • the second lens unit 120 will be far away from the first lens unit 110, and the third lens unit 130 and the fourth lens unit 140 will also be far away.
  • FIG. 7 is a schematic diagram of the optical system 10 of the second embodiment at a short focal end;
  • FIG. 8 is a schematic diagram of the optical system 10 of the second embodiment at a medium focal end;
  • FIG. 9 is a schematic diagram of the optical system of the second embodiment 10 Schematic diagram at a telephoto end.
  • 10 is the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 10 at the short focal end corresponding to FIG. 7; Longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) at the end; Figure (mm) and distortion map (%).
  • the object side surface S1 of the first lens L1 is convex at the paraxial position, the image side surface S2 is convex at the paraxial position; the object side surface S1 is convex at the circumference, and the image side surface S2 is convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, the image side surface S4 is concave at the paraxial position; the object side surface S3 is concave at the circumference, and the image side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, and the image side surface S6 is concave at the paraxial position; the object side surface S5 is concave at the circumference, and the image side surface S6 is concave at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image side surface S8 is concave at the paraxial position; the object side surface S7 is convex at the circumference, and the image side surface S8 is convex at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 is convex at the paraxial position; the object side surface S9 is convex at the circumference, and the image side surface S10 is convex at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image side surface S12 is concave at the paraxial position; the object side surface S11 is convex at the circumference, and the image side surface S12 is concave at the circumference.
  • the object side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image side surface S14 is concave at the paraxial position; the object side surface S13 is convex at the circumference, and the image side surface S14 is concave at the circumference.
  • the object side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image side surface S16 is concave at the paraxial position; the object side surface S15 is concave at the circumference, and the image side surface S16 is convex at the circumference.
  • lens parameters of the optical system 10 in the second embodiment are given in Table 4, Table 5, and Table 6, wherein the definition of each structure and parameter can be obtained in the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes, from the object side to the image side, a first lens unit 110 that has a positive refractive power and is fixedly arranged, and a first lens unit 110 that has a negative refractive power and is movably arranged.
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 in turn from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • the first lens unit 110 and the fourth lens unit 140 are both fixedly arranged with respect to the imaging surface of the optical system 10, and the optical system 10 realizes optical zooming through the movement of the second lens unit 120 and the third lens unit 130.
  • the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by a clamping piece and form an integral edge.
  • the optical axis direction of the optical system 10 moves synchronously, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the stop STO can be fixed together by a clamping member and synchronized as a whole along the optical axis direction of the optical system 10 move.
  • the second lens unit 120 will be far away from the first lens unit 110, and the third lens unit 130 and the fourth lens unit 140 will also be far away.
  • FIG. 13 is a schematic diagram of the optical system 10 of the third embodiment at a short focal end;
  • FIG. 14 is a schematic diagram of the optical system 10 of the third embodiment at a medium focal end;
  • Figure 18 is the longitudinal spherical aberration diagram (mm) and astigmatism diagram of the optical system 10 at the telephoto end corresponding to Figure 15 Figure (mm) and distortion map (%).
  • the object side surface S1 of the first lens L1 is convex at the paraxial position, the image side surface S2 is convex at the paraxial position; the object side surface S1 is convex at the circumference, and the image side surface S2 is convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, the image side surface S4 is concave at the paraxial position; the object side surface S3 is concave at the circumference, and the image side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, and the image side surface S6 is concave at the paraxial position; the object side surface S5 is concave at the circumference, and the image side surface S6 is concave at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image side surface S8 is concave at the paraxial position; the object side surface S7 is convex at the circumference, and the image side surface S8 is concave at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 is convex at the paraxial position; the object side surface S9 is convex at the circumference, and the image side surface S10 is convex at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image side surface S12 is concave at the paraxial position; the object side surface S11 is convex at the circumference, and the image side surface S12 is concave at the circumference.
  • the object side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image side surface S14 is concave at the paraxial position; the object side surface S13 is convex at the circumference, and the image side surface S14 is concave at the circumference.
  • the object side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image side surface S16 is concave at the paraxial position; the object side surface S15 is convex at the circumference, and the image side surface S16 is concave at the circumference.
  • lens parameters of the optical system 10 in the third embodiment are given in Table 7, Table 8 and Table 9.
  • the definition of each structure and parameter can be obtained in the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes, from the object side to the image side, a first lens unit 110 that has a positive refractive power and is fixedly set, and a first lens unit 110 that has a negative refractive power and is movably set.
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 in turn from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • the first lens unit 110 and the fourth lens unit 140 are both fixedly arranged with respect to the imaging surface of the optical system 10, and the optical system 10 realizes optical zooming through the movement of the second lens unit 120 and the third lens unit 130.
  • the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by a clamping piece and form an integral edge.
  • the optical axis direction of the optical system 10 moves synchronously, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the stop STO can be fixed together by a clamping member and synchronized as a whole along the optical axis direction of the optical system 10 move.
  • the second lens unit 120 will be far away from the first lens unit 110, and the third lens unit 130 and the fourth lens unit 140 will also be far away.
  • FIG. 19 is a schematic diagram of the optical system 10 of the fourth embodiment at a short focal end;
  • FIG. 20 is a schematic diagram of the optical system 10 of the fourth embodiment at a medium focal end;
  • FIG. 21 is a schematic diagram of the optical system of the fourth embodiment 10 Schematic diagram at a telephoto end.
  • 22 is the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 10 at the short focal end corresponding to FIG. 19; Longitudinal spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) at the end;
  • Fig. 24 is the longitudinal spherical aberration diagram (mm) and astigmatism diagram of the optical system 10 at the telephoto end corresponding to Fig. 21 Figure (mm) and distortion map (%).
  • the object side surface S1 of the first lens L1 is convex at the paraxial position, the image side surface S2 is convex at the paraxial position; the object side surface S1 is convex at the circumference, and the image side surface S2 is convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, the image side surface S4 is concave at the paraxial position; the object side surface S3 is concave at the circumference, and the image side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, and the image side surface S6 is concave at the paraxial position; the object side surface S5 is concave at the circumference, and the image side surface S6 is concave at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image side surface S8 is convex at the paraxial position; the object side surface S7 is convex at the circumference, and the image side surface S8 is concave at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, and the image side surface S10 is convex at the paraxial position; the object side surface S9 is convex at the circumference, and the image side surface S10 is convex at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image side surface S12 is concave at the paraxial position; the object side surface S11 is convex at the circumference, and the image side surface S12 is concave at the circumference.
  • the object side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image side surface S14 is concave at the paraxial position; the object side surface S13 is convex at the circumference, and the image side surface S14 is concave at the circumference.
  • the object side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image side surface S16 is convex at the paraxial position; the object side surface S15 is convex at the circumference, and the image side surface S16 is convex at the circumference.
  • lens parameters of the optical system 10 in the fourth embodiment are given in Table 10, Table 11, and Table 12.
  • Table 10 the lens parameters of the optical system 10 in the fourth embodiment.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes, from the object side to the image side, a first lens unit 110 that has a positive refractive power and is fixedly set, and a first lens unit 110 that has a negative refractive power and is movably set.
  • the first lens unit 110 includes a first lens L1
  • the second lens unit 120 includes a second lens L2, a third lens L3, and a fourth lens L4 in turn from the object side to the image side
  • the third lens unit 130 extends from the object side to the fourth lens L4.
  • the image side sequentially includes a fifth lens L5, a sixth lens L6, a seventh lens L7, and a stop STO.
  • the fourth lens unit 140 includes an eighth lens L8, and each of the first lens L1 to the eighth lens L8 includes only one lens.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has negative refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • seventh lens L7 has negative refractive power
  • eighth lens L8 has positive refractive power.
  • the first lens unit 110 and the fourth lens unit 140 are both fixedly arranged with respect to the imaging surface of the optical system 10, and the optical system 10 realizes optical zooming through the movement of the second lens unit 120 and the third lens unit 130.
  • the first lens L1 and the eighth lens L8 always remain fixed in the system, while the second lens L2, the third lens L3, and the fourth lens L4 can be fixed together by a clamping piece and form an integral edge.
  • the optical axis direction of the optical system 10 moves synchronously, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the stop STO can be fixed together by a clamping member and synchronized as a whole along the optical axis direction of the optical system 10 move.
  • the second lens unit 120 will be far away from the first lens unit 110, and the third lens unit 130 and the fourth lens unit 140 will also be far away.
  • FIG. 25 is a schematic diagram of the optical system 10 of the fifth embodiment at a short focal end
  • FIG. 26 is a schematic diagram of the optical system 10 of the fifth embodiment at a medium focal end
  • FIG. 27 is a schematic diagram of the optical system of the fifth embodiment 10 Schematic diagram at a telephoto end.
  • FIG. 28 shows the longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system 10 at the short focal end corresponding to FIG. 25; Longitudinal spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) at the end;
  • Fig. 30 is the longitudinal spherical aberration diagram (mm) and astigmatism diagram of the optical system 10 at the telephoto end corresponding to Fig. 27 Figure (mm) and distortion map (%).
  • the object side surface S1 of the first lens L1 is convex at the paraxial position, the image side surface S2 is convex at the paraxial position; the object side surface S1 is convex at the circumference, and the image side surface S2 is convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, the image side surface S4 is concave at the paraxial position; the object side surface S3 is concave at the circumference, and the image side surface S4 is concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the paraxial position, the image side surface S6 is concave at the paraxial position; the object side surface S5 is concave at the circumference, and the image side surface S6 is convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the paraxial position, and the image side surface S8 is concave at the paraxial position; the object side surface S7 is convex at the circumference, and the image side surface S8 is concave at the circumference.
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position, the image side surface S10 is concave at the paraxial position; the object side surface S9 is convex at the circumference, and the image side surface S10 is concave at the circumference.
