WO2020199573A1 - 摄像透镜组 - Google Patents

摄像透镜组 Download PDF

Info

Publication number
WO2020199573A1
WO2020199573A1 PCT/CN2019/114315 CN2019114315W WO2020199573A1 WO 2020199573 A1 WO2020199573 A1 WO 2020199573A1 CN 2019114315 W CN2019114315 W CN 2019114315W WO 2020199573 A1 WO2020199573 A1 WO 2020199573A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
lens group
imaging lens
object side
Prior art date
Application number
PCT/CN2019/114315
Other languages
English (en)
French (fr)
Inventor
戴付建
张凯元
张伊
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US17/043,706 priority Critical patent/US20220050268A1/en
Publication of WO2020199573A1 publication Critical patent/WO2020199573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • the present application relates to an imaging lens group, and more specifically, to an imaging lens group including eight lenses.
  • the present application provides a camera lens assembly that is applicable to portable electronic products and can at least solve or partially solve at least one of the above-mentioned shortcomings in the prior art.
  • the present application provides such an imaging lens group, which includes in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a fourth lens, and a fifth lens with refractive power
  • the sixth lens, the seventh lens and the eighth lens wherein the first lens, the fourth lens, the sixth lens and the seventh lens may have positive refractive power; the eighth lens may have negative refractive power.
  • both the image side surface of the sixth lens and the object side surface of the seventh lens are convex surfaces.
  • the total effective focal length f of the imaging lens group and the effective focal length f1 of the first lens may satisfy 0.8 ⁇ f/f1 ⁇ 1.2.
  • the distance between half of the diagonal length of the effective pixel area ImgH on the imaging surface of the imaging lens group and the object side of the first lens to the imaging surface of the imaging lens group on the optical axis TTL may satisfy TTL/ImgH ⁇ 1.6. Further, the distance TTL between the half diagonal length of the effective pixel area ImgH on the imaging surface of the imaging lens group and the object side surface of the first lens to the imaging surface of the imaging lens group on the optical axis may satisfy TTL/ImgH ⁇ 1.4.
  • the total effective focal length f of the imaging lens group and the maximum half-field angle Semi-FOV of the imaging lens group may satisfy f ⁇ tan(Semi-FOV)>6.0 mm.
  • the total effective focal length f of the imaging lens group and the effective focal length f7 of the seventh lens may satisfy 0.4 ⁇ f/f7 ⁇ 1.2.
  • the effective focal length f2 of the second lens and the effective focal length f5 of the fifth lens may satisfy 0.5 ⁇ f2/f5 ⁇ 1.2.
  • the effective focal length f3 of the third lens and the effective focal length f4 of the fourth lens may satisfy 0.3 ⁇ f/f3+f/f4 ⁇ 0.7.
  • the effective focal length f6 of the sixth lens and the effective focal length f8 of the eighth lens may satisfy -8.0 ⁇ f6/f8 ⁇ -3.0.
  • the total effective focal length f of the imaging lens group, the air distance T67 between the sixth lens and the seventh lens on the optical axis, and the air distance T78 between the seventh lens and the eighth lens on the optical axis may satisfy 2.5 ⁇ f/(T67+T78) ⁇ 6.
  • the total effective focal length f of the imaging lens group and the air distance T56 between the fifth lens and the sixth lens on the optical axis may satisfy 11 ⁇ f/T56 ⁇ 18.
  • the minimum thickness ET7min of the seventh lens in a direction parallel to the optical axis and the central thickness CT7 of the seventh lens on the optical axis may satisfy 0.5 ⁇ ET7min/CT7 ⁇ 1.0.
  • the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface of the third lens may satisfy 0.45 ⁇ R5/R6 ⁇ 1.2.
  • the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface of the second lens may satisfy 0 ⁇ (R3-R4)/(R3+R4) ⁇ 0.25.
  • the total effective focal length f of the imaging lens group, the radius of curvature R12 of the image side surface of the sixth lens, and the radius of curvature R13 of the object side surface of the seventh lens may satisfy 0.5 ⁇ f/
  • the total effective focal length f of the imaging lens group and the radius of curvature R15 of the object side surface of the eighth lens may satisfy -3.5 ⁇ f/R15 ⁇ -1.5.
  • the distance TTL from the object side surface of the first lens to the imaging surface of the imaging lens group on the optical axis and the entrance pupil diameter EPD of the imaging lens group may satisfy 2.1 ⁇ TTL/EPD ⁇ 2.5.
  • the total effective focal length f of the imaging lens group, the central thickness CT3 of the third lens on the optical axis, the central thickness CT4 of the fourth lens on the optical axis, and the central thickness CT5 of the fifth lens on the optical axis It can satisfy 5 ⁇ f/(CT3+CT4+CT5) ⁇ 9.
  • This application uses eight lenses. By reasonably distributing the refractive power, surface shape, center thickness of each lens, and on-axis distance between each lens, the above-mentioned imaging lens group has a super large image surface, ultra thin, At least one beneficial effect such as large aperture and good image quality.
