WO2022151157A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2022151157A1
WO2022151157A1 PCT/CN2021/071772 CN2021071772W WO2022151157A1 WO 2022151157 A1 WO2022151157 A1 WO 2022151157A1 CN 2021071772 W CN2021071772 W CN 2021071772W WO 2022151157 A1 WO2022151157 A1 WO 2022151157A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image side
object side
optical axis
Prior art date
Application number
PCT/CN2021/071772
Other languages
English (en)
French (fr)
Inventor
刘彬彬
党绪文
李明
邹海荣
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/071772 priority Critical patent/WO2022151157A1/zh
Publication of WO2022151157A1 publication Critical patent/WO2022151157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and an electronic device.
  • the human eye has a super high response speed and resolution for imaging objects with limited distances, but it is very difficult to "see clearly" objects at a distance.
  • the optical system with telephoto characteristics has good telephoto performance and can shoot long-distance objects. distance from the subject. Therefore, an optical system with telephoto characteristics is an important means to expand the visual distance of the human eye, and the telephoto optical system is used more and more widely in electronic equipment.
  • the current optical system has insufficient effective focal length, so it is difficult to have good telephoto performance.
  • an optical system an imaging module, and an electronic device are provided.
  • An optical system comprising in sequence from the object side to the image side along the optical axis:
  • the first lens with positive refractive power the object side of the first lens is convex at the near-optical axis, and the image side is convex at the near-optical axis;
  • the object side of the second lens is convex at the near optical axis
  • the image side of the third lens is concave at the near optical axis
  • a fourth lens with positive refractive power wherein the object side and the image side of the fourth lens are aspherical surfaces;
  • a fifth lens with refractive power, the object side and the image side of the fifth lens are both aspherical;
  • IMGH is the image height corresponding to the maximum field angle of the optical system, that is, the diameter of the maximum effective imaging circle of the optical system, and f is the effective focal length of the optical system.
  • An imaging module includes a photosensitive element and the above-mentioned optical system, wherein the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned imaging module, wherein the imaging module is arranged on the casing.
  • FIG. 1 is a schematic structural diagram of an optical system in a first embodiment of the present application
  • FIG. 2 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the first embodiment of the application;
  • FIG. 3 is a schematic structural diagram of an optical system in a second embodiment of the present application.
  • FIG. 4 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the second embodiment of the application;
  • FIG. 5 is a schematic structural diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 8 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fourth embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fifth embodiment of the application;
  • FIG. 11 is a schematic structural diagram of an optical system in a sixth embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an optical system in a seventh embodiment of the present application.
  • FIG. 14 is a longitudinal spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the seventh embodiment of the present application;
  • 15 is a schematic diagram of an imaging module in an embodiment of the application.
  • FIG. 16 is a schematic diagram of an electronic device in an embodiment of the application.
  • the optical system 100 sequentially includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 and a fifth lens L5 from the object side to the image side.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7
  • the fifth lens L5 includes an object side S9 and an image side S10.
  • the first lens L1 has a positive refractive power, which is beneficial to shorten the overall system length of the optical system 100 .
  • the object side S1 and the image side S2 of the first lens L1 are both convex surfaces at the near optical axis 110, which is beneficial to enhance the positive refractive power of the first lens L1, further shortening the total system length of the optical system 100, and is beneficial to the optical system 100.
  • the second lens L2 has refractive power, and the object side surface S3 of the second lens L2 is convex at the near optical axis 110 .
  • the third lens L3 has negative refractive power, and the image side surface S6 of the third lens L3 is concave at the near optical axis 110 .
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a refractive power.
  • the object side surface and the image side surface of the fourth lens L4 and the fifth lens L5 are aspherical, which is beneficial to improve the flexibility of lens design, effectively correct the spherical aberration of the optical system 100, and improve the imaging quality of the optical system.
  • at least one of the object side S9 and the image side S10 of the fifth lens L5 has an inflection point, which is beneficial to correct the aberration of the fringe field of view of the optical system 100 and further improve the imaging quality of the optical system 100 .
  • the optical system 100 is provided with an aperture stop STO, and the aperture stop STO may be provided on the object side of the third lens L3.
  • the stop STO is on the object side of the first lens L1, or is disposed between the second lens L2 and the third lens L3.
  • the optical system 100 further includes an infrared filter L6 disposed on the image side of the fifth lens L5, and the infrared filter L6 includes an object side S11 and an image side S12.
  • the optical system 100 further includes an image plane S13 located on the image side of the fifth lens L5, the image plane S13 is the imaging plane of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, The fourth lens L4 and the fifth lens L5 can form an image on the image plane S13 after adjustment.
  • the infrared filter L6 may be an infrared cut-off filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S13 of the optical system 100 to affect normal imaging.
  • the object side and the image side of each lens of the optical system 100 are aspherical.
  • the adoption of the aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve image quality.
  • the object side surface and the image side surface of each lens of the optical system 100 may also be spherical surfaces. It should be noted that the above embodiments are only examples of some embodiments of the present application. In some embodiments, the surfaces of the lenses in the optical system 100 may be aspherical or any combination of spherical surfaces.
  • the material of each lens in the optical system 100 may be glass or plastic.
  • a lens made of plastic material can reduce the weight of the optical system 100 and reduce the production cost, and in combination with the smaller size of the optical system, a thin and light design of the optical system can be realized.
  • the lens made of glass enables the optical system 100 to have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 can also be any combination of glass and plastic, and not necessarily all of glass or all of plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • a cemented lens is not formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, the third lens L3, the fourth lens L4 or the fifth lens L5 in some embodiments may also be greater than or equal to two, and a cemented lens may be formed between any adjacent lenses, A non-cemented lens may also be used.
  • the optical system 100 satisfies the conditional formula: 105.0 ⁇ (43/IMGH)*f ⁇ 120.0; wherein, IMGH is the image height corresponding to the maximum angle of view of the optical system 100, that is, the optical system 100
  • the diameter of the maximum effective imaging circle, f is the effective focal length of the optical system 100.
  • (43/IMGH)*f may be: 109.32, 109.65, 110.20, 111.64, 112.36, 113.85, 114.15, 115.36, 115.98 or 116.36.
  • the effective focal length of the optical system 100 is converted into an equivalent focal length with reference to a 35mm standard lens.
  • the equivalent focal length of the optical system 100 exceeds 100 mm, so that it can have a strong telephoto characteristic and achieve a good telephoto effect.
  • the optical system 100 satisfies the conditional formula: 5 ⁇ f/IMGH ⁇ 2.7.
  • f/IMGH may be: 2.54, 2.55, 2.56, 2.58, 2.59, 2.61, 2.63, 2.66, 2.67 or 2.70.
  • the optical system 100 does not increase the magnification by sacrificing the characteristics of the large image plane.
  • the optical system 100 has a large image area and can match a large-sized photosensitive chip.
  • the optical system 100 can It is suitable for most 32M and 48M photosensitive chips on the market, thereby improving the imaging quality of the optical system 100, and at the same time making the optical system 100 have good universality and applicability.
  • the above-mentioned optical system 100 has the characteristics of a large image plane while realizing the telephoto characteristic, and can achieve both the telephoto characteristic and the good imaging quality.
  • the optical system 100 satisfies the conditional formula: 0.4 ⁇ OAL/BF ⁇ 0.7; wherein, OAL is the distance from the object side S1 of the first lens L1 to the image side S10 of the fifth lens L5 on the optical axis 110, BF is the shortest distance in the direction of the optical axis 110 from the image side surface S10 of the fifth lens L5 to the imaging surface of the optical system 100 .
  • the OAL/BF may be: 0.45, 0.47, 0.49, 0.50, 0.51, 0.52, 0.56, 0.57, 0.59 or 0.67.