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position, and the image side surface S12 is concave at the paraxial position; the object side surface S11 is convex at the circumference, and the image side surface S12 is concave at the circumference.
  • the object side surface S13 of the seventh lens L7 is convex at the paraxial position, and the image side surface S14 is concave at the paraxial position; the object side surface S13 is convex at the circumference, and the image side surface S14 is concave at the circumference.
  • the object side surface S15 of the eighth lens L8 is convex at the paraxial position, and the image side surface S16 is convex at the paraxial position; the object side surface S15 is convex at the circumference, and the image side surface S16 is convex at the circumference.
  • lens parameters of the optical system 10 in the fifth embodiment are given in Table 13, Table 14 and Table 15. The definition of each structure and parameter can be obtained in the first embodiment, and will not be repeated here.
  • optical system 10 in this embodiment satisfies the following relationship:
  • the optical system 10 and the photosensitive element 210 are assembled to form the camera module 20, and the photosensitive element 210 is disposed on the image side of the fourth lens unit 140.
  • the photosensitive surface of the photosensitive element 210 overlaps with the imaging surface S17 of the optical system 10.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the camera module 20 will have good zoom performance, and can take into account the zoom effect and miniaturization design. At the same time, it can also effectively prevent the fourth lens unit 140 from colliding with the photosensitive element 210 during the assembly process. Improve assembly yield.
  • the camera module 20 can still maintain good zoom performance.
  • a protective glass and an infrared cut-off filter L9 are also provided between the fourth lens unit 140 and the imaging surface S17 of the system.
  • the infrared cut filter L9 is used to filter out infrared light
  • the protective glass is used to protect the photosensitive element 210.
  • the protective glass and the infrared cut filter L9 can be part of the optical system 10, or can also be installed between the optical system 10 and the photosensitive element 210 when the optical system 10 and the photosensitive element 210 are assembled, as a part of the module .
  • some embodiments of the present application further provide an electronic device 30, and the camera module 20 is applied to the electronic device 30 so that the electronic device 30 has a zoom camera function.
  • the electronic device 30 includes a fixing member 310, and the camera module 20 is installed on the fixing member 310.
  • the fixing member 310 is a circuit board, a middle frame, or a housing.
  • the electronic device 30 can be, but is not limited to, a smart phone, a smart watch, an e-book reader, a vehicle-mounted camera device (such as a driving recorder), a monitoring device, a medical device, a notebook computer, a tablet computer, a biometric device (such as a fingerprint recognition device or Pupil recognition equipment, etc.), PDA (Personal Digital Assistant, personal digital assistant), drone, etc.
  • the electronic device 30 is a smart phone.
  • the smart phone includes a middle frame and a circuit board.
  • the circuit board is disposed in the middle frame.
  • the camera module 20 is installed in the middle frame of the smart phone, and the photosensitive element 210 therein is Electrically connected with the circuit board.
  • the camera module 20 can be used as a front camera module or a rear camera module of a smart phone.
  • the electronic device 30 will have excellent shooting performance, and the camera module 20 can be assembled in a smaller space.
  • the electronic device 30 can still maintain good zoom shooting performance.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(10),由物侧至像侧依次包括:具有正屈折力的第一镜头单元(110);具有负屈折力的第二镜头单元(120);具有正屈折力的第三镜头单元(130)和第四镜头单元(140);第一镜头单元(110)和第四镜头单元(140)的位置均相对光学系统(10)的成像面(S17)保持固定,第二镜头单元(120)和第三镜头单元(130)均能够相对第一镜头单元(110)沿光学系统(10)的光轴方向移动;当光学系统(10)从短焦端到长焦端进行变焦时,第一镜头单元(110)与第二镜头单元(120)之间的距离以及第三镜头单元(130)与第四镜头单元(140)之间的距离增加。

Description

光学系统、摄像模组及电子装置 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、摄像模组及电子装置。
背景技术
近些年来,各种搭载摄像镜头的移动电子装置(包括数码相机、智能手机、笔记本电脑、平板电脑等各种便携式信息终端)正在迅速发展普及。变焦系统具有高品质的成像效果和高变焦比率等特点,原多用于数码照相机或者摄像机中,现如今在其他的被广泛使用的电子设备中也越来越多的运用具有小型化特性的摄像单元。
变焦系统中用于带动屈折力单元做变焦移动的驱动机构一般占据较大空间,且随着需要独立移动的屈折力单元的数量增多,驱动机构的数量也会相应增多,从而导致系统体积难以缩小。因此,在追求变焦效果及小型化设计之间往往难以同时兼顾。于是如何在实现大范围变焦的基础上进一步缩短光学系统的总长实现小型化成为目前业界欲解决的问题之一。
发明内容
根据本申请的各种实施例,提供一种光学系统。
一种光学系统,由物侧至像侧依次包括:
具有正屈折力的第一镜头单元;
具有负屈折力的第二镜头单元;
具有正屈折力的第三镜头单元;
具有正屈折力的第四镜头单元;
所述第一镜头单元和第四镜头单元的位置均相对所述光学系统的成像面保持固定,所述第二镜头单元和所述第三镜头单元均能够相对所述第一镜头单元沿所述光学系统的光轴方向移动;当所述光学系统从短焦端到长焦端进行变焦时,所述第一镜头单元与所述第二镜头单元之间的距离增加,且所述第三镜头单元与所述第四镜头单元之间的距离也增加。
一种摄像模组,包括感光元件及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子装置,包括固定件及上述的摄像模组,所述摄像模组设置于所述固定件。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例的光学系统于一短焦端时的示意图;
图2为本申请第一实施例的光学系统于一中焦端时的示意图;
图3为本申请第一实施例的光学系统于一长焦端时的示意图;
图4为第一实施例中光学系统于图1对应的短焦端时的纵向球差图、像散图和畸变图;
图5为第一实施例中光学系统于图2对应的中焦端时的纵向球差图、像散图和畸变图;
图6为第一实施例中光学系统于图3对应的长焦端时的纵向球差图、像散图和畸变图;
图7为本申请第二实施例的光学系统于一短焦端时的示意图;
图8为本申请第二实施例的光学系统于一中焦端时的示意图;
图9为本申请第二实施例的光学系统于一长焦端时的示意图;
图10为第二实施例中光学系统于图7对应的短焦端时的纵向球差图、像散图和畸变图;
图11为第二实施例中光学系统于图8对应的中焦端时的纵向球差图、像散图和畸变图;
图12为第二实施例中光学系统于图9对应的长焦端时的纵向球差图、像散图和畸变图;
图13为本申请第三实施例的光学系统于一短焦端时的示意图;
图14为本申请第三实施例的光学系统于一中焦端时的示意图;
图15为本申请第三实施例的光学系统于一长焦端时的示意图;
图16为第三实施例中光学系统于图13对应的短焦端时的纵向球差图、像散图和畸变图;
图17为第三实施例中光学系统于图14对应的中焦端时的纵向球差图、像散图和畸变图;
图18为第三实施例中光学系统于图15对应的长焦端时的纵向球差图、像散图和畸变图;
图19为本申请第四实施例的光学系统于一短焦端时的示意图;
图20为本申请第四实施例的光学系统于一中焦端时的示意图;
图21为本申请第四实施例的光学系统于一长焦端时的示意图;
