WO2021203277A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2021203277A1
WO2021203277A1 PCT/CN2020/083697 CN2020083697W WO2021203277A1 WO 2021203277 A1 WO2021203277 A1 WO 2021203277A1 CN 2020083697 W CN2020083697 W CN 2020083697W WO 2021203277 A1 WO2021203277 A1 WO 2021203277A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
image side
refractive power
Prior art date
Application number
PCT/CN2020/083697
Other languages
English (en)
French (fr)
Inventor
邹金华
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to US17/614,359 priority Critical patent/US20220236535A1/en
Priority to PCT/CN2020/083697 priority patent/WO2021203277A1/zh
Publication of WO2021203277A1 publication Critical patent/WO2021203277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present invention relates to the field of photography, in particular to an optical system, an imaging module and electronic equipment.
  • the camera function has become an indispensable function in electronic devices, and the volume of electronic devices is becoming more and more small, and the size of the optical system in electronic devices is also proposed. Higher requirements.
  • the head of the current camera lens is usually large, and it is difficult to meet the requirements of the miniaturization design of electronic equipment.
  • an optical imaging system an imaging module, and an electronic device are provided.
  • An optical system from the object side to the image side, includes:
  • the first lens with positive refractive power
  • a third lens with negative refractive power, the object side and image side of the third lens are both concave at the circumference;
  • the fourth lens with negative refractive power
  • a fifth lens with positive refractive power where at least one of the object side surface and the image side surface of the fifth lens has an inflection point;
  • the sixth lens with negative refractive power is the sixth lens with negative refractive power
  • optical system satisfies the following relationship:
  • CT1 is the thickness of the first lens on the optical axis
  • SD11 is half of the maximum effective aperture of the object side of the first lens
  • TTL is the imaging from the object side of the first lens to the optical system The distance of the face on the optical axis.
  • An image capturing module includes a photosensitive element and the above-mentioned optical system, and the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a housing and the above-mentioned image capturing module, and the image capturing module is installed on the housing.
  • FIG. 1 is a schematic diagram of the optical system in the first embodiment of the application
  • FIG. 2 is a diagram of spherical aberration, astigmatism, and distortion of the optical system in the first embodiment of the application;
  • FIG. 3 is a schematic diagram of the optical system in the second embodiment of the application.
  • FIG. 4 is a diagram of spherical aberration, astigmatism, and distortion of the optical system in the second embodiment of the application;
  • FIG. 5 is a schematic diagram of the optical system in the third embodiment of the application.
  • FIG. 6 is a diagram of spherical aberration, astigmatism, and distortion of the optical system in the third embodiment of the application;
  • FIG. 7 is a schematic diagram of the optical system in the fourth embodiment of the application.
  • FIG. 8 is a diagram of spherical aberration, astigmatism, and distortion of the optical system in the fourth embodiment of the application;
  • FIG. 9 is a schematic diagram of the optical system in the fifth embodiment of the application.
  • FIG. 10 is a diagram of spherical aberration, astigmatism, and distortion of the optical system in the fifth embodiment of the application;
  • FIG. 11 is a schematic diagram of the optical system in the sixth embodiment of the application.
  • FIG. 13 is a schematic diagram of an image capturing module in an embodiment of the application.
  • FIG. 14 is a schematic diagram of an electronic device in an embodiment of the application.
  • the optical system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and The sixth lens L6.
  • the first lens L1 includes an object side surface S1 and an image side surface S2
  • the second lens L2 includes an object side surface S3 and an image side surface S4
  • the third lens L3 includes an object side surface S5 and an image side surface S6,
  • the fourth lens L4 includes an object side surface S7.
  • the image side surface S8 the fifth lens L5 includes the object side surface S9 and the image side surface S10
  • the sixth lens L6 includes the object side surface S11 and the image side surface S12.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a refractive power
  • the third lens L3 has a negative refractive power
  • the object side surface S5 and the image side surface S6 of the third lens L3 are both concave at the circumference.
  • the fourth lens L4 has a negative refractive power.
  • the fifth lens L5 has a positive refractive power, and at least one of the object side surface S9 and the image side surface S10 of the fifth lens L5 has an inflection point to correct the aberration of the off-axis field of view and improve the imaging quality of the optical system 100.
  • the lenses of the optical system 100 are coaxially arranged, and the central axes of the lenses are all on the same straight line, which is the optical axis of the optical system 100
  • the optical system 100 is provided with a stop STO, and the stop STO may be provided on the object side of the first lens L1.
  • the optical system 100 further includes an infrared filter L7 disposed on the image side of the sixth lens L6, and the infrared filter L7 includes an object side surface S13 and an image side surface S14.
  • the optical system 100 further includes an image plane S15 located on the image side of the sixth lens L6, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L5.
  • the lens L6 can be adjusted to form an image on the image plane S15.
  • the infrared filter L7 may be an infrared cut-off filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S15 of the optical system 100 and affecting normal imaging.
  • the object side surface and the image side surface of each lens of the optical system 100 are both aspherical.
  • the use of an aspheric structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve imaging quality.
  • the object side surface S9 and the image side surface S10 of the fifth lens L5 are both aspherical surfaces, and the object side surface and the image side surface of the remaining lenses of the optical system 100 may both be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application.
  • the surfaces of the remaining lenses in the optical system 100 may be aspherical surfaces or any combination of spherical surfaces.
  • the material of each lens in the optical system 100 may be glass or plastic.
  • the use of plastic lenses can reduce the weight of the optical system 100 and reduce the production cost, and the smaller size of the optical system can be used to achieve a light and miniaturized design of the optical system.
  • the use of glass lenses enables the optical system 100 to have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 can also be any combination of glass and plastic, and not necessarily all glass or plastic.