  • BF is an important indicator for the matching of the optical system 100 with the photosensitive element and the structural design of the module.
  • the optical system 100 has the characteristic of long back focus, which can more easily match a prism or a reflection system with a refraction effect to reduce the overall occupied space of the optical system 100, thereby facilitating the miniaturized design of the optical system 100; , it is also beneficial to ensure that each lens in the optical system 100 has sufficient thickness and gap, and the five lenses can cooperate with each other, and the structure is compact, which is beneficial to realize the miniaturization design of the optical system 100 while achieving good imaging quality.
  • the design of the telephoto structure of the optical system 100 is difficult, and the surface shape of the lens is easily distorted excessively, which affects the molding and manufacturing of the lens.
  • the upper limit of the above conditional expression is exceeded, the gap between the lenses in the optical system 100 is too large, which compresses the back focal length of the optical system 100 , which is not conducive to the miniaturization design of the optical system 100 when realizing the telephoto characteristic.
  • the optical system 100 satisfies the conditional formula: 2.0 ⁇ FNO ⁇ 2.55; 7.0mm ⁇
  • /FNO can be: 7.10, 9.65, 11.22, 15.62, 17.35, 19.55, 20.05, 21.36, 22.87 or 23.32, and the numerical unit is mm.
  • the two distribution schemes of the aperture stop STO can match the refractive power configuration of the fifth lens L5 to achieve compact structure of the optical system 100 , thereby facilitating the miniaturized design of the optical system 100 .
  • the optical system 100 it is also beneficial for the optical system 100 to obtain a sufficient amount of incoming light, which not only increases the diffraction limit of the optical system 100, but also helps to improve the resolution power of the optical system 100, so that the attenuation of the resolution power from the center of the field of view to the edge is small.
  • the relative brightness of the entire field of view is improved; in addition, the optical system 100 can also have a large aperture characteristic while achieving a telephoto characteristic.
  • the optical system 100 satisfies the conditional formula: R32/
  • may be: 0.12, 0.15, 0.21, 0.26, 0.37, 0.48, 0.55, 0.59, 0.61 or 0.70.
  • the surface shapes of the image side S6 of the third lens L3 and the object side S7 of the fourth lens L4 can better cooperate with each other, which is beneficial to reduce the image side S6 of the third lens L3 and the fourth lens L4.
  • the change of the sagittal height of the object side surface S7 is also beneficial to reduce the vignetting coefficient of the optical system 100, and at the same time, the effect of a tight gap between the third lens L3 and the fourth lens L4 can be achieved.
  • the radius of curvature of the image side S6 of the third lens L3 at the optical axis 110 is positive.
  • the fourth lens L4 has a positive refractive power, and when the above conditional expression is satisfied, it is beneficial to improve the flexibility of the design of the optical system 100 while achieving a compact structure, so that the maximum incident angle incident on the imaging surface can be more easily matched with the photosensitive element
  • the fourth lens L4 and the fifth lens L5 can also reserve sufficient distances for the focusing of the optical system 100 and the module mechanism.
  • the optical system 100 satisfies the conditional formula: f12>0; f45>0; 0.8 ⁇ f12/f45 ⁇ 1.4; wherein, f12 is the combined focal length of the first lens L1 and the second lens L2, and f45 is the fourth The combined focal length of lens L4 and fifth lens L5.
  • f12/f45 may be: 0.74, 0.76, 0.78, 0.82, 0.89, 1.03, 1.09, 1.21, 1.26 or 1.33.
  • the whole of the first lens L1 and the second lens L2, as well as the fourth lens L4 and the fifth lens L5 have positive refractive power, and with the negative refractive power of the third lens L3, a positive, negative and positive Cook-like three-piece structure can be formed.
  • the ratio of f12 to f45 can be reasonably configured, and the reasonable distribution of the surface shape and structure of each lens of the optical system 100 is beneficial to the optical system 100 to achieve a compact structure and have telephoto characteristics, and also It is beneficial for the surface shape of each lens to be smoother.
  • the optical system 100 satisfies the conditional formulas: f12>0; f45>0; CT45 ⁇ 0.6; 0.6 ⁇ (CT12+CT34+CT45)/CT5 ⁇ 3.1; wherein CT12 is the image side of the first lens L1 The distance from S2 to the object side S3 of the second lens L2 on the optical axis 110, CT34 is the distance from the image side S6 of the third lens L3 to the object side S7 of the fourth lens L4 on the optical axis 110, and CT45 is the fourth lens The distance from the image side S8 of L4 to the object side S9 of the fifth lens L5 on the optical axis 110 , and CT5 is the thickness of the fifth lens L5 on the optical axis 110 .
  • (CT12+CT34+CT45)/CT5 may be: 0.67, 0.98, 1.25, 1.65, 1.74, 2.12, 2.65, 2.88, 2.94 or 3.06.
  • the compact structure between the lens L4 and the fifth lens L5 is beneficial to improve the chromatic aberration correction effect of the fourth lens L4 and the fifth lens L5 at the same time.
  • the structure of each lens can be compactly matched, and the gap space between the lenses can be compressed, which is beneficial to make the change of the surface shape of each lens tend to be gentle, and thus is beneficial to reduce the generation of stray light of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 0.8 ⁇
  • may be: 0.81, 1.10, 1.56, 2.54, 3.28, 4.66, 4.86, 5.35, 6.02 or 7.93.
  • the first lens L1 has a positive refractive power, so that the second lens L2 does not need to have a strong refractive power, so that the light can be narrowed and the deflection angle of the light can be suppressed, and the second lens L2 can also have a positive or negative refractive power.
  • the flexibility of the structure of the second lens L2 can be improved, the surface shape of the second lens L2 can be smoothed, and the spherical aberration contribution can be provided to the optical system 100 to compensate for the effect of the first lens L1. Spherical aberration overflow phenomenon.
  • the refractive power of the second lens L2 and the image side profile at the paraxial position can be well configured, thereby improving the matching of the second lens L2 with the first lens L1 and the third lens L3 Therefore, the design of the surface shape and thickness of the second lens L2 can be changed more flexibly, which can increase the design flexibility of the optical system 100; in addition, it is also beneficial to reduce the overall system length of the optical system 100 and reduce the tolerance sensitivity of the optical system 100. Spend.
  • the optical system 100 satisfies the conditional formula: 0.50 ⁇ SD11/IMGH ⁇ 0.7; wherein SD11 is half of the maximum effective aperture of the object side S1 of the first lens L1.
  • SD11/IMGH may be: 0.51, 0.52, 0.53, 0.54, 0.55, 0.57, 0.59, 0.60, 0.62, or 0.66.
  • the telephoto characteristics of the optical system 100 and the large aperture design will make the entrance pupil diameter of the optical system 100 equal to or larger than the size of the image plane S13.
  • the two distribution schemes of the aperture stop STO can rapidly reduce the effective aperture of each lens. Two compact structures that are small and the effective aperture of each lens decreases slowly.
  • the ratio of half of the maximum effective aperture of the object side surface S1 of the first lens L1 and the half image height of the optical system 100 can be reasonably configured, so that the above two distribution schemes of the aperture stop STO can be well
  • the structural layout of the optical system 100 reduces the difficulty of structural design of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 1.0 ⁇ SD11/SD52 ⁇ 1.6; wherein SD11 is half of the maximum effective aperture of the object side S1 of the first lens L1, and SD52 is the image side S10 of the fifth lens L5 half of the maximum effective caliber.
  • SD11/SD52 may be: 1.12, 1.15, 1.19, 21.20, 1.23, 1.28, 1.35, 1.42, 1.46 or 1.55.
  • the above two distribution schemes of the aperture stop STO can obtain a good structural layout, which reduces the difficulty of structural design of the optical system 100 .
