WO2022198561A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2022198561A1
WO2022198561A1 PCT/CN2021/082982 CN2021082982W WO2022198561A1 WO 2022198561 A1 WO2022198561 A1 WO 2022198561A1 CN 2021082982 W CN2021082982 W CN 2021082982W WO 2022198561 A1 WO2022198561 A1 WO 2022198561A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
refractive power
optical axis
object side
Prior art date
Application number
PCT/CN2021/082982
Other languages
English (en)
French (fr)
Inventor
徐标
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/082982 priority Critical patent/WO2022198561A1/zh
Publication of WO2022198561A1 publication Critical patent/WO2022198561A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and an electronic device.
  • an optical system an imaging module, and an electronic device are provided.
  • An optical system comprising in sequence from the object side to the image side along the optical axis:
  • the first lens with positive refractive power the object side of the first lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • the second lens with refractive power the object side of the second lens is convex at the near-optical axis, and the image side is concave at the near-optical axis;
  • the object side of the third lens is convex at the near optical axis
  • the object side of the fourth lens is concave at the near optical axis
  • the sixth lens with positive refractive power the object side of the sixth lens is convex at the near optical axis, and the image side is convex at the near optical axis;
  • the seventh lens with negative refractive power the object side of the seventh lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • f is the effective focal length of the optical system
  • HFOV is half of the maximum angle of view of the optical system.
  • An imaging module includes a photosensitive element and the above-mentioned optical system, wherein the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned imaging module, wherein the imaging module is arranged on the casing.
  • FIG. 1 is a schematic structural diagram of an optical system in a first embodiment of the present application
  • FIG. 2 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the first embodiment of the application;
  • FIG. 3 is a schematic structural diagram of an optical system in a second embodiment of the present application.
  • FIG. 4 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the second embodiment of the application;
  • FIG. 5 is a schematic structural diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 8 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fourth embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fifth embodiment of the application;
  • FIG. 11 is a schematic structural diagram of an optical system in a sixth embodiment of the present application.
  • FIG. 13 is a schematic diagram of an imaging module in an embodiment of the application.
  • FIG. 14 is a schematic diagram of an electronic device in an embodiment of the present application.
  • the optical system 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , and a second lens L1 , a second lens L2 , a third lens L3 A five lens L5, a sixth lens L6, and a seventh lens L7.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6,
  • the fourth lens L4 includes an object side S7
  • the image side S8 the fifth lens L5 includes the object side S9 and the image side S10
  • the sixth lens L6 includes the object side S11 and the image side S12
  • the seventh lens L7 includes the object side S13 and the image side S14.
  • the first lens L1 has a positive refractive power, which helps to shorten the overall system length of the optical system 100 , meets the requirements of miniaturized design, and also helps to correct the on-axis spherical aberration of the optical system 100 .
  • the object side S1 of the first lens L1 is convex at the near optical axis 110 , which is beneficial to enhance the positive refractive power of the first lens L1 , thereby further shortening the total system length of the optical system 100 .
  • the image side surface S2 of the first lens L1 is concave at the near optical axis 110 .
  • the second lens L2 has refractive power
  • the object side S3 of the second lens L2 is convex at the near optical axis 110
  • the image side S4 is concave at the near optical axis 110
  • the third lens L3 has refractive power
  • the object side surface S5 of the third lens L3 is convex at the near optical axis 110
  • the fourth lens L4 has refractive power
  • the object side surface S7 of the fourth lens L4 is concave at the near optical axis 100
  • the fifth lens L5 has refractive power.
  • the sixth lens L6 has a positive refractive power, the object side S11 of the sixth lens L6 is convex at the near optical axis 110 , and the image side S12 is convex at the near optical axis 110 .
  • the seventh lens L7 has negative refractive power, the object side S13 of the seventh lens L7 is convex at the near optical axis 110 , and the image side S14 is concave at the near optical axis 110 .
  • the object side S3 of the second lens L2 is convex at the near optical axis 110
  • the image side S4 is concave at the near optical axis 110
  • the object side S5 of the third lens L3 is convex at the near optical axis 110
  • the fourth lens L3 is convex at the near optical axis 110.
  • the object side surface S7 of the lens L4 is concave at the near optical axis 110 , which is beneficial to reduce the sensitivity of the optical system 100 .
  • the sixth lens L6 has a positive refractive power, and the object side S11 of the sixth lens L6 is convex at the near optical axis 110, and the image side S12 is concave at the near optical axis 110, which is conducive to realizing the miniaturization design of the optical system 100.
  • the seventh lens L7 has a negative refractive power, and the object side surface S13 is convex at the near optical axis 110 , which helps to correct the field curvature of the optical system 100 and improve the optical performance of the optical system 100 .
  • the optical system 100 is provided with a stop STO, and the stop STO can be arranged on the object side of the first lens L1 or on the object side S1 of the first lens L1.
  • the optical system 100 further includes an infrared filter L8 disposed on the image side of the seventh lens L7, and the infrared filter L8 includes an object side S15 and an image side S16.
  • the optical system 100 further includes an image surface S17 located on the image side of the seventh lens L7, the image surface S17 is the imaging surface of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, The fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 can form an image on the image plane S17 after adjustment.
  • the infrared filter L8 may be an infrared cut filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S17 of the optical system 100 to affect normal imaging.
  • the object side and the image side of each lens of the optical system 100 are aspherical.
  • the use of aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve image quality.
  • the object side surface and the image side surface of each lens of the optical system 100 may also be spherical surfaces. It should be noted that the above embodiments are only examples of some embodiments of the present application. In some embodiments, the surfaces of the lenses in the optical system 100 may be aspherical or any combination of spherical surfaces.
  • the material of each lens in the optical system 100 may be glass or plastic.
  • a lens made of plastic material can reduce the weight of the optical system 100 and reduce the production cost, and in combination with the smaller size of the optical system, a thin and light design of the optical system can be realized.
  • the lens made of glass enables the optical system 100 to have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 can also be any combination of glass and plastic, and not necessarily all of glass or all of plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • a cemented lens is not formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 or the seventh lens L7 in some embodiments may also be greater than or equal to two, and any A cemented lens or a non-cemented lens may be formed between adjacent lenses.
  • the optical system 100 satisfies the conditional formula: 2.5mm ⁇ IMGH 2 /(TTL*FNO) ⁇ 2.6mm; wherein, IMGH is half of the image height corresponding to the maximum angle of view of the optical system 100 , TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 100 on the optical axis, that is, the total optical length of the optical system 100 , and FNO is the aperture number of the optical system 100 .