  • the first lens L1 does not mean that there is only one lens. In some embodiments, there may be two or more lenses in the first lens L1, and two or more lenses can form a cemented lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • the first lens L1 does not form a cemented lens between the lenses, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side of is the image side S2.
  • the number of lenses in the second lens L2, third lens L3, fourth lens L4, fifth lens L5, or sixth lens L6 in some embodiments may also be greater than or equal to two, and any adjacent lens It may be a cemented lens or a non-cemented lens.
  • the optical system 100 satisfies the relationship: 0.60 ⁇ CT1/SD11 ⁇ 1.01; where CT1 is the thickness of the first lens L1 on the optical axis, that is, the center thickness of the first lens L1, and SD11 is Half of the maximum effective aperture of the object side S1 of the first lens L1.
  • CT1/SD11 may be 0.64, 0.69, 0.73, 0.75, 0.82, 0.86, 0.89, 0.91, 0.93, or 0.98.
  • the optical system 100 satisfies the relationship: 5.5 ⁇ TTL/CT1 ⁇ 9.0; where CT1 is the thickness of the first lens L1 on the optical axis, and TTL is the object side S1 to the imaging S15 of the first lens L1.
  • TTL/CT1 may be: 5.81, 5.92, 6.31, 6.58, 6.85, 6.92, 7.12, 7.34, 7.58, or 7.69.
  • the total system length of the first lens L1 and the optical system 100 can be reasonably configured. While ensuring that the head of the camera lens is small, the total system length of the optical system 100 can be made smaller, which further satisfies the needs of electronic equipment. The need for miniaturized design. At the same time, it can also ensure that the first lens L1 has a sufficient thickness, so that the processing and forming yield of the first lens L1 is higher, and thus the assembly yield of the optical system 100 is improved.
  • the optical system 100 satisfies the relationship: 2.2 ⁇ FNO ⁇ 2.6; where FNO is the number of apertures of the optical system 100.
  • the FNO may be 2.30, 2.32, 2.36, 2.39, 2.41, 2.47, 2.48, 2.51, 2.53, or 2.55.
  • the optical system 100 satisfies the relationship: 1 ⁇ f3/f4 ⁇ 10; where f3 is the effective focal length of the third lens L3, and f4 is the effective focal length of the fourth lens L4.
  • f3/f4 may be 1.336, 1.735, 2.208, 2.896, 3.528, 3.619, 4.626, 5.462, 7.264, or 9.218.
  • the third lens L3 and the fourth lens L4 can be reasonably configured to effectively expand the field of view of the optical system 100, thereby reducing the total system length of the optical system 100, and meeting the requirements of miniaturized design.
  • the optical system 100 satisfies the relationship: 2.0 ⁇ f4/f1+f5/f6 ⁇ 4.0; where f1 is the effective focal length of the first lens L1, f4 is the effective focal length of the fourth lens L4; f5 is the The effective focal length of the five lens L5, f6 is the effective focal length of the sixth lens L6.
  • f4/f1+f5/f6 may be 3.11, 3.16, 3.19, 3.22, 3.27, 3.41, 3.45, 3.49, 3.53, or 3.58.
  • the refractive powers of the first lens L1, the fourth lens L4, the fifth lens L5, and the sixth lens L6 can be reasonably configured to ensure that the positive and negative spherical aberration of the optical system 100 can be balanced with each other, thereby improving The imaging quality of the optical system 100.
  • the optical system 100 satisfies the relationship: 1.0 ⁇ f/f12 ⁇ 1.5; where f is the total effective focal length of the optical system 100, and f12 is the combined focal length of the first lens L1 and the second lens L2.
  • f/f12 may be 1.05, 1.06, 1.07, 1.09, 1.10, 1.12, 1.15, 1.16, 1.17, or 1.18.
  • the effective focal length of the optical system 100 and the combined focal length of the first lens L1 and the second lens L2 can be reasonably configured, so as to effectively shorten the total system length of the optical system 100 and avoid the high-order spherical aberration of the optical system 100. Excessive increase, thereby improving the imaging quality of the optical system 100.
  • the optical system 100 satisfies the relationship: TT/ImgH ⁇ 1.1; where TT is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis, and ImgH is the optical axis.
  • the system 100 is half of the diagonal length of the effective pixel area on the imaging surface. Specifically, TT/ImgH may be 1.05, 1.06, 1.07, or 1.08.
  • the imaging quality of the optical system 100 on the image plane S15 can be improved, and at the same time, the total system length of the optical system 100 can be effectively shortened, which further meets the requirements of the miniaturization design of the lens.
  • the optical system 100 satisfies the relationship: -1.5 ⁇ R9/R10 ⁇ 0; where R9 is the radius of curvature of the object side surface S9 of the fifth lens L5 at the optical axis, and R10 is the image of the fifth lens L5.
  • R9/R10 may be -1.19, -1.15, -1.11, -1.09, -0.98, -0.92, -0.88, -0.82, -0.75, or -0.72.
  • the relationship between the object side surface S9 and the image side surface S10 of the fifth lens L5 can be reasonably restricted, so that the deflection angle of the optical system 100 can be reasonably distributed, and at the same time, the off-axis field of view of the optical system 100 can be improved. Astigmatism, thereby improving the imaging quality of the optical system 100.
  • the optical system 100 satisfies the relationship: 1 ⁇
  • /R12 may be 1.82, 1.84, 1.85, 1.88, 1.89, 1.90, 1.92, 1.96, 1.97, or 1.98.
  • the effective focal length of the sixth lens L6 and the image side surface S12 can be reasonably configured to reduce the incident angle of light reaching the image surface S15 of the optical system 100, thereby making the optical system 100 easier to interact with the photosensitive element. match.