图22为第四实施例中光学系统于图19对应的短焦端时的纵向球差图、像散图和畸变图;
图23为第四实施例中光学系统于图20对应的中焦端时的纵向球差图、像散图和畸变图;
图24为第四实施例中光学系统于图21对应的长焦端时的纵向球差图、像散图和畸变图;
图25为本申请第五实施例的光学系统于一短焦端时的示意图;
图26为本申请第五实施例的光学系统于一中焦端时的示意图;
图27为本申请第五实施例的光学系统于一长焦端时的示意图;
图28为第五实施例中光学系统于图25对应的短焦端时的纵向球差图、像散图和畸变图;
图29为第五实施例中光学系统于图26对应的中焦端时的纵向球差图、像散图和畸变图;
图30为第五实施例中光学系统于图27对应的长焦端时的纵向球差图、像散图和畸变图;
图31为本申请一实施例提供的摄像模组的示意图;
图32为本申请一实施例提供的电子装置的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
参考图1,在本申请的一些实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。另外,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。光学系统10中各透镜与光阑STO同轴设置,即各透镜的光轴与光阑STO的中心均位于同一直线上,该直线可称为光学系统10的光轴。
第一透镜L1包括物侧面S1和像侧面S2,第二透镜L2包括物侧面S3和像侧面S4,第三透镜L3包括物侧面S5和像侧面S6,第四透镜L4包括物侧面S7和像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14,第八透镜L8包括物侧面S15及像侧面S16。另外,光学系统10还有一虚拟的成像面S17,成像面S17位于第四镜头单元140的像侧。一般地,光学系统10的成像面S17与感光元件的感光表面重合。为方便理解,当光学系统10与感光元件装配成摄像模组时,可将感光元件的感光表面视为成像面S17,而感光表面的有效感光区域为成像面S17的有效成像区域。
在上述实施例中,第一镜头单元110和第四镜头单元140均相对系统的成像面S17保持固定不动, 而第二镜头单元120和第三镜头单元130分别能够相对第一镜头单元110沿光学系统10的光轴方向移动,以使光学系统10实现光学变焦。即,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。变焦设计使光学系统10能够实现在短焦端及长焦端之间的切换,当光学系统10处于短焦端时,系统将拥有大视角特性;而当光学系统10处于长焦端时,系统将拥有远摄特性。具体地,当光学系统10从短焦端切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140,即系统从短焦端切换至长焦端时,第二镜头单元120与第三镜头单元130将逐渐靠近。
上述光学系统10在变焦过程中,最靠近物侧的第一镜头单元110和最靠近像侧的第四镜头单元140均保持固定,而仅通过第二镜头单元120和第三镜头单元130的移动来实现系统在短焦端和长焦端之间的切换,以此减少驱动机构的数量,使系统的结构更为紧凑,从而促使系统的小型化设计,同时降低生产成本。同时,由于通过移动两个屈折力相反的镜头单元以实现变焦,光学系统10在变焦过程中能够合理控制入射光线的偏折角度,并良好地校正像差,从而能够拥有良好的变焦效果。另外,在长期的高温或低温环境下,最靠近物侧的第一镜头单元110附近的部件受到的温度影响最大,而上述光学系统10中无需为第一镜头单元110设置驱动机构,因此可避免系统中的驱动机构由于过于靠近物侧而受外界温度影响导致老化损坏,保证变焦功能的正常运转。同时,上述光学系统10也无需为第四镜头单元140设置驱动机构,从而有利于光学系统10与像侧的感光元件的组装装配,且可避免第四镜头单元140在变焦移动的过程中与感光元件发生碰撞。
另外,在上述实施例中,第一透镜L1、第二透镜L2、第五透镜L5、第六透镜L6及第七透镜L7的物侧面和像侧面均为球面,而第三透镜L3、第四透镜L4及第八透镜L8的物侧面和像侧面均为非球面。球面透镜的制作工艺简单,制作成本低,非球面透镜能够进一步帮助光学系统10消除像差,解决视界歪曲的问题,同时还能够在较小较薄的情况下拥有优良的光学性能,从而是有利于光学系统10的小型化设计。通过球面透镜及非球面透镜的合理搭配,系统将能够兼顾小型化、高像质及低成本。当然,在一些实施例中,光学系统10中任意一个透镜的物侧面可以为球面或非球面,任意一个透镜的像侧面可以是球面或非球面。且需注意的是,实施例中的球面和非球面的具体形状并不限于附图中示出的球面和非球面的形状,附图主要为示例参考而非严格按比例绘制。特别地,当将系统中最靠近像侧的透镜合理设计为非球面透镜时,该透镜有效校正物方各透镜所产生的像差,从而有利于使系统保持高像质。
非球面的面型计算可参考非球面公式:
Figure PCTCN2020079515-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
需要注意的是,在一些实施例中,当某个透镜的物侧面或像侧面为非球面时,该面可以是整体凸面或整体呈现凹面的结构;或者该面也可设计成存在反曲点的结构,此时该面由中心至边缘的面型将发生改变,例如该面于中心处呈凸面而于边缘处呈凹面。需要注意的是,当本申请的实施例在描述透镜的一个侧面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该侧面于光轴附近的区域为凸面;当描述透镜的一个侧面于圆周处为凹面时,可理解为该侧面在靠近最大有效半孔径处的区域为凹面。举例而言,当该侧面于近轴处为凸面,且于圆周处也为凸面时,该侧面由中心(光轴处)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半孔径处时变为凸面。此处仅为说明近轴处与圆周处的关系而做出的示例,侧面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出,也应视为是本申请所记载的内容。
在一些实施例中,光学系统10中的球面透镜(物侧面和像侧面均为球面的透镜)的材质均为玻璃, 而非球面透镜(物侧面和像侧面中的至少一个面为非球面)的材质均为塑料。在一些实施例中,光学系统10中各透镜的材质均为玻璃。在另一些实施例中,光学系统10中各透镜的材质均为塑料。玻璃材质的透镜能够耐受较高的温度且具有优良的光学效果,而塑料材质的透镜能够减少光学系统10的重量并降低制备成本。在另一些实施例中,第一透镜L1的材质为玻璃,而光学系统10中其他透镜的材质均为塑料,此时,由于光学系统10中靠近物侧的透镜的材质为玻璃,因此这些靠近物侧的玻璃透镜对极端环境具有很好耐受效果,不易受物方环境的影响而出现老化等情况,从而当光学系统10处于暴晒高温等极端环境下时,这种结构能够较好地平衡系统的光学性能与生产成本。当然,光学系统10中透镜材质配置关系并不限于上述实施例,系统中任一透镜的材质可以为塑料,也可以为玻璃。
在一些实施例中,光学系统10还包括红外截止滤光片L9,红外截止滤光片L9设置于第四镜头单元140的像侧,并与第一镜头单元110和第四镜头单元140相对固定设置。红外截止滤光片L9用于滤除红外光,防止红外光到达系统的成像面S17,从而防止红外光干扰正常成像。红外截止滤光片L9可与各透镜一同装配以作为光学系统10中的一部分。在另一些实施例中,红外截止滤光片L9并不属于光学系统10的元件,此时红外截止滤光片L9可以在光学系统10与感光元件装配成摄像模组时,一并安装至光学系统10与感光元件之间。在一些实施例中,红外截止滤光片L9也可设置在第一透镜L1的物侧。另外,在一些实施例中也可不设置红外截止滤光片L9,而是通过在第一透镜L1至第五透镜L5中的任一透镜上设置红外滤光膜以实现滤除红外光的作用。通过设置红外截止滤光片L9或在透镜表面设置红外滤光膜,从而可避免成像由于红外光的干扰而产生伪色或波纹的现象,同时可以提高有效分辨率和色彩还原性。
在一些实施例中,第一镜头单元110和第四镜头单元140包括但不限于一片透镜的情况,第二镜头单元120和第三镜头单元130包括但不限于三片透镜的情况。
在一些实施例中,光学系统10还满足以下各关系:
1.2<fc/fd<3.5;其中,fc为光学系统10处于长焦端时的焦距,fd为光学系统10处于短焦端时的焦距。一些实施例中的fc/fd为1.50、1.60、1.80、2.00、2.20、2.50、2.80或3.00。满足上述关系时,光学系统10于长焦端和短焦端时的焦距能够得到合理配置,使得变焦过程更加合理适当,从而有利于光学系统10拥有优良的变焦效果及小型化特性。当fc/fd>3.5时,不利于校正系统于长焦端时的球面像差,并且会导致系统从长焦向短焦切换时镜头单元的移动距离过大,从而无法实现小型化设计;当fc/fd<1.2时,系统的变焦比率过低,无法实现明显的变焦效果。
0.3<(g1+g2+g3+g4)/fd;其中,g1为第一镜头单元110中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g2为第二镜头单元120中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g3为第三镜头单元130中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g4为第四镜头单元140中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,fd为光学系统10处于短焦端时的焦距。一些实施例中的(g1+g2+g3+g4)/fd为0.45、0.50、0.60、0.70、0.80或0.85。满足上述关系时,有利于光学系统10在拥有变焦功能的同时,也能使实现整个系统实现小型化。当(g1+g2+g3+g4)/fd<0.3时,将不利于校正系统的像差,且会因系统的总长过短而导致各透镜厚度的减小而增加加工成本。
0.8<f3/fd<2;其中,f3为第三镜头单元130的焦距,fd为光学系统10处于短焦端时的焦距。一些实施例中的f3/fd为1.00、1.10、1.20、1.40、1.50、1.60、1.70或1.80。满足上述关系时,可以确保第三镜头单元130为整个光学系统10提供合适的屈折力,并有利于系统获得微型尺寸。
1.6<f1/|f2|<2.3;其中,f1为第一镜头单元110的焦距,f2为第二镜头单元120的焦距。一些实施例中的f1/|f2|为1.80、1.90、2.00、2.10或2.15。满足上述关系时,第一镜头单元110和第二镜头单元120的屈折力能够得到合理配置,使得由第一镜头单元110产生的畸变能够得到有效矫正,同时也有利于系统实现小型化设计。当f1/|f2|>2.3时,第一镜头单元110的屈折力过强,难以校正由第一镜头单元110产生的畸变;当f1/|f2|<1.6时,第一镜头单元110的屈折力太弱,入射光线无法得到有效偏折,从而导致光线的作用距离增加,不利于整个光学系统10的小型化。
-0.6<f2/fc<-0.3;其中,f2为第二镜头单元120的焦距,fc为光学系统10处于长焦端时的焦 距。一些实施例中f2/fc为-0.50、-0.49、-0.47、-0.45或-0.43。满足上述关系时,第二镜头单元120的焦距和系统于长焦端对应的焦距能够得到合理配置,从而确保系统能够合理地实现变焦,即系统在变焦过程中的移动距离更小,变焦时间更短,受外界环境影响更小,从而可以实现快速高效的变焦。同时,满足上述关系时也有利于校正由第二镜头单元120产生的球面像差。
0.1<d2/d3<0.6;其中,d2为光学系统10从短焦端到长焦端进行变焦时第二镜头单元120的移动距离,d3为光学系统10从短焦端到长焦端进行变焦时第三镜头单元130的移动距离。一些实施例中的d2/d3为0.25、0.30、0.35、0.40、0.45或0.50。满足上述关系时,将有利于光学系统10的小型化,同时使变焦过程更加合理,即系统在变焦过程中的移动距离更小,变焦时间更短,受外界环境影响更小,从而可以实现快速高效的变焦。
1<TTL/fc<1.5;其中,TTL为光学系统10的光学总长,fc为光学系统10处于长焦端时的焦距。一些实施例中的TTL/fc为1.15、1.20、1.25、1.30、1.35或1.40。满足上述关系时,系统的光学总长和系统于长焦端对应的焦距能够得到合理配置,从而可以在拓宽变焦范围的基础上,进一步实现光学系统10的小型化。
0.3<R16/f4<0.8;其中,R16为第八透镜L8的物侧面S15于光轴处的曲率半径,f4为第四镜头单元140的焦距。一些实施例中的R16/f4为0.40、0.43、0.45、0.50、0.55、0.58、0.60或0.62。满足上述关系时,第八透镜L8的物侧面S15的曲率半径与第四镜头单元140的焦距将得到合理配置,从而有利于校正像差,提升像质。当R16/f4<0.3时,第八透镜L8的物侧面S15的曲率半径过小,从而导致该面的面型复杂,增加加工难度。
一些实施例中的光学系统10仅存在一个长焦端位置及一个短焦端位置,即系统仅能在这两个位置之间切换。在一些实施例中,光学系统10还存在一个中焦端位置,此时的系统能够在长焦端、中焦端和短焦端这三个位置之间切换。光学系统10处于长焦端时的焦距大于处于中焦端时的焦距,且光学系统10处于中焦端时的焦距大于处于短焦端时的焦距。光学系统10在上述不同焦距之间的切换通过第二镜头单元120和第三镜头单元130的变焦移动实现。但需要注意的是,在一些实施例中,光学系统10并不仅仅只能在上述两个或三个焦距之间实现切换,在这些实施例中,第二镜头单元120和第三镜头单元130能够在移动范围内的任意合理的位置保持不动,从而使光学系统10拥有连续变焦的能力,进而拥有更多的焦距选择。
