WO2020010879A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2020010879A1
WO2020010879A1 PCT/CN2019/081363 CN2019081363W WO2020010879A1 WO 2020010879 A1 WO2020010879 A1 WO 2020010879A1 CN 2019081363 W CN2019081363 W CN 2019081363W WO 2020010879 A1 WO2020010879 A1 WO 2020010879A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical
Prior art date
Application number
PCT/CN2019/081363
Other languages
English (en)
French (fr)
Inventor
张凯元
游兴海
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020010879A1 publication Critical patent/WO2020010879A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging system, and more particularly, the present application relates to an optical imaging system including seven lenses.
  • the aperture number (F-number) of existing lenses is usually configured to be 2.0 or more, so as to balance miniaturization and good optical performance.
  • the F number is 2.0 Or lenses of 2.0 or higher can no longer meet higher-level imaging requirements.
  • the present application provides an optical imaging system, such as a large-aperture imaging lens, which is applicable to portable electronic products and can at least partially solve at least one of the above disadvantages in the prior art.
  • the optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens in order from the object side to the image side along the optical axis.
  • Lens, sixth lens, and seventh lens are examples of the optical imaging system.
  • the first lens may have positive power, and its object side may be convex, and the image side may be concave; the second lens may have negative power, its object side may be convex, and the image side may be concave; the third lens may have light The power can be convex on the object side and concave on the image side; the fourth lens can have positive power; the fifth lens has power; the sixth lens has power; the seventh lens can have negative power The object side can be convex, and the image side can be concave.
  • the distance T45 between the fourth lens and the fifth lens on the optical axis, the total effective focal length f of the optical imaging system, and the maximum half field angle HFOV of the optical system may satisfy 0.85mm 2 ⁇ T45 * f * TAN (HFOV) ⁇ 3.1mm 2 .
  • the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, and the total effective focal length f of the optical imaging system may satisfy -2 ⁇ f1 / f + f2 / f ⁇ -0.5.
  • the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging system may satisfy 2.5 ⁇ f4 / f ⁇ 6.
  • the effective focal length f7 of the seventh lens and the total effective focal length f of the optical imaging system may satisfy -2.5 ⁇ f7 / f ⁇ -1.
  • the curvature radius R5 of the object side of the third lens, the curvature radius R6 of the image side of the third lens, the curvature radius R13 of the object side of the seventh lens, and the curvature radius R14 of the image side of the seventh lens may be Satisfy 1 ⁇ (R5 + R6) / (R13 + R14) ⁇ 2.
  • the center thickness CT1 of the first lens on the optical axis, the center thickness CT2 of the second lens on the optical axis, and the center thickness CT3 of the third lens on the optical axis may satisfy 1.5 ⁇ CT1 / (CT2 + CT3) ⁇ 2.
  • the center thickness CT7 can satisfy 1 ⁇ (CT7 + CT6) / (CT5 + CT4) ⁇ 2.
  • the combined focal length f1234 of the first lens, the second lens, the third lens, and the fourth lens and the combined focal length f567 of the fifth lens, the sixth lens, and the seventh lens may satisfy 1 ⁇
  • the sum of the maximum effective radius DT31 on the object side of the third lens and the distance between any two adjacent lenses on the optical axis from the first lens to the seventh lens ⁇ AT may satisfy 0.5 ⁇ DT31 / ⁇ AT ⁇ 1.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system may satisfy f / EPD ⁇ 1.8.
  • This application uses multiple (for example, seven) lenses, and by reasonably distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens, etc., the above optical imaging system has super At least one beneficial effect such as thinness, miniaturization, large aperture, and high imaging quality.
  • FIG. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application
  • FIGS. 2A to 2D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 1; curve;
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application
  • FIGS. 4A to 4D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 2 respectively. curve;
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application
  • FIGS. 6A to 6D show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging system of Embodiment 3, respectively. curve;
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application
  • FIGS. 8A to 8D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 4 respectively. curve;
  • FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application
  • FIGS. 10A to 10D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 5 respectively. curve;
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application
  • FIGS. 12A to 12D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 6 respectively. curve;
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application
  • FIGS. 14A to 14D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 7 respectively. curve;
  • FIG. 15 shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application
  • FIGS. 16A to 16D show on-axis chromatic aberration curves, astigmatic curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 8 respectively. curve;
  • FIG. 17 shows a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application
  • FIGS. 18A to 18D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Embodiment 9 respectively. curve;
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave. The surface closest to the object side in each lens is called the object side of the lens; the surface closest to the image side in each lens is called the image side of the lens.
  • An optical imaging system may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a first lens. Seven lenses. These seven lenses are arranged in order from the object side to the image side along the optical axis, and any two adjacent lenses can have an air gap.
  • the image side of the fourth lens may be convex.
  • the object side of the sixth lens may be convex, and the image side may be concave.
  • the optical imaging system of the present application may satisfy a conditional expression f / EPD ⁇ 1.8, where f is a total effective focal length of the optical imaging system and EPD is an entrance pupil diameter of the optical imaging system. More specifically, f and EPD can further satisfy 1.64 ⁇ f / EPD ⁇ 1.79.
  • f and EPD can further satisfy 1.64 ⁇ f / EPD ⁇ 1.79.
  • the optical imaging system of the present application can satisfy a conditional expression of 0.85 mm 2 ⁇ T45 * f * TAN (HFOV) ⁇ 3.1 mm 2 , where T45 is the optical axis of the fourth lens and the fifth lens.
  • the separation distance, f is the total effective focal length of the optical imaging system
  • HFOV is the maximum half field angle of the optical imaging system.
  • T45, f, and HFOV can further satisfy 0.85 mm 2 ⁇ T45 * f * TAN (HFOV) ⁇ 3.08 mm 2 .
  • the optical imaging system of the present application can satisfy the conditional TTL / ImgH ⁇ 1.5, where TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical imaging system, and ImgH is optical Half of the diagonal of the effective pixel area on the imaging surface of the imaging system. More specifically, TTL and ImgH can further satisfy 1.40 ⁇ TTL / ImgH ⁇ 1.42. By limiting the ratio between the axial distance from the object side of the first lens to the imaging plane and the half of the diagonal length of the effective pixel area on the imaging plane, the ultra-thin and high-pixel characteristics of the optical imaging system are achieved.
  • the optical imaging system of the present application can satisfy a conditional expression of 3.8 mm ⁇ f * TAN (HFOV) ⁇ 4.5 mm, where f is a total effective focal length of the optical imaging system, and HFOV is a maximum half of the optical imaging system. Field of View. More specifically, f and HFOV can further satisfy 3.8mm ⁇ f * TAN (HFOV) ⁇ 4.0mm, for example, 3.85mm ⁇ f * TAN (HFOV) ⁇ 3.96mm.
  • the size of the system can be effectively compressed, so that the light has a smaller deflection angle, which is conducive to achieving a large image surface and easy injection molding processing. And other characteristics.
  • the optical imaging system of the present application can satisfy the conditional expression 2.5 ⁇ f4 / f ⁇ 6, where f4 is the effective focal length of the fourth lens and f is the total effective focal length of the optical imaging system. More specifically, f4 and f can further satisfy 2.90 ⁇ f4 / f ⁇ 5.67.
  • the contribution range of the fourth lens power can be reasonably controlled, and the negative spherical aberration contribution rate of the fourth lens can be reasonably controlled, making it reasonable.
  • the optical imaging system of the present application can satisfy a conditional expression -2.5 ⁇ f7 / f ⁇ -1, where f7 is an effective focal length of the seventh lens, and f is a total effective focal length of the optical imaging system. More specifically, f7 and f can further satisfy -2.49 ⁇ f7 / f ⁇ -1.15.
  • the seventh lens can effectively balance the spherical aberration generated by the first six lenses, and then fine-tune and control the spherical aberration of the system, and Strengthen the precise control of aberrations in the field of view on the axis to improve imaging quality.
  • the optical imaging system of the present application can satisfy a conditional expression -2 ⁇ f1 / f + f2 / f ⁇ -0.5, where f1 is an effective focal length of the first lens, and f2 is an effective focal length of the second lens. , F is the total effective focal length of the optical imaging system. More specifically, f1, f2, and f can further satisfy ⁇ 1.83 ⁇ f1 / f + f2 / f ⁇ ⁇ 0.61.