  • the optical system 100 satisfies the relationship: 1.0 ⁇ CT5/
  • may be 1.91, 2.13, 2.52, 2.68, 3.22, 3.34, 3.87, 3.92, 4.13, or 4.26.
  • the fifth lens L5 can be reasonably configured to make the surface shape of the fifth lens L5 more reasonable, so as to reduce the defect rate of the fifth lens L5 in processing and molding, and at the same time, it can correct the aberrations generated by the optical system 100 , To further improve the imaging quality of the optical system 100.
  • FIG. 1 is a schematic diagram of the optical system 100 in the first embodiment.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power, and a negative
  • Fig. 2 shows graphs of spherical aberration, astigmatism, and distortion of the optical system 100 in the first embodiment in order from left to right.
  • the astigmatism and distortion graphs are both graphs at 555 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is a flat surface at the paraxial position and a flat surface at the circumference;
  • the object side surface S3 of the second lens L2 is a flat surface at the paraxial position and a flat surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the image side surface S2 of the first lens L1 and the object side surface S3 of the second lens L2 are flat surfaces, while the object side surface S1 of the first lens L1, the image side surface S4 of the second lens L2, the third lens L3, the fourth lens L4, and the second lens L2 are flat.
  • Both the object side surface and the image side surface of the five lens L5 and the sixth lens L6 are aspherical surfaces.
  • the area of the surface of the lens near the optical axis is convex.
  • a surface of a lens is concave at the circumference
  • the area near the maximum effective radius of the surface is concave.
  • the shape of the surface from the center (optical axis) to the edge direction can be a pure convex; or a convex shape from the center first Transition to a concave shape and then become convex when approaching the maximum effective radius. This is only an example to illustrate the relationship between the optical axis and the circumference.
  • the various shapes and structures of the surface are not fully reflected, but other situations can be derived from the above examples.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • SD11 is the object side surface S1 of the first lens L1 Half of the maximum effective aperture.
  • CT1 is the thickness of the first lens L1 on the optical axis
  • TTL is the distance from the object side S1 of the first lens L1 to the image S15.
  • FNO is the aperture number of the optical system 100.
  • f3 is the effective focal length of the third lens L3
  • f4 is the effective focal length of the fourth lens L4.
  • the refractive powers of the first lens L1, the fourth lens L4, the fifth lens L5, and the sixth lens L6 can be reasonably configured to ensure that the positive and negative spherical aberration of the optical system 100 can be balanced with each other, thereby improving The imaging quality of the optical system 100.
  • the effective focal length of the optical system 100 and the combined focal length of the first lens L1 and the second lens L2 can be reasonably configured, so as to effectively shorten the total system length of the optical system 100 and avoid the high-order spherical aberration of the optical system 100. Excessive increase, thereby improving the imaging quality of the optical system 100.
  • TT is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis
  • ImgH is the optical system 100 on the imaging surface Half of the diagonal length of the effective pixel area.
  • R9 is the curvature radius of the object side surface S9 of the fifth lens L5 at the optical axis
  • R10 is the curvature of the image side surface S10 of the fifth lens L5 at the optical axis radius.
  • the optical system 100 satisfies the relationship:
  • /R12 1.83; where f6 is the effective focal length of the sixth lens L6, and R12 is the radius of curvature of the image side surface S12 of the sixth lens L6 at the optical axis.
  • the effective focal length of the sixth lens L6 and the image side surface S12 can be reasonably configured to reduce the incident angle of the light reaching the image surface S15 of the optical system 100, thereby making the optical system 100 easier to interact with the photosensitive element. match.
  • the optical system 100 satisfies the relationship: CT5/
  • 3.70; where CT5 is the thickness of the fifth lens L5 on the optical axis, and SAG51 is the sagittal height of the object side S9 of the fifth lens L5.
  • CT5 is the thickness of the fifth lens L5 on the optical axis
  • SAG51 is the sagittal height of the object side S9 of the fifth lens L5.
  • the fifth lens L5 can be reasonably configured to make the surface shape of the fifth lens L5 more reasonable, so as to reduce the defect rate of the fifth lens L5 in processing and molding, and at the same time, it can correct the aberrations generated by the optical system 100 , To further improve the imaging quality of the optical system 100.
  • the various parameters of the optical system 100 are given in Table 1.
  • the image plane S15 in Table 1 can be understood as the imaging plane of the optical system 100.
  • the elements from the object plane (not shown in the figure) to the image plane S15 are arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the surface number 1 and the surface number 2 are respectively the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the “thickness” parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the object side of the lens from the image side to the image side of the next lens on the optical axis On the distance.
  • the optical system 100 may not be provided with the infrared filter L7, but at this time, the distance from the image side surface S11 of the sixth lens L6 to the image surface S15 remains unchanged.
  • the aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 2.
  • the surface numbers from 1-10 indicate the image side surface or the object side surface S1-S10, respectively.
  • the K-A20 from top to bottom respectively represent the types of aspherical coefficients, where K represents the conic coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 is the eighth-order aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the apex of the aspheric surface
  • k is the conic coefficient
  • Ai is the aspheric surface The coefficient corresponding to the higher order term of the i-th term in the face formula.
  • FIG. 3 is a schematic diagram of the optical system 100 in the second embodiment.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power and a negative
  • Fig. 4 is a graph showing the spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is a flat surface at the paraxial position and a flat surface at the circumference;
  • the object side surface S3 of the second lens L2 is a flat surface at the paraxial position and a flat surface at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the image side surface S2 of the first lens L1 and the object side surface S3 of the second lens L2 are flat, while the object side surface S1 of the first lens L1, the image side surface S4 of the second lens L2, the third lens L3, the fourth lens L4, and the second lens L2 are flat.