  • the effective diameter of each lens of the optical system 100 can be changed reasonably, the design of the supporting structure of each lens is convenient, and the manufacturability of the optical system 100 can be improved.
  • FIG. 1 is a schematic structural diagram of the optical system 100 in the first embodiment.
  • the optical system 100 sequentially includes an aperture stop STO, a first lens L1 with positive refractive power, an aperture stop STO from the object side to the image side, and a The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, and the fifth lens L5 with negative refractive power.
  • 2 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 587 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the near optical axis 110 and is concave at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the shape of the surface from the center (the intersection of the surface and the optical axis 110) to the edge direction can be purely convex; Or transition from a convex shape at the center to a concave shape and then become convex near the maximum effective radius.
  • Various shapes and structures of the surface (concave-convex relationship) are not fully reflected, but other situations can be derived from the above examples.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the effective focal length of the optical system 100 is converted into an equivalent focal length with reference to a 35mm standard lens.
  • the equivalent focal length of the optical system 100 exceeds 100 mm, so that it can have a strong telephoto characteristic and achieve a good telephoto effect.
  • the optical system 100 does not increase the magnification by sacrificing the characteristics of the large image plane.
  • the optical system 100 has a large image area and can match a large-sized photosensitive chip.
  • the optical system 100 can It is suitable for most 32M and 48M photosensitive chips on the market, thereby improving the imaging quality of the optical system 100, and at the same time making the optical system 100 have good universality and applicability.
  • the above-mentioned optical system 100 has the characteristics of a large image plane while realizing the telephoto characteristic, and can achieve both the telephoto characteristic and the good imaging quality.
  • OAL is the distance from the object side S1 of the first lens L1 to the image side S10 of the fifth lens L5 on the optical axis 110
  • BF is the image of the fifth lens L5
  • BF is an important indicator for the matching of the optical system 100 with the photosensitive element and the structural design of the module. The longer the BF, the higher the flexibility for the design and manufacture of the module.
  • the optical system 100 has the characteristic of long back focus, which can more easily match a prism or a reflection system with a refraction effect to reduce the overall occupied space of the optical system 100, thereby facilitating the miniaturized design of the optical system 100; , it is also beneficial to ensure that each lens in the optical system 100 has sufficient thickness and gap, and the five lenses can cooperate with each other, and the structure is compact, which is beneficial to realize the miniaturization design of the optical system 100 while achieving good imaging quality.
  • the optical system 100 satisfies the conditional formula: 2.0 ⁇ FNO ⁇ 2.55;
  • /FNO 8.88mm; where f5 is the effective focal length of the fifth lens L5, and FNO is the aperture number of the optical system 100 .
  • the two distribution schemes of the aperture stop STO can match the refractive power configuration of the fifth lens L5 to achieve compact structure of the optical system 100 , thereby facilitating the miniaturized design of the optical system 100 .
  • the optical system 100 it is also beneficial for the optical system 100 to obtain a sufficient amount of incoming light, which not only increases the diffraction limit of the optical system 100, but also helps to improve the resolution power of the optical system 100, so that the attenuation of the resolution power from the center of the field of view to the edge is small.
  • the relative brightness of the entire field of view is improved; in addition, the optical system 100 can also have a large aperture characteristic while achieving a telephoto characteristic.
  • the optical system 100 satisfies the conditional formula: R32/
  • 0.48; wherein, R32 is the radius of curvature of the image side S6 of the third lens L3 at the optical axis 110, and R41 is the object side S7 of the fourth lens L4 at the optical axis 110 The radius of curvature at .
  • R32 is the radius of curvature of the image side S6 of the third lens L3 at the optical axis 110
  • R41 is the object side S7 of the fourth lens L4 at the optical axis 110
  • the radius of curvature at When the above conditional expressions are satisfied, the surface shapes of the image side S6 of the third lens L3 and the object side S7 of the fourth lens L4 can better cooperate with each other, which is beneficial to reduce the image side S6 of the third lens L3 and the fourth lens L4.
  • the change of the sagittal height of the object side surface S7 is also beneficial to reduce the vignetting coefficient of the optical system 100, and at the same time, the effect of a tight gap between the third lens L3 and the fourth lens L4 can be achieved.
  • the radius of curvature of the image side S6 of the third lens L3 at the optical axis 110 is positive.
  • the fourth lens L4 has a positive refractive power, and when the above conditional expression is satisfied, it is beneficial to improve the flexibility of the design of the optical system 100 while achieving a compact structure, so that the maximum incident angle incident on the imaging surface can be more easily matched with the photosensitive element
  • the fourth lens L4 and the fifth lens L5 can also reserve sufficient distances for the focusing of the optical system 100 and the module mechanism.
  • the whole of the first lens L1 and the second lens L2, as well as the fourth lens L4 and the fifth lens L5 have a positive refractive power, and with the negative refractive power of the third lens L3, a positive, negative and positive Cook-like three-piece structure can be formed.
  • the ratio of f12 to f45 can be reasonably configured, and the reasonable distribution of the surface type and structure of each lens of the optical system 100 is beneficial to the optical system 100 to achieve a compact structure and have telephoto characteristics, and also It is beneficial for the surface shape of each lens to be smoother. At the same time, it is also beneficial to correct various off-axis aberrations of the optical system 100, such as distortion, field curvature, astigmatism, etc., so that good imaging quality can be obtained.
  • CT34 is the distance from the image side S6 of the third lens L3 to the object side S7 of the fourth lens L4 on the optical axis 110
  • CT45 is the image side S8 of the fourth lens L4 to the fifth
  • CT5 is the thickness of the fifth lens L5 on the optical axis 110 .
  • the above conditional expressions are satisfied, it is beneficial to improve the degree of coordination of the surface shapes of the lenses, improve the compactness of the structure of the optical system 100 , and thus help to shorten the overall system length of the optical system 100 .
  • the above conditional expression is satisfied, and a small gap is formed between the fourth lens L4 and the fifth lens L5, so that the fourth lens L4 and the fifth lens L5 are similar to a cemented lens, and the fourth lens L4 and the fifth lens L5 are similar to cemented lenses.
  • the compact structure between the lens L4 and the fifth lens L5 is beneficial to improve the chromatic aberration correction effect of the fourth lens L4 and the fifth lens L5 at the same time.
  • each lens can be compactly matched, and the gap space between the lenses can be compressed, which is beneficial to make the change of the surface shape of each lens tend to be gentle, and thus is beneficial to reduce the generation of stray light of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: f1 ⁇ 10.5mm;
  • 5.89; wherein, f2 is the effective focal length of the second lens L2, and R22 is the distance between the image side S4 of the second lens L2 at the optical axis 110 Radius of curvature.
  • the first lens L1 has a positive refractive power, so that the second lens L2 does not need to have a strong refractive power, so that the light can be narrowed and the deflection angle of the light can be suppressed, and the second lens L2 can also have a positive or negative refractive power.
  • the flexibility of the structure of the second lens L2 can be improved, the surface shape of the second lens L2 can be smoothed, and the spherical aberration contribution can be provided to the optical system 100 to compensate for the effect of the first lens L1. Spherical aberration overflow phenomenon.
  • the refractive power of the second lens L2 and the image side profile at the paraxial position can be well configured, thereby improving the matching of the second lens L2 with the first lens L1 and the third lens L3 Therefore, the design change of the surface shape and thickness of the second lens L2 is more flexible, which can increase the design flexibility of the optical system 100; in addition, it is also beneficial to reduce the total system length of the optical system 100 and reduce the tolerance sensitivity of the optical system 100 at the same time. Spend.
  • SD11 is half of the maximum effective aperture of the object side surface S1 of the first lens L1.
  • the telephoto characteristics of the optical system 100 and the large aperture design will make the entrance pupil diameter of the optical system 100 equal to or larger than the size of the image plane S13.