  • the optical imaging system of the present application can satisfy the conditional expression 1 ⁇ (R5 + R6) / (R13 + R14) ⁇ 2, where R5 is the curvature radius of the object side of the third lens, and R6 is the first The curvature radius of the image side of the three lenses, R13 is the curvature radius of the object side of the seventh lens, and R14 is the curvature radius of the image side of the seventh lens. More specifically, R5, R6, R13, and R14 can further satisfy 1.31 ⁇ (R5 + R6) / (R13 + R14) ⁇ 1.81.
  • the optical imaging system of the present application can satisfy the conditional expression 1.5 ⁇ CT1 / (CT2 + CT3) ⁇ 2, where CT1 is the center thickness of the first lens on the optical axis and CT2 is the second lens at The central thickness on the optical axis, CT3 is the central thickness of the third lens on the optical axis. More specifically, CT1, CT2, and CT3 can further satisfy 1.65 ⁇ CT1 / (CT2 + CT3) ⁇ 1.83.
  • the optical imaging system of the present application can satisfy the conditional expression 1 ⁇ (CT7 + CT6) / (CT5 + CT4) ⁇ 2, where CT4 is the center thickness of the fourth lens on the optical axis, and CT5 is The center thickness of the fifth lens on the optical axis, CT6 is the center thickness of the sixth lens on the optical axis, and CT7 is the center thickness of the seventh lens on the optical axis. More specifically, CT4, CT5, CT6, and CT7 can further satisfy 1.07 ⁇ (CT7 + CT6) / (CT5 + CT4) ⁇ 1.75. Reasonably controlling the center thicknesses of the fourth lens, the fifth lens, the sixth lens, and the seventh lens is conducive to ensuring the processing performance of the imaging system and to achieving the ultra-thin characteristics of the imaging system.
  • the optical imaging system of the present application can satisfy the conditional expression 1 ⁇
  • the optical imaging system of the present application can satisfy the conditional expression 0.5 ⁇ DT31 / ⁇ AT ⁇ 1, where DT31 is the maximum effective radius of the object side of the third lens, and ⁇ AT is the first lens to the seventh
  • DT31 and ⁇ AT can further satisfy 0.66 ⁇ DT31 / ⁇ AT ⁇ 0.90.
  • the optical imaging system may further include a diaphragm to improve the imaging quality of the imaging system.
  • the stop can be set at any position between the object side and the image side as needed, for example, the stop can be set between the object side and the first lens.
  • the above-mentioned optical imaging system may further include a filter for correcting color deviation and / or a protective glass for protecting a photosensitive element on the imaging surface.
  • the optical imaging system according to the above embodiment of the present application may employ multiple lenses, such as the seven lenses described above.
  • the size of the system can be effectively reduced, the sensitivity of the system can be reduced, and the processability of the system can be improved.
  • the optical imaging system configured as described above can also have beneficial effects such as ultra-thinness, miniaturization, large aperture, high imaging quality, and the like.
  • At least one of the mirror surfaces of each lens is an aspherical mirror surface.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the lens center to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatic aberration. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
  • an optical imaging system includes: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • its object side surface S13 is a convex surface
  • its image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 1 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 1.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • Table 3 shows the effective focal lengths f1 to f7 of each lens in Example 1, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and The diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 2B shows an astigmatism curve of the optical imaging system of Example 1, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 2C shows a distortion curve of the optical imaging system of Example 1, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging system of Example 1, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIG. 2A to FIG. 2D that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • its object side surface S13 is a convex surface
  • its image side surface S14 is a concave surface.
  • the filter E8 has an object side S15 and an image side S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 2, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 5 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 shows the effective focal lengths f1 to f7 of the lenses in Example 2, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 2, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 4B shows an astigmatism curve of the optical imaging system of Example 2, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 4C illustrates a distortion curve of the optical imaging system of Example 2, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 4D shows a magnification chromatic aberration curve of the optical imaging system of Example 2, which represents the deviation of different image heights on the imaging plane after the light passes through the system. According to FIG. 4A to FIG. 4D, it can be known that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface and the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power, and the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power, and its object side surface S13 is a convex surface, and its image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 3.
  • the units of the radius of curvature and thickness are millimeters (mm).
  • Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 9 shows the effective focal lengths f1 to f7 of each lens in Example 3, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • its object side surface S13 is a convex surface
  • its image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power
  • its object side surface S13 is a convex surface
  • its image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 5, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 14 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 15 shows the effective focal lengths f1 to f7 of each lens in Example 5, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 6, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 17 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 18 shows the effective focal lengths f1 to f7 of the lenses in Example 6, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 13 is a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, and a first lens.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 14B shows an astigmatism curve of the optical imaging system of Example 7, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 14C illustrates a distortion curve of the optical imaging system of Example 7, which represents the magnitude of distortion corresponding to different image heights.
  • FIG. 14D shows a magnification chromatic aberration curve of the optical imaging system of Example 7, which represents deviations of different image heights on the imaging plane after light passes through the system.
  • the optical imaging system provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis, an aperture STO, a first lens E1, a second lens E2, a third lens E3, The four lenses E4, the fifth lens E5, the sixth lens E6, the seventh lens E7, the filter E8, and the imaging surface S17.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 8, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 23 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f7 of each lens in Example 8, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 16A shows an on-axis chromatic aberration curve of the optical imaging system of Embodiment 8, which indicates that the focal points of light with different wavelengths deviate after passing through the system.
  • FIG. 16B shows an astigmatism curve of the optical imaging system of Example 8, which represents a meridional image plane curvature and a sagittal image plane curvature.
  • FIG. 16C shows a distortion curve of the optical imaging system of Example 8, which represents the value of the distortion magnitude corresponding to different image heights.
  • FIG. 16D shows a magnification chromatic aberration curve of the optical imaging system of Example 8, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 16A to 16D that the optical imaging system given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface and the image side surface S10 is a concave surface.
  • the sixth lens E6 has a negative power, and the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface.
  • the seventh lens E7 has a negative power, and its object side surface S13 is a convex surface, and its image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. The light from the object sequentially passes through the surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 9, where the units of the radius of curvature and thickness are millimeters (mm).
  • Table 26 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 27 shows the effective focal lengths f1 to f7 of the lenses in Example 9, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.
  • FIG. 19 is a schematic structural diagram of an optical imaging system according to Embodiment 10 of the present application.
  • the first lens E1 has a positive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens E2 has a negative power, and the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive power, and the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive power, and the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • Table 28 shows the surface type, the radius of curvature, the thickness, the material, and the conic coefficient of each lens of the optical imaging system of Example 10.
  • the units of the radius of curvature and the thickness are millimeters (mm).
  • Table 29 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 10, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 30 shows the effective focal lengths f1 to f7 of each lens in Example 10, the total effective focal length f of the optical imaging system, the distance TTL on the optical axis from the object side S1 to the imaging surface S17 of the first lens E1, and the imaging surface S17.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV of the optical imaging system.