  • Both the object side surface and the image side surface of the five lens L5 and the sixth lens L6 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 4, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 5 is a schematic diagram of the optical system 100 in the third embodiment.
  • the optical system 100 includes a stop STO, a first lens L1 with a positive refractive power and a negative lens from the object side to the image side.
  • the second lens L2 with negative refractive power
  • the third lens L3 with negative refractive power
  • the fourth lens L4 with negative refractive power
  • the fifth lens L5 with positive refractive power
  • the sixth lens L6 with negative refractive power.
  • FIG. 6 is a graph showing the spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment in order from left to right.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position and concave at the circumference;
  • the object side surface S3 of the second lens L2 is convex at the paraxial position and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 6, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 7 is a schematic diagram of the optical system 100 in the fourth embodiment.
  • the optical system 100 includes a stop STO, a first lens L1 with positive refractive power, and a positive lens from the object side to the image side.
  • FIG. 8 is a graph showing the spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position and concave at the circumference;
  • the object side surface S3 of the second lens L2 is convex at the paraxial position and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is convex at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 8, and the definition of each parameter can be derived from the first embodiment, which will not be repeated here.
  • FIG. 9 is a schematic diagram of the optical system 100 in the fifth embodiment.
  • the optical system 100 includes a stop STO, a first lens L1 with positive refractive power, and a positive lens from the object side to the image side.
  • 10 is a graph showing the spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position and concave at the circumference;
  • the object side surface S3 of the second lens L2 is convex at the paraxial position and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 10, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 11 is a schematic diagram of the optical system 100 in the sixth embodiment, the optical system 100 from the object side to the image side sequentially includes a stop STO, a first lens L1 with positive refractive power, The second lens L2 with negative refractive power, the third lens L3 with negative refractive power, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, and the sixth lens L6 with negative refractive power.
  • FIG. 12 shows graphs of spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment in order from left to right.
  • the object side surface S1 of the first lens L1 is convex at the paraxial position and convex at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position and concave at the circumference;
  • the object side surface S3 of the second lens L2 is convex at the paraxial position and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is concave at the paraxial position and concave at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the paraxial position and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is convex at the paraxial position and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the paraxial position and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the paraxial position and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the paraxial position and concave at the circumference;
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the aspheric coefficients of the image side or the object side of each lens of the optical system 100 are given in Table 12, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200.
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S15 of the optical system 100.
  • the image capturing module 200 may also be provided with an infrared filter L7, and the infrared filter L7 is provided between the image side surface S12 and the image surface S15 of the sixth lens L6.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • CCD Charge Coupled Device