  • the two distribution schemes of the aperture stop STO can rapidly reduce the effective aperture of each lens. Two compact structures that are small and the effective aperture of each lens decreases slowly.
  • the ratio of half of the maximum effective aperture of the object side surface S1 of the first lens L1 and the half image height of the optical system 100 can be reasonably configured, so that the above two distribution schemes of the aperture stop STO can be well
  • the structural layout of the optical system 100 reduces the difficulty of structural design of the optical system 100 .
  • the telephoto characteristic of the optical system 100 and the large aperture design will make the entrance pupil diameter of the optical system 100 equal to or larger than the size of the image plane.
  • the two distribution schemes of the aperture stop STO can rapidly reduce the effective aperture of each lens.
  • the above two distribution schemes of the aperture stop STO can obtain a good structural layout, reducing the difficulty of structural design of the optical system 100 .
  • the effective diameter of each lens of the optical system 100 can be changed reasonably, the design of the supporting structure of each lens is convenient, and the manufacturability of the optical system 100 can be improved.
  • the image plane S13 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown) to the image plane S13 are sequentially arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side surface or the image side surface of the corresponding surface number at the optical axis 110 .
  • Surface number 1 and surface number 2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110, and the second value is the rear surface of the lens in the direction from the image side to the image side on the optical axis 110 the distance.
  • the optical system 100 may not be provided with the infrared filter L6, but at this time, the distance from the image side S10 to the image plane S13 of the fifth lens L5 remains unchanged.
  • the optical system satisfies the relation: 17.9mm ⁇ f ⁇ 22.0mm, and the optical system 100 has telephoto characteristics and good telephoto capability.
  • the reference wavelengths of the focal length, refractive index and Abbe number of each lens are all 587 nm (d-line), and other embodiments are also the same.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 2.
  • the surface numbers from 1-10 represent the image side or the object side S1-S10 respectively.
  • K-A20 represent the types of aspheric coefficients, where K represents the conic coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 represents the eight-order aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspherical surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspherical surface to the optical axis 110
  • c is the curvature of the aspherical vertex
  • k is the conic coefficient
  • Ai is the aspherical surface.
  • FIG. 2 includes a longitudinal spherical aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which represents the deviation of the converging focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light ray and the optical axis 110 (unit is mm) .
  • Figure 2 also includes a field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 587 nm and the T curve represents the meridional field curvature at 587 nm. It can be seen from the figure that the field curvature of the optical system 100 is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear images.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic structural diagram of the optical system 100 in the second embodiment.
  • the optical system 100 includes an aperture stop STO, a first lens L1 with positive refractive power, an aperture stop STO from the object side to the image side, and a The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, and the fifth lens L5 with negative refractive power.
  • FIG. 4 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the near optical axis 110 and is concave at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 3, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 5 is a schematic structural diagram of the optical system 100 in the third embodiment.
  • the optical system 100 sequentially includes an aperture stop STO, a first lens L1 with positive refractive power, an aperture stop STO from the object side to the image side, and a A second lens L2 having a positive refractive power, a third lens L3 having a negative refractive power, a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a negative refractive power.
  • FIG. 6 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 5, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of the optical system 100 in the fourth embodiment.
  • the optical system 100 includes an aperture stop STO, a first lens L1 with positive refractive power, an aperture stop STO from the object side to the image side, and a The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, and the fifth lens L5 with negative refractive power.
  • FIG. 8 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 7, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of an optical system 100 in the fifth embodiment.
  • the optical system 100 sequentially includes a first lens L1 with positive refractive power, a first lens L1 with positive refractive power from the object side to the image side