Abstract

一种光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜具有光焦度,其物侧面为凸面,像侧面为凹面;第四透镜具有正光焦度;第五透镜具有光焦度;第六透镜具有光焦度;第七透镜具有负光焦度,其物侧面为凸面,像侧面为凹面。其中,光学成像系统的总有效焦距f与光学系统的最大半视场角HFOV满足3.8mm<f*TAN(HFOV)<4.5mm。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2018年07月09日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810746763.9的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像系统,更具体地,本申请涉及一种包括七片透镜的光学成像系统。
背景技术
随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。一方面,由于例如智能手机等便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的摄像镜头的高成像品质及小型化均提出了更高的要求。
为了满足小型化的要求,现有镜头通常配置的光圈数(F数)均在2.0或2.0以上,以兼顾小型化与良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对配套使用的摄像镜头提出了更高的要求,特别是在光线不足(如阴雨天、黄昏等)、手抖等情况下,F数为2.0或2.0以上的镜头已经无法满足更高阶的成像要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统,例如大孔径成像镜头。
本申请的一方面提供了这样一种光学成像系统,该光学成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面;第四透镜可具有正光焦度;第五透镜具有光焦度;第六透镜具有光焦度;第七透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。
在一个实施方式中,光学成像系统的总有效焦距f与光学系统的最大半视场角HFOV可满足3.8mm<f*TAN(HFOV)<4.5mm。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45、光学成像系统的总有效焦距f与光学系统的最大半视场角HFOV可满足0.85mm 2≤T45*f*TAN(HFOV)≤3.1mm 2
在一个实施方式中,第一透镜的有效焦距f1、第二透镜的有效焦距f2与光学成像系统的总有效 焦距f可满足-2<f1/f+f2/f<-0.5。
在一个实施方式中,第四透镜的有效焦距f4与光学成像系统的总有效焦距f可满足2.5≤f4/f<6。
在一个实施方式中,第七透镜的有效焦距f7与光学成像系统的总有效焦距f可满足-2.5<f7/f<-1。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.1<R1/R2<0.3。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4可满足0.2<R4/R3<0.5。
在一个实施方式中,第三透镜的物侧面的曲率半径R5,第三透镜的像侧面的曲率半径R6,第七透镜的物侧面的曲率半径R13与第七透镜的像侧面的曲率半径R14可满足1<(R5+R6)/(R13+R14)<2。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1,第二透镜在光轴上的中心厚度CT2和第三透镜在光轴上的中心厚度CT3可满足1.5<CT1/(CT2+CT3)<2。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4,第五透镜在光轴上的中心厚度CT5,第六透镜在光轴上的中心厚度CT6与第七透镜在光轴上的中心厚度CT7可满足1≤(CT7+CT6)/(CT5+CT4)<2。
在一个实施方式中,第一透镜、第二透镜、第三透镜和第四透镜的组合焦距f1234与第五透镜、第六透镜和第七透镜的组合焦距f567可满足1<|f567/f1234|<2.5。
在一个实施方式中,第三透镜的物侧面的最大有效半径DT31与第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离的总和∑AT可满足0.5<DT31/∑AT<1。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD可满足f/EPD≤1.8。
在一个实施方式中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.5。
本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有超薄、小型化、大孔径、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8A至图8D分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12A至图12D分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14A至图14D分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;图16A至图16D分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像系统的结构示意图;图18A至图18D分别示出了实施例9的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像系统的结构示意图;图20A至图20D分别示出了实施例10的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近物侧的表面称为该透镜的物侧面;每个透镜中,最靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域 普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列,且任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜具有正光焦度或负光焦度,其物侧面可为凸面,像侧面可为凹面;第四透镜可具有正光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度;以及第七透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面。通过合理限定各透镜的面型及光焦度,有利于使光学成像系统具有良好的成像质量。
在示例性实施方式中,第四透镜的像侧面可为凸面。
在示例性实施方式中,第六透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的光学成像系统可满足条件式f/EPD≤1.8,其中,f为光学成像系统的总有效焦距,EPD为光学成像系统的入瞳直径。更具体地,f和EPD进一步可满足1.64≤f/EPD≤1.79。通过适当调整光学成像系统的总有效焦距与入瞳直径的比值,有利于使光学成像系统具有超薄、大孔径的特性。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.85mm 2≤T45*f*TAN(HFOV)≤3.1mm 2,其中,T45为第四透镜和第五透镜在光轴上的间隔距离,f为光学成像系统的总有效焦距,HFOV为光学成像系统的最大半视场角。更具体地,T45、f和HFOV进一步可满足0.85mm 2≤T45*f*TAN(HFOV)≤3.08mm 2。通过对第四透镜和第五透镜在光轴上的间隔距离的优化以及对像高的限定,可以保证成像系统和大像面芯片的良好匹配,使得成像系统同时具有高像素、低敏感度、容易加工等的特点。
在示例性实施方式中,本申请的光学成像系统可满足条件式TTL/ImgH<1.5,其中,TTL为第一透镜的物侧面至光学成像系统的成像面在光轴上的距离,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.40≤TTL/ImgH≤1.42。通过约束第一透镜物侧面至成像面的轴上距离和成像面上有效像素区域对角线长的一半的比值,来实现光学成像系统的超薄化、高像素的特点。
在示例性实施方式中,本申请的光学成像系统可满足条件式3.8mm<f*TAN(HFOV)<4.5mm,其中,f为光学成像系统的总有效焦距,HFOV为光学成像系统的最大半视场角。更具体地,f和HFOV进一步可满足3.8mm<f*TAN(HFOV)<4.0mm,例如,3.85mm≤f*TAN(HFOV)≤3.96mm。通过合理地分配光学成像系统的总有效焦距及光学成像系统的最大半视场角,可有效地压缩系统的尺寸,使得光线具有较小偏折角度,以有利于实现大像面和容易注塑加工等特性。
在示例性实施方式中,本申请的光学成像系统可满足条件式2.5≤f4/f<6,其中,f4为第四透镜的 有效焦距,f为光学成像系统的总有效焦距。更具体地,f4和f进一步可满足2.90≤f4/f≤5.67。通过合理控制第四透镜的有效焦距与光学成像系统的总有效焦距的比值,能够合理控制第四透镜光焦度的贡献范围,同时合理控制第四透镜的负球差贡献率,使得其能合理的平衡系统中各负透镜所产生的正球差。
在示例性实施方式中,本申请的光学成像系统可满足条件式-2.5<f7/f<-1,其中,f7为第七透镜的有效焦距,f为光学成像系统的总有效焦距。更具体地,f7和f进一步可满足-2.49≤f7/f≤-1.15。通过合理约束第七透镜的有效焦距与光学成像系统的总有效焦距的比值,使得第七透镜能够有效地平衡前六片透镜所产生的球差,进而对系统的球差进行微调和控制,并加强对轴上视场区域像差的精确控制,提高成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式-2<f1/f+f2/f<-0.5,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距,f为光学成像系统的总有效焦距。更具体地,f1、f2和f进一步可满足-1.83≤f1/f+f2/f≤-0.61。满足条件式-2<f1/f+f2/f<-0.5,能够有效地平衡第一透镜和第二透镜产生的负三阶球差和正五阶球差,使系统具有较小的球差,保证轴上视场区域良好的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.1<R1/R2<0.3,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.16≤R1/R2≤0.26。通过控制第一透镜物侧面和像侧面的曲率半径,能够合理的控制光线在第一透镜物侧面和像侧面的边缘视场处的总偏转角度,从而有效地降低系统的敏感性。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.2<R4/R3<0.5,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足0.21≤R4/R3≤0.46。通过限定第二透镜物侧面的曲率半径与第二透镜像侧面的曲率半径的比值范围,能够有效的约束第二透镜的形状,进而有效的控制第二透镜物侧面和像侧面的像差贡献率,以有效地平衡系统中与孔径光阑相关的像差,进而有效地提升系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式1<(R5+R6)/(R13+R14)<2,其中,R5为第三透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径,R13为第七透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径。更具体地,R5、R6、R13和R14进一步可满足1.31≤(R5+R6)/(R13+R14)≤1.81。通过合理控制第三透镜物侧面和像侧面的曲率半径以及第七透镜物侧面和像侧面的曲率半径,能够合理控制各个视场的主光线在像面的入射角,以满足光学系统设计中对主光线入射角度的要求。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<CT1/(CT2+CT3)<2,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度。更具体地,CT1、CT2和CT3进一步可满足1.65≤CT1/(CT2+CT3)≤1.83。通过合理控制第一透镜、第二透镜和第三透镜的中心厚度,使得这三个透镜的畸变贡献量在合理的范围内,进而将成像系统各视场的畸变量控制在2%以下,实现良好的成像效果并避免后期调试的需要。