  • FIG. 1 shows a schematic structural diagram of an imaging lens group according to Embodiment 1 of the present application
  • 2A to 2D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Embodiment 1;
  • Fig. 3 shows a schematic structural diagram of an imaging lens group according to Embodiment 2 of the present application
  • 4A to 4D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 2;
  • FIG. 5 shows a schematic structural diagram of an imaging lens group according to Embodiment 3 of the present application.
  • 6A to 6D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an imaging lens group according to Embodiment 4 of the present application.
  • 8A to 8D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an imaging lens group according to Embodiment 5 of the present application.
  • 10A to 10D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 5;
  • FIG. 11 shows a schematic structural diagram of an imaging lens group according to Embodiment 6 of the present application.
  • 12A to 12D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 6;
  • FIG. 13 shows a schematic structural diagram of an imaging lens group according to Embodiment 7 of the present application.
  • 14A to 14D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 7;
  • FIG. 15 shows a schematic structural diagram of an imaging lens group according to Embodiment 8 of the present application.
  • 16A to 16D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 8;
  • FIG. 17 shows a schematic structural diagram of an imaging lens group according to Embodiment 9 of the present application.
  • 18A to 18D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 9;
  • FIG. 19 shows a schematic structural diagram of an imaging lens group according to Embodiment 10 of the present application.
  • 20A to 20D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 10;
  • FIG. 21 shows a schematic structural diagram of an imaging lens group according to Embodiment 11 of the present application.
  • 22A to 22D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the imaging lens group of Example 11;
  • FIG. 23 shows a schematic structural diagram of an imaging lens group according to Embodiment 12 of the present application.
  • 24A to 24D respectively show the axial chromatic aberration curve, astigmatism curve, distortion curve, and chromatic aberration curve of magnification of the imaging lens group of Example 12.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the imaging lens group according to the exemplary embodiment of the present application may include, for example, eight lenses having refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a second lens. Seven lens and eighth lens.
  • the eight lenses are arranged in order from the object side to the image side along the optical axis. In the first lens to the eighth lens, any two adjacent lenses may have an air gap.
  • the first lens may have positive refractive power; the second lens may have positive refractive power or negative refractive power; the third lens may have positive refractive power or negative refractive power; the fourth lens may have positive refractive power
  • the fifth lens has positive refractive power or negative refractive power; the sixth lens may have positive refractive power; the seventh lens may have positive refractive power; the eighth lens may have negative refractive power.
  • the object side surface of the first lens may be a convex surface
  • the image side surface may be a concave surface
  • the image side surface of the fourth lens may be convex.
  • the image side surface of the sixth lens may be convex.
  • the object side surface of the seventh lens may be a convex surface.
  • the imaging lens group of the present application may satisfy the conditional expression TTL/ImgH ⁇ 1.6, where ImgH is half the diagonal length of the effective pixel area on the imaging surface of the imaging lens group, and TTL is the length of the first lens.
  • TTL and ImgH may further satisfy 0.5 ⁇ TTL/ImgH ⁇ 1.6, for example, 1.07 ⁇ TTL/ImgH ⁇ 1.56.
  • TTL and ImgH can satisfy TTL/ImgH ⁇ 1.4 to achieve better ultra-thinness and high pixel characteristics of the lens group.
  • the imaging lens group of the present application can satisfy the conditional formula f ⁇ tan(Semi-FOV)>6.0mm, where f is the total effective focal length of the imaging lens group, and Semi-FOV is the maximum of the imaging lens group. Half field of view. More specifically, f and Semi-FOV can further satisfy 7.0mm ⁇ f ⁇ tan(Semi-FOV) ⁇ 9.0mm, for example, 7.15mm ⁇ f ⁇ tan(Semi-FOV) ⁇ 8.01mm. It satisfies the conditional formula f ⁇ tan(Semi-FOV)>6.0mm, which can realize the ultra-large image surface and ultra-thin characteristics of the imaging lens group.
  • the imaging lens group of the present application may satisfy the conditional expression 0.8 ⁇ f/f1 ⁇ 1.2, where f is the total effective focal length of the imaging lens group, and f1 is the effective focal length of the first lens. More specifically, f and f1 may further satisfy 0.88 ⁇ f/f1 ⁇ 1.12.
  • the first lens can have a reasonable positive refractive power and balance the aberrations generated by the optical element with negative refractive power at the rear end, thereby obtaining a good Image quality.
  • the imaging lens group of the present application may satisfy the conditional expression 0.4 ⁇ f/f7 ⁇ 1.2, where f is the total effective focal length of the imaging lens group, and f7 is the effective focal length of the seventh lens.
  • f and f7 may satisfy 0.45 ⁇ f/f7 ⁇ 1.08.
  • the seventh lens can have a reasonable positive refractive power while balancing the aberrations generated by the optical element with negative refractive power at the front end to achieve reduction Aberration, the purpose of improving image quality.