在一些实施例中,可通过在第二镜头单元120和第三镜头单元130上分别设置音圈马达和磁石等驱动机构以使两者能够独立移动,从而实现变焦效果。具体地,在一些实施例中,第二镜头单元120中的各透镜装配在一个镜筒中,该镜筒上设置有与驱动芯片电性连接的线圈,同时光学系统10中还设置有与该线圈对应的磁石,通过通电后的线圈与磁石之间的磁力作用以驱动该镜筒运动。同样地,第三镜头单元130中的各透镜及光阑STO装配在另一个镜筒中,该镜筒上设置有与驱动芯片电性连接的线圈,同时光学系统10中还设置有与该线圈对应的磁石,通过通电后的线圈与磁石之间的磁力作用以驱动该镜筒运动。
接下来以更为具体详细的实施例来对本申请的光学系统10进行说明:
第一实施例
参考图1、图2和图3,在第一实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。第一镜头单元110和第四镜头单元140均相对光学系统10的成像面固定设置,光学系统10通 过第二镜头单元120和第三镜头单元130的移动以实现光学变焦。
在变焦过程中,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。当光学系统10从短焦端逐渐切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140。
上述光学系统10在变焦过程中,最靠近物侧的第一镜头单元110和最靠近像侧的第四镜头单元140均保持固定,而仅通过第二镜头单元120和第三镜头单元130的移动来实现系统在短焦端和长焦端之间的切换,以此减少驱动机构的数量,使系统的结构更为紧凑,从而促使系统的小型化设计,同时降低生产成本。同时,由于通过移动两个屈折力相反的镜头单元以实现变焦,光学系统10在变焦过程中能够合理控制入射光线的偏折角度,并良好地校正像差,从而能够拥有良好的变焦效果。另外,在长期的高温或低温环境下,最靠近物侧的第一镜头单元110附近的部件受到的温度影响最大,而上述光学系统10中无需为第一镜头单元110设置驱动机构,因此可避免系统中的驱动机构由于过于靠近物侧而受外界温度影响导致老化损坏,保证变焦功能的正常运转。同时,上述光学系统10也无需为第四镜头单元140设置驱动机构,从而有利于光学系统10与像侧的感光元件的组装装配,且可避免第四镜头单元140在变焦移动的过程中与感光元件发生碰撞。
图1为第一实施例的光学系统10于一短焦端时的示意图;图2为第一实施例的光学系统10于一中焦端时的示意图;图3为第一实施例的光学系统10于一长焦端时的示意图。图4为光学系统10于图1对应的短焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图5为光学系统10于图2对应的中焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图6为光学系统10于图3对应的长焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%)。各像散图和畸变图的纵坐标为光学系统10的成像面S17于有效成像区域的对角线长的一半,单位为mm。另外,以下各实施例中的像散图和畸变图为555nm波长下的曲线图。
以上图1、图2和图3分别展现了光学系统10于一短焦端、一中焦端及一长焦端时各透镜的位置关系,光学系统10包括但不限于在上述三个焦距状态之间切换。光学系统10处于长焦端时的焦距大于处于中焦端时的焦距,光学系统10处于中焦端时的焦距大于处于短焦端时的焦距。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凹面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,像侧面S10于近轴处为凸面;物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凹面;物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7的物侧面S13于近轴处为凹面,像侧面S14于近轴处为凹面;物侧面S13于圆周处为凹面,像侧面S14于圆周处为凹面。
第八透镜L8的物侧面S15于近轴处为凸面,像侧面S16于近轴处为凹面;物侧面S15于圆周处为凸面,像侧面S16于圆周处为凸面。
第一透镜L1、第二透镜L2、第五透镜L5、第六透镜L6及第七透镜L7的物侧面和像侧面均为球面。第三透镜L3、第四透镜L4及第八透镜L8的物侧面和像侧面均为非球面。第一透镜L1、第二透镜L2、第五透镜L5、第六透镜L6及第七透镜L7的材质均为玻璃,玻璃材质的透镜能够耐受极端的温度且具 有优良稳定的光学效果。第三透镜L3、第四透镜L4及第八透镜L8的材质均为塑料。
上述光学系统10在变焦过程中,最靠近物侧的第一镜头单元110和最靠近像侧的第四镜头单元140均保持固定,而仅通过第二镜头单元120和第三镜头单元130的移动来实现系统在短焦端和长焦端之间的切换,以此减少驱动机构的数量,使系统的结构更为紧凑,从而促使系统的小型化设计,同时降低生产成本。同时,由于通过移动两个屈折力相反的镜头单元以实现变焦,光学系统10在变焦过程中能够合理控制入射光线的偏折角度,并良好地校正像差,从而能够拥有良好的变焦效果。另外,在长期的高温或低温环境下,最靠近物侧的第一镜头单元110附近的部件受到的温度影响最大,而上述光学系统10中无需为第一镜头单元110设置驱动机构,因此可避免系统中的驱动机构由于过于靠近物侧而受外界温度影响导致老化损坏,保证变焦功能的正常运转。同时,上述光学系统10也无需为第四镜头单元140设置驱动机构,从而有利于光学系统10与像侧的感光元件的组装装配,且可避免第四镜头单元140在变焦移动的过程中与感光元件发生碰撞。
在第一实施例中,光学系统10还满足以下各关系:
fc/fd=2.32;其中,fc为光学系统10处于长焦端时的焦距,fd为光学系统10处于短焦端时的焦距。满足上述关系时,光学系统10于长焦端和短焦端时的焦距能够得到合理配置,使得变焦过程更加合理适当,从而有利于光学系统10拥有优良的变焦效果及小型化特性。
(g1+g2+g3+g4)/fd=0.81;其中,g1为第一镜头单元110中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g2为第二镜头单元120中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g3为第三镜头单元130中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g4为第四镜头单元140中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,fd为光学系统10处于短焦端时的焦距。满足上述关系时,有利于光学系统10在拥有变焦功能的同时,也能使实现整个系统实现小型化。
f3/fd=1.51;其中,f3为第三镜头单元130的焦距,fd为光学系统10处于短焦端时的焦距。满足上述关系时,可以确保第三镜头单元130为整个光学系统10提供合适的屈折力,并有利于系统获得微型尺寸。
f1/|f2|=2.17;其中,f1为第一镜头单元110的焦距,f2为第二镜头单元120的焦距。满足上述关系时,第一镜头单元110和第二镜头单元120的屈折力能够得到合理配置,使得由第一镜头单元110产生的畸变能够得到有效矫正,同时也有利于系统实现小型化设计。
f2/fc=-0.46;其中,f2为第二镜头单元120的焦距,fc为光学系统10处于长焦端时的焦距。满足上述关系时,第二镜头单元120的焦距和系统于长焦端对应的焦距能够得到合理配置,从而确保系统能够合理地实现变焦,即系统在变焦过程中的移动距离更小,变焦时间更短,受外界环境影响更小,从而可以实现快速高效的变焦,同时也有利于校正由第二镜头单元120产生的球面像差。
d2/d3=0.51;其中,d2为光学系统10从短焦端到长焦端进行变焦时第二镜头单元120的移动距离,d3为光学系统10从短焦端到长焦端进行变焦时第三镜头单元130的移动距离。满足上述关系时,将有利于光学系统10的小型化,同时使变焦过程更加合理,即系统在变焦过程中的移动距离更小,变焦时间更短,受外界环境影响更小,从而可以实现快速高效的变焦。
TTL/fc=1.37;其中,TTL为光学系统10的光学总长,fc为光学系统10处于长焦端时的焦距。满足上述关系时,系统的光学总长和系统于长焦端对应的焦距能够得到合理配置,从而可以在拓宽变焦范围的基础上,进一步实现光学系统10的小型化。
R16/f4=0.50;其中,R16为第八透镜L8的物侧面S15于光轴处的曲率半径,f4为第四镜头单元140的焦距。满足上述关系时,第八透镜L8的物侧面S15的曲率半径与第四镜头单元140的焦距将得到合理配置,从而有利于校正像差,提升像质。
第一实施例的上述各关系所涉及的短焦端和长焦端分别对应的是图1和图3所展现的系统状态,但并不意味各镜头单元只能调节到该短焦端及该长焦端的位置。
另外,光学系统10的各透镜参数由表1、表2和表3给出。由物侧至像侧的各元件依次按照表1从上至下的各元件的顺序排列,其中,位于物面的被摄物能够于光学系统10的像面(成像面S17)上 形成清晰的成像,成像面S17也可理解为后期装配时感光元件的感光表面。面序号1和2分别表示第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴上的曲率半径。透镜于“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一光学元件(透镜或光阑STO)的物侧面于光轴上的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一透镜的物侧面于光轴上的距离。各透镜的光轴级光阑STO的中心均处于同一直线上,该直线作为光学系统10的光轴。表格中的D1为第一镜头单元110与第二镜头单元120之间于光轴上的距离,即第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离;D2为第二镜头单元120与第三镜头单元130之间于光轴上的距离,即第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴上的距离;D3为第三镜头单元130与第四镜头单元140之间于光轴上的距离,即第七透镜L7的像侧面S14至第八透镜L8的物侧面S15于光轴上的距离。
图1至图3分别展现了第一实施例中三个不同的系统焦距下的透镜位置状态,分别为图1展现的一个短焦端位置、图2展现的一个中焦端位置以及图3展现的一个长焦端位置。光学系统10于该短焦端时的焦距fd=12.9mm,光圈数FNOd=3.85,对角线方向最大视场角FOVd=11.69°;光学系统10于该中焦端时的焦距为fz=23.30mm,光圈数FNOz=4.63,对角线方向最大视场角FOVz=6.42°;光学系统10于该长焦端时的焦距fc=29.90mm,光圈数FNOc=5.02,对角线方向最大视场角FOVc=5.01°。对于以下各实施例的相应表格,在系统的焦距f、光圈数FNO及对角线最大视场角FOV所分别给出的三个数值中,从左到右依次为系统在短焦端、中焦端及长焦端位置下的数值。光学系统10的光学总长TTL=41mm,光学总长即第一透镜L1的物侧面S1至系统的成像面S17于光轴上的距离。在一些实施例中,表1中的红外截止滤光片L9并不属于光学系统10的元件,此时光学系统10的光学总长TTL仍然为41mm,而第八透镜L8的像侧面S16至成像面S17的距离仍然为12.60mm。表2给出了光学系统10于上述短焦端、中焦端及长焦端时的D1、D2及D3的数值,数值单位为mm。表3中的K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
另外,在以下各实施例(第一实施例至第五实施例)中,各透镜的折射率、阿贝数和焦距均为587.56nm波长下的数值。另外,各实施例的关系式计算和透镜结构以透镜参数(第一实施例对应表1、表2、表3中的参数数据)为准。
表1
Figure PCTCN2020079515-appb-000002
Figure PCTCN2020079515-appb-000003
表2
可变距离 短焦位置 中焦位置 长焦位置
D1 2.3370 5.9054 7.1494
D2 14.7505 4.7507 0.4000
D3 0.5000 6.7813 9.9381
表3
面序号 5 6 7 8 16 17
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.23E-03 -3.07E-03 -1.10E-04 -2.00E-04 -2.50E-04 -1.60E-04
A6 2.00E-05 1.00E-05 2.00E-05 2.00E-05 -1.00E-05 -2.00E-05
A8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