在示例性实施方式中,本申请的光学成像系统可满足条件式1≤(CT7+CT6)/(CT5+CT4)<2,其中,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,CT4、CT5、CT6和CT7进一步可满 足1.07≤(CT7+CT6)/(CT5+CT4)≤1.75。合理控制第四透镜、第五透镜、第六透镜和第七透镜的中心厚度,有利于保证成像系统的加工性能,并有利于实现成像系统的超薄特性。
在示例性实施方式中,本申请的光学成像系统可满足条件式1<|f567/f1234|<2.5,其中,f1234为第一透镜、第二透镜、第三透镜和第四透镜的组合焦距,f567为第五透镜、第六透镜和第七透镜的组合焦距。更具体地,f1234和f567进一步可满足1.34≤|f567/f1234|≤2.47。通过合理限定第一透镜、第二透镜、第三透镜和第四透镜的组合焦距及第五透镜、第六透镜和第七透镜的组合焦距的比值范围,有利于在保证光学系统优良像质的同时保证光学系统良好的加工性能。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.5<DT31/∑AT<1,其中,DT31为第三透镜的物侧面的最大有效半径,∑AT为第一透镜至第七透镜中任意相邻两透镜在光轴上的间隔距离的总和。更具体地,DT31和∑AT进一步可满足0.66≤DT31/∑AT≤0.90。合理的控制第三透镜物侧面的最大有效半径与第一透镜至第七透镜中任意相邻两透镜在光轴上的空气间隔之和的比值,有利于减小镜头的尺寸,满足小型化要求;同时,还有利于提升镜头的解像力。
在示例性实施方式中,光学成像系统还可包括光阑,以提升成像系统的成像质量。光阑可根据需要设置在物侧与像侧之间的任意位置处,例如,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小系统的体积、降低系统的敏感度并提高系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。另外,通过上述配置的光学成像系统,还可具有例如超薄、小型化、大孔径、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像系统不限于包括七个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019081363-appb-000001
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019081363-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0765E-03 -1.7457E-02 5.9734E-02 -1.2144E-01 1.4922E-01 -1.1430E-01 5.3144E-02 -1.3789E-02 1.5260E-03
S2 -2.0900E-02 5.7693E-04 -3.2101E-03 3.3136E-02 -5.5173E-02 4.4015E-02 -1.8646E-02 3.7453E-03 -2.0182E-04
S3 -1.2924E-02 6.1838E-04 3.8013E-02 -6.7282E-02 1.0310E-01 -1.1782E-01 8.4308E-02 -3.2869E-02 5.3989E-03
S4 -6.1142E-03 1.5706E-03 -7.5570E-03 4.5950E-02 -1.1108E-01 1.2326E-01 -7.8868E-02 2.6849E-02 -3.8776E-03
S5 -5.3788E-02 -2.4526E-02 6.8499E-02 -2.6405E-01 5.8657E-01 -7.7717E-01 6.0747E-01 -2.5758E-01 4.5258E-02
S6 -3.9916E-02 3.2155E-02 -2.0788E-01 7.2683E-01 -1.5133E+00 1.9725E+00 -1.5439E+00 6.6627E-01 -1.2121E-01
S7 -3.0344E-02 8.2795E-03 -5.9113E-02 9.9887E-02 -7.4662E-02 -5.0516E-02 1.4104E-01 -1.0180E-01 2.6480E-02
S8 -3.5964E-02 -5.8504E-03 -5.7246E-03 -6.3485E-03 2.6443E-02 -4.4585E-02 3.7976E-02 -1.6657E-02 3.0905E-03
S9 -3.3237E-02 4.2368E-03 -1.2411E-01 3.0950E-01 -4.0535E-01 3.0487E-01 -1.3338E-01 3.1441E-02 -3.0646E-03
S10 5.4489E-03 -1.3936E-01 1.6227E-01 -1.0980E-01 3.9918E-02 -5.0039E-03 -1.0548E-03 3.8640E-04 -3.2883E-05
S11 5.7178E-02 -1.3826E-01 1.0919E-01 -6.1699E-02 2.1335E-02 -4.0528E-03 3.6487E-04 -6.1400E-06 -7.9563E-07
S12 -1.2907E-02 -9.5931E-03 -1.2619E-03 1.9827E-03 -8.0469E-04 1.8634E-04 -2.3531E-05 1.3516E-06 -1.8256E-08
S13 -2.4580E-01 8.9453E-02 -1.9517E-02 3.1458E-03 -4.0276E-04 3.9491E-05 -2.6707E-06 1.0720E-07 -1.8923E-09
S14 -2.0868E-01 9.2529E-02 -3.4362E-02 9.0548E-03 -1.5609E-03 1.7000E-04 -1.1217E-05 4.0822E-07 -6.2784E-09
表2
表3给出实施例1中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
f1(mm) 4.13 f7(mm) -10.54
f2(mm) -10.52 f(mm) 4.74
f3(mm) 1500.00 TTL(mm) 5.55
f4(mm) 17.32 ImgH(mm) 3.96
f5(mm) -83.42 HFOV(°) 39.7
f6(mm) 2806.57    
表3
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片 E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出实施例2中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000003
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0311E-03 -1.6364E-02 5.4797E-02 -1.0903E-01 1.3110E-01 -9.8279E-02 4.4722E-02 -1.1356E-02 1.2299E-03
S2 -2.0023E-02 5.4102E-04 -2.9465E-03 2.9770E-02 -4.8519E-02 3.7886E-02 -1.5710E-02 3.0886E-03 -1.6291E-04
S3 -1.2130E-02 5.6233E-04 3.3490E-02 -5.7428E-02 8.5260E-02 -9.4394E-02 6.5438E-02 -2.4717E-02 3.9333E-03
S4 -6.0923E-03 1.5622E-03 -7.5029E-03 4.5539E-02 -1.0989E-01 1.2172E-01 -7.7743E-02 2.6419E-02 -3.8086E-03
S5 -5.2034E-02 -2.3336E-02 6.4104E-02 -2.4305E-01 5.3104E-01 -6.9202E-01 5.3202E-01 -2.2188E-01 3.8345E-02
S6 -3.9379E-02 3.1508E-02 -2.0232E-01 7.0261E-01 -1.4530E+00 1.8811E+00 -1.4624E+00 6.2684E-01 -1.1326E-01
S7 -2.9275E-02 7.8460E-03 -5.5023E-02 9.1324E-02 -6.7049E-02 -4.4559E-02 1.2220E-01 -8.6636E-02 2.2134E-02
S8 -3.4680E-02 -5.5399E-03 -5.3232E-03 -5.7970E-03 2.3711E-02 -3.9258E-02 3.2837E-02 -1.4143E-02 2.5769E-03
S9 -3.2453E-02 4.0878E-03 -1.1833E-01 2.9157E-01 -3.7734E-01 2.8044E-01 -1.2123E-01 2.8239E-02 -2.7199E-03
S10 5.1178E-03 -1.2685E-01 1.4315E-01 -9.3869E-02 3.3074E-02 -4.0180E-03 -8.2086E-04 2.9141E-04 -2.4034E-05
S11 5.4295E-02 -1.2794E-01 9.8460E-02 -5.4215E-02 1.8268E-02 -3.3816E-03 2.9667E-04 -4.8649E-06 -6.1430E-07
S12 -1.2134E-02 -8.7445E-03 -1.1153E-03 1.6991E-03 -6.6863E-04 1.5013E-04 -1.8381E-05 1.0237E-06 -1.3407E-08
S13 -2.3222E-01 8.2142E-02 -1.7419E-02 2.7291E-03 -3.3962E-04 3.2366E-05 -2.1275E-06 8.3007E-08 -1.4241E-09
S14 -1.9478E-01 8.3440E-02 -2.9937E-02 7.6215E-03 -1.2693E-03 1.3357E-04 -8.5142E-06 2.9936E-07 -4.4481E-09
表5
f1(mm) 4.13 f7(mm) -10.93
f2(mm) -10.29 f(mm) 4.75
f3(mm) 1999.86 TTL(mm) 5.55
f4(mm) 16.87 ImgH(mm) 3.96
f5(mm) -146.03 HFOV(°) 39.6
f6(mm) -65.60    
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出实施例3中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000004
Figure PCTCN2019081363-appb-000005
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0348E-03 -1.6452E-02 5.5190E-02 -1.1001E-01 1.3252E-01 -9.9517E-02 4.5366E-02 -1.1541E-02 1.2521E-03
S2 -2.0089E-02 5.4367E-04 -2.9657E-03 3.0014E-02 -4.8995E-02 3.8320E-02 -1.5916E-02 3.1341E-03 -1.6558E-04
S3 -1.2355E-02 5.7803E-04 3.4742E-02 -6.0126E-02 9.0088E-02 -1.0066E-01 7.0425E-02 -2.6846E-02 4.3115E-03
S4 -6.1509E-03 1.5848E-03 -7.6481E-03 4.6643E-02 -1.1310E-01 1.2588E-01 -8.0781E-02 2.7583E-02 -3.9955E-03
S5 -5.2431E-02 -2.3603E-02 6.5086E-02 -2.4771E-01 5.4328E-01 -7.1067E-01 5.4844E-01 -2.2960E-01 3.9829E-02
S6 -3.9904E-02 3.2140E-02 -2.0774E-01 7.2626E-01 -1.5119E+00 1.9704E+00 -1.5420E+00 6.6533E-01 -1.2101E-01
S7 -2.9801E-02 8.0581E-03 -5.7016E-02 9.5476E-02 -7.0723E-02 -4.7420E-02 1.3121E-01 -9.3855E-02 2.4193E-02