  • the imaging lens group of the present application may satisfy the conditional formula 0.5 ⁇ f2/f5 ⁇ 1.2, where f2 is the effective focal length of the second lens, and f5 is the effective focal length of the fifth lens. More specifically, f2 and f5 may further satisfy 0.57 ⁇ f2/f5 ⁇ 1.14. Satisfying the conditional formula 0.5 ⁇ f2/f5 ⁇ 1.2, the contribution of spherical aberration and coma of the second lens and the fifth lens can be restrained reasonably, and after balancing, the sensitivity of the two can be at a reasonable level.
  • the second lens may have negative refractive power
  • the fifth lens may have negative refractive power.
  • the imaging lens group of the present application may satisfy the conditional expression 0 ⁇ (R3-R4)/(R3+R4) ⁇ 0.25, where R3 is the curvature radius of the object side surface of the second lens, and R4 is the first lens.
  • R3 and R4 may further satisfy 0.18 ⁇ (R3-R4)/(R3+R4) ⁇ 0.23.
  • the coma contribution of the second lens can be controlled within a reasonable range, so that the image quality of the on-axis field of view and off-axis field of view There will be no obvious degradation due to the contribution of coma.
  • the object side surface of the second lens may be a convex surface, and the image side surface may be a concave surface.
  • the imaging lens group of the present application may satisfy the conditional expression 0.3 ⁇ f/f3+f/f4 ⁇ 0.7, where f3 is the effective focal length of the third lens, and f4 is the effective focal length of the fourth lens. More specifically, f, f3, and f4 may further satisfy 0.36 ⁇ f/f3+f/f4 ⁇ 0.66.
  • the imaging lens group of the present application may satisfy the conditional expression -8.0 ⁇ f6/f8 ⁇ -3.0, where f6 is the effective focal length of the sixth lens, and f8 is the effective focal length of the eighth lens. More specifically, f6 and f8 may further satisfy -7.51 ⁇ f6/f8 ⁇ -3.11. By reasonably constraining the ratio of the effective focal length of the sixth lens to the effective focal length of the eighth lens, the contribution of field curvature of the sixth lens and the eighth lens can be reasonably controlled to make the balance in a reasonable horizontal state.
  • the imaging lens group of the present application may satisfy the conditional expression 2.1 ⁇ TTL/EPD ⁇ 2.5, where TTL is the distance from the object side surface of the first lens to the imaging surface of the imaging lens group on the optical axis, and EPD Is the entrance pupil diameter of the imaging lens group. More specifically, TTL and EPD can further satisfy 2.21 ⁇ TTL/EPD ⁇ 2.38. Satisfying the conditional expression 2.1 ⁇ TTL/EPD ⁇ 2.5 can make the imaging lens group have both ultra-thin and large aperture characteristics.
  • the imaging lens group of the present application may satisfy the conditional expression 2.5 ⁇ f/(T67+T78) ⁇ 6, where f is the total effective focal length of the imaging lens group, and T67 is the sixth lens and the seventh lens
  • the air gap on the optical axis, T78 is the air gap between the seventh lens and the eighth lens on the optical axis.
  • f, T67 and T78 may satisfy 2.91 ⁇ f/(T67+T78) ⁇ 5.66. Satisfying the conditional expression 2.5 ⁇ f/(T67+T78) ⁇ 6, the field curvature generated by the front lens of the imaging lens group can be balanced with the field curvature generated by the rear lens, so that the imaging lens group has a reasonable curvature of field.
  • the imaging lens group of the present application may satisfy the conditional expression 11 ⁇ f/T56 ⁇ 18, where f is the total effective focal length of the imaging lens group, and T56 is the fifth lens and the sixth lens on the optical axis Air gap.
  • f and T56 may satisfy 11.14 ⁇ f/T56 ⁇ 16.64.
  • the imaging lens group of the present application can satisfy the conditional formula 5 ⁇ f/(CT3+CT4+CT5) ⁇ 9, where f is the total effective focal length of the imaging lens group, and CT3 is the third lens in the light
  • CT3 is the third lens in the light
  • CT4 is the center thickness of the fourth lens on the optical axis
  • CT5 is the center thickness of the fifth lens on the optical axis.
  • f, CT3, CT4, and CT5 may satisfy 5.37 ⁇ f/(CT3+CT4+CT5) ⁇ 8.25.
  • the imaging lens group of the present application may satisfy the conditional formula 0.5 ⁇ ET7min/CT7 ⁇ 1.0, where ET7min is the minimum thickness of the seventh lens in the direction parallel to the optical axis, and CT7 is the seventh lens in the direction parallel to the optical axis.
  • ET7min and CT7 can satisfy 0.26 ⁇ ET7min/CT7 ⁇ 0.91. Satisfying the conditional formula 0.5 ⁇ ET7min/CT7 ⁇ 1.0 can ensure the feasibility of the seventh lens in structure and ensure its good processability.
  • the imaging lens group of the present application may satisfy the conditional expression 0.45 ⁇ R5/R6 ⁇ 1.2, where R5 is the radius of curvature of the object side surface of the third lens, and R6 is the radius of curvature of the image side surface of the third lens . More specifically, R5 and R6 may further satisfy 0.48 ⁇ R5/R6 ⁇ 1.04. Satisfying the conditional expression 0.45 ⁇ R5/R6 ⁇ 1.2, which can effectively restrict the shape of the third lens, and effectively control the aberration contribution rate of the object side and the image side of the third lens to effectively balance the aberrations related to the system and the aperture band. In turn, the imaging quality of the system can be effectively improved.