  • IMGH 2 /TTL/FNO can be: 2.53 or 2.54, and the numerical unit is mm.
  • the half image height, the total optical length and the number of apertures of the optical system 100 can be reasonably configured, which is beneficial to shorten the total system length of the optical system 100 and meet the requirements of miniaturized design.
  • it is also beneficial to the optical system 100 The wide-angle feature is realized, so that the optical system 100 can obtain more scene content and enrich the imaging information of the optical system; in addition, it is also conducive to the realization of the large aperture feature of the optical system 100, thereby improving the light throughput of the optical system 100, making the optical system 100. 100 can also have good image quality in low light environment.
  • the optical system 100 satisfies the conditional formula: 35 ⁇
  • may be: 36.87.
  • the ratio of the Abbe numbers of the second lens L2 and the third lens L3 can be reasonably configured, which is beneficial to eliminate the chromatic aberration of the optical system 100, so as to reduce the secondary spectral chromatic aberration of the optical system 100, and furthermore It is beneficial to improve the imaging quality of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 5.1 mm ⁇ f*tan(HFOV) ⁇ 5.3 mm; where f is the effective focal length of the optical system 100 , and HFOV is half of the maximum field angle of the optical system 100 .
  • f*tan(HFOV) may be: 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22 or 5.23.
  • the optical system 100 can have the characteristics of a large image surface, so that the incident light can be reasonably deflected when passing through each lens, which is beneficial to shorten the overall length of the optical system 100; moreover, the optical system 100 With the characteristics of a large image surface, it is easier to match a large-sized photosensitive element, so that the optical system 100 has a high resolution, and the imaging quality of the optical system 100 is improved.
  • the optical system 100 can be matched with a photosensitive element having a rectangular photosensitive surface, and the imaging surface of the optical system 100 is coincident with the photosensitive surface of the photosensitive element.
  • the effective pixel area on the imaging surface of the optical system 100 has a horizontal direction and a diagonal direction, then IMGH can be understood as half of the diagonal length of the effective pixel area on the imaging surface of the optical system 100, and HFOV can be understood as an optical system. 100 Half of the maximum field of view in the diagonal direction.
  • the optical system 100 satisfies the conditional formula: 1.25 ⁇ TTL/IMGH ⁇ 1.35.
  • TTL/IMGH may be: 1.28, 1.29 or 1.30.
  • the ratio of the total optical length to the half image height of the optical system 100 can be reasonably configured, which is beneficial to compress the total system length of the optical system 100 to meet the requirements of miniaturized design, and at the same time, it is beneficial to each of the optical system 100.
  • Reasonable distribution of the thickness of the lens is beneficial to improve the assembly production yield of the optical system 100 .
  • the image height of the optical system 100 is too large, and the degree of light deflection is too serious, which makes it difficult for the optical system 100 to effectively correct the aberration of the fringe field of view, thereby easily reducing the imaging quality of the optical system 100 .
  • the upper limit of the above conditional expression is exceeded, the total optical length of the optical system 100 is too long, which leads to an increase in the assembly space of the optical system 100 , which is not conducive to the miniaturized design of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 1 ⁇
  • may be: 1.311, 1.357, 1.412, 1.455, 1.568, 1.631, 1.702, 1.789, 1.855 or 2.015.
  • the curvature radii of the object side surface and the image side surface of the second lens L2 and the sixth lens L6 can be reasonably configured, which is beneficial to reduce the incident angle of the light on the second lens L2 and the sixth lens L6, thereby It is beneficial to reduce the sensitivity of the optical system 100; at the same time, the surface shapes of the second lens L2 and the sixth lens L6 are not excessively curved, which is beneficial to improve the molding yield of the second lens L2 and the sixth lens L6.
  • the optical system 100 satisfies the conditional formula: 2 ⁇ f67/f ⁇ 5.5; where f67 is the combined focal length of the sixth lens L6 and the seventh lens L7 , and f is the effective focal length of the optical system 100 .
  • f67/f may be: 2.58, 2.61, 2.73, 2.99, 3.05, 3.64, 3.84, 4.25, 4.77 or 5.25.
  • the ratio of the combined focal length of the sixth lens L6 and the seventh lens L7 and the effective focal length of the optical system 100 can be reasonably configured, so that the overall refractive power of the sixth lens L6 and the seventh lens L7 is in the optical system. 100 will not be too strong, which is beneficial to correct spherical aberration caused by off-axis light of the optical system 100 at different aperture positions, thereby improving the imaging quality of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 0.25mm ⁇ ET3 ⁇ 0.35mm; wherein, ET3 is from the maximum effective aperture of the object side S5 of the third lens L3 to the maximum effective aperture of the image side S6 in the direction of the optical axis 100 , that is, the edge thickness of the third lens L3.
  • ET3 may be: 0.28, 0.29, 0.30, 0.31, 0.32, 0.33 or 0.34, and the numerical unit is mm.
  • the edge thickness of the third lens L3 can be reasonably configured, thereby effectively suppressing the distortion of the optical system 100, and at the same time, it is beneficial for the third lens L3 to achieve reasonable deflection of the light in the edge field of view, thereby adjusting the light intensity.
  • the exit angle is favorable for widening the angle of the optical system 100; in addition, it can also make the light transition smoothly in the third lens L3, thereby reducing the generation of stray light in the optical system 100, and at the same time reducing the probability of ghosting in the optical system 100, and further It is beneficial to improve the imaging quality of the optical system 100; furthermore, it is also beneficial to prevent the edge of the third lens L3 from being too thin, which is beneficial to the molding and assembly of the third lens L3.
  • the edge of the third lens L3 is too thin, which is not conducive to the molding and assembly of the third lens L3 and reduces the production yield; when the upper limit of the above conditional expression is exceeded, the edge of the third lens L3 is too thick , which is not conducive to the miniaturized design of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 0.5 ⁇
  • the maximum effective aperture is the distance in the direction of the optical axis 100
  • CT6 is the thickness of the sixth lens L6 on the optical axis 110 .
  • may be: 0.62, 0.64, 0.65, 0.66, 0.69, 0.70, 0.71, 0.72, 0.74, or 0.76.
  • the shape of the sixth lens L6 can be reasonably controlled, so that the surface shape of the sixth lens L6 will not be excessively curved, which is beneficial to reduce the tolerance sensitivity of the sixth lens L6, thereby facilitating the molding of the sixth lens L6 With assembly, the defects of poor molding are reduced.