  • FIG. 10 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S4 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S5 of the third lens L3 is a concave surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and is a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the near optical axis 110 and is concave at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 9, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of the optical system 100 in the sixth embodiment.
  • the optical system 100 sequentially includes a first lens L1 with a positive refractive power, a lens with a positive refractive power from the object side to the image side
  • FIG. 12 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S4 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S5 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the near optical axis 110 and is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 11, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 13 is a schematic structural diagram of the optical system 100 in the seventh embodiment.
  • the optical system 100 sequentially includes a first lens L1 with positive refractive power, a The second lens L2, the aperture stop STO, the third lens L3 with negative refractive power, the fourth lens L4 with positive refractive power, and the fifth lens L5 with positive refractive power.
  • FIG. 14 is a graph showing longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the seventh embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side surface S2 of the first lens L1 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S4 of the second lens L2 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the object side surface S5 of the third lens L3 is a concave surface at the near optical axis 110, and a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the near optical axis 110, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the near optical axis 110, and is a concave surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the near optical axis 110 and is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 13, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S13 of the optical system 100 .
  • the imaging module 200 may also be provided with an infrared filter L6, and the infrared filter L6 is disposed between the image side S10 and the image surface S13 of the fifth lens L5.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • CCD Charge Coupled Device
  • CMOS Sensor Complementary Metal-Oxide Semiconductor Sensor
  • the imaging module 200 can be applied to an electronic device 300 , the electronic device includes a casing 310 , and the imaging module 200 is disposed in the casing 310 .
  • the electronic device 300 may be, but is not limited to, a mobile phone, a video phone, a smart phone, an electronic book reader, a vehicle-mounted camera device such as a driving recorder, or a wearable device such as a smart watch.
  • the housing 310 may be a middle frame of the electronic device 300.
  • Using the imaging module 200 in the electronic device 300 can achieve telephoto characteristics and have good telephoto performance. It can be understood that the optical system 100 has good telephoto performance, so the image capturing module 200 can be applied to the rear camera of the electronic device 300 so that the rear camera can capture a distant subject.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),包括:具有正屈折力的第一透镜(L1),物侧面(S1)于近光轴(110)处为凸面,像侧面(S2)于近光轴(110)处为凸面;具有屈折力的第二透镜(L2),物侧面(S3)于近光轴(110)处为凸面;具有负屈折力的第三透镜(L3),像侧面(S6)于近光轴处为凹面;具有正屈折力的第四透镜(L4),物侧面(S7)及像侧面(S8)均为非球面;具有屈折力的第五透镜(L5),物侧面(S9)及像侧面(S10)均为非球面,物侧面(S9)与像侧面(S10)中至少一者存在反曲点;光学系统(100)满足条件式:105.0≤(43/IMGH)*f≤120.0。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
人眼对有限距物体成像具有超高的响应速度和分辨力,但对远距离物体“看清楚”却是非常困难的,而具备长焦特性的光学系统具有良好的远摄性能,能够拍摄远距离被摄物。因此,具备长焦特性的光学系统是拓展人眼可视距离的重要手段,长焦光学系统在电子设备中的运用越来越广泛。然而,目前的光学系统,有效焦距不足,难以具备良好的远摄性能。
发明内容
根据本申请的各种实施例,提供一种光学系统、取像模组及电子设备。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
具有负屈折力的第三透镜,所述第三透镜的像侧面于近光轴处为凹面;
具有正屈折力的第四透镜,所述第四透镜的物侧面及像侧面均为非球面;
具有屈折力的第五透镜,所述第五透镜的物侧面及像侧面均为非球面;
且所述光学系统满足以下条件式:
105.0≤(43/IMGH)*f≤120.0;
其中,IMGH为所述光学系统的最大视场角所对应的像高,即所述光学系统的最大有效成像圆的直径,f为所述光学系统的有效焦距。
一种取像模组,包括感光元件以及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请第七实施例中的光学系统的结构示意图;
图14为本申请第七实施例中的光学系统的纵向球差图、像散图及畸变图;
图15为本申请一实施例中的取像模组的示意图;
图16为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10。
其中,第一透镜L1具有正屈折力,有利于缩短光学系统100的系统总长。第一透镜L1的物侧面S1及像侧面S2于近光轴110处均为凸面,有利于增强第一透镜L1的正屈折力,进一步缩短光学系统100的系统总长,从而有利于光学系统100的小型化设计。第二透镜L2具有屈折力,第二透镜L2的物侧面S3于近光轴110处为凸面。第三透镜L3具有负屈折力,第三透镜L3的像侧面S6于近光轴110处为凹面。第四透镜L4具有正屈折力,第五透镜L5具有屈折力。第四透镜L4与第五透镜L5的物侧面及像侧面均为非球面,有利于提高透镜设计的灵活性,并有效地校正光学系统100的球差,改善光学系统的成像质量。在一些实施例中,第五透镜L5的物侧面S9与像侧面S10中至少一者存在反曲点,有利于修正光学系统100的边缘视场的像差,进一步提升光学系统100的成像质量。
另外,在一些实施例中,光学系统100设置有孔径光阑STO,孔径光阑STO可设置于第三透镜L3的物侧。具体地,在一些实例中,光阑STO第一透镜L1的物侧,或设置于第二透镜L2与第三透镜L3之间。在一些实施例中,光学系统100还包括设置于第五透镜L5像侧的红外滤光片L6,红外滤光片L6包括物侧面S11及像侧面S12。进一步地,光学系统100还包括位于第五透镜L5像侧的像面S13,像面S13即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5调节后能够成像于像面S13。值得注意的是,红外滤光片L6可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S13而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,除第四透镜L4与第五透镜L5外,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统的较小尺寸以实现光学系统的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4或第五透镜L5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:105.0≤(43/IMGH)*f≤120.0;其中,IMGH为 光学系统100的最大视场角所对应的像高,即光学系统100的最大有效成像圆的直径,f为光学系统100的有效焦距。具体地,(43/IMGH)*f可以为:109.32、109.65、110.20、111.64、112.36、113.85、114.15、115.36、115.98或116.36。上述条件式,以35mm标准镜头为参照,将光学系统100的有效焦距换算为等效焦距。满足上述条件式的下限时,光学系统100的等效焦距超过100mm,从而可拥有强大的长焦特性,实现良好的远摄效果。
在一些实施例中,光学系统100满足条件式:5≤f/IMGH≤2.7。具体地,f/IMGH可以为:2.54、2.55、2.56、2.58、2.59、2.61、2.63、2.66、2.67或2.70。满足上述条件式,光学系统100未通过牺牲大像面特性来提升放大倍率,通过满足上述条件式的上限时,光学系统100具有大像面,能够匹配大尺寸的感光芯片,例如光学系统100能够适配市场上多数32M、48M的感光芯片,进而提升光学系统100的成像质量,同时使光学系统100具备良好的普适性和适用性。综上,上述光学系统100,在实现长焦特性的同时具备大像面特性,能够兼顾长焦特性及良好的成像质量。