  • the object side surface of the third lens may be a convex surface
  • the image side surface may be a concave surface.
  • the imaging lens group of the present application may satisfy the conditional expression 0.5 ⁇ f/
  • the radius of curvature of the side surface, R13 is the radius of curvature of the object side surface of the seventh lens.
  • f, R12, and R13 may further satisfy 0.80 ⁇ f/
  • the third-order astigmatism of the sixth lens and the seventh lens has been controlled to a reasonable degree Within the range, the effect of macro high resolution is realized.
  • the imaging lens group of the present application may satisfy the conditional expression -3.5 ⁇ f/R15 ⁇ -1.5, where f is the total effective focal length of the imaging lens group, and R15 is the curvature radius of the object side of the eighth lens .
  • f and R15 may satisfy -3.25 ⁇ f/R15 ⁇ -1.83. Satisfying the conditional formula -3.5 ⁇ f/R15 ⁇ -1.5, the contribution of field curvature of the object side of the eighth lens can be controlled in a reasonable range, so that the field curvature generated by the rear lens group can be balanced.
  • the object side surface of the eighth lens may be a concave surface.
  • the aforementioned imaging lens group may further include at least one diaphragm.
  • the diaphragm can be set at an appropriate position as required, for example, between the object side and the first lens.
  • the aforementioned imaging lens group may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface.
  • the imaging lens group according to the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned eight lenses.
  • the volume of the imaging lens can be effectively reduced, the sensitivity of the imaging lens is reduced, and the performance of the imaging lens is improved.
  • Processability makes the camera lens group more conducive to production and processing and can be applied to portable electronic products.
  • This application proposes an eight-piece lens solution.
  • the camera lens group has the characteristics of large image area, ultra-thin, large aperture, good imaging quality, etc., and can match higher-pixel sensors and stronger image processing technology.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens
  • At least one of the object side surface and the image side surface of each of the eighth lens and the eighth lens is an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the center of the lens to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatic aberration.
  • the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens, and the eighth lens are aspherical lenses surface.
  • the number of lenses constituting the imaging lens group can be changed to obtain the results and advantages described in this specification.
  • the imaging lens group is not limited to including eight lenses. If necessary, the imaging lens group may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an imaging lens group according to Embodiment 1 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 1 shows the basic parameter table of the imaging lens group of Example 1, wherein the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • f is the total effective focal length of the imaging lens group
  • TTL is the distance from the object side S1 of the first lens E1 to the imaging surface S19 of the imaging lens group on the optical axis.
  • the object side and image side of any one of the first lens E1 to the eighth lens E8 are aspherical, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h in the direction parallel to the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1-S16 in Embodiment 1.
  • FIG. 2A shows the axial chromatic aberration curve of the imaging lens group of Embodiment 1, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 2B shows the astigmatism curve of the imaging lens group of Example 1, which represents meridional field curvature and sagittal field curvature.
  • FIG. 2C shows the distortion curve of the imaging lens group of Embodiment 1, which represents the distortion magnitude values corresponding to different field angles.
  • 2D shows the chromatic aberration curve of magnification of the imaging lens group of Example 1, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 2A to 2D, it can be seen that the imaging lens group given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an imaging lens group according to Embodiment 2 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has positive refractive power
  • the object side surface S11 is concave
  • the image side surface S12 is convex.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 3 shows the basic parameter table of the imaging lens group of Example 2, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 4 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 4A shows the axial chromatic aberration curve of the imaging lens group of Embodiment 2, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 4B shows the astigmatism curve of the imaging lens group of Example 2, which represents meridional field curvature and sagittal field curvature.
  • FIG. 4C shows a distortion curve of the imaging lens group of Embodiment 2, which represents the distortion magnitude values corresponding to different angles of view.
  • 4D shows the chromatic aberration curve of magnification of the imaging lens group of Example 2, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 4A to 4D, it can be seen that the imaging lens group given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an imaging lens group according to Embodiment 3 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 5 shows the basic parameter table of the imaging lens group of Example 3, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 6 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 6A shows the axial chromatic aberration curve of the imaging lens group of Example 3, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 6B shows the astigmatism curve of the imaging lens group of Example 3, which represents the meridional field curvature and the sagittal field curvature.
  • FIG. 6C shows the distortion curve of the imaging lens group of Example 3, which represents the distortion magnitude values corresponding to different field angles.
  • 6D shows the chromatic aberration curve of magnification of the imaging lens group of Example 3, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 6A to 6D, it can be seen that the imaging lens group provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an imaging lens group according to Embodiment 4 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has negative refractive power
  • the object side surface S15 is a concave surface
  • the image side surface S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 7 shows the basic parameter table of the imaging lens group of Example 4, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 8 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 8A shows the axial chromatic aberration curve of the imaging lens group of Example 4, which indicates that the focus points of light rays of different wavelengths deviate after passing through the lens.