  • the surface shape of the object side S11 of the sixth lens L6 at the circumference is too flat, resulting in insufficient deflection ability of the sixth lens L6 for off-axis field of view light, which is not conducive to the distortion and distortion of the optical system 100. Correction of field curvature aberrations.
  • the optical system 100 satisfies the conditional formula: 30 ⁇
  • /CT5 may be: 27.32, 32.54, 90.22, 112.33, 142.54, 163.24, 180.64, 199.32, 202.11 or 210.56.
  • the ratio between the effective focal length and the central thickness of the fifth lens L5 can be reasonably configured, so that the central thickness of the fifth lens L5 will not be too thin or too thick, thereby helping to reduce the tolerance of the fifth lens L5
  • the fifth lens L5 can effectively correct the aberration caused by the deflection of light by each lens on the object side, and improve the imaging resolution capability of the optical system 100 .
  • the refractive power of the fifth lens L5 is too strong, which is not conducive to correcting aberrations of the optical system 100
  • the central thickness of the fifth lens L5 is too large, which is not conducive to reducing the sensitivity of the optical system 100 .
  • the refractive power of the fifth lens L5 is too strong, which is not conducive to correcting the aberrations of the optical system 100 , and the central thickness of the fifth lens L5 is too small, which is not conducive to reducing the sensitivity of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: DIM ⁇ 3%; wherein DIM is the distortion at the maximum image height of the optical system 100 .
  • DIM can be: 1.50, 1.80, 1.90, 2.11, 2.26, 2.55, 2.63, 2.74, 2.96 or 3.00, and the numerical unit is %.
  • the reference wavelength of the effective focal length in each of the above conditional expressions is 555 nm, and the reference wavelength of the Abbe number is 587.56 nm.
  • FIG. 1 is a schematic structural diagram of the optical system 100 in the first embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the The seventh lens L7 with negative refractive power.
  • FIG. 2 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 555 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object and image sides of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical surfaces.
  • the shape of the surface from the center (the intersection of the surface and the optical axis 110) to the edge direction can be purely convex; Or transition from a convex shape at the center to a concave shape and then become convex near the maximum effective radius.
  • This is only an example for illustrating the relationship between the optical axis 110 and the circumference.
  • Various shapes and structures of the surface (concave-convex relationship) are not fully reflected, but other situations can be derived from the above examples.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the distance from the side S1 to the imaging plane of the optical system 100 on the optical axis is the total optical length of the optical system 100
  • FNO is the aperture number of the optical system 100 .
  • the optical system 100 can obtain more scene content and enrich the imaging information of the optical system; in addition, it is also conducive to the realization of the large aperture feature of the optical system 100, thereby improving the light throughput of the optical system 100, making the optical system 100. 100 can also have good image quality in low light environment.
  • the optical system 100 satisfies the conditional formula:
  • 36.51; wherein, V2 is the Abbe number of the second lens L2 at a reference wavelength of 555 nm, and V3 is the Abbe number of the third lens L3 at a reference wavelength of 555 nm .
  • the ratio of the Abbe numbers of the second lens L2 and the third lens L3 can be reasonably configured, which is beneficial to eliminate the chromatic aberration of the optical system 100, so as to reduce the secondary spectral chromatic aberration of the optical system 100, and furthermore It is beneficial to improve the imaging quality of the optical system 100 .
  • Satisfying the above conditional formula can prevent the image height from being too large, thereby reducing the deflection requirements of each lens for incident light, which is beneficial to prevent the lens surface in the optical system 100 from being too curved, thereby reducing the difficulty of lens injection molding;
  • the optical system 100 can have the characteristics of a large image surface, so that the incident light can be reasonably deflected when passing through each lens, thereby helping to shorten the total length of the optical system 100;
  • the large-sized photosensitive element is matched, so that the optical system 100 has a high resolution, and the imaging quality of the optical system 100 is improved.
  • the ratio of the total optical length to the half image height of the optical system 100 can be reasonably configured, which is beneficial to compress the total system length of the optical system 100 to meet the requirements of miniaturized design, and at the same time, it is beneficial to each of the optical system 100.
  • Reasonable distribution of the thickness of the lens is beneficial to improve the assembly and production yield of the optical system 100; in addition, it is also beneficial to improve the imaging quality of the optical system.
  • the optical system 100 satisfies the conditional formula:
  • 1.987; wherein, R3 is the radius of curvature of the object side surface S3 of the second lens L2 at the optical axis 100, and R4 is the image of the second lens L2
  • R3 is the radius of curvature of the object side surface S3 of the second lens L2 at the optical axis 100
  • R4 is the image of the second lens L2
  • R11 is the curvature radius of the object side S11 of the sixth lens L6 at the optical axis 100
  • R12 is the curvature radius of the image side S12 of the sixth lens L6 at the optical axis 100.
  • the curvature radii of the object side surface and the image side surface of the second lens L2 and the sixth lens L6 can be reasonably configured, which is beneficial to reduce the incident angle of the light on the second lens L2 and the sixth lens L6, thereby It is beneficial to reduce the sensitivity of the optical system 100; at the same time, the surface shapes of the second lens L2 and the sixth lens L6 are not excessively curved, which is beneficial to improve the molding yield of the second lens L2 and the sixth lens L6.
  • the ratio of the combined focal length of the sixth lens L6 and the seventh lens L7 and the effective focal length of the optical system 100 can be reasonably configured, so that the overall refractive power of the sixth lens L6 and the seventh lens L7 is in the optical system. 100 will not be too strong, which is beneficial to correct spherical aberration caused by off-axis light of the optical system 100 at different aperture positions, thereby improving the imaging quality of the optical system 100 .
  • ET3 is the distance from the maximum effective aperture of the object side S5 of the third lens L3 to the maximum effective aperture of the image side S6 in the direction of the optical axis 100, that is, the distance of the third lens L3. edge thickness.
  • the exit angle is favorable for widening the angle of the optical system 100; in addition, it can also make the light transition smoothly in the third lens L3, thereby reducing the generation of stray light in the optical system 100, and at the same time reducing the probability of ghosting in the optical system 100, and further It is beneficial to improve the imaging quality of the optical system 100; furthermore, it is also beneficial to prevent the edge of the third lens L3 from being too thin, which is beneficial to the molding and assembly of the third lens L3.
  • the optical system 100 satisfies the conditional formula:
  • 0.64; wherein, SAG61 is the intersection of the object side S11 of the sixth lens L6 and the optical axis 110 to the maximum effective aperture of the object side S11 of the sixth lens L6 at the optical axis 100
  • CT6 is the thickness of the sixth lens L6 on the optical axis 110 .
  • the shape of the sixth lens L6 can be reasonably controlled, so that the surface shape of the sixth lens L6 will not be excessively curved, which is beneficial to reduce the tolerance sensitivity of the sixth lens L6, thereby facilitating the molding of the sixth lens L6 and assembly to reduce the defect of poor molding; at the same time, the surface shape of the object side S11 of the sixth lens L6 at the circumference will not be too flat, which is conducive to the deflection of the off-axis field of view light by the sixth lens L6, thereby reducing the It is beneficial to the correction of distortion and field curvature aberration of the optical system 100 .
  • the optical system 100 satisfies the conditional formula:
  • /CT5 27.32; where f5 is the effective focal length of the fifth lens L5, and CT5 is the thickness of the fifth lens L5 on the optical axis 110, that is, the central thickness of the fifth lens L5.
  • the ratio between the effective focal length and the central thickness of the fifth lens L5 can be reasonably configured, so that the central thickness of the fifth lens L5 will not be too thin or too thick, thereby helping to reduce the tolerance of the fifth lens L5
  • the fifth lens L5 can effectively correct the aberration caused by the deflection of light by each lens on the object side, and improve the imaging resolution capability of the optical system 100 .
  • DIM is the distortion at the maximum image height of the optical system 100 .
  • the image plane S17 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown) to the image plane S17 are sequentially arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side surface or the image side surface of the corresponding surface number at the optical axis 110 .
  • the surface number S1 and the surface number S2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110, and the second value is the rear surface of the lens in the direction from the image side to the image side on the optical axis 110 the distance.
  • the optical system 100 may not be provided with the infrared filter L8, but at this time, the distance from the image surface S14 to the image surface S17 of the seventh lens L7 remains unchanged.
  • the reference wavelength of the focal length of each lens is 555 nm
  • the reference wavelength of the refractive index and Abbe number is 587.56 nm, and other embodiments are also the same.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 2.
  • the surface numbers from S1-S14 represent the image side or the object side S1-S14 respectively.
  • K-A20 represent the types of aspheric coefficients, where K represents the conic coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 represents the eight-order aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspherical surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspherical surface to the optical axis 110
  • c is the curvature of the aspherical vertex
  • k is the conic coefficient
  • Ai is the aspherical surface.
  • FIG. 2 includes a longitudinal spherical aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which represents the deviation of the converging focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light ray and the optical axis 110 (unit is mm) .
  • Figure 2 also includes a field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 555 nm, and the T curve represents the meridional field curvature at 555 nm. It can be seen from the figure that the field curvature of the optical system 100 is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear images.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. As can be seen from the diagram, the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic structural diagram of the optical system 100 in the second embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a lens from the object side to the image side.
  • the second lens L2 with negative refractive power
  • the third lens L3 with positive refractive power
  • the fourth lens L4 with negative refractive power
  • the fifth lens L5 with positive refractive power
  • the sixth lens L6 with positive refractive power
  • the seventh lens L7 with negative refractive power.
  • FIG. 4 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a concave surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 5 is a schematic structural diagram of the optical system 100 in the third embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the The seventh lens L7 with negative refractive power.
  • FIG. 6 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a concave surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object and image sides of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the parameters of the optical system 100 are given in Table 5, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of the optical system 100 in the fourth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a lens from the object side to the image side.
  • FIG. 8 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object and image sides of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the parameters of the optical system 100 are given in Table 7, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of the optical system 100 in the fifth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the The seventh lens L7 with negative refractive power.
  • FIG. 10 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object and image sides of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the parameters of the optical system 100 are given in Table 9, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of the optical system 100 in the sixth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with positive refractive power, and a The second lens L2 with negative refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the The seventh lens L7 with negative refractive power.
  • FIG. 12 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S13 of the seventh lens L7 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S14 of the seventh lens L7 is concave at the near optical axis 110 and convex at the circumference.
  • the object and image sides of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all plastics.
  • the parameters of the optical system 100 are given in Table 11, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 12, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S17 of the optical system 100 .
  • the imaging module 200 may also be provided with an infrared filter L8, and the infrared filter L8 is disposed between the image side S14 and the image surface S17 of the seventh lens L7.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • the use of the above-mentioned optical system 100 in the image capturing module 200 can meet the requirements of miniaturized design, and at the same time, the image capturing module 200 can obtain more scene contents, and is also beneficial to improve the imaging quality of the image capturing module 200 .
  • the imaging module 200 can be applied to an electronic device 300 , the electronic device includes a casing 310 , and the imaging module 200 is disposed in the casing 310 .
  • the electronic device 300 may be, but is not limited to, a mobile phone, a video phone, a smart phone, an electronic book reader, a vehicle-mounted camera device such as a driving recorder, or a wearable device such as a smart watch.
  • the housing 310 may be a middle frame of the electronic device 300 .
  • the use of the imaging module 200 in the electronic device 300 can meet the requirements of miniaturized design, and at the same time enable the electronic device 200 to acquire more scene contents, and also help to improve the imaging quality of the electronic device 200 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

光学系统(100)包括具有正屈折力的第一透镜(L1),物侧面(S1)为凸面,像侧面(S2)为凹面;具有屈折力的第二透镜(L2),物侧面(S3)为凸面,像侧面(S4)为凹面;具有屈折力的第三透镜(L3),物侧面(S5)为凸面;具有屈折力的第四透镜(L4),物侧面(S7)为凹面;具有屈折力的第五透镜(L5);具有正屈折力的第六透镜(L6),物侧面(S11)为凸面,像侧面(S12)为凸面;具有负屈折力的第七透镜(L7),物侧面(S13)为凸面,像侧面(S14)为凹面;光学系统(100)满足:5.1mm≤f*tan(HFOV)≤5.3mm。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着摄像技术的发展,智能手机、平板电脑、电子阅读器等越来越多的电子设备配置有光学系统以实现摄像功能。用户对电子设备的成像质量的需求也越来越高,通过提高光学系统的分辨率,有利于提升光学系统的成像质量,进而提升用户的拍摄体验。然而,目前的光学系统分辨率不足,难以满足高成像质量的要求。
发明内容
根据本申请的各种实施例,提供一种光学系统、取像模组及电子设备。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
具有屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面;
具有屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凹面;
具有屈折力的第五透镜;
具有正屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
5.1mm≤f*tan(HFOV)≤5.3mm;
其中,f为所述光学系统的有效焦距,HFOV为所述光学系统的最大视场角的一半。
一种取像模组,包括感光元件以及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14。
其中,第一透镜L1具有正屈折力,有助于缩短光学系统100的系统总长,满足小型化设计的需求,同时也有利于校正光学系统100的轴上球差。第一透镜L1的物侧面S1于近光轴110处为凸面,有利于增强第一透镜L1的正屈折力,从而进一步缩短光学系统100的系统总长。第一透镜L1的像侧面S2于近光轴110处为凹面。第二透镜L2具有屈折力,第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凹面。第三透镜L3具有屈折力,第三透镜L3的物侧面S5于近光轴110处为凸面。第四透镜L4具有屈折力,第四透镜L4的物侧面S7于近光轴100处为凹面。第五透镜L5具有屈折力。第六透镜L6具有正屈折力,第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凸面。第七透镜L7具有负屈折力,第七透镜L7的物侧面S13于近光轴110处为凸面,像侧面S14于近光轴110处为凹面。其中,第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凹面,第三透镜L3的物侧面S5于近光轴110处为凸面,第四透镜L4的物侧面S7于近光轴110处为凹面,有利于降低光学系统100的敏感度。第六透镜L6具有正屈折力,且第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面,有利于实现光学系统100的小型化设计。第七透镜L7具有负屈折力,且物侧面S13于近光轴110处为凸面,有助于矫正光学系统100的场曲,提高光学系统100的光学性能。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧或设置于第一透镜L1的物侧面S1上。在一些实施例中,光学系统100还包括设置于第七透镜L7像侧的红外滤光片L8,红外滤光片L8包括物侧面S15及像侧面S16。进一步地,光学系统100还包括位于第七透镜L7像侧的像面S17,像面S17即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7调节后能够成像于像面S17。值得注意的是,红外滤光片L8可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S17而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的 采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统的较小尺寸以实现光学系统的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6或第七透镜L7中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:2.5mm≤IMGH 2/(TTL*FNO)≤2.6mm;其中,IMGH为光学系统100的最大视场角所对应的像高的一半,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,即光学系统100的光学总长,FNO为光学系统100的光圈数。具体地,IMGH 2/TTL/FNO可以为:2.53或2.54,数值单位为mm。满足上述条件式时,能够对光学系统100的半像高、光学总长及光圈数进行合理配置,有利于缩短光学系统100的系统总长,满足小型化设计的需求,同时,也有利于光学系统100实现广角特性,从而使得光学系统100能够获取更多的场景内容,丰富光学系统的成像信息;另外,还有利于光学系统100大孔径特性的实现,从而提升光学系统100的通光量,使得光学系统100在弱光环境下也能够具备良好的成像质量。
在一些实施例中,光学系统100满足条件式:35≤|V2-V3|≤40;其中,V2为第二透镜L2在参考波长为587.56nm下的阿贝数,V3为第三透镜L3在参考波长为587.56nm下的阿贝数。具体地,|V2-V3|可以为:36.87。满足上述条件式时,能够对第二透镜L2及第三透镜L3的阿贝数的比值进行合理配置,有利于消除光学系统100的色差,以减小光学系统100的二级光谱色差,进而有利于提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:5.1mm≤f*tan(HFOV)≤5.3mm;其中,f为光学系统100的有效焦距,HFOV为光学系统100的最大视场角的一半。具体地,f*tan(HFOV)可以为:5.14、5.15、5.16、5.17、5.18、5.19、5.20、5.21、5.22或5.23。低于上述条件式的上限时,可避免像高过大,从而降低各透镜对入射光线的偏折要求,有利于使光学系统100中的透镜面型不至于过于弯曲,从而降低透镜注塑成型难度。高于上述条件式的下限时,光学系统100能够拥有大像面特性,使入射光线在经过各透镜时能够得到合理的偏折,从而有利于缩短光学系统100的总长;再者,光学系统100拥有大像面特性,更容易匹配大尺寸的感光元件,从而使得光学系统100具有高分辨率,提升光学系统100的成像质量。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面与感光元件的感光面重合。此时,光学系统100成像面上有效像素区域具有水平方向以及对角线方向,则IMGH可以理解为光学系统100成像面上有效像素区域对角线方向的长度的一半,HFOV可以理解为光学系统100对角线方向的最大视场角的一半。
在一些实施例中,光学系统100满足条件式:1.25≤TTL/IMGH≤1.35。具体地,TTL/IMGH可以为:1.28、1.29或1.30。满足上述条件式时,能够对光学系统100的光学总长及半像高的比值进行合理配置,有利于压缩光学系统100的系统总长,以满足小型化设计的需求,同时有利于光学系统100中各透镜厚度的合理分配,从而有利于提高光学系统100的组装生产 良率。当低于上述条件式的下限,光学系统100的像高过大,光线偏折程度过于严重,导致光学系统100难以对边缘视场的像差实现有效校正,从而容易降低光学系统100的成像质量。当超过上述条件式的上限时,光学系统100的光学总长过长,导致光学系统100的组装空间增大,不利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:1≤|R3+R4|/|R11+R12|≤2.1;其中,R3为第二透镜L2的物侧面S3于光轴100处的曲率半径,R4为第二透镜L2的像侧面S4于光轴100处的曲率半径,R11为第六透镜L6的物侧面S11于光轴100处的曲率半径,R12为第六透镜L6的像侧面S12于光轴100处的曲率半径。具体地,|R3+R4|/|R11+R12|可以为:1.311、1.357、1.412、1.455、1.568、1.631、1.702、1.789、1.855或2.015。满足上述条件式时,能够对第二透镜L2及第六透镜L6的物侧面和像侧面的曲率半径进行合理配置,有利于减小光线在第二透镜L2及第六透镜L6的入射角度,从而有利于降低光学系统100的敏感度;同时也能够使得第二透镜L2及第六透镜L6的面型不会过度弯曲,有利于提升第二透镜L2及第六透镜L6的成型良率。
在一些实施例中,光学系统100满足条件式:2≤f67/f≤5.5;其中,f67为第六透镜L6及第七透镜L7的组合焦距,f为光学系统100的有效焦距。具体地,f67/f可以为:2.58、2.61、2.73、2.99、3.05、3.64、3.84、4.25、4.77或5.25。满足上述条件式时,能够对第六透镜L6与第七透镜L7的组合焦距以及光学系统100的有效焦距的比值进行合理配置,使得第六透镜L6及第七透镜L7整体的屈折力在光学系统100中不会过强,从而有利于校正光学系统100于不同孔径位置的轴外光线产生的球差,进而提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:0.25mm≤ET3≤0.35mm;其中,ET3为第三透镜L3的物侧面S5最大有效口径处至像侧面S6最大有效口径处于光轴100方向上的距离,即第三透镜L3的边缘厚度。具体地,ET3可以为:0.28、0.29、0.30、0.31、0.32、0.33或0.34,数值单位为mm。满足上述条件式时,能够对第三透镜L3的边缘厚度进行合理配置,从而有效抑制光学系统100畸变的产生,同时有利于第三透镜L3对边缘视场光线实现合理偏折,从而调节光线的出射角度,进而有利于光学系统100的广角化;另外,也能够使得光线在第三透镜L3平稳过渡,从而减小光学系统100杂散光的产生,同时降低光学系统100鬼影产生的概率,进而有利于提升光学系统100的成像质量;再者,还有利于使得第三透镜L3的边缘不会过薄,有利于第三透镜L3的成型与组装。低于上述条件式的下限时,第三透镜L3的边缘过薄,不利于第三透镜L3的成型与组装,降低生产良率;超过上述条件式的上限时,第三透镜L3的边缘过厚,不利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:0.5≤|SAG61/CT6|≤1.0;其中,SAG61为第六透镜L6的物侧面S11与光轴110的交点至第六透镜L6的物侧面S11的最大有效口径处于光轴100方向上的距离,CT6为第六透镜L6于光轴110上的厚度。具体地,|SAG61/CT6|可以为:0.62、0.64、0.65、0.66、0.69、0.70、0.71、0.72、0.74或0.76。满足上述条件式时,能够合理控制第六透镜L6的形状,使得第六透镜L6的面型不会过度弯曲,有利于降低第六透镜L6的公差敏感度,从而有利于第六透镜L6的成型与组装,减小成型不良的缺陷。低于上述条件式的下限,第六透镜L6的物侧面S11于圆周处的面型过于平缓,导致第六透镜L6对轴外视场光线的偏折能力不足,不利于光学系统100的畸变和场曲像差的校正。超过上述条件式的上限,第六透镜L6的物侧面S11于圆周处的面型过度弯曲,容易导致第六透镜L6成型不良,降低第六透镜L6的制造良率。
在一些实施例中,光学系统100满足条件式:30≤|f5|/CT5≤220;其中,f5为第五透镜L5的有效焦距,CT5为第五透镜L5于光轴110上的厚度,即第五透镜L5的中心厚度。具体地,|f5|/CT5可以为:27.32、32.54、90.22、112.33、142.54、163.24、180.64、199.32、202.11或210.56。满足上述条件式时,能够对第五透镜L5的有效焦距及中心厚度的比值进行合理配置,使得第五透镜L5的中心厚度不会过薄或过厚,从而有利于降低第五透镜L5的公差敏感度,同时使得第五透镜L5能够有效修正物方各透镜偏折光线而产生的像差,提升光 学系统100的成像解析能力。低于上述条件式的下限,第五透镜L5的屈折力过强,不利于修正光学系统100的像差,且第五透镜L5的中心厚度过大,不利于降低光学系统100的敏感度。超过上述条件式的上限,第五透镜L5的屈折力过强,也不利于修正光学系统100的像差,且第五透镜L5的中心厚度过小,也不利于降低光学系统100的敏感度。
在一些实施例中,光学系统100满足条件式:DIM≤3%;其中,DIM为光学系统100的最大像高处的畸变。具体地,DIM可以为:1.50、1.80、1.90、2.11、2.26、2.55、2.63、2.74、2.96或3.00,数值单位为%。满足上述条件式时,能够减小光学系统100的像差,提升光学系统100的成像质量。
上述各条件式中的有效焦距的参考波长为555nm,阿贝数的参考波长为587.56nm。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效口径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
进一步地,光学系统100满足条件式:IMGH 2/(TTL*FNO)=2.53mm;其中,IMGH为光学系统100的最大视场角所对应的像高的一半,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴上的距离,即光学系统100的光学总长,FNO为光学系统100的光圈数。满 足上述条件式时,能够对光学系统100的半像高、光学总长及光圈数进行合理配置,有利于缩短光学系统100的系统总长,满足小型化设计的需求,同时,也有利于光学系统100实现广角特性,从而使得光学系统100能够获取更多的场景内容,丰富光学系统的成像信息;另外,还有利于光学系统100大孔径特性的实现,从而提升光学系统100的通光量,使得光学系统100在弱光环境下也能够具备良好的成像质量。
光学系统100满足条件式:|V2-V3|=36.51;其中,V2为第二透镜L2在参考波长为555nm下的阿贝数,V3为第三透镜L3在参考波长为555nm下的阿贝数。满足上述条件式时,能够对第二透镜L2及第三透镜L3的阿贝数的比值进行合理配置,有利于消除光学系统100的色差,以减小光学系统100的二级光谱色差,进而有利于提升光学系统100的成像质量。
光学系统100满足条件式:f*tan(HFOV)=5.16mm;其中,f为光学系统100的有效焦距,HFOV为光学系统100的最大视场角的一半。满足上述条件式,可避免像高过大,从而降低各透镜对入射光线的偏折要求,有利于使光学系统100中的透镜面型不至于过于弯曲,从而降低透镜注塑成型难度;同时,也能够光学系统100能够拥有大像面特性,使入射光线在经过各透镜时能够得到合理的偏折,从而有利于缩短光学系统100的总长;再者,光学系统100拥有大像面特性,更容易匹配大尺寸的感光元件,从而使得光学系统100具有高分辨率,提升光学系统100的成像质量。
光学系统100满足条件式:TTL/IMGH=1.28。满足上述条件式时,能够对光学系统100的光学总长及半像高的比值进行合理配置,有利于压缩光学系统100的系统总长,以满足小型化设计的需求,同时有利于光学系统100中各透镜厚度的合理分配,从而有利于提高光学系统100的组装生产良率;另外还有利于提升光学系统的成像质量。
光学系统100满足条件式:|R3+R4|/|R11+R12|=1.987;其中,R3为第二透镜L2的物侧面S3于光轴100处的曲率半径,R4为第二透镜L2的像侧面S4于光轴100处的曲率半径,R11为第六透镜L6的物侧面S11于光轴100处的曲率半径,R12为第六透镜L6的像侧面S12于光轴100处的曲率半径。满足上述条件式时,能够对第二透镜L2及第六透镜L6的物侧面和像侧面的曲率半径进行合理配置,有利于减小光线在第二透镜L2及第六透镜L6的入射角度,从而有利于降低光学系统100的敏感度;同时也能够使得第二透镜L2及第六透镜L6的面型不会过度弯曲,有利于提升第二透镜L2及第六透镜L6的成型良率。
光学系统100满足条件式:f67/f=2.80;其中,f67为第六透镜L6及第七透镜L7的组合焦距,f为光学系统100的有效焦距。满足上述条件式时,能够对第六透镜L6与第七透镜L7的组合焦距以及光学系统100的有效焦距的比值进行合理配置,使得第六透镜L6及第七透镜L7整体的屈折力在光学系统100中不会过强,从而有利于校正光学系统100于不同孔径位置的轴外光线产生的球差,进而提升光学系统100的成像质量。
光学系统100满足条件式:ET3=0.29mm;其中,ET3为第三透镜L3的物侧面S5最大有效口径处至像侧面S6最大有效口径处于光轴100方向上的距离,即第三透镜L3的边缘厚度。满足上述条件式时,能够对第三透镜L3的边缘厚度进行合理配置,从而有效抑制光学系统100畸变的产生,同时有利于第三透镜L3对边缘视场光线实现合理偏折,从而调节光线的出射角度,进而有利于光学系统100的广角化;另外,也能够使得光线在第三透镜L3平稳过渡,从而减小光学系统100杂散光的产生,同时降低光学系统100鬼影产生的概率,进而有利于提升光学系统100的成像质量;再者,还有利于使得第三透镜L3的边缘不会过薄,有利于第三透镜L3的成型与组装。
光学系统100满足条件式:|SAG61/CT6|=0.64;其中,SAG61为第六透镜L6的物侧面S11与光轴110的交点至第六透镜L6的物侧面S11的最大有效口径处于光轴100方向上的距离,CT6为第六透镜L6于光轴110上的厚度。满足上述条件式时,能够合理控制第六透镜L6的形状,使得第六透镜L6的面型不会过度弯曲,有利于降低第六透镜L6的公差敏感度,从而有利于第六透镜L6的成型与组装,减小成型不良的缺陷;同时,第六透镜L6的物侧面S11于圆周处的面型也不会过于平缓,有利于第六透镜L6对轴外视场光线的偏折,从而有利于光 学系统100的畸变和场曲像差的校正。
光学系统100满足条件式:|f5|/CT5=27.32;其中,f5为第五透镜L5的有效焦距,CT5为第五透镜L5于光轴110上的厚度,即第五透镜L5的中心厚度。满足上述条件式时,能够对第五透镜L5的有效焦距及中心厚度的比值进行合理配置,使得第五透镜L5的中心厚度不会过薄或过厚,从而有利于降低第五透镜L5的公差敏感度,同时使得第五透镜L5能够有效修正物方各透镜偏折光线而产生的像差,提升光学系统100的成像解析能力。
光学系统100满足条件式:DIM=3.00%;其中,DIM为光学系统100的最大像高处的畸变。满足上述条件式时,能够减小光学系统100的像差,提升光学系统100的成像质量。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S17可理解为光学系统100的成像面。由物面(图未示出)至像面S17的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L8,但此时第七透镜L7的像侧面S14至像面S17的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=5.39mm,光圈数FNO=1.64,最大视场角FOV=87.5°,光学总长TTL=6.83mm。
且各透镜的焦距的参考波长均为555nm,折射率和阿贝数的参考波长为587.56nm,其他实施例也相同。
表1
Figure PCTCN2021082982-appb-000001
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序 号从S1-S14分别表示像侧面或物侧面S1-S14。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2021082982-appb-000002
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2021082982-appb-000003
另外,图2包括光学系统100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5、 具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2021082982-appb-000004
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2021082982-appb-000005
并且,根据上述所提供的各参数信息,可推得以下数据:
IMGH 2/(TTL*FNO) 2.53mm f67/f 5.25
|V2-V3| 36.87 ET3 0.28mm
f*tan(HFOV) 5.17mm |SAG61/CT6| 0.74
TTL/IMGH 1.28 |f5|/CT5 130.12
|R3+R4|/|R11+R12| 1.311 DIM 3.00%
另外,由图4中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2021082982-appb-000006
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2021082982-appb-000007
Figure PCTCN2021082982-appb-000008
并且,根据上述所提供的各参数信息,可推得以下数据:
IMGH 2/(TTL*FNO) 2.53mm f67/f 4.25
|V2-V3| 36.87 ET3 0.34
f*tan(HFOV) 5.18mm |SAG61/CT6| 0.76
TTL/IMGH 1.28 |f5|/CT5 210.56
|R3+R4|/|R11+R12| 2.015 DIM 3.00%
另外,由图6中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2021082982-appb-000009
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2021082982-appb-000010
Figure PCTCN2021082982-appb-000011
并且,根据上述所提供的各参数信息,可推得以下数据:
IMGH 2/(TTL*FNO) 2.53mm f67/f 3.25
|V2-V3| 36.87 ET3 0.28
f*tan(HFOV) 5.20mm |SAG61/CT6| 0.70
TTL/IMGH 1.30 |f5|/CT5 138.04
|R3+R4|/|R11+R12| 1.322 DIM 3.00%
另外,由图8中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出, 此处不加以赘述。
表9
Figure PCTCN2021082982-appb-000012
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2021082982-appb-000013
Figure PCTCN2021082982-appb-000014
并且,根据上述所提供的各参数信息,可推得以下数据:
IMGH 2/(TTL*FNO) 2.54mm f67/f 2.85
|V2-V3| 36.87 ET3 0.28
f*tan(HFOV) 5.14mm |SAG61/CT6| 0.62
TTL/IMGH 1.28 |f5|/CT5 31.83
|R3+R4|/|R11+R12| 1.731 DIM 2.63%
另外,由图10中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近光轴110处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近光轴110处为凸面,于圆周处为凸面;
第七透镜L7的物侧面S13于近光轴110处为凸面,于圆周处为凹面;
第七透镜L7的像侧面S14于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2021082982-appb-000015
Figure PCTCN2021082982-appb-000016
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2021082982-appb-000017
并且,根据上述所提供的各参数信息,可推得以下数据:
IMGH 2/(TTL*FNO) 2.53mm f67/f 2.58
|V2-V3| 36.87 ET3 0.28
f*tan(HFOV) 5.23mm |SAG61/CT6| 0.64
TTL/IMGH 1.28 |f5|/CT5 34.26
|R3+R4|/|R11+R12| 1.997 DIM 1.50%
另外,由图12中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S17。取像模组200还可设置有红外滤光片L8,红外滤光片L8设置于第七透镜L7的像侧面S14与像面S17之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够满足小型化设计的需求,同时使得取像模组200能够获取更多的场景内容,另外也有利于提升取像模组200的成像质量。
请参见图11和图12,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用取像模组200,能够满足小型化设计的需求,同时使得电子设备200能够获取更多的场景内容,另外也有利于提升电子设备200的成像质量。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中 的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,沿光轴由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    具有屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面;
    具有屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凹面;
    具有屈折力的第五透镜;
    具有正屈折力的第六透镜,所述第六透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
    具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    且所述光学系统满足以下条件式:
    5.1mm≤f*tan(HFOV)≤5.3mm;
    其中,f为所述光学系统的有效焦距,HFOV为所述光学系统的最大视场角的一半。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    2.5mm≤IMGH 2/(TTL*FNO)≤2.6mm;
    其中,IMGH为所述光学系统的最大视场角所对应的像高的一半,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,FNO为所述光学系统的光圈数。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.25≤TTL/IMGH≤1.35;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,IMGH为所述光学系统的最大视场角所对应的像高的一半。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1≤|R3+R4|/|R11+R12|≤2.1;
    其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径,R11为所述第六透镜的物侧面于光轴处的曲率半径,R12为所述第六透镜的像侧面于光轴处的曲率半径。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    2≤f67/f≤5.5;
    其中,f67为所述第六透镜及所述第七透镜的组合焦距。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.25mm≤ET3≤0.35mm;
    其中,ET3为所述第三透镜的物侧面最大有效口径处至像侧面最大有效口径处于光轴方向上的距离。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.5≤|SAG61/CT6|≤1.0;
    其中,SAG61为所述第六透镜的物侧面于最大有效口径处的矢高,CT6为所述第六透镜于光轴上的厚度。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    30≤|f5|/CT5≤220;
    其中,f5为所述第五透镜的有效焦距,CT5为所述第五透镜于光轴上的厚度。
  9. 根据权利要求1-8任一项所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜的物侧,或者设置于所述第一透镜的物侧面上。
  10. 根据权利要求1-8任一项所述的光学系统,其特征在于,还包括红外滤光片,所述 红外滤光片设置于所述第七透镜的像侧。
  11. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜的物侧面和像侧面均为非球面。
  12. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜的物侧面和像侧面均为球面。
  13. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜的材质均为玻璃。
  14. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜的材质均为塑料。
  15. 根据权利要求1-8任一项所述的光学系统,其特征在于,满足以下条件式:
    DIM≤3%;
    其中,DIM为所述光学系统的最大像高处的畸变。
  16. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第二透镜具有负屈折力,所述第三透镜具有正屈折力,所述第四透镜具有正屈折力,所述第五透镜具有负屈折力;或者
    所述第二透镜具有负屈折力,所述第三透镜具有正屈折力,所述第四透镜具有负屈折力,所述第五透镜具有正屈折力;或者
    所述第二透镜具有负屈折力,所述第三透镜具有负屈折力,所述第四透镜具有负屈折力,所述第五透镜具有负屈折力。
  17. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第二透镜具有正屈折力,所述第三透镜具有正屈折力,所述第四透镜具有负屈折力,所述第五透镜具有负屈折力;或者
    所述第二透镜具有负屈折力,所述第三透镜具有正屈折力,所述第四透镜具有负屈折力,所述第五透镜具有负屈折力。
  18. 一种取像模组,包括感光元件以及权利要求1-17任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  19. 根据权利要求18所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  20. 一种电子设备,包括壳体以及权利要求18或19所述的取像模组,所述取像模组设置于所述壳体。
PCT/CN2021/082982 2021-03-25 2021-03-25 光学系统、取像模组及电子设备 WO2022198561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082982 WO2022198561A1 (zh) 2021-03-25 2021-03-25 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082982 WO2022198561A1 (zh) 2021-03-25 2021-03-25 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022198561A1 true WO2022198561A1 (zh) 2022-09-29

Family

ID=83395143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082982 WO2022198561A1 (zh) 2021-03-25 2021-03-25 光学系统、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022198561A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138952A (ja) * 2015-01-27 2016-08-04 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN107664824A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109073862A (zh) * 2016-05-19 2018-12-21 索尼公司 成像透镜和成像装置
CN110361836A (zh) * 2019-06-29 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN212160213U (zh) * 2020-05-12 2020-12-15 广东旭业光电科技股份有限公司 光学成像镜头及电子设备
CN112327458A (zh) * 2020-11-25 2021-02-05 江西晶超光学有限公司 光学系统、摄像模组及电子设备
CN212540837U (zh) * 2020-05-12 2021-02-12 江西晶超光学有限公司 光学系统、取像模组及电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138952A (ja) * 2015-01-27 2016-08-04 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN109073862A (zh) * 2016-05-19 2018-12-21 索尼公司 成像透镜和成像装置
CN107664824A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110361836A (zh) * 2019-06-29 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN212160213U (zh) * 2020-05-12 2020-12-15 广东旭业光电科技股份有限公司 光学成像镜头及电子设备
CN212540837U (zh) * 2020-05-12 2021-02-12 江西晶超光学有限公司 光学系统、取像模组及电子装置
CN112327458A (zh) * 2020-11-25 2021-02-05 江西晶超光学有限公司 光学系统、摄像模组及电子设备

Similar Documents

Publication Publication Date Title
CN113138458B (zh) 光学系统、取像模组及电子设备
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
US11953756B2 (en) Optical system, image capturing module and electronic device
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
CN113552696A (zh) 光学系统、取像模组及电子设备
CN114114654B (zh) 光学系统、取像模组及电子设备
EP4170407A1 (en) Seven-lens imaging objective
CN112612117A (zh) 光学系统、取像模组及电子设备
CN112630933A (zh) 光学系统、摄像模组及电子设备
CN113219628B (zh) 光学系统、取像模组及电子设备
CN214151197U (zh) 光学系统、摄像模组及电子设备
CN113741005A (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN112987259A (zh) 光学系统、取像模组及电子设备
CN113156612A (zh) 光学系统、取像模组及电子设备
CN112799211A (zh) 光学系统、取像模组及电子设备
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113900226B (zh) 光学系统、取像模组及电子设备
CN113866943B (zh) 光学系统、取像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN215416068U (zh) 光学系统、取像模组及电子设备
CN114994880A (zh) 光学系统、镜头模组及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2024)