第二实施例
参考图7、图8和图9,在第二实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。第一镜头单元110和第四镜头单元140均相对光学系统10的成像面固定设置,光学系统10通过第二镜头单元120和第三镜头单元130的移动以实现光学变焦。
在变焦过程中,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。当光学系统10从短焦端逐渐切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140。
图7为第二实施例的光学系统10于一短焦端时的示意图;图8为第二实施例的光学系统10于一中焦端时的示意图;图9为第二实施例的光学系统10于一长焦端时的示意图。图10为光学系统10于图7对应的短焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图11为光学系统10于图8对应的 中焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图12为光学系统10于图9对应的长焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凹面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面。
第五透镜L5的物侧面S9于近轴处为凸面,像侧面S10于近轴处为凸面;物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凹面;物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7的物侧面S13于近轴处为凸面,像侧面S14于近轴处为凹面;物侧面S13于圆周处为凸面,像侧面S14于圆周处为凹面。
第八透镜L8的物侧面S15于近轴处为凸面,像侧面S16于近轴处为凹面;物侧面S15于圆周处为凹面,像侧面S16于圆周处为凸面。
另外,第二实施例中光学系统10的各透镜参数由表4、表5和表6给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表4
Figure PCTCN2020079515-appb-000004
Figure PCTCN2020079515-appb-000005
表5
可变距离 短焦位置 中焦位置 长焦位置
D1 0.0300 5.5694 6.6095
D2 19.3615 4.2010 0.4000
D3 0.5000 10.1110 12.8770
表6
面序号 5 6 7 8 16 17
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.30E-03 -2.73E-03 -7.00E-04 -7.70E-04 -2.60E-04 -1.90E-04
A6 9.00E-05 8.00E-05 3.00E-05 4.00E-05 -1.00E-05 -1.00E-05
A8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的光学系统10满足以下关系:
fc/fd 3.04 f2/fc -0.42
(g1+g2+g3+g4)/fd 0.89 d2/d3 0.53
f3/fd 1.87 TTL/fc 1.32
f1/|f2| 2.15 R16/f4 0.52
第三实施例
参考图13、图14和图15,在第三实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。第一镜头单元110和第四镜头单元140均相对光学系统10的成像面固定设置,光学系统10通过第二镜头单元120和第三镜头单元130的移动以实现光学变焦。
在变焦过程中,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。当光学系统10从短焦端逐渐切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140。
图13为第三实施例的光学系统10于一短焦端时的示意图;图14为第三实施例的光学系统10于一中焦端时的示意图;图15为第三实施例的光学系统10于一长焦端时的示意图。图16为光学系统10于图13对应的短焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图17为光学系统10于图14对 应的中焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图18为光学系统10于图15对应的长焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凹面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5的物侧面S9于近轴处为凸面,像侧面S10于近轴处为凸面;物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凹面;物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7的物侧面S13于近轴处为凸面,像侧面S14于近轴处为凹面;物侧面S13于圆周处为凸面,像侧面S14于圆周处为凹面。
第八透镜L8的物侧面S15于近轴处为凸面,像侧面S16于近轴处为凹面;物侧面S15于圆周处为凸面,像侧面S16于圆周处为凹面。
另外,第三实施例中光学系统10的各透镜参数由表7、表8和表9给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2020079515-appb-000006
Figure PCTCN2020079515-appb-000007
表8
可变距离 短焦位置 中焦位置 长焦位置
D1 0.1537 0.6436 1.9016
D2 6.3794 4.8442 0.4000
D3 0.5000 1.6403 4.7265
表9
面序号 5 6 7 8 16 17
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.54E-03 -2.71E-03 -1.00E-05 -3.60E-04 9.00E-05 1.60E-04
A6 7.00E-05 4.00E-05 0.00E+00 3.00E-05 -2.00E-05 -2.00E-05
A8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的光学系统10满足以下关系:
fc/fd 1.43 f2/fc -0.45
(g1+g2+g3+g4)/fd 0.42 d2/d3 0.41
f3/fd 0.96 TTL/fc 1.14
f1/|f2| 1.82 R16/f4 0.40
第四实施例
参考图19、图20和图21,在第四实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。第一镜头单元110和第四镜头单元140均相对光学系统10的成像面固定设置,光学系统10通过第二镜头单元120和第三镜头单元130的移动以实现光学变焦。
在变焦过程中,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。当光学系统10从短焦端逐渐切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140。
图19为第四实施例的光学系统10于一短焦端时的示意图;图20为第四实施例的光学系统10于一中焦端时的示意图;图21为第四实施例的光学系统10于一长焦端时的示意图。图22为光学系统10于图19对应的短焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图23为光学系统10于图20对 应的中焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图24为光学系统10于图21对应的长焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5的物侧面S9于近轴处为凸面,像侧面S10于近轴处为凸面;物侧面S9于圆周处为凸面,像侧面S10于圆周处为凸面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凹面;物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7的物侧面S13于近轴处为凸面,像侧面S14于近轴处为凹面;物侧面S13于圆周处为凸面,像侧面S14于圆周处为凹面。
第八透镜L8的物侧面S15于近轴处为凸面,像侧面S16于近轴处为凸面;物侧面S15于圆周处为凸面,像侧面S16于圆周处为凸面。
另外,第四实施例中光学系统10的各透镜参数由表10、表11和表12给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表10
Figure PCTCN2020079515-appb-000008
Figure PCTCN2020079515-appb-000009
表11
可变距离 短焦位置 中焦位置 长焦位置
D1 4.0000 7.2785 8.2312
D2 13.1467 3.8640 0.4421
D3 0.5000 6.4943 8.9684
表12
面序号 5 6 7 8 16 17
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.41E-03 -2.99E-03 -7.00E-05 -9.00E-05 -4.30E-04 -3.60E-04
A6 1.00E-05 2.00E-05 3.00E-05 3.00E-05 -2.00E-05 -2.00E-05
A8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的光学系统10满足以下关系:
fc/fd 2.07 f2/fc -0.48
(g1+g2+g3+g4)/fd 0.72 d2/d3 0.50
f3/fd 1.44 TTL/fc 1.41
f1/|f2| 2.19 R16/f4 0.56
第五实施例
参考图25、图26和图27,在第五实施例中,光学系统10由物侧至像侧依次包括具有正屈折力且固定设置的第一镜头单元110、具有负屈折力且移动设置的第二镜头单元120、具有正屈折力且移动设置的第三镜头单元130及具有正屈折力且固定设置的第四镜头单元140。其中,第一镜头单元110包括第一透镜L1,第二镜头单元120由物侧至像侧依次包括第二透镜L2、第三透镜L3及第四透镜L4,第三镜头单元130由物侧至像侧依次包括第五透镜L5、第六透镜L6、第七透镜L7及光阑STO,第四镜头单元140包括第八透镜L8,第一透镜L1至第八透镜L8分别只含有一个透镜。其中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有正屈折力,第六透镜L6具有正屈折力,第七透镜L7具有负屈折力,第八透镜L8具有正屈折力。第一镜头单元110和第四镜头单元140均相对光学系统10的成像面固定设置,光学系统10通过第二镜头单元120和第三镜头单元130的移动以实现光学变焦。
在变焦过程中,第一透镜L1和第八透镜L8在系统中始终保持固定不动,而第二透镜L2、第三透镜L3及第四透镜L4能够通过夹持件一同固定并作为一个整体沿光学系统10的光轴方向同步移动,第五透镜L5、第六透镜L6、第七透镜L7及光阑STO能够通过夹持件一并固定并作为另一个整体沿光学系统10的光轴方向同步移动。当光学系统10从短焦端逐渐切换至长焦端时,第二镜头单元120将远离第一镜头单元110,同时第三镜头单元130与也将远离第四镜头单元140。
图25为第五实施例的光学系统10于一短焦端时的示意图;图26为第五实施例的光学系统10于一中焦端时的示意图;图27为第五实施例的光学系统10于一长焦端时的示意图。图28为光学系统10于图25对应的短焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图29为光学系统10于图26对 应的中焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%);图30为光学系统10于图27对应的长焦端时的纵向球差图(mm)、像散图(mm)和畸变图(%)。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凸面;物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面;物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面;物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凹面;物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面。