  • FIG. 8B shows the astigmatism curve of the imaging lens group of Example 4, which represents meridional field curvature and sagittal field curvature.
  • FIG. 8C shows the distortion curve of the imaging lens group of Example 4, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 8D shows a chromatic aberration curve of magnification of the imaging lens group of Example 4, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 8A to 8D, it can be seen that the imaging lens group provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an imaging lens group according to Embodiment 5 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 9 shows the basic parameter table of the imaging lens group of Example 5, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 10 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 10A shows the axial chromatic aberration curve of the imaging lens group of Example 5, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 10B shows the astigmatism curve of the imaging lens group of Example 5, which represents meridional field curvature and sagittal field curvature.
  • FIG. 10C shows the distortion curve of the imaging lens group of Example 5, which represents the distortion magnitude values corresponding to different field angles.
  • 10D shows the chromatic aberration curve of magnification of the imaging lens group of Example 5, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 10A to 10D, it can be seen that the imaging lens group given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an imaging lens group according to Embodiment 6 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through the surfaces S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 11 shows the basic parameter table of the imaging lens group of Example 6, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 12 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 12A shows the axial chromatic aberration curve of the imaging lens group of Example 6, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 12B shows the astigmatism curve of the imaging lens group of Example 6, which represents meridional field curvature and sagittal field curvature.
  • FIG. 12C shows the distortion curve of the imaging lens group of Example 6, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 12D shows the chromatic aberration curve of magnification of the imaging lens group of Example 6, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 12A to 12D, it can be seen that the imaging lens group given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an imaging lens group according to Embodiment 7 of the present application.
  • the imaging lens group includes in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens.
  • a first lens E1 a second lens E2
  • a third lens E3, a fourth lens E4 a fifth lens E5, and a sixth lens.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is concave
  • the image side surface S10 is convex.
  • the sixth lens E6 has positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 13 shows the basic parameter table of the imaging lens group of Example 7, wherein the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 14 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 14A shows the axial chromatic aberration curve of the imaging lens group of Example 7, which indicates the deviation of the focus point of light rays of different wavelengths after passing through the lens.
  • 14B shows the astigmatism curve of the imaging lens group of Example 7, which represents meridional field curvature and sagittal field curvature.
  • FIG. 14C shows the distortion curve of the imaging lens group of Example 7, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 14D shows the chromatic aberration curve of magnification of the imaging lens group of Example 7, which represents the deviation of different image heights on the imaging surface after light passes through the lens. It can be seen from FIGS. 14A to 14D that the imaging lens group given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 shows a schematic structural diagram of an imaging lens group according to Embodiment 8 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a concave surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 15 shows the basic parameter table of the imaging lens group of Example 8, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 16 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 16A shows the axial chromatic aberration curve of the imaging lens group of Example 8, which indicates the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 16B shows the astigmatism curve of the imaging lens group of Example 8, which represents meridional field curvature and sagittal field curvature.
  • FIG. 16C shows a distortion curve of the imaging lens group of Example 8, which represents the distortion magnitude values corresponding to different field angles.
  • 16D shows the chromatic aberration curve of magnification of the imaging lens group of Example 8, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 16A to 16D, it can be seen that the imaging lens group given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of an imaging lens group according to Embodiment 9 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is concave
  • the image side surface S10 is convex.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 17 shows the basic parameter table of the imaging lens group of Example 9, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 18 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 18A shows the axial chromatic aberration curve of the imaging lens group of Example 9, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • FIG. 18B shows the astigmatism curve of the imaging lens group of Example 9, which represents meridional field curvature and sagittal field curvature.
  • FIG. 18C shows the distortion curve of the imaging lens group of Example 9, which represents the distortion magnitude values corresponding to different field angles.
  • FIG. 18D shows the chromatic aberration curve of magnification of the imaging lens group of Example 9, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 18A to 18D, it can be seen that the imaging lens group given in Example 9 can achieve good imaging quality.
  • FIG. 19 shows a schematic structural diagram of an imaging lens group according to Embodiment 10 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is concave
  • the image side surface S10 is convex.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has negative refractive power
  • the object side surface S15 is concave
  • the image side surface S16 is convex.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 19 shows the basic parameter table of the imaging lens group of Example 10, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 20 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 10, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Fig. 20A shows the axial chromatic aberration curve of the imaging lens group of Example 10, which indicates that light rays of different wavelengths will deviate from the focal point after passing through the lens.
  • FIG. 20B shows the astigmatism curve of the imaging lens group of Example 10, which represents meridional field curvature and sagittal field curvature.
  • FIG. 20C shows a distortion curve of the imaging lens group of Example 10, which represents the distortion magnitude values corresponding to different field angles.
  • 20D shows the chromatic aberration curve of magnification of the imaging lens group of Example 10, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 20A to 20D, it can be seen that the imaging lens group provided in Embodiment 10 can achieve good imaging quality.
  • FIG. 21 shows a schematic structural diagram of an imaging lens group according to Embodiment 11 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power
  • the object side surface S13 is a convex surface
  • the image side surface S14 is a convex surface.