S8 -3.5226E-02 -5.6713E-03 -5.4921E-03 -6.0277E-03 2.4848E-02 -4.1463E-02 3.4953E-02 -1.5173E-02 2.7862E-03
S9 -3.2492E-02 4.0951E-03 -1.1861E-01 2.9244E-01 -3.7868E-01 2.8160E-01 -1.2181E-01 2.8390E-02 -2.7360E-03
S10 5.0415E-03 -1.2403E-01 1.3891E-01 -9.0410E-02 3.1616E-02 -3.8122E-03 -7.7299E-04 2.7237E-04 -2.2295E-05
S11 5.5574E-02 -1.3249E-01 1.0315E-01 -5.7464E-02 1.9590E-02 -3.6688E-03 3.2563E-04 -5.4023E-06 -6.9015E-07
S12 -1.2674E-02 -9.3352E-03 -1.2169E-03 1.8947E-03 -7.6201E-04 1.7486E-04 -2.1882E-05 1.2455E-06 -1.6671E-08
S13 -2.3959E-01 8.6085E-02 -1.8543E-02 2.9509E-03 -3.7300E-04 3.6108E-05 -2.4108E-06 9.5541E-08 -1.6650E-09
S14 -2.0547E-01 9.0399E-02 -3.3312E-02 8.7102E-03 -1.4899E-03 1.6102E-04 -1.0542E-05 3.8068E-07 -5.8096E-09
表8
f1(mm) 4.15 f7(mm) -10.34
f2(mm) -10.39 f(mm) 4.74
f3(mm) 431.04 TTL(mm) 5.55
f4(mm) 18.10 ImgH(mm) 3.96
f5(mm) 1600.00 HFOV(°) 39.7
f6(mm) -134.38    
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、 滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出实施例4中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000006
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0215E-03 -1.6136E-02 5.3784E-02 -1.0652E-01 1.2749E-01 -9.5122E-02 4.3084E-02 -1.0890E-02 1.1739E-03
S2 -1.9533E-02 5.2127E-04 -2.8040E-03 2.7981E-02 -4.5042E-02 3.4737E-02 -1.4227E-02 2.7625E-03 -1.4392E-04
S3 -1.1991E-02 5.5264E-04 3.2722E-02 -5.5789E-02 8.2347E-02 -9.0642E-02 6.2474E-02 -2.3461E-02 3.7119E-03
S4 -6.1269E-03 1.5755E-03 -7.5885E-03 4.6189E-02 -1.1178E-01 1.2416E-01 -7.9525E-02 2.7101E-02 -3.9180E-03
S5 -5.1497E-02 -2.2975E-02 6.2788E-02 -2.3683E-01 5.1477E-01 -6.6735E-01 5.1040E-01 -2.1176E-01 3.6407E-02
S6 -3.9591E-02 3.1763E-02 -2.0450E-01 7.1212E-01 -1.4766E+00 1.9169E+00 -1.4942E+00 6.4219E-01 -1.1635E-01
S7 -2.9832E-02 8.0709E-03 -5.7136E-02 9.5729E-02 -7.0948E-02 -4.7596E-02 1.3177E-01 -9.4302E-02 2.4321E-02
S8 -3.4924E-02 -5.5984E-03 -5.3982E-03 -5.8993E-03 2.4214E-02 -4.0231E-02 3.3769E-02 -1.4595E-02 2.6687E-03
S9 -3.2254E-02 4.0501E-03 -1.1688E-01 2.8711E-01 -3.7042E-01 2.7444E-01 -1.1828E-01 2.7466E-02 -2.6372E-03
S10 5.1101E-03 -1.2657E-01 1.4272E-01 -9.3517E-02 3.2925E-02 -3.9969E-03 -8.1594E-04 2.8945E-04 -2.3854E-05
S11 5.5322E-02 -1.3159E-01 1.0222E-01 -5.6815E-02 1.9325E-02 -3.6109E-03 3.1977E-04 -5.2929E-06 -6.7465E-07
S12 -1.2608E-02 -9.2625E-03 -1.2042E-03 1.8702E-03 -7.5020E-04 1.7170E-04 -2.1430E-05 1.2166E-06 -1.6243E-08
S13 -2.4537E-01 8.9216E-02 -1.9448E-02 3.1319E-03 -4.0063E-04 3.9247E-05 -2.6518E-06 1.0635E-07 -1.8756E-09
S14 -2.1444E-01 9.6383E-02 -3.6284E-02 9.6920E-03 -1.6936E-03 1.8699E-04 -1.2507E-05 4.6138E-07 -7.1932E-09
表11
f1(mm) 4.10 f7(mm) -9.66
f2(mm) -9.29 f(mm) 4.74
f3(mm) 111.82 TTL(mm) 5.55
f4(mm) 18.13 ImgH(mm) 3.96
f5(mm) 298.74 HFOV(°) 39.6
f6(mm) 600.03    
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出实施例5中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000007
Figure PCTCN2019081363-appb-000008
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0241E-03 -1.6197E-02 5.4054E-02 -1.0718E-01 1.2844E-01 -9.5958E-02 4.3516E-02 -1.1013E-02 1.1886E-03
S2 -1.8958E-02 4.9840E-04 -2.6411E-03 2.5965E-02 -4.1176E-02 3.1284E-02 -1.2623E-02 2.4146E-03 -1.2393E-04
S3 -1.2581E-02 5.9397E-04 3.6025E-02 -6.2914E-02 9.5125E-02 -1.0725E-01 7.5723E-02 -2.9128E-02 4.7206E-03
S4 -5.9508E-03 1.5081E-03 -7.1586E-03 4.2942E-02 -1.0241E-01 1.1212E-01 -7.0771E-02 2.3769E-02 -3.3865E-03
S5 -5.1001E-02 -2.2644E-02 6.1584E-02 -2.3116E-01 5.0003E-01 -6.4511E-01 4.9101E-01 -2.0273E-01 3.4686E-02
S6 -3.8683E-02 3.0677E-02 -1.9523E-01 6.7200E-01 -1.3774E+00 1.7674E+00 -1.3618E+00 5.7854E-01 -1.0361E-01
S7 -2.9953E-02 8.1200E-03 -5.7600E-02 9.6701E-02 -7.1814E-02 -4.8274E-02 1.3391E-01 -9.6033E-02 2.4818E-02
S8 -3.6076E-02 -5.8777E-03 -5.7603E-03 -6.3980E-03 2.6691E-02 -4.5072E-02 3.8451E-02 -1.6891E-02 3.1389E-03
S9 -3.1289E-02 3.8697E-03 -1.0999E-01 2.6611E-01 -3.3815E-01 2.4676E-01 -1.0475E-01 2.3956E-02 -2.2656E-03
S10 5.2381E-03 -1.3135E-01 1.4996E-01 -9.9485E-02 3.5462E-02 -4.3585E-03 -9.0083E-04 3.2354E-04 -2.6996E-05
S11 5.4403E-02 -1.2832E-01 9.8852E-02 -5.4484E-02 1.8377E-02 -3.4052E-03 2.9904E-04 -4.9085E-06 -6.2043E-07
S12 -1.2086E-02 -8.6926E-03 -1.1065E-03 1.6824E-03 -6.6072E-04 1.4806E-04 -1.8092E-05 1.0056E-06 -1.3144E-08
S13 -2.4071E-01 8.6688E-02 -1.8716E-02 2.9854E-03 -3.7825E-04 3.6701E-05 -2.4561E-06 9.7564E-08 -1.7042E-09
S14 -2.1441E-01 9.6365E-02 -3.6275E-02 9.6890E-03 -1.6930E-03 1.8691E-04 -1.2500E-05 4.6113E-07 -7.1888E-09
表14
f1(mm) 4.27 f7(mm) -10.55
f2(mm) -11.88 f(mm) 4.72
f3(mm) -800.00 TTL(mm) 5.55
f4(mm) 18.53 ImgH(mm) 3.96
f5(mm) 198.34 HFOV(°) 39.9
f6(mm) 600.00    
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏 差。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出实施例6中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000009
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0284E-03 -1.6299E-02 5.4511E-02 -1.0832E-01 1.3008E-01 -9.7382E-02 4.4256E-02 -1.1223E-02 1.2139E-03
S2 -1.9666E-02 5.2658E-04 -2.8421E-03 2.8458E-02 -4.5964E-02 3.5568E-02 -1.4617E-02 2.8478E-03 -1.4886E-04
S3 -1.2079E-02 5.5879E-04 3.3208E-02 -5.6826E-02 8.4189E-02 -9.3011E-02 6.4344E-02 -2.4253E-02 3.8513E-03
S4 -5.9518E-03 1.5085E-03 -7.1610E-03 4.2960E-02 -1.0247E-01 1.1218E-01 -7.0819E-02 2.3787E-02 -3.3894E-03
S5 -5.1341E-02 -2.2871E-02 6.2408E-02 -2.3504E-01 5.1011E-01 -6.6030E-01 5.0424E-01 -2.0889E-01 3.5859E-02
S6 -3.8184E-02 3.0085E-02 -1.9022E-01 6.5051E-01 -1.3247E+00 1.6888E+00 -1.2928E+00 5.4567E-01 -9.7088E-02
S7 -2.8701E-02 7.6163E-03 -5.2886E-02 8.6911E-02 -6.3180E-02 -4.1574E-02 1.1289E-01 -7.9246E-02 2.0047E-02
S8 -3.2553E-02 -5.0381E-03 -4.6901E-03 -4.9484E-03 1.9609E-02 -3.1455E-02 2.5491E-02 -1.0637E-02 1.8777E-03