  • CMOS Sensor Complementary Metal-Oxide Semiconductor Sensor
  • the imaging module 200 can be applied to an electronic device 300, the electronic device includes a housing 310, and the imaging module 200 is installed on the housing 310.
  • the electronic device 300 may be, but is not limited to, a mobile phone, a video phone, a smart phone, an electronic book reader, a vehicle-mounted camera device such as a driving recorder, or a wearable device such as a smart watch.
  • the image capturing module 200 is adopted in the electronic device 300, and the head of the lens in the electronic device 300 is small, which can meet the requirements of the miniaturization design of the electronic device 300.
  • the lens in the electronic device 300 can be installed in the housing 310 in an under-screen package. At this time, it needs to be installed in the electronic device 300.
  • a hole is opened in the screen to expose the lens, so that light from the outside of the electronic device 300 can enter the inside of the electronic device 300 through the optical system 100 and form an image on the photosensitive surface of the photosensitive element 210.
  • the above-mentioned image capturing module 200 is used in the electronic device 300, and the head of the lens is small, and the screen opening of the electronic device 300 is smaller to expose the lens, thereby increasing the screen-to-body ratio of the electronic device 300, thereby satisfying the requirements of electronic devices.
  • the miniaturized design of the device 300 is required.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),由物侧到像侧依次包括:具有正屈折力的第一透镜(L1);具有屈折力的第二透镜(L2);具有负屈折力的第三透镜(L3),物侧面(S5)及像侧面(S6)于圆周处均为凹面;具有负屈折力的第四透镜(L4);具有正屈折力的第五透镜(L5),物侧面(S9)及像侧面(S10)均为非球面,且其中至少一个存在反曲点;具有负屈折力的第六透镜(L6)。光学系统(100)满足:0.60<CT1/SD11<1.01;5.5<TTL/CT1<9.0;CT1为第一透镜(L1)于光轴上的厚度,SD11为第一透镜(L1)的物侧面(S1)的最大有效孔径的一半,TTL为第一透镜(L1)的物侧面(S1)至成像面(S15)的距离。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
随着智能手机、平板电脑等电子设备的不断发展,摄像功能已经成为电子设备中不可缺少的功能,而电子设备的体积越来越偏向于小型化,也对电子设备内的光学系统的尺寸提出了更高的要求。但是,目前的摄像镜头的头部通常较大,难以满足电子设备小型化设计的需求。
发明内容
根据本申请的各种实施例,提供一种光学成像系统、取像模组及电子设备。
一种光学系统,由物侧到像侧依次包括:
具有正屈折力的第一透镜;
具有屈折力的第二透镜;
具有负屈折力的第三透镜,所述第三透镜的物侧面及像侧面于圆周处均为凹面;
具有负屈折力的第四透镜;
具有正屈折力的第五透镜,所述第五透镜的物侧面及像侧面中的至少一个存在反曲点;
具有负屈折力的第六透镜;
且所述光学系统满足以下关系式:
0.60<CT1/SD11<1.01;
5.5<TTL/CT1<9.0;
其中,CT1为所述第一透镜于光轴上的厚度,SD11为所述第一透镜的物侧面的最大有效孔径的一半,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
一种取像模组,包括感光元件以及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组安装于所述壳体上。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的示意图;
图2为本申请第一实施例中的光学系统的球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的示意图;
图4为本申请第二实施例中的光学系统的球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的示意图;
图6为本申请第三实施例中的光学系统的球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的示意图;
图8为本申请第四实施例中的光学系统的球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的示意图;
图10为本申请第五实施例中的光学系统的球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的示意图;
图12为本申请第六实施例中的光学系统的球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12。
其中,第一透镜L1具有正屈折力,第二透镜L2具有屈折力。第三透镜L3具有负屈折力,且第三透镜L3的物侧面S5及像侧面S6于圆周处均为凹面。第四透镜L4具有负屈折力。第五透镜L5具有正屈折力,且第五透镜L5的物侧面S9及像侧面S10中的至少一个存在反曲点,以修正离轴视场的像差,提高光学系统100的成像质量。并且,光学系统100的各透镜同轴设置,且各透镜的中心轴均处于同一直线,该直线为光学系统100的光轴
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧。在一些实施例中,光学系统100还包括设置于第六透镜L6像侧的红外滤光片L7,红外滤光片L7包括物侧面S13及像侧面S14。进一步地,光学系统100还包括位于第六透镜L6像侧的像面S15,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6调节后能够成像于像面S15。值得注意的是,红外滤光片L7可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S15而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,第五透镜L5的物侧面S9及像侧面S10均为非球面,而光学系统100的其余透镜的物侧面和像侧面可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中其余透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统的较小尺寸以实现光学系统的轻小型化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5或第六透镜L6中的透镜数量也可大于或等于两片,且 任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足关系式:0.60<CT1/SD11<1.01;其中,CT1为第一透镜L1于光轴上的厚度,即第一透镜L1的中心厚度,SD11为第一透镜L1的物侧面S1的最大有效孔径的一半。具体地,CT1/SD11可以为:0.64、0.69、0.73、0.75、0.82、0.86、0.89、0.91、0.93或0.98。满足上述关系式时,能够对第一透镜L1进行合理配置,进而使摄像镜头的头部较小,满足电子设备小型化设计的要求。
在一些实施例中,光学系统100满足关系式:5.5<TTL/CT1<9.0;其中,CT1为第一透镜L1于光轴上的厚度,TTL为第一透镜L1的物侧面S1至成像S15于光轴上的距离。具体地,TTL/CT1可以为:5.81、5.92、6.31、6.58、6.85、6.92、7.12、7.34、7.58或7.69。满足上述关系式时,能够对第一透镜L1及光学系统100的系统总长进行合理配置,在保证摄像镜头的头部较小的同时,能够使光学系统100的系统总长较小,进一步满足电子设备小型化设计的需求。同时也能保证第一透镜L1有足够的厚度,以使第一透镜L1的加工成型良率更高,进而提升光学系统100的组装良率。