  • the eighth lens E8 has a negative refractive power
  • the object side S15 is a concave surface
  • the image side S16 is a concave surface.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 21 shows the basic parameter table of the imaging lens group of Example 11, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 22 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 11, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 22A shows the axial chromatic aberration curve of the imaging lens group of Example 11, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • 22B shows the astigmatism curve of the imaging lens group of Example 11, which represents meridional field curvature and sagittal field curvature.
  • FIG. 22C shows a distortion curve of the imaging lens group of Example 11, which represents the distortion magnitude values corresponding to different field angles.
  • 22D shows the chromatic aberration curve of magnification of the imaging lens group of Example 11, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 22A to 22D, it can be seen that the imaging lens group given in Embodiment 11 can achieve good imaging quality.
  • FIG. 23 shows a schematic structural diagram of an imaging lens group according to Embodiment 12 of the present application.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens in order from the object side to the image side along the optical axis.
  • E6 the seventh lens E7, the eighth lens E8, the filter E9 and the imaging surface S19.
  • the first lens E1 has a positive refractive power, the object side S1 is convex, and the image side S2 is concave.
  • the second lens E2 has negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power, the object side surface S9 is concave, and the image side surface S10 is convex.
  • the sixth lens E6 has positive refractive power, the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the seventh lens E7 has a positive refractive power, the object side surface S13 is a convex surface, and the image side surface S14 is a convex surface.
  • the eighth lens E8 has negative refractive power, the object side surface S15 is concave, and the image side surface S16 is convex.
  • the filter E9 has an object side surface S17 and an image side surface S18. The light from the object sequentially passes through each surface S1 to S18 and is finally imaged on the imaging surface S19.
  • a diaphragm can be provided between the object side and the first lens E1 to further improve the imaging quality of the lens.
  • Table 23 shows the basic parameter table of the imaging lens group of Example 12, in which the units of the radius of curvature, thickness, and focal length are all millimeters (mm).
  • Table 24 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Embodiment 12, where each aspherical surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 24A shows the axial chromatic aberration curve of the imaging lens group of Example 12, which represents the deviation of the focal point of light rays of different wavelengths after passing through the lens.
  • Fig. 24B shows the astigmatism curve of the imaging lens group of Example 12, which represents meridional field curvature and sagittal field curvature.
  • FIG. 24C shows the distortion curve of the imaging lens group of Example 12, which represents the distortion magnitude values corresponding to different field angles.
  • 24D shows the chromatic aberration curve of magnification of the imaging lens group of Example 12, which represents the deviation of different image heights on the imaging surface after light passes through the lens. According to FIGS. 24A to 24D, it can be seen that the imaging lens group provided in Embodiment 12 can achieve good imaging quality.