S9 -2.7618E-02 3.2091E-03 -8.5692E-02 1.9479E-01 -2.3255E-01 1.5943E-01 -6.3581E-02 1.3662E-02 -1.2139E-03
S10 5.6562E-03 -1.4739E-01 1.7486E-01 -1.2054E-01 4.4650E-02 -5.7026E-03 -1.2248E-03 4.5711E-04 -3.9634E-05
S11 5.7699E-02 -1.4016E-01 1.1119E-01 -6.3116E-02 2.1924E-02 -4.1837E-03 3.7837E-04 -6.3961E-06 -8.3259E-07
S12 -1.2651E-02 -9.3098E-03 -1.2124E-03 1.8861E-03 -7.5788E-04 1.7376E-04 -2.1723E-05 1.2353E-06 -1.6521E-08
S13 -2.5532E-01 9.4698E-02 -2.1057E-02 3.4592E-03 -4.5137E-04 4.5106E-05 -3.1089E-06 1.2718E-07 -2.2881E-09
S14 -2.2233E-01 1.0175E-01 -3.9005E-02 1.0609E-02 -1.8877E-03 2.1222E-04 -1.4453E-05 5.4291E-07 -8.6187E-09
表17
f1(mm) 4.31 f7(mm) -11.40
f2(mm) -11.91 f(mm) 4.73
f3(mm) -800.00 TTL(mm) 5.55
f4(mm) 17.74 ImgH(mm) 3.90
f5(mm) -800.00 HFOV(°) 39.4
f6(mm) 1240.00    
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图12D示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数, 其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出实施例7中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000010
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.0046E-03 -1.5738E-02 5.2020E-02 -1.0217E-01 1.2126E-01 -8.9729E-02 4.0304E-02 -1.0102E-02 1.0800E-03
S2 -1.9071E-02 5.0290E-04 -2.6730E-03 2.6357E-02 -4.1922E-02 3.1947E-02 -1.2928E-02 2.4806E-03 -1.2769E-04
S3 -1.1925E-02 5.4808E-04 3.2363E-02 -5.5023E-02 8.0993E-02 -8.8905E-02 6.1108E-02 -2.2885E-02 3.6107E-03
S4 -6.0815E-03 1.5580E-03 -7.4765E-03 4.5338E-02 -1.0931E-01 1.2097E-01 -7.7196E-02 2.6210E-02 -3.7751E-03
S5 -5.1541E-02 -2.3005E-02 6.2895E-02 -2.3733E-01 5.1608E-01 -6.6934E-01 5.1214E-01 -2.1257E-01 3.6562E-02
S6 -3.8835E-02 3.0858E-02 -1.9677E-01 6.7860E-01 -1.3937E+00 1.7918E+00 -1.3833E+00 5.8881E-01 -1.0565E-01
S7 -2.8820E-02 7.6637E-03 -5.3325E-02 8.7814E-02 -6.3969E-02 -4.2180E-02 1.1477E-01 -8.0735E-02 2.0466E-02
S8 -3.1825E-02 -4.8700E-03 -4.4826E-03 -4.6763E-03 1.8323E-02 -2.9061E-02 2.3285E-02 -9.6073E-03 1.6769E-03
S9 -2.6832E-02 3.0731E-03 -8.0885E-02 1.8122E-01 -2.1325E-01 1.4411E-01 -5.6648E-02 1.1998E-02 -1.0507E-03
S10 5.4307E-03 -1.3867E-01 1.6119E-01 -1.0889E-01 3.9520E-02 -4.9458E-03 -1.0408E-03 3.8064E-04 -3.2339E-05
S11 5.7709E-02 -1.4020E-01 1.1123E-01 -6.3143E-02 2.1935E-02 -4.1861E-03 3.7862E-04 -6.4009E-06 -8.3328E-07
S12 -1.2584E-02 -9.2361E-03 -1.1997E-03 1.8613E-03 -7.4592E-04 1.7056E-04 -2.1268E-05 1.2062E-06 -1.6089E-08
S13 -2.5398E-01 9.3955E-02 -2.0837E-02 3.4141E-03 -4.4432E-04 4.4285E-05 -3.0443E-06 1.2422E-07 -2.2288E-09
S14 -2.2273E-01 1.0203E-01 -3.9146E-02 1.0657E-02 -1.8979E-03 2.1356E-04 -1.4558E-05 5.4734E-07 -8.6969E-09
表20
f1(mm) 4.26 f7(mm) -12.19
f2(mm) -11.08 f(mm) 4.89
f3(mm) -933.76 TTL(mm) 5.57
f4(mm) 19.23 ImgH(mm) 3.98
f5(mm) -814.94 HFOV(°) 39.0
f6(mm) -753.04    
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图14D示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000011
Figure PCTCN2019081363-appb-000012
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1018E-03 -1.8076E-02 6.2572E-02 -1.2870E-01 1.5997E-01 -1.2397E-01 5.8313E-02 -1.5307E-02 1.7137E-03
S2 -2.1590E-02 6.0573E-04 -3.4256E-03 3.5939E-02 -6.0821E-02 4.9314E-02 -2.1234E-02 4.3348E-03 -2.3742E-04
S3 -1.3426E-02 6.5477E-04 4.1024E-02 -7.4010E-02 1.1560E-01 -1.3464E-01 9.8196E-02 -3.9021E-02 6.5326E-03
S4 -6.6773E-03 1.7925E-03 -9.0132E-03 5.7272E-02 -1.4469E-01 1.6779E-01 -1.1219E-01 3.9914E-02 -6.0239E-03
S5 -5.5673E-02 -2.5826E-02 7.3384E-02 -2.8780E-01 6.5042E-01 -8.7674E-01 6.9720E-01 -3.0076E-01 5.3764E-02
S6 -4.2722E-02 3.5604E-02 -2.3813E-01 8.6136E-01 -1.8554E+00 2.5020E+00 -2.0259E+00 9.0449E-01 -1.7023E-01
S7 -3.0828E-02 8.4784E-03 -6.1015E-02 1.0392E-01 -7.8293E-02 -5.3393E-02 1.5026E-01 -1.0932E-01 2.8661E-02
S8 -3.6240E-02 -5.9178E-03 -5.8127E-03 -6.4708E-03 2.7056E-02 -4.5792E-02 3.9154E-02 -1.7239E-02 3.2108E-03
S9 -3.4381E-02 4.4574E-03 -1.3280E-01 3.3682E-01 -4.4865E-01 3.4319E-01 -1.5271E-01 3.6611E-02 -3.6295E-03
S10 5.4387E-03 -1.3897E-01 1.6166E-01 -1.0928E-01 3.9693E-02 -4.9711E-03 -1.0469E-03 3.8314E-04 -3.2575E-05
S11 6.0162E-02 -1.4923E-01 1.2089E-01 -7.0070E-02 2.4853E-02 -4.8429E-03 4.4724E-04 -7.7199E-06 -1.0261E-06
S12 -1.4090E-02 -1.0943E-02 -1.5040E-03 2.4691E-03 -1.0470E-03 2.5333E-04 -3.3426E-05 2.0060E-06 -2.8312E-08
S13 -2.7890E-01 1.0811E-01 -2.5126E-02 4.3139E-03 -5.8832E-04 6.1446E-05 -4.4263E-06 1.8926E-07 -3.5585E-09
S14 -2.3539E-01 1.1085E-01 -4.3720E-02 1.2235E-02 -2.2401E-03 2.5912E-04 -1.8158E-05 7.0183E-07 -1.1464E-08
表23
f1(mm) 4.13 f7(mm) -9.85
f2(mm) -10.92 f(mm) 4.73
f3(mm) -2168.21 TTL(mm) 5.50
f4(mm) 19.41 ImgH(mm) 3.93
f5(mm) 2811.51 HFOV(°) 39.3
f6(mm) -2919.15    
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图16D示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像系统。图17示出了根据本申请实施例9的光学成像系统的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表25示出了实施例9的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出实施例9中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000013
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.8068E-03 7.5248E-03 -1.6147E-02 1.3142E-02 -1.3955E-03 -7.0941E-03 5.9394E-03 -2.1178E-03 2.9329E-04
S2 -1.8610E-02 -6.6367E-02 1.9966E-01 -2.8511E-01 2.6322E-01 -1.6768E-01 7.2354E-02 -1.9026E-02 2.2892E-03
S3 8.1130E-04 -1.1473E-01 3.9744E-01 -6.7525E-01 7.5065E-01 -5.6537E-01 2.8140E-01 -8.3345E-02 1.1088E-02
S4 6.4243E-03 -9.0213E-02 3.2255E-01 -6.7759E-01 9.4292E-01 -9.6870E-01 6.9445E-01 -3.0277E-01 5.8330E-02
S5 -6.4632E-02 1.2073E-03 -2.8315E-02 1.3005E-01 -3.0589E-01 3.0594E-01 -1.0325E-01 -2.4836E-02 1.6851E-02
S6 -6.1707E-02 5.4952E-02 -1.7500E-01 4.6778E-01 -7.3426E-01 6.8590E-01 -3.3742E-01 6.9546E-02 1.2539E-04
S7 -2.7092E-02 -3.2222E-01 1.5854E+00 -4.7218E+00 8.7711E+00 -1.0276E+01 7.3825E+00 -2.9725E+00 5.1456E-01