在一些实施例中,光学系统100满足关系式:2.2≤FNO≤2.6;其中,FNO为光学系统100的光圈数。具体地,FNO可以为2.30、2.32、2.36、2.39、2.41、2.47、2.48、2.51、2.53或2.55。满足上述关系式时,在保证光学系统100具备足够的通光量的同时,也有利于使摄像镜头的头部较小。
在一些实施例中,光学系统100满足关系式:1<f3/f4<10;其中,f3为第三透镜L3的有效焦距,f4为第四透镜L4的有效焦距。具体地,f3/f4可以为1.336、1.735、2.208、2.896、3.528、3.619、4.626、5.462、7.264或9.218。满足上述关系式时,能够对第三透镜L3及第四透镜L4进行合理配置,以有效扩大光学系统100的视场角,进而缩小光学系统100的系统总长,满足小型化设计的需求。
在一些实施例中,光学系统100满足关系式:2.0<f4/f1+f5/f6<4.0;其中,f1为第一透镜L1的有效焦距,f4为第四透镜L4的有效焦距;f5为第五透镜L5的有效焦距,f6为第六透镜L6的有效焦距。具体地,f4/f1+f5/f6可以为3.11、3.16、3.19、3.22、3.27、3.41、3.45、3.49、3.53或3.58。满足上述关系式时,能够对第一透镜L1、第四透镜L4、第五透镜L5以及第六透镜L6的屈折力进行合理配置,以保证光学系统100的正负球差能够相互平衡,进而提升光学系统100的成像质量。
在一些实施例中,光学系统100满足关系式:1.0<f/f12<1.5;其中,f为光学系统100的总有效焦距,f12为第一透镜L1及第二透镜L2的组合焦距。具体地,f/f12可以为1.05、1.06、1.07、1.09、1.10、1.12、1.15、1.16、1.17或1.18。满足上述关系式时,能够对光学系统100的有效焦距以及第一透镜L1和第二透镜L2的组合焦距进行合理配置,以有效缩短光学系统100的系统总长,同时能够避免光学系统100的高阶球差过度增大,进而提高光学系统100的成像质量。
在一些实施例中,光学系统100满足关系式:TT/ImgH<1.1;其中,TT为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离,ImgH为光学系统100于成像面上有效像素区域对角线长度的一半。具体地,TT/ImgH可以为1.05、1.06、1.07或1.08。满足上述关系式时,能够提高光学系统100在像面S15上的成像质量,同时有效缩短光学系统100的系统总长,进一步满足镜头的小型化设计的需求。
在一些实施例中,光学系统100满足关系式:-1.5<R9/R10<0;其中,R9为第五透镜L5的物侧面S9于光轴处的曲率半径,R10为第五透镜L5的像侧面S10于光轴处的曲率半径。具体地,R9/R10可以为-1.19、-1.15、-1.11、-1.09、-0.98、-0.92、-0.88、-0.82、-0.75或-0.72。满足上述关系式时,能够对第五透镜L5的物侧面S9及像侧面S10之间的关系进行合理约束,以此合理分配光学系统100的偏折角,同时能够改善光学系统100轴外视场的像散,进而提高光学系统100的成像质量。
在一些实施例中,光学系统100满足关系式:1<|f6|/R12<2;其中,f6为第六透镜L6 的有效焦距,R12为第六透镜L6的像侧面S12于光轴处的曲率半径。具体地,|f6|/R12可以为1.82、1.84、1.85、1.88、1.89、1.90、1.92、1.96、1.97或1.98。满足上述关系式时,能够对第六透镜L6的有效焦距及像侧面S12进行合理配置,以减小光线到达光学系统100的像面S15的入射角,进而使光学系统100更容易与感光元件相匹配。
在一些实施例中,光学系统100满足关系式:1.0<CT5/|SAG51|<5.0;其中,CT5为第五透镜L5于光轴上的厚度,SAG51为第五透镜L5的物侧面S9的矢高,即第五透镜L5的物侧面S9在光轴上的交点至第五透镜L5的物侧面S9的最大有效半径位置于平行光轴方向上的距离。具体地,CT5/|SAG51|可以为1.91、2.13、2.52、2.68、3.22、3.34、3.87、3.92、4.13或4.26。满足上述关系式时,能够对第五透镜L5进行合理配置,使第五透镜L5的面型更合理,以降低第五透镜L5加工成型的不良率,同时能够修正光学系统100所产生的像差,进一步提高光学系统100的成像质量。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图2由左至右依次为第一实施例中光学系统100的球差、像散及畸变的曲线图,其中像散图和畸变图均为555nm下的曲线图,其他实施例相同。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为平面,于圆周处为平面;
第二透镜L2的物侧面S3于近轴处为平面,于圆周处为平面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1的像侧面S2及第二透镜L2的物侧面S3为平面,而第一透镜L1的物侧面S1、第二透镜L2的像侧面S4以及第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴处为凸面,且于圆周处也为凸面时,该表面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
进一步地,光学系统100满足关系式:CT1/SD11=1.001;其中,CT1为第一透镜L1于光轴上的厚度,即第一透镜L1的中心厚度,SD11为第一透镜L1的物侧面S1的最大有效孔径的一半。满足上述关系式时,能够对第一透镜L1进行合理配置,进而使摄像镜头的头部较小,满足电子设备小型化设计的要求。
光学系统100满足关系式:TTL/CT1=5.80;其中,CT1为第一透镜L1于光轴上的厚度,TTL为第一透镜L1的物侧面S1至成像S15的距离。满足上述关系式时,能够对第一透镜L1及光学系统100的系统总长进行合理配置,在保证摄像镜头的头部较小的同时,能够使光学系统100的系统总长较小,进一步满足电子设备小型化设计的需求。同时也能保证第一透镜L1有足够的厚度,以使第一透镜L1的加工成型良率更高,进而提升光学系统100的组装良率。
光学系统100满足关系式:FNO=2.54;其中,FNO为光学系统100的光圈数。满足上述关系式时,在保证光学系统100具备足够的通光量的同时,也有利于使摄像镜头的头部较小。
光学系统100满足关系式:f3/f4=9.218;其中,f3为第三透镜L3的有效焦距,f4为第四透镜L4的有效焦距。满足上述关系式时,能够对第三透镜L3及第四透镜L4进行合理配置,以有效扩大光学系统100的视场角,进而缩小光学系统100的系统总长,满足小型化设计的需求。
光学系统100满足关系式:f4/f1+f5/f6=3.58;其中,f1为第一透镜L1的有效焦距,f4为第四透镜L4的有效焦距;f5为第五透镜L5的有效焦距,f6为第六透镜L6的有效焦距。满足上述关系式时,能够对第一透镜L1、第四透镜L4、第五透镜L5以及第六透镜L6的屈折力进行合理配置,以保证光学系统100的正负球差能够相互平衡,进而提升光学系统100的成像质量。
光学系统100满足关系式:f/f12=1.05;其中,f为光学系统100的总有效焦距,f12为第一透镜L1及第二透镜L2的组合焦距。满足上述关系式时,能够对光学系统100的有效焦距以及第一透镜L1和第二透镜L2的组合焦距进行合理配置,以有效缩短光学系统100的系统总长,同时能够避免光学系统100的高阶球差过度增大,进而提高光学系统100的成像质量。
光学系统100满足关系式:TT/ImgH=1.05;其中,TT为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离,ImgH为光学系统100于成像面上有效像素区域对角线长度的一半。满足上述关系式时,能够提高光学系统100在像面S15上的成像质量,同时有效缩短光学系统100的系统总长,进一步满足镜头的小型化设计的需求。
光学系统100满足关系式:R9/R10=-1.19;其中,R9为第五透镜L5的物侧面S9于光轴处的曲率半径,R10为第五透镜L5的像侧面S10于光轴处的曲率半径。满足上述关系式时,能够对第五透镜L5的物侧面S9及像侧面S10之间的关系进行合理约束,以此合理分配光学系统100的偏折角,同时能够改善光学系统100轴外视场的像散,进而提高光学系统100的成像质量。
光学系统100满足关系式:|f6|/R12=1.83;其中,f6为第六透镜L6的有效焦距,R12为第六透镜L6的像侧面S12于光轴处的曲率半径。满足上述关系式时,能够对第六透镜L6的有效焦距及像侧面S12进行合理配置,以减小光线到达光学系统100的像面S15的入射角,进而使光学系统100更容易与感光元件相匹配。
光学系统100满足关系式:CT5/|SAG51|=3.70;其中,CT5为第五透镜L5于光轴上的厚度,SAG51为第五透镜L5的物侧面S9的矢高。满足上述关系式时,能够对第五透镜L5进行合理配置,使第五透镜L5的面型更合理,以降低第五透镜L5加工成型的不良率,同时能够修正光学系统100所产生的像差,进一步提高光学系统100的成像质量。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S15可理解为光学系统100的成像面。由物面(图未示出)至像面S15的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。面序号1和面序号2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L7,但此时第六透镜L6的像侧面S11至像面S15的距离保持不变。