第五透镜L5的物侧面S9于近轴处为凸面,像侧面S10于近轴处为凹面;物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凹面;物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面。
第七透镜L7的物侧面S13于近轴处为凸面,像侧面S14于近轴处为凹面;物侧面S13于圆周处为凸面,像侧面S14于圆周处为凹面。
第八透镜L8的物侧面S15于近轴处为凸面,像侧面S16于近轴处为凸面;物侧面S15于圆周处为凸面,像侧面S16于圆周处为凸面。
另外,第五实施例中光学系统10的各透镜参数由表13、表14和表15给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表13
Figure PCTCN2020079515-appb-000010
Figure PCTCN2020079515-appb-000011
表14
可变距离 短焦位置 中焦位置 长焦位置
D1 0.0300 2.0795 2.9632
D2 17.2450 4.9677 0.4000
D3 0.5000 10.5777 14.3118
表15
面序号 5 6 7 8 16 17
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.55E-03 -2.89E-03 -2.70E-04 -1.30E-04 -2.40E-04 -1.90E-04
A6 0.00E+00 2.00E-05 3.00E-05 2.00E-05 0.00E+00 0.00E+00
A8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的光学系统10满足以下关系:
fc/fd 2.25 f2/fc -0.51
(g1+g2+g3+g4)/fd 0.79 d2/d3 0.21
f3/fd 1.76 TTL/fc 1.41
f1/|f2| 1.74 R16/f4 0.64
参考图31,在本申请提供的一个实施例中,光学系统10与感光元件210组装以形成摄像模组20,感光元件210设置于第四镜头单元140的像侧。一般地,感光元件210的感光表面与光学系统10的成像面S17重叠。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用上述光学系统10,摄像模组20将拥有良好的变焦性能,且能够兼顾变焦效果及小型化设计,同时还能够有效防止第四镜头单元140与感光元件210在装配过程中发生碰撞,进而提高装配良率。另外,在长期的高温或低温环境下,摄像模组20依然能够保持良好的变焦性能。
在一些实施例中,第四镜头单元140与系统的成像面S17之间还设置有保护玻璃和红外截止滤光片L9。红外截止滤光片L9用于滤除红外光,保护玻璃用于保护感光元件210。保护玻璃和红外截止滤光片L9可以属于光学系统10中的一部分,或者也可以在光学系统10与感光元件210装配时一同安装至光学系统10与感光元件210之间,以作为模组的一部分。
参考图32,本申请的一些实施例还提供了一种电子装置30,摄像模组20应用于电子装置30以使电子装置30具备变焦摄像功能。具体地,电子装置30包括固定件310,摄像模组20安装于固定件310。一些实施例中的固定件310为电路板、中框或壳体等部件。电子装置30可以是但不限于智能手机、智能手表、电子书阅读器、车载摄像设备(如行车记录仪)、监控设备、医疗设备、笔记本电脑、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。具体地,在一些实施例中,电子装置30为智能手机,智能手机包括中框和电路板,电路板设置于中框,摄像模组20安装于智能手机的中框,且其中的感光元件210与电路板电性连接。摄像模组20可作为智能手机的前置摄像模组或者后置摄像模组。通过采用本申请实施例所提供的摄像模组20,电子装置30将拥有优良的拍摄性能,且能够以较小的空间装配摄像模组20。另外,在 长期的高温或低温环境下,电子装置30依然能够保持良好的变焦拍摄性能。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有正屈折力的第一镜头单元;
    具有负屈折力的第二镜头单元;
    具有正屈折力的第三镜头单元;
    具有正屈折力的第四镜头单元;
    所述第一镜头单元和第四镜头单元的位置均相对所述光学系统的成像面保持固定,所述第二镜头单元和所述第三镜头单元均能够相对所述第一镜头单元沿所述光学系统的光轴方向移动;当所述光学系统从短焦端到长焦端进行变焦时,所述第一镜头单元与所述第二镜头单元之间的距离增加,且所述第三镜头单元与所述第四镜头单元之间的距离也增加。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.2<fc/fd<3.5;
    其中,fc为所述光学系统处于所述长焦端时的焦距,fd为所述光学系统处于所述短焦端时的焦距。
  3. 根据权利要求2所述的光学系统,其特征在于,进一步满足以下关系:
    1.43≤fc/fd≤3.04。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.3<(g1+g2+g3+g4)/fd;
    其中,g1为所述第一镜头单元中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g2为所述第二镜头单元中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g3为所述第三镜头单元中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,g4为所述第四镜头单元中最靠近物侧的透镜表面至最靠近像侧的透镜表面于光轴上的距离,fd为所述光学系统处于所述短焦端时的焦距。
  5. 根据权利要求4所述的光学系统,其特征在于,进一步满足以下关系:
    0.42≤(g1+g2+g3+g4)/fd≤0.89。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.8<f3/fd<2;
    其中,f3为所述第三镜头单元的焦距,fd为所述光学系统处于所述短焦端时的焦距。
  7. 根据权利要求6所述的光学系统,其特征在于,进一步满足以下关系:
    0.96≤f3/fd≤1.87。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.6<f1/|f2|<2.3;
    其中,f1为所述第一镜头单元的焦距,f2为所述第二镜头单元的焦距。
  9. 根据权利要求8所述的光学系统,其特征在于,进一步满足以下关系:
    1.74≤f1/|f2|≤2.19。
  10. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -0.6<f2/fc<-0.3;
    其中,f2为所述第二镜头单元的焦距,fc为所述光学系统处于所述长焦端时的焦距。
  11. 根据权利要求10所述的光学系统,其特征在于,进一步满足以下关系:
    -0.51≤f2/fc≤-0.42。
  12. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.1<d2/d3<0.6;
    其中,d2为所述光学系统从所述短焦端到所述长焦端进行变焦时所述第二镜头单元的移动距离,d3为所述光学系统从所述短焦端到所述长焦端进行变焦时所述第三镜头单元的移动距离。
  13. 根据权利要求12所述的光学系统,其特征在于,进一步满足以下关系:
    0.21≤d2/d3≤0.53。
  14. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1<TTL/fc<1.5;
    其中,TTL为所述光学系统的光学总长,fc为所述光学系统处于所述长焦端时的焦距。
  15. 根据权利要求14所述的光学系统,其特征在于,进一步满足以下关系:
    1.14≤TTL/fc≤1.41。
  16. 根据权利要求1所述的光学系统,其特征在于,所述第一镜头单元包括第一透镜,所述第二镜头单元由物侧至像侧依次包括第二透镜、第三透镜及第四透镜,所述第三镜头单元由物侧至像侧依次包括第五透镜、第六透镜及第七透镜,所述第四镜头单元包括第八透镜。
  17. 根据权利要求16所述的光学系统,其特征在于,满足以下关系:
    0.3<R16/f4<0.8;
    其中,R16为所述第八透镜的物侧面于光轴处的曲率半径,f4为所述第四镜头单元的焦距。
  18. 根据权利要求17所述的光学系统,其特征在于,进一步满足以下关系:
    0.40≤R16/f4≤0.64。
  19. 一种摄像模组,包括感光元件及权利要求1至18任意一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  20. 一种电子装置,包括固定件及权利要求19所述的摄像模组,所述摄像模组设置于所述固定件。
PCT/CN2020/079515 2020-03-16 2020-03-16 光学系统、摄像模组及电子装置 WO2021184164A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/611,148 US12092801B2 (en) 2020-03-16 2020-03-16 Optical system, imaging module and electronic device
PCT/CN2020/079515 WO2021184164A1 (zh) 2020-03-16 2020-03-16 光学系统、摄像模组及电子装置
EP20924985.3A EP3929646A4 (en) 2020-03-16 2020-03-16 OPTICAL SYSTEM, CAMERA MODULE AND ELECTRONIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079515 WO2021184164A1 (zh) 2020-03-16 2020-03-16 光学系统、摄像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021184164A1 true WO2021184164A1 (zh) 2021-09-23

Family

ID=77769959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079515 WO2021184164A1 (zh) 2020-03-16 2020-03-16 光学系统、摄像模组及电子装置

Country Status (3)

Country Link
US (1) US12092801B2 (zh)
EP (1) EP3929646A4 (zh)
WO (1) WO2021184164A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132189A (zh) * 2008-07-03 2011-07-20 株式会社尼康 变焦镜头、成像设备和用于制造变焦镜头的方法
US20120075718A1 (en) * 2010-09-27 2012-03-29 Samsung Electronics Co., Ltd. Zoom lens optical system and image pickup apparatus having the same
CN103969804A (zh) * 2013-01-31 2014-08-06 大立光电股份有限公司 移动对焦光学系统
CN104570277A (zh) * 2013-10-29 2015-04-29 大立光电股份有限公司 成像光学镜头、取像装置及可携式电子装置
CN110794555A (zh) * 2019-10-30 2020-02-14 凯迈(洛阳)测控有限公司 一种小型化三组元连续变焦中波制冷红外光学系统

Family Cites Families (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981344A (en) 1988-11-14 1991-01-01 Minolta Camera Kabushiki Kaisha Wide angle lens system for use in copying machine
JPH1144839A (ja) 1997-07-28 1999-02-16 Canon Inc 後絞り型の撮影レンズ
JP3927670B2 (ja) 1997-12-01 2007-06-13 キヤノン株式会社 ズームレンズ
JP2000089114A (ja) * 1998-09-08 2000-03-31 Olympus Optical Co Ltd ズームレンズ
US6414800B1 (en) 1999-05-10 2002-07-02 Canon Kabushiki Kaisha Variable magnification optical system and camera having the same