S8 -7.7301E-02 1.2666E-01 -5.0398E-01 1.1211E+00 -1.5215E+00 1.2806E+00 -6.5188E-01 1.8343E-01 -2.1807E-02
S9 -6.2409E-03 -3.6601E-02 -4.2790E-03 4.9658E-02 -7.1684E-02 5.0485E-02 -1.9415E-02 3.9118E-03 -3.2158E-04
S10 3.8416E-02 -1.4035E-01 1.4490E-01 -9.7589E-02 3.7964E-02 -7.6146E-03 5.8018E-04 2.6593E-05 -4.7642E-06
S11 4.8442E-02 -2.0475E-01 2.2051E-01 -1.4445E-01 5.7081E-02 -1.3456E-02 1.8480E-03 -1.3597E-04 4.1152E-06
S12 1.1030E-02 -1.0341E-01 9.4638E-02 -5.0814E-02 1.6966E-02 -3.5905E-03 4.7468E-04 -3.6132E-05 1.2169E-06
S13 -2.8020E-01 1.0875E-01 -2.5504E-02 4.5034E-03 -6.5680E-04 7.6867E-05 -6.3856E-06 3.1803E-07 -6.9792E-09
S14 -3.1008E-01 1.6751E-01 -6.9035E-02 2.0116E-02 -3.9157E-03 4.9094E-04 -3.7907E-05 1.6392E-06 -3.0398E-08
表26
f1(mm) 3.75 f7(mm) -5.77
f2(mm) -6.80 f(mm) 5.02
f3(mm) 72.64 TTL(mm) 5.50
f4(mm) 14.57 ImgH(mm) 3.93
f5(mm) 91.95 HFOV(°) 37.8
f6(mm) -412.30    
表27
图18A示出了实施例9的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图18B示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图18D示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像系统能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像系统。图19示出了根据本申请实施例10的光学成像系统的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。第七透镜E7具有负光焦度,其物侧面S13为凸面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表28示出了实施例10的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表30给出实施例10中各透镜的有效焦距f1至f7、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S17在光轴上的距离TTL、成像面S17上有效像素区域对角线长的一半ImgH以及光学成像系统的最大半视场角HFOV。
Figure PCTCN2019081363-appb-000014
Figure PCTCN2019081363-appb-000015
表28
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -5.3425E-03 1.7512E-02 -3.6915E-02 4.2809E-02 -2.6666E-02 4.4795E-03 4.1227E-03 -2.5128E-03 4.1215E-04
S2 -1.3884E-02 -1.5941E-02 3.0456E-03 7.0547E-02 -1.4259E-01 1.3727E-01 -7.4265E-02 2.1636E-02 -2.6308E-03
S3 -8.0012E-03 -1.5312E-02 4.0908E-02 -2.1783E-02 1.9175E-02 -4.8369E-02 5.6962E-02 -2.9696E-02 5.9448E-03
S4 4.2149E-03 -7.4112E-02 2.0069E-01 -3.3088E-01 3.3173E-01 -2.0350E-01 7.7888E-02 -2.8536E-02 8.0494E-03
S5 -5.7006E-02 4.2076E-02 -3.4714E-01 1.0046E+00 -1.7561E+00 1.9397E+00 -1.3049E+00 4.8041E-01 -7.3382E-02
S6 -3.9055E-02 5.7255E-02 -3.0872E-01 9.6107E-01 -1.9128E+00 2.4870E+00 -1.9811E+00 8.7411E-01 -1.6243E-01
S7 -4.3094E-02 1.4642E-01 -4.5066E-01 6.6149E-01 -4.1678E-01 -1.1509E-01 3.4629E-01 -2.0233E-01 4.1539E-02
S8 -3.7901E-02 3.0069E-02 -1.5557E-01 3.6382E-01 -5.3612E-01 4.7676E-01 -2.4827E-01 6.8580E-02 -7.5247E-03
S9 -2.7527E-02 -8.4112E-02 9.4274E-02 -1.0916E-02 -1.2211E-01 1.5340E-01 -8.6041E-02 2.3574E-02 -2.5205E-03
S10 2.4219E-02 -2.1181E-01 3.0099E-01 -2.5846E-01 1.3635E-01 -4.2887E-02 7.6846E-03 -6.9985E-04 2.3171E-05
S11 5.7888E-02 -1.4108E-01 1.1494E-01 -6.5908E-02 2.3348E-02 -4.7421E-03 5.1823E-04 -2.5380E-05 2.3492E-07
S12 -9.8426E-03 -1.7093E-02 2.1781E-03 2.9001E-03 -2.1761E-03 7.4625E-04 -1.3921E-04 1.3501E-05 -5.3043E-07
S13 -2.5498E-01 8.6414E-02 -1.2425E-02 -2.6859E-04 4.1418E-04 -7.2450E-05 6.2807E-06 -2.8255E-07 5.2614E-09
S14 -2.2240E-01 9.8726E-02 -3.6956E-02 9.9606E-03 -1.7932E-03 2.0829E-04 -1.4922E-05 5.9886E-07 -1.0302E-08
表29
f1(mm) 4.16 f7(mm) -9.47
f2(mm) -12.55 f(mm) 4.58
f3(mm) 502.00 TTL(mm) 5.50
f4(mm) 25.95 ImgH(mm) 3.93
f5(mm) 231.90 HFOV(°) 40.1
f6(mm) -401.60    
表30
图20A示出了实施例10的光学成像系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图20B示出了实施例10的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像系统的畸变曲线,其表示不同像高处对应的畸变大小值。图20D示出了实施例10的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的 偏差。根据图20A至图20D可知,实施例10所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9 10
f/EPD 1.69 1.70 1.69 1.69 1.69 1.69 1.75 1.69 1.79 1.64
f*tan(HFOV)(mm) 3.92 3.93 3.93 3.92 3.94 3.88 3.96 3.87 3.89 3.85
T45*f*tan(HFOV)(mm 2) 1.71 1.73 1.69 1.75 1.77 1.89 1.98 1.65 3.08 0.85
TTL/ImgH 1.40 1.40 1.40 1.40 1.40 1.42 1.40 1.40 1.40 1.40
f4/f 3.66 3.55 3.82 3.82 3.93 3.75 3.93 4.11 2.90 5.67
f7/f -2.23 -2.30 -2.18 -2.04 -2.24 -2.41 -2.49 -2.08 -1.15 -2.07
f1/f+f2/f -1.35 -1.30 -1.32 -1.09 -1.61 -1.61 -1.39 -1.44 -0.61 -1.83
R1/R2 0.24 0.23 0.24 0.22 0.26 0.26 0.25 0.25 0.16 0.25
R4/R3 0.41 0.40 0.43 0.37 0.45 0.46 0.42 0.41 0.21 0.46
(R5+R6)/(R13+R14) 1.61 1.60 1.60 1.56 1.63 1.74 1.67 1.78 1.31 1.81
CT1/(CT2+CT3) 1.71 1.73 1.71 1.65 1.67 1.72 1.74 1.73 1.83 1.75
(CT7+CT6)/(CT5+CT4) 1.68 1.74 1.55 1.45 1.46 1.71 1.75 1.47 1.07 1.46
|f567/f1234| 2.00 1.86 2.07 2.22 2.47 2.43 2.44 2.14 1.34 2.13
DT31/∑AT 0.88 0.86 0.88 0.87 0.87 0.87 0.83 0.87 0.66 0.90
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第四透镜具有正光焦度;
    所述第五透镜具有光焦度;
    所述第六透镜具有光焦度;
    所述第七透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述光学成像系统的总有效焦距f与所述光学系统的最大半视场角HFOV满足3.8mm<f*TAN(HFOV)<4.5mm。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45、所述光学成像系统的总有效焦距f与所述光学系统的最大半视场角HFOV满足0.85mm 2≤T45*f*TAN(HFOV)≤3.1mm 2
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2与所述光学成像系统的总有效焦距f满足-2<f1/f+f2/f<-0.5。
  4. 根据权利要求3所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足2.5≤f4/f<6。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第七透镜的有效焦距f7与所述光学成像系统的总有效焦距f满足-2.5<f7/f<-1。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.1<R1/R2<0.3。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.2<R4/R3<0.5。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜的物侧面的曲率半径R5,所述第三透镜的像侧面的曲率半径R6,所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1<(R5+R6)/(R13+R14)<2。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1,所述第二透镜在所述光轴上的中心厚度CT2和所述第三透镜在所述光轴上的中心厚度CT3满足1.5<CT1/(CT2+CT3)<2。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4,所述第五透镜在所述光轴上的中心厚度CT5,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7满足1≤(CT7+CT6)/(CT5+CT4)<2。