在第一实施例中,光学系统100的总有效焦距f=3.68mm,光圈数FNO=2.54,最大视场角的一半HFOV=41.06°,第一透镜L1的物侧面S1至像面S15于光轴上的距离TTL=4.4mm。
且各透镜的焦距、折射率和阿贝数为波长=555nm下的数值,其他实施例也相同。
表1
Figure PCTCN2020083697-appb-000001
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-10分别表示像侧面或物侧面S1-S10。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8为八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2020083697-appb-000002
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2020083697-appb-000003
Figure PCTCN2020083697-appb-000004
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图4由左至右依次为第二实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为平面,于圆周处为平面;
第二透镜L2的物侧面S3于近轴处为平面,于圆周处为平面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1的像侧面S2及第二透镜L2的物侧面S3为平面,而第一透镜L1的物侧面S1、第二透镜L2的像侧面S4以及第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2020083697-appb-000005
Figure PCTCN2020083697-appb-000006
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2020083697-appb-000007
Figure PCTCN2020083697-appb-000008
并且,根据上述所提供的各参数信息,可推得以下关系:
CT1/SD11=0.967;TTL/CT1=6.03;FNO=2.55;f3/f4=6.534;
f4/f1+f5/f6=3.57;f/f12=1.06;TT/ImgH=1.05;R9/R10=-1.15;
|f6|/R12=1.82;CT5/|SAG51|=3.78。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图6由左至右依次为第三实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2020083697-appb-000009
Figure PCTCN2020083697-appb-000010
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2020083697-appb-000011
并且,根据上述所提供的各参数信息,可推得以下关系:
CT1/SD11=0.85;TTL/CT1=6.60;FNO=2.41;f3/f4=3.689;
f4/f1+f5/f6=3.25;f/f12=1.08;TT/ImgH=1.07;R9/R10=-1.00;
|f6|/R12=1.86;CT5/|SAG51|=4.3。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图8由左至右依次为第四实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凸面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2020083697-appb-000012
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2020083697-appb-000013
Figure PCTCN2020083697-appb-000014
并且,根据上述所提供的各参数信息,可推得以下关系:
CT1/SD11=0.82;TTL/CT1=6.84;FNO=2.41;f3/f4=3.148;
f4/f1+f5/f6=3.21;f/f12=1.10;TT/ImgH=1.07;R9/R10=-1.00;
|f6|/R12=1.87;CT5/|SAG51|=4.26。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图10由左至右依次为第五实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的 材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2020083697-appb-000015
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2020083697-appb-000016
Figure PCTCN2020083697-appb-000017
并且,根据上述所提供的各参数信息,可推得以下关系:
CT1/SD11=0.712;TTL/CT1=7.69;FNO=2.35;f3/f4=1.707;
f4/f1+f5/f6=3.10;f/f12=1.16;TT/ImgH=1.08;R9/R10=-0.86;
|f6|/R12=1.89;CT5/|SAG51|=2.61。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图12由左至右依次为第六实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凹面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于近轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于近轴处为凹面,于圆周处为凹面;。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2020083697-appb-000018
Figure PCTCN2020083697-appb-000019
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2020083697-appb-000020
并且,根据上述所提供的各参数信息,可推得以下关系:
CT1/SD11=0.636;TTL/CT1=8.4;FNO=2.30;f3/f4=1.336;
f4/f1+f5/f6=3.17;f/f12=1.18;TT/ImgH=1.08;R9/R10=-0.72;
|f6|/R12=1.98;CT5/|SAG51|=1.91。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面即可视为光学系统100的像面S15。取像模组200还可设置有 红外滤光片L7,红外滤光片L7设置于第六透镜L6的像侧面S12与像面S15之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用光学系统100,使摄像镜头的头部较小,能够满足电子设备小型化设计的需求。
请参见图14,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200安装在壳体310上。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。在电子设备300中采用取像模组200,电子设备300中的镜头的头部较小,能够满足电子设备300小型化设计的需求。进一步地,可以理解的是,在一些实施例中,当电子设备300为智能手机时,电子设备300中的镜头可以屏下封装的方式安装于壳体310内,此时需要在电子设备300的屏幕中开孔以露出镜头,使电子设备300外部的光线能够经光学系统100进入电子设备300内部并于感光元件210的感光面成像。而在电子设备300中采用上述取像模组200,镜头的头部较小,则电子设备300的屏幕开孔较小即可露出镜头,由此提高电子设备300的屏占比,进而满足电子设备300的小型化设计的需求。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧到像侧依次包括:
    具有正屈折力的第一透镜;
    具有屈折力的第二透镜;
    具有负屈折力的第三透镜,所述第三透镜的物侧面及像侧面于圆周处均为凹面;
    具有负屈折力的第四透镜;
    具有正屈折力的第五透镜,所述第五透镜的物侧面及像侧面中的至少一个存在反曲点;
    具有负屈折力的第六透镜;
    且所述光学系统满足以下关系式:
    0.60<CT1/SD11<1.01;
    5.5<TTL/CT1<9.0;
    其中,CT1为所述第一透镜于光轴上的厚度,SD11为所述第一透镜的物侧面的最大有效孔径的一半,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    2.2≤FNO≤2.6;
    其中,FNO为所述光学系统的光圈数。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    1<f3/f4<10;
    其中,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    2.0<f4/f1+f5/f6<4.0;