在一些实施例中,光学系统100满足条件式:0.4≤OAL/BF≤0.7;其中,OAL为第一透镜L1的物侧面S1至第五透镜L5的像侧面S10于光轴110上的距离,BF为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110方向上的最短距离。具体地,OAL/BF可以为:0.45、0.47、0.49、0.50、0.51、0.52、0.56、0.57、0.59或0.67。BF为光学系统100与感光元件匹配以及模组结构设计的重要指标,BF越长,可供模组设计与制造的灵活性越高。满足上述条件式时,光学系统100具备长后焦特性,能够更容易地匹配具有折光效果的棱镜或反射系统来缩小光学系统100的整体占用空间,进而有利于光学系统100的小型化设计;另外,也有利于确保光学系统100中各透镜有足够的厚度与间隙,并使五片透镜能够相互配合,结构紧凑,在实现良好的成像质量的同时有利于实现光学系统100的小型化设计。当低于上述条件式的下限,光学系统100长焦结构的设计困难,容易使透镜面型过度扭曲,影响透镜的成型制造。当超过上述条件式的上限,光学系统100中各透镜的间隙过大,压缩了光学系统100的后焦距,在实现长焦特性时不利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:2.0≤FNO≤2.55;7.0mm≤|f5|/FNO≤24.0mm;其中,f5为第五透镜L5的有效焦距,FNO为光学系统100的光圈数。具体地,|f5|/FNO可以为:7.10、9.65、11.22、15.62、17.35、19.55、20.05、21.36、22.87或23.32,数值单位为mm。满足上述条件式时,孔径光阑STO的两种分布方案能够配合第五透镜L5的屈折力配置,实现光学系统100结构的紧凑性,从而有利于光学系统100的小型化设计。同时,也有利于光学系统100获得足够的进光量,不仅增大了光学系统100的衍射极限,还有利于提升光学系统100的解像力,使从视场中心到边缘的解像力衰减小,同时有利于提升全视场的相对亮度;另外,还能够使得光学系统100在实现长焦特性的同时具备大光圈特性。
在一些实施例中,光学系统100满足条件式:R32/|R41|≤0.7;其中,R32为第三透镜L3的像侧面S6于光轴110处的曲率半径,R41为第四透镜L4的物侧面S7于光轴110处的曲率半径。具体地,R32/|R41|可以为:0.12、0.15、0.21、0.26、0.37、0.48、0.55、0.59、0.61或0.70。满足上述条件式时,第三透镜L3的像侧面S6及第四透镜L4的物侧面S7的面型能够更好地相互配合,有利于减小第三透镜L3的像侧面S6及第四透镜L4的物侧面S7的矢高变化,也有利于减小光学系统100的渐晕系数,同时能够实现第三透镜L3与第四透镜L4之间间隙紧凑的效果。同时,第三透镜L3的像侧面S6于光轴110处的曲率半径为正,满足上述条件式时,有利于使经第三透镜L3物侧各透镜收缩的光线得到适当扩散,以更好地配合第四透镜L4及第五透镜L5对外视场光线的引导,同时有利于减小第四透镜L4及第五透镜L5面型的复杂度,提升透镜成型制造的可靠性。另外,第四透镜L4具有正屈折力,满足上述条件式时,在实现结构紧凑型的同时有利于提升光学系统100设计的灵活性,使得入射到成像面的最大入射角度更容易与感光元件匹配,同时第四透镜L4及第五透镜L5也能够为光学系统100的对焦及模组机构预留足够的间距。
在一些实施例中,光学系统100满足条件式:f12>0;f45>0;0.8≤f12/f45≤1.4;其中,f12为第一透镜L1与第二透镜L2的组合焦距,f45为第四透镜L4与第五透镜L5的组合焦距。具体地,f12/f45可以为:0.74、0.76、0.78、0.82、0.89、1.03、1.09、1.21、1.26或1.33。第一透镜L1与第二透镜L2整体以及第四透镜L4与第五透镜L5整体均具有正屈折力,配合第三透镜L3的负屈折力,能够形成正负正的类库克三片式结构,满足上述条件式时,能够对f12与f45的比值进行合理配置,配合光学系统100各透镜的面型及结构的合理分配,有利于光学系统100在实现结构紧凑的同时具备长焦特性,也有利于各透 镜的面型更加平滑。同时,还有利于校正光学系统100的各种轴外像差,如畸变、场曲、像散等,能够获得良好的成像质量。
在一些实施例中,光学系统100满足条件式:f12>0;f45>0;CT45≤0.6;0.6≤(CT12+CT34+CT45)/CT5≤3.1;其中,CT12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,CT34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴110上的距离,CT45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,CT5为第五透镜L5于光轴110上的厚度。具体地,(CT12+CT34+CT45)/CT5可以为:0.67、0.98、1.25、1.65、1.74、2.12、2.65、2.88、2.94或3.06。满足上述条件式时,有利于提高各透镜面型的配合度,提升光学系统100结构的紧凑性,从而有利于缩短光学系统100的系统总长。另外,在合理的屈折力配置下,满足上述条件式,第四透镜L4及第五透镜L5之间形成较小的间隙,使第四透镜L4及第五透镜L5类似于胶合透镜,提升第四透镜L4与第五透镜L5之间结构的紧凑型,同时有利于提升第四透镜L4与第五透镜L5对色差的校正效果。同时,还能够使得各透镜的结构配合紧凑,各透镜之间的间隙空间得以压缩,有利于使得各透镜面型变化趋于平缓,进而有利于减少光学系统100杂散光的产生。
在一些实施例中,光学系统100满足条件式:0.8≤|f2|/|R22|≤8.0;其中,f2为第二透镜L2的有效焦距,R22为第二透镜L2的像侧面S4于光轴110处的曲率半径。具体地,|f2|/|R22|可以为:0.81、1.10、1.56、2.54、3.28、4.66、4.86、5.35、6.02或7.93。第一透镜L1具有正屈折力,使得第二透镜L2无需具备较强的屈折力,即可促使光线的收窄和抑制光线的偏折角度,也使得第二透镜L2可具备正或负的屈折力,满足上述条件式时,在提升第二透镜L2结构的灵活性的同时,能够使第二透镜L2的面型平滑,为光学系统100提供球差贡献量,以补偿第一透镜L1产生的球差溢出现象。同时,满足上述条件式时,第二透镜L2的屈折力强度与近轴处的像侧面面型能够得到良好的配置,从而能够提高第二透镜L2与第一透镜L1及第三透镜L3的匹配关系,进而使第二透镜L2的面型及厚度设计变化更灵活,能够为光学系统100增加设计的灵活性;另外,还有利于缩小光学系统100的系统总长,同时降低光学系统100的公差敏感度。
在一些实施例中,光学系统100满足条件式:0.50≤SD11/IMGH≤0.7;其中,SD11为第一透镜L1的物侧面S1的最大有效口径的一半。具体地,SD11/IMGH可以为:0.51、0.52、0.53、0.54、0.55、0.57、0.59、0.60、0.62或0.66。一般的光学系统100的长焦特性配合大光圈设计,会使得光学系统100的入瞳直径与像面S13大小相当或更大,孔径光阑STO的两种分布方案,实现各透镜有效口径迅速减小和各透镜有效口径缓慢减小的两种紧凑型结构。满足上述条件式,能够对第一透镜L1的物侧面S1的最大有效口径的一半以及光学系统100的半像高的比值进行合理配置,使得孔径光阑STO的上述两种分布方案都能得到良好的结构布局,降低光学系统100结构设计的难度。
在一些实施例中,光学系统100满足条件式:1.0≤SD11/SD52≤1.6;其中,SD11为第一透镜L1的物侧面S1的最大有效口径的一半,SD52为第五透镜L5的像侧面S10的最大有效口径的一半。具体地,SD11/SD52可以为:1.12、1.15、1.19、21.20、1.23、1.28、1.35、1.42、1.46或1.55。当满足上述条件式时,孔径光阑STO的上述两种分布方案都能得到良好的结构布局,降低光学系统100结构设计的难度。同时,也能够使得光学系统100各透镜有效口径变化合理,各透镜承靠结构设计方便,提升光学系统100的工艺性。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括孔径光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明近光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
进一步地,光学系统100满足条件式:(43/IMGH)*f=111.18;其中,IMGH为光学系统100的最大视场角所对应的像高,f为光学系统100的有效焦距。上述条件式,以35mm标准镜头为参照,将光学系统100的有效焦距换算为等效焦距。满足上述条件式时,光学系统100的等效焦距超过100mm,从而可拥有强大的长焦特性,实现良好的远摄效果。
光学系统100满足条件式:f/IMGH=2.58。满足上述条件式,光学系统100未通过牺牲大像面特性来提升放大倍率,通过满足上述条件式的上限时,光学系统100具有大像面,能够匹配大尺寸的感光芯片,例如光学系统100能够适配市场上多数32M、48M的感光芯片,进而提升光学系统100的成像质量,同时使光学系统100具备良好的普适性和适用性。综上,上述光学系统100,在实现长焦特性的同时具备大像面特性,能够兼顾长焦特性及良好的成像质量。
光学系统100满足条件式:OAL/BF=0.65;其中,OAL为第一透镜L1的物侧面S1至第五透镜L5的像侧面S10于光轴110上的距离,BF为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110方向上的最短距离。BF为光学系统100与感光元件匹配以及模组结构设计的重要指标,BF越长,可供模组设计与制造的灵活性越高。满足上述条件式时,光学系统100具备长后焦特性,能够更容易地匹配具有折光效果的棱镜或反射系统来缩小光学系统100的整体占用空间,进而有利于光学系统100的小型化设计;另外,也有利于确保光学系统100中各透镜有足够的厚度与间隙,并使五片透镜能够相互配合,结构紧凑,在实现良好的成像质量的同时有利于实现光学系统100的小型化设计。同时,还有利于降低光学系统100长焦结构设计的困难程度,使透镜面型不会过度扭曲,光学系统100中各透镜的间隙也不会过大,有利于光学系统100的小型化设计。
光学系统100满足条件式:2.0≤FNO≤2.55;|f5|/FNO=8.88mm;其中,f5为第五透镜L5的有效焦距,FNO为光学系统100的光圈数。满足上述条件式时,孔径光阑STO的两种分布方案能够配合第五透镜L5的屈折力配置,实现光学系统100结构的紧凑性,从而有利于光学系统100的小型化设计。同时,也有利于光学系统100获得足够的进光量,不仅增大了光学系统100的衍射极限,还有利于提升光学系统100的解像力,使从视场中心到边缘的解像力衰减小,同时有利于提升全视场的相对亮度;另外,还能够使得光学系统100在实现长焦特性的同时具备大光圈特性。
光学系统100满足条件式:R32/|R41|=0.48;其中,R32为第三透镜L3的像侧面S6于光轴110处的曲率半径,R41为第四透镜L4的物侧面S7于光轴110处的曲率半径。满足上述条件式时,第三透镜L3的像侧面S6及第四透镜L4的物侧面S7的面型能够更好地相互配合,有利于减小第三透镜L3的像侧面S6及第四透镜L4的物侧面S7的矢高变化,也有利于减小光学系统100的渐晕系数,同时能够实现第三透镜L3与第四透镜L4之间间隙紧凑的效果。同时,第三透镜L3的像侧面S6于光轴110处的曲率半径为正, 满足上述条件式时,有利于使经第三透镜L3物侧各透镜收缩的光线得到适当扩散,以更好地配合第四透镜L4及第五透镜L5对外视场光线的引导,同时有利于减小第四透镜L4及第五透镜L5面型的复杂度,提升透镜成型制造的可靠性。另外,第四透镜L4具有正屈折力,满足上述条件式时,在实现结构紧凑型的同时有利于提升光学系统100设计的灵活性,使得入射到成像面的最大入射角度更容易与感光元件匹配,同时第四透镜L4及第五透镜L5也能够为光学系统100的对焦及模组机构预留足够的间距。
光学系统100满足条件式:f12>0;f45>0;f12/f45=0.74;其中,f12为第一透镜L1与第二透镜L2的组合焦距,f45为第四透镜L4与第五透镜L5的组合焦距。第一透镜L1与第二透镜L2整体以及第四透镜L4与第五透镜L5整体均具有正屈折力,配合第三透镜L3的负屈折力,能够形成正负正的类库克三片式结构,满足上述条件式时,能够对f12与f45的比值进行合理配置,配合光学系统100各透镜的面型及结构的合理分配,有利于光学系统100在实现结构紧凑的同时具备长焦特性,也有利于各透镜的面型更加平滑。同时,还有利于校正光学系统100的各种轴外像差,如畸变、场曲、像散等,能够获得良好的成像质量。