  • Example 1 to Example 12 satisfy the relationships shown in Table 25, respectively.
  • the present application also provides an imaging device, the electronic photosensitive element of which may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the imaging lens group described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像透镜组,其沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)、第七透镜(E7)和第八透镜(E8)。其中,第一透镜(E1)、第四透镜(E4)、第六透镜(E6)和第七透镜(E7)具有正光焦度;第八透镜(E8)具有负光焦度;摄像透镜组的总有效焦距f与摄像透镜组的最大半视场角Semi-FOV满足f×tan(Semi-FOV)>6.0mm;以及摄像透镜组的总有效焦距f与第七透镜的有效焦距f7满足0.4<f/f7<1.2。

Description

摄像透镜组
相关申请的交叉引用
本申请要求于2019年4月2日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910260438.6的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像透镜组,更具体地,涉及一种包括八片透镜的摄像透镜组。
背景技术
随着手机、平板电脑等电子产品的普及,人们对电子产品的便携式要求、轻薄化趋向需求越来越高;同时随着科学技术的发展,半导体工艺技术不断精进,高品质成像镜头逐渐成为市场主流趋势。
为了满足更高的成像质量,通常增加镜片的数量来实现市场对超大像面、超薄大孔径等性能的需求,多片透镜数量(例如,8片透镜)的镜头成为高端市场领域的主流产品。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像透镜组。
本申请提供了这样一种摄像透镜组,其沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其中,第一透镜、第四透镜、第六透镜和第七透镜可具有正光焦度;第八透镜可具有负光焦度。
在一个实施方式中,第六透镜的像侧面和第七透镜的物侧面均为凸面。
在一个实施方式中,摄像透镜组的总有效焦距f与第一透镜的有效焦距f1可满足0.8<f/f1<1.2。
在一个实施方式中,摄像透镜组的成像面上有效像素区域对角线长的一半ImgH与第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离TTL可满足TTL/ImgH<1.6。进一步地,摄像透镜组的成像面上有效像素区域对角线长的一半ImgH与第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离TTL可满足TTL/ImgH<1.4。
在一个实施方式中,摄像透镜组的总有效焦距f与摄像透镜组的最大半视场角Semi-FOV可满足f×tan(Semi-FOV)>6.0mm。
在一个实施方式中,摄像透镜组的总有效焦距f与第七透镜的有效焦距f7可满足0.4<f/f7<1.2。
在一个实施方式中,第二透镜的有效焦距f2与第五透镜的有效焦距f5可满足0.5<f2/f5<1.2。
在一个实施方式中,第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足0.3<f/f3+f/f4<0.7。
在一个实施方式中,第六透镜的有效焦距f6与第八透镜的有效焦距f8可满足-8.0<f6/f8<-3.0。
在一个实施方式中,摄像透镜组的总有效焦距f、第六透镜和第七透镜在光轴上的空气 间隔T67与第七透镜和第八透镜在光轴上的空气间隔T78可满足2.5<f/(T67+T78)<6。
在一个实施方式中,摄像透镜组的总有效焦距f与第五透镜和第六透镜在光轴上的空气间隔T56可满足11<f/T56<18。
在一个实施方式中,第七透镜在与光轴平行的方向上的最小厚度ET7min与第七透镜在光轴上的中心厚度CT7可满足0.5<ET7min/CT7<1.0。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足0.45<R5/R6<1.2。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4可满足0<(R3-R4)/(R3+R4)<0.25。
在一个实施方式中,摄像透镜组的总有效焦距f、第六透镜的像侧面的曲率半径R12与第七透镜的物侧面的曲率半径R13可满足0.5<f/|R12|+f/R13<2.0。
在一个实施方式中,摄像透镜组的总有效焦距f与第八透镜的物侧面的曲率半径R15可满足-3.5<f/R15<-1.5。
在一个实施方式中,第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离TTL与摄像透镜组的入瞳直径EPD可满足2.1<TTL/EPD<2.5。
在一个实施方式中,摄像透镜组的总有效焦距f、第三透镜在光轴上的中心厚度CT3、第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5可满足5<f/(CT3+CT4+CT5)<9。
本申请采用了八片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像透镜组具有超大像面、超薄、大孔径、良好成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像透镜组的结构示意图;
图2A至图2D分别示出了实施例1的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的摄像透镜组的结构示意图;
图4A至图4D分别示出了实施例2的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的摄像透镜组的结构示意图;
图6A至图6D分别示出了实施例3的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的摄像透镜组的结构示意图;
图8A至图8D分别示出了实施例4的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的摄像透镜组的结构示意图;
图10A至图10D分别示出了实施例5的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的摄像透镜组的结构示意图;
图12A至图12D分别示出了实施例6的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的摄像透镜组的结构示意图;
图14A至图14D分别示出了实施例7的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的摄像透镜组的结构示意图;
图16A至图16D分别示出了实施例8的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的摄像透镜组的结构示意图;
图18A至图18D分别示出了实施例9的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的摄像透镜组的结构示意图;
图20A至图20D分别示出了实施例10的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图21示出了根据本申请实施例11的摄像透镜组的结构示意图;
图22A至图22D分别示出了实施例11的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图23示出了根据本申请实施例12的摄像透镜组的结构示意图;