    其中,f1为所述第一透镜的有效焦距,f4为所述第四透镜的有效焦距;f5为所述第五透镜的有效焦距,f6为所述第六透镜的有效焦距。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    1.0<f/f12<1.5;
    其中,f为所述光学系统的总有效焦距,f12为所述第一透镜及所述第二透镜的组合焦距。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    TT/ImgH<1.1;
    其中,TT为所述第一透镜的物侧面至所述第六透镜的像侧面于光轴上的距离,ImgH为所述光学系统于成像面上有效像素区域对角线长度的一半。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    -1.5<R9/R10<0;
    其中,R9为所述第五透镜的物侧面于光轴处的曲率半径,R10为所述第五透镜的像侧面于光轴处的曲率半径。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    1<|f6|/R12<2;
    其中,f6为所述第六透镜的有效焦距,R12为所述第六透镜的像侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下关系式:
    1.0<CT5/|SAG51|<5.0;
    其中,CT5为所述第五透镜于光轴上的厚度,SAG51为所述第五透镜的物侧面的矢高。
  10. 根据权利要求1所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜的物侧。
  11. 根据权利要求1所述的光学系统,其特征在于,还包括红外截止滤光片,所述红外截止滤光片设置于所述第六透镜的像侧。
  12. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所 述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的像侧面及物侧面均为非球面。
  13. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为玻璃。
  14. 所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为塑料。
  15. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜中存在两片或多片透镜。
  16. 根据权利要求15所述的光学系统,其特征在于,所述第一透镜中的两片或多片透镜形成胶合透镜。
  17. 一种取像模组,包括感光元件以及权利要求1-16任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  18. 根据权利要求17所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  19. 一种电子设备,包括壳体以及权利要求17或18任一项所述的取像模组,所述取像模组安装于所述壳体上。
  20. 根据权利要求19所述的取像模组,其特征在于,所述取像模组以屏下封装的方式安装于所述壳体中。
PCT/CN2020/083697 2020-04-08 2020-04-08 光学系统、取像模组及电子设备 WO2021203277A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/614,359 US20220236535A1 (en) 2020-04-08 2020-04-08 Optical system, image capturing module, and electronic device
PCT/CN2020/083697 WO2021203277A1 (zh) 2020-04-08 2020-04-08 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083697 WO2021203277A1 (zh) 2020-04-08 2020-04-08 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021203277A1 true WO2021203277A1 (zh) 2021-10-14

Family

ID=78023802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083697 WO2021203277A1 (zh) 2020-04-08 2020-04-08 光学系统、取像模组及电子设备

Country Status (2)

Country Link
US (1) US20220236535A1 (zh)
WO (1) WO2021203277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN102985865A (zh) * 2010-07-16 2013-03-20 柯尼卡美能达先进多层薄膜株式会社 拍摄镜头
CN103852858A (zh) * 2012-11-30 2014-06-11 大立光电股份有限公司 影像撷取光学镜组
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN106526796A (zh) * 2016-08-05 2017-03-22 玉晶光电(厦门)有限公司 光学镜片组
CN106772931A (zh) * 2016-11-02 2017-05-31 玉晶光电(厦门)有限公司 光学镜片组
CN111338057A (zh) * 2020-04-08 2020-06-26 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
CN211786331U (zh) * 2020-04-08 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102985865A (zh) * 2010-07-16 2013-03-20 柯尼卡美能达先进多层薄膜株式会社 拍摄镜头
CN202522758U (zh) * 2011-09-15 2012-11-07 大立光电股份有限公司 光学影像拾取镜组
CN103852858A (zh) * 2012-11-30 2014-06-11 大立光电股份有限公司 影像撷取光学镜组
US20160124192A1 (en) * 2014-11-04 2016-05-05 Hoya Corporation Imaging optical system
CN106526796A (zh) * 2016-08-05 2017-03-22 玉晶光电(厦门)有限公司 光学镜片组
CN106772931A (zh) * 2016-11-02 2017-05-31 玉晶光电(厦门)有限公司 光学镜片组
CN111338057A (zh) * 2020-04-08 2020-06-26 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备
CN211786331U (zh) * 2020-04-08 2020-10-27 南昌欧菲精密光学制品有限公司 光学系统、取像模组及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Also Published As

Publication number Publication date
US20220236535A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2021031276A1 (zh) 摄像光学镜头
CN111929869B (zh) 摄像光学镜头
EP4170407A1 (en) Seven-lens imaging objective
CN111239971A (zh) 光学系统、摄像模组及电子装置
CN111338057A (zh) 光学系统、取像模组及电子设备
CN113433656B (zh) 一种成像系统、镜头模组及电子设备
WO2022016451A1 (zh) 光学系统、取像模组及电子设备
CN213986983U (zh) 光学成像镜头、摄像模组及电子设备
CN211786331U (zh) 光学系统、取像模组及电子设备
WO2021184164A1 (zh) 光学系统、摄像模组及电子装置
CN113219628A (zh) 光学系统、取像模组及电子设备
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
CN114721126B (zh) 光学镜头、摄像模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN113433652B (zh) 光学系统、镜头模组和电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
TWI793570B (zh) 光學成像系統、取像模組及電子裝置
CN115480365A (zh) 光学系统、取像模组及电子设备
WO2021168742A1 (zh) 变焦光学系统、变焦模组及电子设备
CN114675407A (zh) 光学系统、镜头模组及电子设备
WO2021138754A1 (zh) 光学系统、摄像模组及电子装置
CN112505889A (zh) 光学系统、取像模组和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930239

Country of ref document: EP

Kind code of ref document: A1