光学系统100满足条件式:f12>0;f45>0;CT45≤0.6;(CT12+CT34+CT45)/CT5=1.52;其中,CT12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,CT34为第三透镜L3的像侧面S6至第四透镜L4的物侧面S7于光轴110上的距离,CT45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,CT5为第五透镜L5于光轴110上的厚度。满足上述条件式时,有利于提高各透镜面型的配合度,提升光学系统100结构的紧凑性,从而有利于缩短光学系统100的系统总长。另外,在合理的屈折力配置下,满足上述条件式,第四透镜L4及第五透镜L5之间形成较小的间隙,使第四透镜L4及第五透镜L5类似于胶合透镜,提升第四透镜L4与第五透镜L5之间结构的紧凑型,同时有利于提升第四透镜L4与第五透镜L5对色差的校正效果。同时,还能够使得各透镜的结构配合紧凑,各透镜之间的间隙空间得以压缩,有利于使得各透镜面型变化趋于平缓,进而有利于减少光学系统100杂散光的产生。
光学系统100满足条件式:f1≤10.5mm;|f2|/|R22|=5.89;其中,f2为第二透镜L2的有效焦距,R22为第二透镜L2的像侧面S4于光轴110处的曲率半径。第一透镜L1具有正屈折力,使得第二透镜L2无需具备较强的屈折力,即可促使光线的收窄和抑制光线的偏折角度,也使得第二透镜L2可具备正或负的屈折力,满足上述条件式时,在提升第二透镜L2结构的灵活性的同时,能够使第二透镜L2的面型平滑,为光学系统100提供球差贡献量,以补偿第一透镜L1产生的球差溢出现象。同时,满足上述条件式时,第二透镜L2的屈折力强度与近轴处的像侧面面型能够得到良好的配置,从而能够提高第二透镜L2与第一透镜L1及第三透镜L3的匹配关系,进而使第二透镜L2的面型及厚度设计变化更灵活,能够为光学系统100增加设计的灵活性;另外,还有利于缩小光学系统100的系统总长,同时降低光学系统100的公差敏感度。
光学系统100满足条件式:SD11/IMGH=0.52;其中,SD11为第一透镜L1的物侧面S1的最大有效口径的一半。一般的光学系统100的长焦特性配合大光圈设计,会使得光学系统100的入瞳直径与像面S13大小相当或更大,孔径光阑STO的两种分布方案,实现各透镜有效口径迅速减小和各透镜有效口径缓慢减小的两种紧凑型结构。满足上述条件式,能够对第一透镜L1的物侧面S1的最大有效口径的一半以及光学系统100的半像高的比值进行合理配置,使得孔径光阑STO的上述两种分布方案都能得到良好的结构布局,降低光学系统100结构设计的难度。
光学系统100满足条件式:f≥17.9mm;SD11/SD52=1.55;其中,SD11为第一透镜L1的物侧面S1的最大有效口径的一半,SD52为第五透镜L5的像侧面S10的最大有效口径的一半。一般的光学系统100的长焦特性配合大光圈设计,会使得光学系统100的入瞳直径与像面大小相当或更大,孔径光阑STO的两种分布方案,实现各透镜有效口径迅速减小和各透镜有效口径缓慢减小的两种紧凑型结构,且当满足上述条件式时,孔径光阑STO的上述两种分布方案都能得到良好的结构布局,降低光学系统100结构设计的难度。同时,也能够使得光学系统100各透镜有效口径变化合理,各透镜承靠结构设计方便,提升光学系统100的工艺性。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S13可理解为光学系统100的成像面。由物面(图未示出)至像面S13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号1和面序号2分别为第一透镜L1的 物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L6,但此时第五透镜L5的像侧面S10至像面S13的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=18.20mm,光圈数FNO=2.46,最大视场角FOV=21.47°,光学总长TTL=17.04mm。在第一实施例及其他实施例中,光学系统100的有效焦距均大于或等于17.9mm,可知光学系统100具备长焦特性,提升光学系统100的远摄能力。另外,由图2可知,光学系统100的最大视场角所对应的像高IMGH=7.04mm,且在第一实施例及其他实施例中,光学系统100的最大视场角所对应的像高均大于或等于6.7mm,可知光学系统100具有大像面的特性,有利于高像素、高像质效果的实现。
在第一实施例及其他各实施例中,光学系统满足关系式:17.9mm≤f≤22.0mm,光学系统100具备长焦特性,具有良好的远摄能力。
且各透镜的焦距、折射率和阿贝数的参考波长均为587nm(d线),其他实施例也相同。
表1
Figure PCTCN2021071772-appb-000001
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-10分别表示像侧面或物侧面S1-S10。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2021071772-appb-000002
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2021071772-appb-000003
Figure PCTCN2021071772-appb-000004
另外,图2包括光学系统100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表587nm下的弧矢场曲,T曲线代表587nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括孔径光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
Figure PCTCN2021071772-appb-000005
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2021071772-appb-000006
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 109.32 f12/f45 0.87
OAL/BF 0.51 (CT12+CT34+CT45)/CT5 1.88
|f5|/FNO 12.37mm |f2|/|R22| 7.93
R32/|R41| 0.55 SD11/SD52 1.54
f/IMGH 2.54 SD11/IMGH 0.51
另外,由图4中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括孔径光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2021071772-appb-000007
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2021071772-appb-000008
Figure PCTCN2021071772-appb-000009
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 116.08 f12/f45 1.01
OAL/BF 0.67 (CT12+CT34+CT45)/CT5 2.31
|f5|/FNO 17.61mm |f2|/|R22| 0.81
R32/|R41| 0.49 SD11/SD52 1.48
f/IMGH 2.70 SD11/IMGH 0.65
另外,由图6中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括孔径光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2021071772-appb-000010
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2021071772-appb-000011
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 116.36 f12/f45 1.33
OAL/BF 0.56 (CT12+CT34+CT45)/CT5 3.06
|f5|/FNO 23.32mm |f2|/|R22| 6.16
R32/|R41| 0.70 SD11/SD52 1.47
f/IMGH 2.70 SD11/IMGH 0.65
另外,由图8中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、孔径光阑STO、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凹面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2021071772-appb-000012
Figure PCTCN2021071772-appb-000013
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2021071772-appb-000014
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 115.09 f12/f45 0.92
OAL/BF 0.48 (CT12+CT34+CT45)/CT5 1.08
|f5|/FNO 7.10mm |f2|/|R22| 1.42
R32/|R41| 0.16 SD11/SD52 1.16
f/IMGH 2.68 SD11/IMGH 0.66
另外,由图10中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、孔径光阑STO、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凹面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凹面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2021071772-appb-000015
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2021071772-appb-000016
Figure PCTCN2021071772-appb-000017
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 115.04 f12/f45 0.82
OAL/BF 0.47 (CT12+CT34+CT45)/CT5 0.96
|f5|/FNO 7.46mm |f2|/|R22| 1.60
R32/|R41| 0.12 SD11/SD52 1.13
f/IMGH 2.67 SD11/IMGH 0.66
另外,由图12中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第七实施例
请参见图13和图14,图13为第七实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、孔径光阑STO、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图14由左至右依次为第七实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凹面;
第一透镜L1的像侧面S2于近光轴110处为凸面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近光轴110处为凸面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表13给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表13
Figure PCTCN2021071772-appb-000018
Figure PCTCN2021071772-appb-000019
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表14给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表14
Figure PCTCN2021071772-appb-000020
并且,根据上述所提供的各参数信息,可推得以下数据:
(43/IMGH)*f 113.75 f12/f45 1.09
OAL/BF 0.45 (CT12+CT34+CT45)/CT5 0.67
|f5|/FNO 7.57mm |f2|/|R22| 1.49