JP2001208973A (ja) 1999-11-18 2001-08-03 Nikon Corp 実像式ファインダー光学系
FR2833086B1 (fr) 2001-11-30 2004-02-27 Thales Sa Dispositif de veille optronique sectorielle ou panoramique a grande vitesse sans mouvement apparent
JP2004302056A (ja) 2003-03-31 2004-10-28 Fuji Photo Optical Co Ltd 画像取込用レンズ
JP4623993B2 (ja) 2003-04-22 2011-02-02 オリンパス株式会社 結像光学系及びそれを用いた電子機器
US6950246B2 (en) 2003-04-23 2005-09-27 Olympus Corporation Imaging optical system and apparatus using the same
JP3770493B2 (ja) 2003-06-24 2006-04-26 フジノン株式会社 結像レンズ
JP4751732B2 (ja) 2006-02-10 2011-08-17 Hoya株式会社 望遠ズームレンズ系
CN101093274A (zh) 2006-06-23 2007-12-26 大立光电股份有限公司 三片式摄影镜片组
TWI317819B (en) 2006-11-02 2009-12-01 Young Optics Inc Zoom lens
TWI317820B (en) 2006-11-15 2009-12-01 Asia Optical Co Inc Zoom lens
EP2045637B1 (en) * 2007-10-02 2019-07-10 Nikon Corporation Zoom lens system
US8526129B2 (en) 2008-04-09 2013-09-03 Hitachi Maxell, Ltd. Lens unit, camera module and manufacturing method of lens unit
JP4642883B2 (ja) 2008-06-23 2011-03-02 株式会社リコー ズームレンズ、カメラおよび携帯情報端末装置
JP5601857B2 (ja) 2009-04-07 2014-10-08 富士フイルム株式会社 撮像レンズおよび撮像装置、ならびに携帯端末機器
WO2012008357A1 (ja) 2010-07-16 2012-01-19 コニカミノルタオプト株式会社 撮像レンズ
JP5579555B2 (ja) 2010-09-24 2014-08-27 Hoya株式会社 撮影光学系、及び撮影装置
CN102466864B (zh) 2010-11-15 2014-03-26 大立光电股份有限公司 光学摄像系统
TWI437258B (zh) 2011-08-05 2014-05-11 Largan Precision Co Ltd 拾像光學鏡組
TWI429945B (zh) 2011-09-13 2014-03-11 Largan Precision Co Ltd 拾像鏡組
TWI438475B (zh) 2011-09-15 2014-05-21 Largan Precision Co Ltd 光學影像拾取鏡組
JP6103985B2 (ja) 2012-04-10 2017-03-29 キヤノン株式会社 ファインダー光学系及びそれを有する撮像装置
TW201350956A (zh) 2012-06-13 2013-12-16 Altek Corp 攝像鏡片組及其攝像裝置
JP5915462B2 (ja) 2012-08-28 2016-05-11 ソニー株式会社 撮像レンズおよび撮像装置
US8913332B2 (en) 2012-09-05 2014-12-16 Kolen Co., Ltd. Photographing lens optical system
JP5766889B2 (ja) 2012-11-16 2015-08-19 富士フイルム株式会社 投写用ズームレンズおよび投写型表示装置
TWI449948B (zh) 2012-11-30 2014-08-21 Largan Precision Co Ltd 影像擷取光學鏡組
JP6233408B2 (ja) 2013-04-01 2017-11-22 ソニー株式会社 撮像レンズおよび撮像装置
KR20140135909A (ko) 2013-05-16 2014-11-27 주식회사 테크웍스플러스 카메라모듈 조립체
CN206074890U (zh) 2013-10-21 2017-04-05 康达智株式会社 摄像镜头
KR20150058972A (ko) 2013-11-21 2015-05-29 삼성전자주식회사 촬상 렌즈 시스템 및 이를 채용한 촬상 장치
TWI493221B (zh) 2014-03-14 2015-07-21 Glory Science Co Ltd 成像鏡頭組
CN104914558B (zh) 2014-03-14 2017-09-01 光燿科技股份有限公司 成像镜头组
JP6278354B2 (ja) 2014-04-15 2018-02-14 株式会社オプトロジック 撮像レンズ
TWI533019B (zh) 2014-08-29 2016-05-11 大立光電股份有限公司 攝像透鏡系統、取像裝置及電子裝置
JP2016090777A (ja) 2014-11-04 2016-05-23 Hoya株式会社 撮像光学系
TWI519808B (zh) 2014-12-05 2016-02-01 大立光電股份有限公司 光學取像透鏡組、取像裝置以及電子裝置
CN104570295A (zh) 2014-12-31 2015-04-29 广东旭业光电科技股份有限公司 大光圈低敏感度光学镜头组件
TWI572892B (zh) 2015-02-26 2017-03-01 大立光電股份有限公司 透鏡系統、取像裝置及電子裝置
CN105988185B (zh) 2015-04-10 2018-11-30 浙江舜宇光学有限公司 摄像镜头
CN105988186B (zh) 2015-06-09 2018-09-07 浙江舜宇光学有限公司 成像镜头
CN104932086B (zh) 2015-06-29 2017-04-12 中山联合光电科技股份有限公司 一种大孔径大像面光学镜头
CN105259636B (zh) 2015-10-19 2017-07-07 浙江舜宇光学有限公司 长焦镜头
CN106610518B (zh) 2015-10-23 2019-02-15 大立光电股份有限公司 影像撷取透镜组、取像装置及电子装置
CN205210492U (zh) 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
CN205210493U (zh) 2015-11-17 2016-05-04 瑞声声学科技(苏州)有限公司 镜头模组
CN106959500B (zh) 2016-01-12 2019-12-13 信泰光学(深圳)有限公司 成像镜头
CN109581628B (zh) 2016-01-29 2020-11-06 大立光电股份有限公司 摄像用光学透镜组及取像装置
CN105607232B (zh) 2016-03-22 2018-05-29 浙江舜宇光学有限公司 摄远镜头
CN105607233B (zh) 2016-03-23 2018-09-07 浙江舜宇光学有限公司 摄远镜头
US10310222B2 (en) 2016-04-15 2019-06-04 Apple, Inc. Imaging lens system
TWI742038B (zh) 2016-04-20 2021-10-11 佳能企業股份有限公司 光學鏡頭
CN106154496B (zh) 2016-04-27 2018-09-25 玉晶光电(厦门)有限公司 光学成像镜头及便携式电子装置
CN106526795B (zh) 2016-08-05 2019-07-26 玉晶光电(厦门)有限公司 光学镜片组
KR20180040262A (ko) 2016-10-12 2018-04-20 삼성전기주식회사 촬상 광학계
TWI612326B (zh) 2016-10-21 2018-01-21 大立光電股份有限公司 微型取像系統、取像裝置及電子裝置
US10302909B2 (en) 2016-10-21 2019-05-28 Newmax Technology Co., Ltd. Six-piece optical lens system
CN106338815B (zh) 2016-10-28 2019-03-15 浙江舜宇光学有限公司 摄像镜头及装配有该摄像镜头的摄像装置
CN106772931B (zh) 2016-11-02 2019-05-03 玉晶光电(厦门)有限公司 光学镜片组
CN106773008B (zh) 2016-11-18 2020-02-21 玉晶光电(厦门)有限公司 目镜光学系统
TWI594011B (zh) 2016-11-22 2017-08-01 大立光電股份有限公司 取像光學鏡片系統、取像裝置及電子裝置
CN106646825B (zh) 2016-12-12 2022-08-05 广东弘景光电科技股份有限公司 深度成像光学系统及其应用的镜头
CN106802469B (zh) 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN206460205U (zh) 2016-12-14 2017-09-01 广东旭业光电科技股份有限公司 一种成像光学系统
KR101956704B1 (ko) 2016-12-20 2019-03-11 삼성전기주식회사 촬상 광학계
KR20180075152A (ko) 2016-12-26 2018-07-04 삼성전기주식회사 촬상 광학계
CN110824670B (zh) 2016-12-30 2023-11-10 玉晶光电(厦门)有限公司 光学镜片组
CN106970464B (zh) 2017-01-11 2019-06-21 玉晶光电(厦门)有限公司 目镜光学系统
CN106842512B (zh) 2017-04-17 2019-10-11 浙江舜宇光学有限公司 摄像镜头
CN106842514B (zh) 2017-04-18 2022-10-11 浙江舜宇光学有限公司 摄像镜头
TWI638202B (zh) 2017-05-15 2018-10-11 先進光電科技股份有限公司 光學成像系統
TWI640811B (zh) 2017-06-16 2018-11-11 大立光電股份有限公司 攝像系統鏡片組、取像裝置及電子裝置
CN107167897B (zh) 2017-06-22 2023-06-09 江西联益光学有限公司 光学成像镜头及应用该光学成像镜头的虹膜摄像模组
CN107102425B (zh) 2017-07-06 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
CN107167902B (zh) 2017-07-25 2022-09-16 浙江舜宇光学有限公司 光学成像镜头
TWI636279B (zh) 2017-08-18 2018-09-21 大立光電股份有限公司 影像擷取光學系統組、取像裝置及電子裝置
CN107290843B (zh) 2017-08-21 2022-09-13 浙江舜宇光学有限公司 光学成像镜头
TWI625567B (zh) 2017-10-16 2018-06-01 大立光電股份有限公司 成像用光學鏡頭、取像裝置及電子裝置
CN108107548B (zh) 2017-11-03 2021-11-30 玉晶光电(厦门)有限公司 光学透镜组
US10935759B2 (en) 2017-11-08 2021-03-02 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN207424362U (zh) 2017-11-22 2018-05-29 浙江舜宇光学有限公司 光学成像镜头
CN107703609B (zh) 2017-11-22 2023-06-30 浙江舜宇光学有限公司 光学成像镜头
CN107831588B (zh) 2017-11-29 2019-11-26 浙江舜宇光学有限公司 光学成像镜头
CN207557562U (zh) 2017-11-29 2018-06-29 浙江舜宇光学有限公司 光学成像镜头
JP6684033B2 (ja) 2017-12-12 2020-04-22 カンタツ株式会社 撮像レンズ
TWI655474B (zh) 2017-12-22 2019-04-01 大立光電股份有限公司 取像用光學鏡頭、取像裝置及電子裝置
CN108227146B (zh) 2017-12-29 2020-02-11 玉晶光电(厦门)有限公司 光学成像镜头
CN108089317B (zh) 2018-02-05 2020-05-19 浙江舜宇光学有限公司 光学成像镜头