  11. 根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的组合焦距f1234与所述第五透镜、所述第六透镜和所述第七透镜的组合焦距f567满足1<|f567/f1234|<2.5。
  12. 根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述第三透镜的物侧面的最大有效半径DT31与所述第一透镜至所述第七透镜中任意相邻两透镜在所述光轴上的间隔距离的总和∑AT满足0.5<DT31/∑AT<1。
  13. 根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤1.8。
  14. 根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
  15. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜具有光焦度,其物侧面为凸面,像侧面为凹面;
    所述第四透镜具有正光焦度;
    所述第五透镜具有光焦度;
    所述第六透镜具有光焦度;
    所述第七透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足2.5≤f4/f<6。
  16. 根据权利要求15所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1、所述第二透镜的有效焦距f2与所述光学成像系统的总有效焦距f满足-2<f1/f+f2/f<-0.5。
  17. 根据权利要求16所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.1<R1/R2<0.3。
  18. 根据权利要求16所述的光学成像系统,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.2<R4/R3<0.5。
  19. 根据权利要求15所述的光学成像系统,其特征在于,所述第三透镜的物侧面的曲率半径R5,所述第三透镜的像侧面的曲率半径R6,所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足1<(R5+R6)/(R13+R14)<2。
  20. 根据权利要求19所述的光学成像系统,其特征在于,所述第七透镜的有效焦距f7与所述光学成像系统的总有效焦距f满足-2.5<f7/f<-1。
  21. 根据权利要求15所述的光学成像系统,其特征在于,所述第三透镜的物侧面的最大有效半径DT31与所述第一透镜至所述第七透镜中任意相邻两透镜在所述光轴上的间隔距离的总和∑AT满足0.5 <DT31/∑AT<1。
  22. 根据权利要求21所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1,所述第二透镜在所述光轴上的中心厚度CT2和所述第三透镜在所述光轴上的中心厚度CT3满足1.5<CT1/(CT2+CT3)<2。
  23. 根据权利要求21所述的光学成像系统,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4,所述第五透镜在所述光轴上的中心厚度CT5,所述第六透镜在所述光轴上的中心厚度CT6与所述第七透镜在所述光轴上的中心厚度CT7满足1≤(CT7+CT6)/(CT5+CT4)<2。
  24. 根据权利要求15所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的组合焦距f1234与所述第五透镜、所述第六透镜和所述第七透镜的组合焦距f567满足1<|f567/f1234|<2.5。
  25. 根据权利要求15所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45、所述光学成像系统的总有效焦距f与所述光学系统的最大半视场角HFOV满足0.85mm 2≤T45*f*TAN(HFOV)≤3.1mm 2
  26. 根据权利要求25所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学系统的最大半视场角HFOV满足3.8mm<f*TAN(HFOV)<4.5mm。
  27. 根据权利要求15至26中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤1.8。
  28. 根据权利要求15至26中任一项所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
PCT/CN2019/081363 2018-07-09 2019-04-04 光学成像系统 WO2020010879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810746763.9 2018-07-09
CN201810746763.9A CN108873256B (zh) 2018-07-09 2018-07-09 光学成像系统

Publications (1)

Publication Number Publication Date
WO2020010879A1 true WO2020010879A1 (zh) 2020-01-16

Family

ID=64300357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081363 WO2020010879A1 (zh) 2018-07-09 2019-04-04 光学成像系统

Country Status (2)

Country Link
CN (2) CN108873256B (zh)
WO (1) WO2020010879A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873256B (zh) * 2018-07-09 2020-04-07 浙江舜宇光学有限公司 光学成像系统
CN109358415B (zh) * 2018-12-24 2024-04-09 浙江舜宇光学有限公司 光学成像镜头
CN109828361B (zh) * 2018-12-31 2021-05-04 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109633872A (zh) * 2019-01-03 2019-04-16 中国科学院福建物质结构研究所 小视场紫外物镜光学系统、紫外物镜、紫外探测器
CN109613684A (zh) * 2019-02-18 2019-04-12 浙江舜宇光学有限公司 光学成像镜头
CN110361835B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110361838B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110361836B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110596869B (zh) * 2019-08-16 2021-04-06 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110456489A (zh) * 2019-09-19 2019-11-15 浙江舜宇光学有限公司 光学成像镜头
WO2021217663A1 (zh) * 2020-04-30 2021-11-04 江西晶超光学有限公司 光学系统、镜头模组和电子设备
KR102479779B1 (ko) 2020-06-05 2022-12-21 삼성전기주식회사 촬상 광학계
CN112904536B (zh) * 2021-02-22 2022-11-08 浙江舜宇光学有限公司 光学成像系统
CN115166937B (zh) * 2022-06-29 2024-01-09 江西欧菲光学有限公司 光学系统、镜头模组及电子设备
CN115390225B (zh) * 2022-10-28 2023-03-24 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取系统组
CN204188865U (zh) * 2014-03-20 2015-03-04 株式会社光学逻辑 摄像镜头
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN106154513A (zh) * 2015-04-16 2016-11-23 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN108873256A (zh) * 2018-07-09 2018-11-23 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406862B2 (ja) * 1999-05-25 2003-05-19 ペンタックス株式会社 リアフォーカス式中望遠レンズ
US6498687B1 (en) * 1999-10-06 2002-12-24 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
JP2015028586A (ja) * 2013-07-02 2015-02-12 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP6393874B2 (ja) * 2014-02-28 2018-09-26 カンタツ株式会社 撮像レンズ
CN107797244B (zh) * 2017-10-30 2020-05-29 瑞声光学解决方案私人有限公司 摄像光学镜头
CN208636558U (zh) * 2018-07-09 2019-03-22 浙江舜宇光学有限公司 光学成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886720U (zh) * 2012-07-06 2013-04-17 大立光电股份有限公司 光学影像拾取系统组
CN204188865U (zh) * 2014-03-20 2015-03-04 株式会社光学逻辑 摄像镜头
CN105301746A (zh) * 2014-06-25 2016-02-03 先进光电科技股份有限公司 光学成像系统
CN106154513A (zh) * 2015-04-16 2016-11-23 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN108873256A (zh) * 2018-07-09 2018-11-23 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
CN108873256A (zh) 2018-11-23
CN110703412B (zh) 2021-06-18
CN108873256B (zh) 2020-04-07
CN110703412A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2020010879A1 (zh) 光学成像系统
WO2021073275A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019233160A1 (zh) 光学成像镜片组
WO2020010878A1 (zh) 光学成像系统
WO2020019794A1 (zh) 光学成像镜头
WO2019105139A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020024633A1 (zh) 光学成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020038134A1 (zh) 光学成像系统
WO2020199573A1 (zh) 摄像透镜组
WO2019192180A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019091170A1 (zh) 摄像透镜组
WO2019210672A1 (zh) 光学成像系统
WO2019228064A1 (zh) 成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019114366A1 (zh) 光学成像镜头
WO2020119146A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020073702A1 (zh) 光学成像镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833939

Country of ref document: EP

Kind code of ref document: A1