R32/|R41| 0.52 SD11/SD52 1.12
f/IMGH 2.64 SD11/IMGH 0.64
另外,由图14中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图15,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S13。取像模组200还可设置有红外滤光片L6,红外滤光片L6设置于第五透镜L5的像侧面S10与像面S13之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够实现长焦特性,具备良好的远摄性能。
请参见图15和图16,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手 机时,壳体310可以为电子设备300的中框。在电子设备300中采用取像模组200,能够实现长焦特性,具备良好的远摄性能。可以理解的是,光学系统100具备良好的远摄性能,因而取像模组200可运用于电子设备300的后置摄像头中,使后置摄像头能够拍摄远距离的被摄物。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,沿光轴由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
    具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
    具有负屈折力的第三透镜,所述第三透镜的像侧面于近光轴处为凹面;
    具有正屈折力的第四透镜,所述第四透镜的物侧面及像侧面均为非球面;
    具有屈折力的第五透镜,所述第五透镜的物侧面及像侧面均为非球面;
    且所述光学系统满足以下条件式:
    105.0≤(43/IMGH)*f≤120.0;
    其中,IMGH为所述光学系统的最大视场角所对应的像高,f为所述光学系统的有效焦距。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    2.5≤f/IMGH≤2.7。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.4≤OAL/BF≤0.7;
    其中,OAL为所述第一透镜的物侧面至所述第五透镜的像侧面于光轴上的距离,BF为所述第五透镜的像侧面至所述光学系统的成像面于光轴方向上的最短距离。
  4. 根据权利要求1所述的光学系统,其特征在于,还包括孔径光阑,所述孔径光阑设置于所述第三透镜的物侧,且所述光学系统满足以下条件式:
    2.0≤FNO≤2.55;
    7.0mm≤|f5|/FNO≤24.0mm;
    其中,f5为所述第五透镜的有效焦距,FNO为所述光学系统的光圈数。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    R32/|R41|≤0.7;
    其中,R32为所述第三透镜的像侧面于光轴处的曲率半径,R41为所述第四透镜的物侧面于光轴处的曲率半径。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    f12>0;
    f45>0;
    0.8≤f12/f45≤1.4;
    其中,f12为所述第一透镜与所述第二透镜的组合焦距,f45为所述第四透镜与所述第五透镜的组合焦距。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    f12>0;
    f45>0;
    CT45≤0.6;
    0.6≤(CT12+CT34+CT45)/CT5≤3.1;
    其中,CT12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,CT45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离,CT5为所述第五透镜于光轴上的厚度。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    f1≤10.5mm;
    0.8≤|f2|/|R22|≤8.0;
    其中,f2为所述第二透镜的有效焦距,R22为所述第二透镜的像侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学系统,其特征在于,还包括孔径光阑,所述孔径光阑设置于所述第一透镜的物侧面或所述第二透镜与所述第三透镜之间,且满足以下条件式:
    0.50≤SD11/IMGH≤0.7;
    其中,SD11为所述第一透镜的物侧面的最大有效口径的一半。
  10. 根据权利要求9所述的光学系统,其特征在于,满足以下条件式:
    1.0≤SD11/SD52≤1.6;
    其中,SD52为所述第五透镜的像侧面的最大有效口径的一半。
  11. 根据权利要求1-10任一项所述的光学系统,其特征在于,还包括红外滤光片,所述红外滤光片设置于所述第五透镜的像侧。
  12. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述第四透镜与所述第五透镜的物侧面及像侧面均为非球面。
  13. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜以及所述第三透镜的物侧面和像侧面均为非球面。
  14. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜的材质均为塑料。
  15. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述第五透镜的物侧面与像侧面中至少一者存在反曲点。
  16. 根据权利要求1-10任一项所述的光学系统,其特征在于,满足以下条件式:
    17.9mm≤f≤22.0mm。
  17. 根据权利要求1-10任一项所述的光学系统,其特征在于,满足以下条件式:
    IMGH≥6.7mm。
  18. 一种取像模组,包括感光元件以及权利要求1-17任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  19. 根据权利要求18所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  20. 一种电子设备,包括壳体以及权利要求18或19所述的取像模组,所述取像模组设置于所述壳体。
PCT/CN2021/071772 2021-01-14 2021-01-14 光学系统、取像模组及电子设备 WO2022151157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071772 WO2022151157A1 (zh) 2021-01-14 2021-01-14 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071772 WO2022151157A1 (zh) 2021-01-14 2021-01-14 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022151157A1 true WO2022151157A1 (zh) 2022-07-21

Family

ID=82447720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071772 WO2022151157A1 (zh) 2021-01-14 2021-01-14 光学系统、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022151157A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236835A (zh) * 2022-08-01 2022-10-25 贵州旭业光电有限公司 一种光学成像镜头及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219614A (zh) * 2017-08-07 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
US20180017764A1 (en) * 2016-07-13 2018-01-18 Kolen Co., Ltd. Photographic lens and photographic apparatus including the same
CN207096550U (zh) * 2017-08-07 2018-03-13 浙江舜宇光学有限公司 光学成像镜头
CN108919461A (zh) * 2014-11-12 2018-11-30 大立光电股份有限公司 摄影用光学镜组及取像装置
CN109407266A (zh) * 2017-08-15 2019-03-01 大立光电股份有限公司 图像系统镜头组、取像装置及电子装置
CN110596859A (zh) * 2019-08-19 2019-12-20 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919461A (zh) * 2014-11-12 2018-11-30 大立光电股份有限公司 摄影用光学镜组及取像装置
US20180017764A1 (en) * 2016-07-13 2018-01-18 Kolen Co., Ltd. Photographic lens and photographic apparatus including the same
CN107219614A (zh) * 2017-08-07 2017-09-29 浙江舜宇光学有限公司 光学成像镜头
CN207096550U (zh) * 2017-08-07 2018-03-13 浙江舜宇光学有限公司 光学成像镜头
CN109407266A (zh) * 2017-08-15 2019-03-01 大立光电股份有限公司 图像系统镜头组、取像装置及电子装置
CN110596859A (zh) * 2019-08-19 2019-12-20 瑞声通讯科技(常州)有限公司 摄像光学镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236835A (zh) * 2022-08-01 2022-10-25 贵州旭业光电有限公司 一种光学成像镜头及电子设备

Similar Documents

Publication Publication Date Title
US7916401B2 (en) Optical lens system for taking image
CN113552696B (zh) 光学系统、取像模组及电子设备
CN112363302B (zh) 光学系统、摄像模组及电子设备
CN112764201B (zh) 光学系统、摄像模组及电子设备
US7529041B2 (en) Optical lens system for taking image
CN113156619A (zh) 光学系统、摄像模组及电子设备
CN112764200A (zh) 光学系统、摄像模组及电子设备
CN112799211B (zh) 光学系统、取像模组及电子设备
CN112987259B (zh) 光学系统、取像模组及电子设备
CN113156612B (zh) 光学系统、取像模组及电子设备
CN112987256B (zh) 光学系统、摄像模组及电子设备
CN114578512A (zh) 光学系统、摄像模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114740599B (zh) 光学系统、摄像模组和电子设备
CN114488477B (zh) 光学系统、镜头模组和电子设备
CN112925085B (zh) 光学系统、取像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
CN214845997U (zh) 光学系统、摄像模组及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备
CN114326022A (zh) 光学系统、摄像模组及电子设备
CN114675408A (zh) 光学系统、取像模组及电子设备
CN114460723A (zh) 光学系统、摄像模组及电子设备
CN110908085B (zh) 摄像光学镜头
CN112505900A (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918366

Country of ref document: EP

Kind code of ref document: A1