CN108459394B (zh) 2018-03-19 2020-04-10 玉晶光电(厦门)有限公司 光学成像镜头
CN110018556B (zh) 2018-04-03 2021-07-09 浙江舜宇光学有限公司 光学成像镜头
CN208506348U (zh) 2018-06-26 2019-02-15 浙江舜宇光学有限公司 摄像镜头
JP7134757B2 (ja) * 2018-07-13 2022-09-12 キヤノン株式会社 ズームレンズおよび撮像装置
JP6463591B1 (ja) 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN108761745B (zh) 2018-07-25 2023-06-16 广东弘景光电科技股份有限公司 广角光学系统及其应用的摄像模组
TWI769298B (zh) 2018-08-31 2022-07-01 佳能企業股份有限公司 光學鏡頭
CN208888449U (zh) 2018-09-20 2019-05-21 信泰光学(深圳)有限公司 一种潜望式镜头模组
CN208872939U (zh) 2018-09-29 2019-05-17 辽宁中蓝电子科技有限公司 长焦距双棱镜潜望式镜头
CN208833988U (zh) 2018-10-08 2019-05-07 浙江舜宇光学有限公司 光学成像镜片组
CN111045188B (zh) 2018-10-11 2022-02-11 江西晶超光学有限公司 光学透镜组、取像模组和电子装置
CN209070186U (zh) 2018-10-21 2019-07-05 辽宁中蓝电子科技有限公司 一种双棱镜潜望式手机镜头
CN109283665B (zh) 2018-12-07 2024-04-16 浙江舜宇光学有限公司 成像镜头
CN109814235B (zh) 2018-12-28 2022-02-08 玉晶光电(厦门)有限公司 光学成像镜头
CN109814234A (zh) 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109870786B (zh) 2018-12-31 2021-03-02 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109725406B (zh) 2019-02-21 2024-04-02 浙江舜宇光学有限公司 光学镜头
CN209765129U (zh) 2019-03-27 2019-12-10 南昌欧菲精密光学制品有限公司 摄像模组及其镜头结构
CN109870788B (zh) 2019-04-02 2024-04-19 浙江舜宇光学有限公司 摄像透镜组
CN110109226B (zh) 2019-04-12 2021-11-12 深圳市万普拉斯科技有限公司 镜头结构、摄像头模组及移动终端
CN111856706A (zh) 2019-04-30 2020-10-30 南昌欧菲精密光学制品有限公司 光学镜头、取像模组及移动终端
CN110261997A (zh) 2019-06-11 2019-09-20 Oppo广东移动通信有限公司 镜头、摄像模组及电子设备
WO2020258269A1 (zh) 2019-06-28 2020-12-30 南昌欧菲精密光学制品有限公司 成像镜头、摄像模组及电子装置
CN110398815B (zh) 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110208927B (zh) 2019-07-12 2024-04-23 浙江舜宇光学有限公司 光学成像镜头
CN110568583A (zh) 2019-07-23 2019-12-13 珠海格力电器股份有限公司 一种潜望式摄像头及移动设备
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
CN110646919B (zh) 2019-08-22 2021-06-25 江西联创电子有限公司 鱼眼镜头
CN110426822B (zh) 2019-08-26 2024-06-11 浙江舜宇光学有限公司 光学成像镜头
CN110646921A (zh) 2019-09-27 2020-01-03 浙江舜宇光学有限公司 光学成像镜头
CN110531500B (zh) 2019-10-08 2024-05-14 浙江舜宇光学有限公司 光学成像系统
US20220196988A1 (en) 2019-10-18 2022-06-23 Jiangxi Jingchao Optical Co., Ltd. Optical imaging system, image capturing apparatus and electronic apparatus
CN210720853U (zh) 2019-10-18 2020-06-09 南昌欧菲精密光学制品有限公司 光学成像系统、取像装置及电子装置
CN110618522A (zh) 2019-10-29 2019-12-27 浙江舜宇光学有限公司 摄像透镜组
EP3901682A4 (en) 2019-11-04 2022-08-10 Jiangxi Jingchao Optical Co., Ltd. OPTICAL LENS GROUP, IMAGE CAPTURE DEVICE AND ELECTRONIC DEVICE
WO2021087669A1 (zh) 2019-11-04 2021-05-14 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置
CN110901647B (zh) 2019-11-25 2021-03-26 同济大学 考虑复杂激励条件的车辆路面附着系数自适应估计方法
WO2021102943A1 (zh) 2019-11-29 2021-06-03 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子装置
EP3904934A4 (en) 2019-12-06 2022-08-24 Jiangxi Jingchao Optical Co., Ltd. OPTICAL SYSTEM, CAMERA MODULE AND ELECTRONIC DEVICE
CN110879454A (zh) 2019-12-25 2020-03-13 Oppo广东移动通信有限公司 摄像头模组、潜望式摄像头模组、摄像头组件及电子装置
CN111007649B (zh) 2019-12-27 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111025600B (zh) 2019-12-31 2021-11-30 浙江舜宇光学有限公司 长焦光学成像系统及变焦摄像装置
WO2021138754A1 (zh) 2020-01-06 2021-07-15 江西晶超光学有限公司 光学系统、摄像模组及电子装置
WO2021179207A1 (zh) 2020-03-11 2021-09-16 江西晶超光学有限公司 光学系统、摄像模组及电子装置
US20220214527A1 (en) 2020-03-16 2022-07-07 Jiangxi Jingchao Optical Co., Ltd. Lens system, imaging module, and electronic device
CN111308688A (zh) 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 透镜系统、成像模组及电子装置
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device
WO2021203277A1 (zh) 2020-04-08 2021-10-14 江西晶超光学有限公司 光学系统、取像模组及电子设备
CN211786331U (zh) 2020-04-08 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
CN111338057A (zh) 2020-04-08 2020-06-26 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
CN111399186A (zh) 2020-04-29 2020-07-10 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
WO2021217504A1 (zh) 2020-04-29 2021-11-04 江西晶超光学有限公司 光学系统、摄像模组及电子设备
US20220236536A1 (en) 2020-04-30 2022-07-28 Jiangxi Jingchao Optical Co., Ltd. Optical imaging system, image capturing module, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102132189A (zh) * 2008-07-03 2011-07-20 株式会社尼康 变焦镜头、成像设备和用于制造变焦镜头的方法
US20120075718A1 (en) * 2010-09-27 2012-03-29 Samsung Electronics Co., Ltd. Zoom lens optical system and image pickup apparatus having the same
CN103969804A (zh) * 2013-01-31 2014-08-06 大立光电股份有限公司 移动对焦光学系统
CN104570277A (zh) * 2013-10-29 2015-04-29 大立光电股份有限公司 成像光学镜头、取像装置及可携式电子装置
CN110794555A (zh) * 2019-10-30 2020-02-14 凯迈(洛阳)测控有限公司 一种小型化三组元连续变焦中波制冷红外光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929646A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers

Also Published As

Publication number Publication date
EP3929646A1 (en) 2021-12-29
EP3929646A4 (en) 2022-11-30
US20220244511A1 (en) 2022-08-04
US12092801B2 (en) 2024-09-17

Similar Documents

Publication Publication Date Title
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
WO2021184164A1 (zh) 光学系统、摄像模组及电子装置
WO2021026869A1 (zh) 光学系统、取像模组及电子装置
CN113552696B (zh) 光学系统、取像模组及电子设备
CN105938239A (zh) 摄像镜头
CN114114650B (zh) 光学镜头及成像设备
CN109491055B (zh) 光学成像镜头
CN113219628B (zh) 光学系统、取像模组及电子设备
CN211786312U (zh) 光学系统、摄像模组及电子装置
CN111239971A (zh) 光学系统、摄像模组及电子装置
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
CN211786334U (zh) 光学系统、摄像模组及电子设备
CN211263924U (zh) 光学系统、摄像模组及电子装置
CN111308660A (zh) 光学系统、摄像模组及电子装置
WO2022016451A1 (zh) 光学系统、取像模组及电子设备
CN211577551U (zh) 光学系统、摄像模组及电子装置
CN211554452U (zh) 光学系统、摄像模组及电子装置
CN211786318U (zh) 光学系统、摄像模组及电子装置
CN112649943A (zh) 光学成像系统、模组和电子设备
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN115480365B (zh) 光学系统、取像模组及电子设备
CN114578515B (zh) 光学镜头、摄像模组及电子设备
CN214474191U (zh) 光学成像镜头、摄像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
WO2022198561A1 (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020924985

Country of ref document: EP

Effective date: 20210923

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE