WO2022120678A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2022120678A1
WO2022120678A1 PCT/CN2020/135130 CN2020135130W WO2022120678A1 WO 2022120678 A1 WO2022120678 A1 WO 2022120678A1 CN 2020135130 W CN2020135130 W CN 2020135130W WO 2022120678 A1 WO2022120678 A1 WO 2022120678A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
image side
concave
Prior art date
Application number
PCT/CN2020/135130
Other languages
English (en)
French (fr)
Inventor
徐标
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/135130 priority Critical patent/WO2022120678A1/zh
Publication of WO2022120678A1 publication Critical patent/WO2022120678A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and an electronic device.
  • the optical system with a large image plane can better cooperate with the photosensitive element to obtain higher resolution, thereby improving the image quality of electronic products, improving the resolution and clarity, and meeting the requirements of high imaging quality.
  • the size of the image surface of the current optical system is insufficient, and it is difficult to match the image sensor with a larger photosensitive surface, which makes it difficult to effectively improve the pixels of electronic products.
  • an optical imaging system an imaging module, and an electronic device are provided.
  • An optical system comprising in order from the object side to the image side:
  • the first lens with positive refractive power the object side of the first lens is convex at the paraxial position, and the image side is concave at the paraxial position;
  • the second lens with negative refractive power the object side of the second lens is convex at the paraxial position, and the image side is concave at the paraxial position;
  • the image side surface of the sixth lens is concave at the paraxial position
  • f is the effective focal length of the optical system
  • HFOV is half of the maximum angle of view of the optical system.
  • An imaging module includes a photosensitive element and the above-mentioned optical system, wherein the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned imaging module, wherein the imaging module is arranged on the casing.
  • FIG. 1 is a schematic diagram of an optical system in a first embodiment of the application
  • FIG. 2 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the first embodiment of the application;
  • FIG. 3 is a schematic diagram of an optical system in a second embodiment of the present application.
  • FIG. 4 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the second embodiment of the application;
  • FIG. 5 is a schematic diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fifth embodiment of the application;
  • FIG. 11 is a schematic diagram of an optical system in a sixth embodiment of the application.
  • FIG. 13 is a schematic diagram of an imaging module in an embodiment of the application.
  • FIG. 14 is a schematic diagram of an electronic device in an embodiment of the present application.
  • the optical system 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 and The sixth lens L6.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7
  • the image side S8 the fifth lens L5 includes an object side S9 and an image side S10
  • the sixth lens L6 includes an object side S11 and an image side S12.
  • the first lens L1 has a positive refractive power, which helps to shorten the total system length of the optical system 100, and the object side S1 of the first lens L1 is convex at the paraxial position, which can further strengthen the positive refractive power of the first lens L1,
  • the size of the optical system 100 in the direction of the optical axis 110 is shortened, which is beneficial to the miniaturized design of the optical system 100 .
  • the image side surface S2 of the first lens L1 is concave at the paraxial position.
  • the second lens L2 has a negative refractive power, the object side S3 of the second lens L2 is convex at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the third lens L3, the fourth lens L4, and the fifth lens L5 have refractive power.
  • the sixth lens L6 has negative refractive power, and the image side surface S12 of the sixth lens L6 is concave at the paraxial position.
  • the optical system 100 is provided with a stop STO, and the stop STO may be arranged on the object side of the first lens L1.
  • the optical system 100 further includes an infrared filter L7 disposed on the image side of the sixth lens L6, and the infrared filter L7 includes an object side S13 and an image side S14.
  • the optical system 100 further includes an image plane S15 located on the image side of the sixth lens L6, the image plane S15 is the imaging plane of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, The fourth lens L4, the fifth lens L5 and the sixth lens L6 can form an image on the image plane S15 after adjustment.
  • the infrared filter L7 may be an infrared cut-off filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S15 of the optical system 100 to affect normal imaging.
  • the object side and the image side of each lens of the optical system 100 are aspherical.
  • the adoption of the aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve image quality.
  • the object side surface and the image side surface of each lens of the optical system 100 may also be spherical surfaces. It should be noted that the above embodiments are only examples of some embodiments of the present application. In some embodiments, the surfaces of the lenses in the optical system 100 may be aspherical or any combination of spherical surfaces.
  • the material of each lens in the optical system 100 may be glass or plastic.
  • a lens made of plastic material can reduce the weight of the optical system 100 and reduce the production cost, and in combination with the smaller size of the optical system, a light and miniaturized design of the optical system can be realized.
  • the lens made of glass enables the optical system 100 to have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 can also be any combination of glass and plastic, and not necessarily all of glass or all of plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • a cemented lens is not formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 or the sixth lens L6 in some embodiments may also be greater than or equal to two, and the number of lenses between any adjacent lenses may be greater than or equal to two.
  • a cemented lens may be formed, or a non-cemented lens may be used.
  • the optical system 100 satisfies the conditional formula: f*tan(HFOV) ⁇ 5.3mm; wherein, f is the effective focal length of the optical system 100 in mm, and HFOV is the maximum angle of view of the optical system 100 half of , in degrees.
  • f*tan(HFOV) may be: 5.34, 5.35, 5.36 or 5.37.
  • the optical system 100 satisfies the conditional formula: TTL/ImgH ⁇ 1.3; wherein, TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 100 on the optical axis 110 , that is, the optical system 100
  • the total optical length of , ImgH is half of the image height corresponding to the maximum angle of view of the optical system 100 .
  • TTL/ImgH may be: 1.28.
  • the optical system 100 satisfies the conditional formula: 0.5 ⁇ f2/f6 ⁇ 3.5; wherein, f2 is the effective focal length of the second lens L2, and f6 is the effective focal length of the sixth lens L6.
  • f2/f6 may be: 0.86, 0.94, 1.12, 1.26, 1.52, 1.99, 2.35, 2.88, 2.94 or 3.07.
  • the ratio of the effective focal lengths of the second lens L2 and the sixth lens L6 can be reasonably configured to reasonably distribute the spherical aberration contribution of the second lens L2 and the sixth lens L6 to the optical system 100, so that the optical The paraxial region of the system 100 has good imaging quality.
  • the optical system 100 satisfies the conditional formula: FNO ⁇ 2; wherein, FNO is the aperture number of the optical system 100 .
  • the FNO may be: 1.89, 1.90, 1.91, 1.92, 1.93, 1.94, 1.95, 1.96 or 1.97.
  • the aperture number of the optical system 100 can be reasonably configured to ensure that the optical system 100 has the characteristics of a large aperture, so that the optical system 100 has sufficient light input, thereby making the image captured by the optical system 100 clearer, making the optical system 100 clearer.
  • the optical system 100 can also have high imaging quality when shooting night scenes and object space scenes with low brightness of star lights.
  • the optical system 100 satisfies the conditional formula: 0.3mm ⁇ CT2 ⁇ 0.35mm; wherein, CT2 is the thickness of the second lens L2 on the optical axis 110, that is, the central thickness of the second lens L2.
  • CT2 can be: 0.300, 0.305, 0.309, 0.310, 0.312, 0.316, 0.319, 0.325, 0.327 or 0.338, and the numerical unit is mm.
  • the central thickness of the second lens L2 can be reasonably configured, so that the second lens L2 has good processing characteristics, and at the same time, it is also beneficial to shorten the optical total length of the optical system 100, which is beneficial to the miniaturization of the optical system 100. design.
  • the optical system 100 satisfies the conditional formula: 0.5 ⁇ R9/R11 ⁇ 1.5; wherein, R9 is the radius of curvature of the object side surface S9 of the fifth lens L5 at the optical axis 110, and R11 is the object of the sixth lens L6 The radius of curvature of the side surface S11 at the optical axis 110 .
  • R9/R11 may be: 0.52, 0.58, 0.60, 0.67, 0.77, 0.93, 1.02, 1.21, 1.33 or 1.45.
  • the curvature radius of the object side S9 of the fifth lens L5 and the object side S11 of the sixth lens L6 can be reasonably configured, so that the surface shapes of the incident surfaces of the last two lenses of the system at the paraxial position are different. It will not be too large, so as to effectively balance the axial aberration of the optical system 100, thereby improving the optical performance of the optical system 100, in addition, it can also reduce the sensitivity of the fifth lens L5 and the sixth lens L6, and reduce the manufacturing difficulty. The optical performance of the optical system 100 is improved.
  • the optical system 100 satisfies the conditional formula: 1.0 ⁇ TTL/f ⁇ 1.2; wherein, TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 100 on the optical axis 110 .
  • TTL/f may be: 1.169, 1.170, 1.171, 1.172, 1.173 or 1.174.
  • the optical total length of the optical system 100 is too short, the sensitivity of the optical system 100 is increased, and the correction of aberrations of the optical system 100 is difficult.
  • the upper limit of the above conditional expression is exceeded, the total optical length of the optical system 100 is too long, which is not conducive to the miniaturized design of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 0.3 ⁇
  • may be: 0.50, 0.52, 0.53, 0.55, 0.56, 0.59, 0.61, 0.64, 0.65, or 0.69.
  • the sag height and the center thickness of the object side surface S9 of the fifth lens L5 can be reasonably configured, which is beneficial to the processing and molding of the fifth lens L5, reduces the tolerance sensitivity of the fifth lens L5, and further improves the fifth lens L5.
  • the optical system 100 satisfies the conditional formula: ET4 ⁇ 0.4mm; wherein, ET4 is the edge thickness of the fourth lens L4.
  • ET4 may be: 0.42, 0.43, 0.45, 0.47, 0.48, 0.49, 0.50, 0.53, 0.54 or 0.55.
  • the edge thickness of the fourth lens L4 can be reasonably configured, so as to reasonably control the size of the distortion generated by the fourth lens L4 and improve the optical performance of the optical system 100 .
  • FIG. 1 is a schematic diagram of the optical system 100 in the first embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative
  • 2 shows graphs of spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 555 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • f is the effective focal length of the optical system 100 in mm
  • HFOV is half of the maximum field angle of the optical system 100 in degrees.
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 100 on the optical axis 110, that is, the total optical length of the optical system 100
  • ImgH is Half of the image height corresponding to the maximum angle of view of the optical system 100 .
  • f2 is the effective focal length of the second lens L2
  • f6 is the effective focal length of the sixth lens L6.
  • FNO is the aperture number of the optical system 100 .
  • the aperture number of the optical system 100 can be reasonably configured to ensure that the optical system 100 has the characteristics of a large aperture, so that the optical system 100 has sufficient light input, thereby making the image captured by the optical system 100 clearer, making the optical system 100 clearer.
  • the optical system 100 can also have high imaging quality when shooting night scenes and object space scenes with low brightness of star lights.
  • CT2 is the thickness of the second lens L2 on the optical axis 110, that is, the central thickness of the second lens L2.
  • the central thickness of the second lens L2 can be reasonably configured, so that the second lens L2 has good processing characteristics, and at the same time, it is also beneficial to shorten the optical total length of the optical system 100, which is beneficial to the miniaturization of the optical system 100. design.
  • R9 is the radius of curvature of the object side S9 of the fifth lens L5 at the optical axis 110
  • R11 is the curvature radius of the object side S11 of the sixth lens L6 at the optical axis 110. Radius of curvature.
  • the curvature radii of the object side surface S9 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 can be reasonably configured to effectively balance the axial aberration of the optical system 100, thereby improving the optical system 100.
  • the sensitivity of the fifth lens L5 and the sixth lens L6 can be reduced, the manufacturing difficulty can be reduced, and the optical performance of the optical
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface of the optical system 100 on the optical axis 110 .
  • the optical system 100 satisfies the conditional formula:
  • 0.50; wherein, SAG51 is the sagittal height of the object side surface S9 of the fifth lens L5, CT5 is the thickness of the fifth lens L5 on the optical axis, that is, the center of the fifth lens L5 thickness.
  • SAG51 is the sagittal height of the object side surface S9 of the fifth lens L5
  • CT5 is the thickness of the fifth lens L5 on the optical axis, that is, the center of the fifth lens L5 thickness.
  • ET4 is the edge thickness of the fourth lens L4.
  • the image plane S15 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown) to the image plane S15 are sequentially arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side surface or the image side surface of the corresponding surface number at the optical axis 110 .
  • Surface number 1 and surface number 2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110, and the second value is the object side of the next lens from the image side of the lens to the image side. Distance on axis 110.
  • the optical system 100 may not be provided with the infrared filter L7, but at this time, the distance from the image side S12 to the image plane S15 of the sixth lens L6 remains unchanged.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 2.
  • the surface numbers from 1-14 represent the image side or the object side S1-S14 respectively.
  • K-A20 represent the types of aspheric coefficients, where K represents the conic coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 represents the eight-order aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspherical surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspherical surface to the optical axis 110
  • c is the curvature of the aspherical vertex
  • k is the conic coefficient
  • Ai is the aspherical surface.
  • FIG. 2 includes a longitudinal spherical aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which represents the deviation of the converging focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light ray and the optical axis 110 (unit is mm) .
  • FIG. 2 also includes a field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 555 nm, and the T curve represents the meridional field curvature at 555 nm. It can be seen from the figure that the field curvature of the system is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear images.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic diagram of the optical system 100 in the second embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative A second lens L2 having a refractive power, a third lens L3 having a positive refractive power, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power.
  • FIG. 4 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the parameters of the optical system 100 are given in Table 3, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 5 is a schematic diagram of the optical system 100 in the third embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative A second lens L2 having a refractive power, a third lens L3 having a positive refractive power, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power.
  • FIG. 6 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the parameters of the optical system 100 are given in Table 5, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 7 is a schematic diagram of the optical system 100 in the fourth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative A second lens L2 having a refractive power, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a negative refractive power, and a sixth lens L6 having a negative refractive power.
  • FIG. 8 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the parameters of the optical system 100 are given in Table 7, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 9 is a schematic diagram of the optical system 100 in the fifth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative A second lens L2 having a refractive power, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power.
  • FIG. 10 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the parameters of the optical system 100 are given in Table 9, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 11 is a schematic diagram of the optical system 100 in the sixth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative A second lens L2 having a refractive power, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, a fifth lens L5 having a positive refractive power, and a sixth lens L6 having a negative refractive power.
  • FIG. 12 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S6 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is a concave surface at the paraxial position and a convex surface at the circumference;
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 and the sixth lens L6 are all plastics.
  • the parameters of the optical system 100 are given in Table 11, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 12, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S15 of the optical system 100 .
  • the imaging module 200 may also be provided with an infrared filter L7, and the infrared filter L7 is disposed between the image side S12 and the image surface S15 of the sixth lens L6.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • CCD Charge Coupled Device
  • CMOS Sensor Complementary Metal-Oxide Semiconductor Sensor
  • the imaging module 200 can be applied to an electronic device 300 , the electronic device includes a casing 310 , and the imaging module 200 is disposed in the casing 310 .
  • the electronic device 300 may be, but is not limited to, a mobile phone, a video phone, a smart phone, an electronic book reader, a vehicle-mounted camera device such as a driving recorder, or a wearable device such as a smart watch.
  • the housing 310 may be a middle frame of the electronic device 300 .
  • the optical system 100 has the characteristics of a large image plane, which is beneficial for the electronic device 300 to have the characteristics of high pixels and high definition, and meet the requirements of high imaging quality.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • a first feature being “above”, “over” and “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Abstract

一种光学系统(100),由物侧至像侧依次包括:具有正屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)于近轴处为凸面,像侧面(S2)于近轴处为凹面;具有负屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)于近轴处为凸面,像侧面(S4)于近轴处为凹面;具有屈折力的第三透镜(L3);具有屈折力的第四透镜(L4);具有屈折力的第五透镜(L5);具有负屈折力的第六透镜(L6),第六透镜(L6)的像侧面(S12)于近轴处为凹面;且光学系统(100)满足以下条件式:f*tan(HFOV)≥5.3mm;其中,f为光学系统(100)的有效焦距,HFOV为光学系统(100)的最大视场角的一半。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着科技的飞速发展,消费者们对智能手机等移动电子产品的成像质量要求也越来越高。大像面的光学系统能够更好地配合感光元件,以获得更高的解析力,从而能够改善电子产品拍摄的画质感,提高分辨率以及清晰度,满足高成像质量的要求。然而,目前的光学系统的像面尺寸不足,难以匹配感光面较大的图像传感器,导致电子产品的像素难以得到有效提升。
发明内容
根据本申请的各种实施例,提供一种光学成像系统、取像模组和电子设备。
一种光学系统,由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
具有屈折力的第五透镜;
具有负屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凹面;
且所述光学系统满足以下条件式:
f*tan(HFOV)≥5.3mm;
其中,f为所述光学系统的有效焦距,HFOV为所述光学系统的最大视场角的一半。
一种取像模组,包括感光元件以及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的示意图;
图2为本申请第一实施例中的光学系统的球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的示意图;
图4为本申请第二实施例中的光学系统的球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的示意图;
图6为本申请第三实施例中的光学系统的球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的示意图;
图8为本申请第四实施例中的光学系统的球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的示意图;
图10为本申请第五实施例中的光学系统的球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的示意图;
图12为本申请第六实施例中的光学系统的球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12。
其中,第一透镜L1具有正屈折力,有助于缩短光学系统100的系统总长,且第一透镜L1的物侧面S1于近轴处为凸面,可进一步加强第一透镜L1的正屈折力,使光学系统100于光轴110方向的尺寸变得更短,有利于光学系统100的小型化设计。第一透镜L1的像侧面S2于近轴处为凹面。第二透镜L2具有负屈折力,第二透镜L2的物侧面S3于近轴处为凸面,像侧面S4于近轴处为凹面。第三透镜L3、第四透镜L4以及第五透镜L5具有屈折力。第六透镜L6具有负屈折力,第六透镜L6的像侧面S12于近轴处为凹面。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第六透镜L6像侧的红外滤光片L7,红外滤光片L7包括物侧面S13及像侧面S14。进一步地,光学系统100还包括位于第六透镜L6像侧的像面S15,像面S15即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6调节后能够成像于像面S15。值得注意的是,红外滤光片L7可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S15而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统的较小尺寸以实现光学系统的轻小型化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为 物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5或第六透镜L6中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
并且,在一些实施例中,光学系统100满足条件式:f*tan(HFOV)≥5.3mm;其中,f为光学系统100的有效焦距,单位为mm,HFOV为光学系统100的最大视场角的一半,单位为度。具体地,f*tan(HFOV)可以为:5.34、5.35、5.36或5.37。满足上述条件式时,能够使光学系统100具备大像面的特性,从而使光学系统100更容易匹配大尺寸的感光元件,进而有利于使光学系统100具有高像素和高清晰度的特点。
在一些实施例中,光学系统100满足条件式:TTL/ImgH≤1.3;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,即光学系统100的光学总长,ImgH为光学系统100的最大视场角所对应的像高的一半。具体地,TTL/ImgH可以为:1.28。满足上述条件式时,能够缩短光学系统100的轴向尺寸,有利于实现光学系统100的超薄化设计与小型化设计。
在一些实施例中,光学系统100满足条件式:0.5≤f2/f6≤3.5;其中,f2为第二透镜L2的有效焦距,f6为第六透镜L6的有效焦距。具体地,f2/f6可以为:0.86、0.94、1.12、1.26、1.52、1.99、2.35、2.88、2.94或3.07。满足上述条件式时,能够对第二透镜L2及第六透镜L6的有效焦距的比值进行合理配置,以合理分配第二透镜L2及第六透镜L6对光学系统100的球差贡献,从而使得光学系统100的近轴区域具有良好的成像质量。
在一些实施例中,光学系统100满足条件式:FNO≤2;其中,FNO为光学系统100的光圈数。具体地,FNO可以为:1.89、1.90、1.91、1.92、1.93、1.94、1.95、1.96或1.97。满足上述条件式时,能够合理配置光学系统100的光圈数,以保证光学系统100具有大孔径的特性,从而使光学系统100具有足够的进光量,进而使光学系统100拍摄的图像更加清晰,使得光学系统100在拍摄夜景、星空灯低亮度的物空间场景时也能够具备高成像质量。
在一些实施例中,光学系统100满足条件式:0.3mm≤CT2≤0.35mm;其中,CT2为第二透镜L2于光轴110上的厚度,即第二透镜L2的中心厚度。具体地,CT2可以为:0.300、0.305、0.309、0.310、0.312、0.316、0.319、0.325、0.327或0.338,数值单位为mm。满足上述条件式时,能够合理配置第二透镜L2的中心厚度,从而使第二透镜L2具有良好的加工特性,同时也有利于缩短光学系统100的光学总长,进而有利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:0.5≤R9/R11≤1.5;其中,R9为第五透镜L5的物侧面S9于光轴110处的曲率半径,R11为第六透镜L6的物侧面S11于光轴110处的曲率半径。具体地,R9/R11可以为:0.52、0.58、0.60、0.67、0.77、0.93、1.02、1.21、1.33或1.45。满足上述条件式时,能够对第五透镜L5的物侧面S9及第六透镜L6的物侧面S11的曲率半径进行合理配置,使系统最后两个透镜的入光面于近轴处的面型差异不会过大,以有效的平衡光学系统100的轴上像差,进而提升光学系统100的光学性能,另外也能够降低第五透镜L5和第六透镜L6面型的敏感度,降低制备难度,提升光学系统100的光学性能。
在一些实施例中,光学系统100满足条件式:1.0≤TTL/f≤1.2;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离。具体地,TTL/f可以为:1.169、1.170、1.171、1.172、1.173或1.174。满足上述条件式时,能够对光学系统100的光学总长及有效焦距进行合理配置,有利于实现小型化设计,同时有利于提升光学系统100的光学性能。低于上述条件式的下限时,光学系统100的光学总长过短,会增大光学系统100的敏感度,使光学系统100的像差修正困难。当超过上述条件式的上限时,光学系统100的光学总长过长,不利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:0.3≤|SAG51/CT5|≤1.0;其中,SAG51为第五透镜L5的物侧面S9的矢高,CT5为第五透镜L5于光轴上的厚度,即第五透镜L5的中心厚度。具体地,|SAG51/CT5|可以为:0.50、0.52、0.53、0.55、0.56、0.59、0.61、0.64、0.65或0.69。满足上述条件式时,能够对第五透镜L5的物侧面S9的矢高以及中心厚度进行 合理配置,有利于第五透镜L5的加工成型,降低第五透镜L5制造的公差敏感度,进而提升第五透镜L5的成型良率。
在一些实施例中,光学系统100满足条件式:ET4≥0.4mm;其中,ET4为第四透镜L4的边缘厚度。具体地,ET4可以为:0.42、0.43、0.45、0.47、0.48、0.49、0.50、0.53、0.54或0.55。满足上述条件式时,能够对第四透镜L4的边缘厚度进行合理配置,从而合理控制第四透镜L4产生的畸变的大小,提升光学系统100的光学性能。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图2由左至右依次为第一实施例中光学系统100的球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm,其他实施例相同。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(光轴110)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
并且,光学系统100满足条件式:f*tan(HFOV)=5.34;其中,f为光学系统100的有效焦距,单位为mm,HFOV为光学系统100的最大视场角的一半,单位为度。满足上述条件式时,能够使光学系统100具备大像面的特性,从而使光学系统100更容易匹配大尺寸的感光元件,进而有利于使光学系统100具有高像素和高清晰度的特点。
光学系统100满足条件式:TTL/ImgH=1.28;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,即光学系统100的光学总长,ImgH为光学系统100的最大视场角所对应的像高的一半。满足上述条件式时,能够缩短光学系统100的轴向尺寸,有利于实现光学系统100的超薄化设计与小型化设计。
光学系统100满足条件式:f2/f6=2.73;其中,f2为第二透镜L2的有效焦距,f6为第六透镜L6的有效焦距。满足上述条件式时,能够对第二透镜L2及第六透镜L6的有效焦距的 比值进行合理配置,以合理分配第二透镜L2及第六透镜L6对光学系统100的球差贡献,从而使得光学系统100的近轴区域具有良好的成像质量。
光学系统100满足条件式:FNO=1.97;其中,FNO为光学系统100的光圈数。满足上述条件式时,能够合理配置光学系统100的光圈数,以保证光学系统100具有大孔径的特性,从而使光学系统100具有足够的进光量,进而使光学系统100拍摄的图像更加清晰,使得光学系统100在拍摄夜景、星空灯低亮度的物空间场景时也能够具备高成像质量。
光学系统100满足条件式:CT2=0.300mm;其中,CT2为第二透镜L2于光轴110上的厚度,即第二透镜L2的中心厚度。满足上述条件式时,能够合理配置第二透镜L2的中心厚度,从而使第二透镜L2具有良好的加工特性,同时也有利于缩短光学系统100的光学总长,进而有利于光学系统100的小型化设计。
光学系统100满足条件式:R9/R11=0.61;其中,R9为第五透镜L5的物侧面S9于光轴110处的曲率半径,R11为第六透镜L6的物侧面S11于光轴110处的曲率半径。满足上述条件式时,能够对第五透镜L5的物侧面S9及第六透镜L6的物侧面S11的曲率半径进行合理配置,以有效的平衡光学系统100的轴上像差,进而提升光学系统100的光学性能,另外也能降低第五透镜L5和第六透镜L6面型的敏感度,降低制备难度,提升光学系统100的光学性能。
光学系统100满足条件式:TTL/f=1.169;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离。满足上述条件式时,能够对光学系统100的光学总长及有效焦距进行合理配置,有利于实现小型化设计,同时有利于提升光学系统100的光学性能。低于上述条件式的下限时,光学系统100的光学总长过短,会增大光学系统100的敏感度,使光学系统100的像差修正困难。当超过上述条件式的上限时,光学系统100的光学总长过长,不利于光学系统100的小型化设计。
学系统100满足条件式:|SAG51/CT5|=0.50;其中,SAG51为第五透镜L5的物侧面S9的矢高,CT5为第五透镜L5于光轴上的厚度,即第五透镜L5的中心厚度。满足上述条件式时,能够对第五透镜L5的物侧面S9的矢高以及中心厚度进行合理配置,有利于第五透镜L5的加工成型,降低第五透镜L5制造的公差敏感度,进而提升第五透镜L5的成型良率。
学系统100满足条件式:ET4=0.45mm;其中,ET4为第四透镜L4的边缘厚度。满足上述条件式时,能够对第四透镜L4的边缘厚度进行合理配置,从而合理控制第四透镜L4产生的畸变的大小,提升光学系统100的光学性能。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S15可理解为光学系统100的成像面。由物面(图未示出)至像面S15的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号1和面序号2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L7,但此时第六透镜L6的像侧面S12至像面S15的距离保持不变。
在第一实施例中,光学系统100的总有效焦距f=5.99mm,光圈数FNO=1.97,的最大视场角FOV=83.4°。
且各透镜的焦距、折射率和阿贝数为波长=555nm下的数值,其他实施例也相同。
表1
Figure PCTCN2020135130-appb-000001
Figure PCTCN2020135130-appb-000002
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-14分别表示像侧面或物侧面S1-S14。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2020135130-appb-000003
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2020135130-appb-000004
Figure PCTCN2020135130-appb-000005
另外,图2包括光学系统100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,系统的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图4由左至右依次为第二实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2020135130-appb-000006
Figure PCTCN2020135130-appb-000007
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2020135130-appb-000008
并且,根据上述所提供的各参数信息,可推得以下数据:
f*tan(HFOV) 5.34 CT2 0.338
TTL/Imgh 1.28 R9/R11 0.56
f2/f6 2.58 TTL/f 1.171
FNO 1.95 ET4 0.46
|SAG51/CT5| 0.69    
另外,由图4中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图6由左至右依次为第三实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2020135130-appb-000009
Figure PCTCN2020135130-appb-000010
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2020135130-appb-000011
并且,根据上述所提供的各参数信息,可推得以下数据:
f*tan(HFOV) 5.34 CT2 0.300
TTL/Imgh 1.28 R9/R11 0.60
f2/f6 2.04 TTL/f 1.174
FNO 1.89 ET4 0.42
|SAG51/CT5| 0.55    
另外,由图6中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图8由左至右依次为第四实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2020135130-appb-000012
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参 数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2020135130-appb-000013
并且,根据上述所提供的各参数信息,可推得以下数据:
f*tan(HFOV) 5.36 CT2 0.300
TTL/Imgh 1.28 R9/R11 1.45
f2/f6 0.86 TTL/f 1.174
FNO 1.95 ET4 0.44
|SAG51/CT5| 0.61    
另外,由图8中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图10由左至右依次为第五实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2020135130-appb-000014
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2020135130-appb-000015
Figure PCTCN2020135130-appb-000016
并且,根据上述所提供的各参数信息,可推得以下数据:
f*tan(HFOV) 5.34 CT2 0.333
TTL/Imgh 1.28 R9/R11 0.63
f2/f6 2.48 TTL/f 1.174
FNO 1.95 ET1 0.55
|SAG51/CT5| 0.58    
另外,由图10中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图12由左至右依次为第六实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2020135130-appb-000017
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2020135130-appb-000018
Figure PCTCN2020135130-appb-000019
并且,根据上述所提供的各参数信息,可推得以下数据:
f*tan(HFOV) 5.37 CT2 0.306
TTL/Imgh 1.28 R9/R11 0.52
f2/f6 3.07 TTL/f 1.174
FNO 1.95 ET4 0.48
|SAG51/CT5| 0.53    
另外,由图12中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S15。取像模组200还可设置有红外滤光片L7,红外滤光片L7设置于第六透镜L6的像侧面S12与像面S15之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,光学系统100具备大像面的特性,有利于取像模组200具有高像素和高清晰度的特点。
请参见图13和图14,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用取像模组200,光学系统100具有大像面的特性,有利于电子设备300具有高像素和高清晰度的特点,满足高成像质量的要求。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第 二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    具有负屈折力的第二透镜,所述第二透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有屈折力的第五透镜;
    具有负屈折力的第六透镜,所述第六透镜的像侧面于近轴处为凹面;
    且所述光学系统满足以下条件式:
    f*tan(HFOV)≥5.3mm;
    其中,f为所述光学系统的有效焦距,HFOV为所述光学系统的最大视场角的一半。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    TTL/ImgH≤1.3;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,ImgH为所述光学系统的最大视场角所对应的像高的一半。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.5≤f2/f6≤3.5;
    其中,f2为所述第二透镜的有效焦距,f6为所述第六透镜的有效焦距。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    FNO≤2;
    其中,FNO为所述光学系统的光圈数。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.3mm≤CT2≤0.35mm;
    其中,CT2为所述第二透镜于光轴上的厚度。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.5≤R9/R11≤1.5;
    其中,R9为所述第五透镜的物侧面于光轴处的曲率半径,R11为所述第六透镜的物侧面于光轴处的曲率半径。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.0≤TTL/f≤1.2;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.3≤|SAG51/CT5|≤1.0;
    其中,SAG51为所述第五透镜的物侧面的矢高,CT5为所述第五透镜于光轴上的厚度。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    ET4≥0.4mm;
    其中,ET4为所述第四透镜的物侧面的最大有效口径处至所述第四透镜的像侧面的最大有效口径处于光轴方向上的距离。
  10. 根据权利要求1所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜的物侧。
  11. 根据权利要求1所述的光学系统,其特征在于,还包括红外滤光片,所述红外滤光片设置于所述第六透镜的像侧。
  12. 根据权利要求11所述的光学系统,其特征在于,所述红外滤光片为红外截止滤光片。
  13. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所 述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的物侧面及像侧面均为非球面。
  14. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的物侧面及像侧面均为球面。
  15. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为塑料。
  16. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为玻璃。
  17. 一种取像模组,包括感光元件以及权利要求1-16任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  18. 根据权利要求17所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  19. 一种电子设备,包括壳体以及权利要求18所述的取像模组,所述取像模组设置于所述壳体。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备为便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪或智能手表。
PCT/CN2020/135130 2020-12-10 2020-12-10 光学系统、取像模组及电子设备 WO2022120678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135130 WO2022120678A1 (zh) 2020-12-10 2020-12-10 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135130 WO2022120678A1 (zh) 2020-12-10 2020-12-10 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022120678A1 true WO2022120678A1 (zh) 2022-06-16

Family

ID=81972862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135130 WO2022120678A1 (zh) 2020-12-10 2020-12-10 光学系统、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022120678A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116594154A (zh) * 2023-07-13 2023-08-15 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897782B1 (en) * 2016-12-09 2018-02-20 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
CN109031629A (zh) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
US20190011670A1 (en) * 2017-07-04 2019-01-10 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
CN109459841A (zh) * 2018-12-31 2019-03-12 瑞声光电科技(常州)有限公司 广角镜头
US10302909B2 (en) * 2016-10-21 2019-05-28 Newmax Technology Co., Ltd. Six-piece optical lens system
CN110426819A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302909B2 (en) * 2016-10-21 2019-05-28 Newmax Technology Co., Ltd. Six-piece optical lens system
US9897782B1 (en) * 2016-12-09 2018-02-20 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
US20190011670A1 (en) * 2017-07-04 2019-01-10 Newmax Technology Co., Ltd. Six-piece optical lens system with a wide field of view
CN109031629A (zh) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
CN109459841A (zh) * 2018-12-31 2019-03-12 瑞声光电科技(常州)有限公司 广角镜头
CN110426819A (zh) * 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116594154A (zh) * 2023-07-13 2023-08-15 江西联益光学有限公司 光学镜头
CN116594154B (zh) * 2023-07-13 2023-10-27 江西联益光学有限公司 光学镜头

Similar Documents

Publication Publication Date Title
WO2020001066A1 (zh) 摄像镜头
CN113552696B (zh) 光学系统、取像模组及电子设备
CN113138458A (zh) 光学系统、取像模组及电子设备
CN113156619A (zh) 光学系统、摄像模组及电子设备
CN114114654A (zh) 光学系统、取像模组及电子设备
CN113534408B (zh) 光学系统、摄像模组及电子设备
CN113433656B (zh) 一种成像系统、镜头模组及电子设备
CN112987256B (zh) 光学系统、摄像模组及电子设备
CN113219628B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN113189748A (zh) 光学系统、取像模组及电子设备
CN112799211A (zh) 光学系统、取像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
CN218272885U (zh) 光学系统、摄像模组及电子设备
CN114740599B (zh) 光学系统、摄像模组和电子设备
CN114721126B (zh) 光学镜头、摄像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN113484985B (zh) 光学镜头、摄像模组及电子设备
CN214845997U (zh) 光学系统、摄像模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN114326052A (zh) 光学系统、取像模组及电子设备
WO2022016451A1 (zh) 光学系统、取像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964617

Country of ref document: EP

Kind code of ref document: A1