图24A至图24D分别示出了实施例12的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例 性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像透镜组可包括例如八片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。这八片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第八透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有正光焦度;第五透镜具有正光焦度或负光焦度;第六透镜可具有正光焦度;第七透镜可具有正光焦度;第八透镜可具有负光焦度。通过选择合适的光焦度,可使摄像透镜组能够较好地矫正初级像差,并可使摄像透镜组具有良好的成像质量和较低的敏感性,同时还可使摄像透镜组更容易注塑加工并以较高的良率进行组立。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第四透镜的像侧面可为凸面。
在示例性实施方式中,第六透镜的像侧面可为凸面。
在示例性实施方式中,第七透镜的物侧面可为凸面。
在示例性实施方式中,本申请的摄像透镜组可满足条件式TTL/ImgH<1.6,其中,ImgH为摄像透镜组的成像面上有效像素区域对角线长的一半,TTL为第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离。更具体地,TTL和ImgH进一步可满足0.5<TTL/ImgH<1.6,例如1.07≤TTL/ImgH≤1.56。通过约束TTL/ImgH的值,可同时实现摄像透镜组的超薄化和高像素特性。进一步地,TTL和ImgH可满足TTL/ImgH<1.4来实现透镜组更优的超薄化和高像素特性。
在示例性实施方式中,本申请的摄像透镜组可满足条件式f×tan(Semi-FOV)>6.0mm,其中,f为摄像透镜组的总有效焦距,Semi-FOV为摄像透镜组的最大半视场角。更具体地,f和Semi-FOV进一步可满足7.0mm<f×tan(Semi-FOV)<9.0mm,例如7.15mm≤f×tan(Semi-FOV)≤8.01mm。满足条件式f×tan(Semi-FOV)>6.0mm,可实现摄像透镜组的超大像面和超薄化特性。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.8<f/f1<1.2,其中,f为摄像透镜组的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足0.88≤f/f1≤1.12。通过约束第一透镜的焦距与系统总有效焦距的比值范围,可使第一透镜具有合理正光焦度而与后端具有负光焦度的光学元件所产生的像差进行平衡,进而获得良好的成像质量。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.4<f/f7<1.2,其中,f为摄像透镜组的总有效焦距,f7为第七透镜的有效焦距。例如,f和f7可满足0.45≤f/f7≤1.08。通过约束第七透镜的组合焦距与系统总有效焦距的比值范围,可使第七透镜具有合理正光焦 度而与前端具有负光焦度的光学元件所产生的像差进行平衡,以达到减小像差、提升成像质量的目的。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.5<f2/f5<1.2,其中,f2为第二透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f2和f5进一步可满足0.57≤f2/f5≤1.14。满足条件式0.5<f2/f5<1.2,可合理约束第二透镜和第五透镜的球差和慧差贡献量,平衡之后使得二者的敏感性处于合理的水平。可选地,第二透镜可具有负光焦度,第五透镜可具有负光焦度。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0<(R3-R4)/(R3+R4)<0.25,其中,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R3和R4进一步可满足0.18≤(R3-R4)/(R3+R4)≤0.23。满足条件式0<(R3-R4)/(R3+R4)<0.25,可将第二透镜的慧差贡献量控制在合理的范围内,以使得轴上视场和轴外视场的像质不会因慧差贡献量而产生明显的退化。可选地,第二透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.3<f/f3+f/f4<0.7,其中,f3为第三透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f、f3和f4进一步可满足0.36≤f/f3+f/f4≤0.66。满足条件式0.3<f/f3+f/f4<0.7,能够贡献合理的负三阶球差和正五阶球差来平衡由第三透镜和第四透镜产生的正三阶球差和负五阶球差,使摄像透镜组具有较小的球差,保证轴上视场具有良好的成像质量。
在示例性实施方式中,本申请的摄像透镜组可满足条件式-8.0<f6/f8<-3.0,其中,f6为第六透镜的有效焦距,f8为第八透镜的有效焦距。更具体地,f6和f8进一步可满足-7.51≤f6/f8≤-3.11。通过合理约束第六透镜的有效焦距和第八透镜的有效焦距的比值,可合理控制第六透镜和第八透镜的场曲贡献量,以使其平衡在合理的水平状态。
在示例性实施方式中,本申请的摄像透镜组可满足条件式2.1<TTL/EPD<2.5,其中,TTL为第一透镜的物侧面至摄像透镜组的成像面在光轴上的距离,EPD为摄像透镜组的入瞳直径。更具体地,TTL和EPD进一步可满足2.21≤TTL/EPD≤2.38。满足条件式2.1<TTL/EPD<2.5,可使摄像透镜组同时具有超薄和大孔径特性。
在示例性实施方式中,本申请的摄像透镜组可满足条件式2.5<f/(T67+T78)<6,其中,f为摄像透镜组的总有效焦距,T67为第六透镜和第七透镜在光轴上的空气间隔,T78为第七透镜和第八透镜在光轴上的空气间隔。例如,f、T67和T78可满足2.91≤f/(T67+T78)≤5.66。满足条件式2.5<f/(T67+T78)<6,可使摄像透镜组前端透镜所产生的场曲与后端透镜所产生的场曲进行平衡,从而使摄像透镜组具有合理的场曲。
在示例性实施方式中,本申请的摄像透镜组可满足条件式11<f/T56<18,其中,f为摄像透镜组的总有效焦距,T56为第五透镜和第六透镜在光轴上的空气间隔。例如,f和T56可满足11.14≤f/T56≤16.64。通过约束f与T56的比值,可有效平衡摄像透镜组的场曲,从而使摄像透镜组具有合理的场曲。
在示例性实施方式中,本申请的摄像透镜组可满足条件式5<f/(CT3+CT4+CT5)<9,其中,f为摄像透镜组的总有效焦距,CT3为第三透镜在光轴上的中心厚度,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度。例如,f、CT3、CT4和CT5可满足5.37≤f/(CT3+CT4+CT5)≤8.25。满足条件式5<f/(CT3+CT4+CT5)<9,可有效平衡系统的球差,并可保证第三透镜、第四透镜和第五透镜的加工性,使摄像透镜组轴上系统有良好的成像质量。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.5<ET7min/CT7<1.0,其中,ET7min为第七透镜在与光轴平行的方向上的最小厚度,CT7为第七透镜在光轴上的中心厚度。例如,ET7min和CT7可满足0.26≤ET7min/CT7≤0.91。满足条件式0.5<ET7min/CT7<1.0,可保证第七透镜在结构上的可行性并可保证其具有良好的加工性。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.45<R5/R6<1.2,其中,R5为第三透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径。更具体地,R5和R6进一步可满足0.48≤R5/R6≤1.04。满足条件式0.45<R5/R6<1.2,可有效约束第三透镜的形状,进而有效控制第三透镜的物侧面和像侧面的像差贡献率,以有效平衡系统与孔径带相关的像差,进而可有效提升系统的成像质量。可选地,第三透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的摄像透镜组可满足条件式0.5<f/|R12|+f/R13<2.0,其中,f为摄像透镜组的总有效焦距,R12为第六透镜的像侧面的曲率半径,R13为第七透镜的物侧面的曲率半径。更具体地,f、R12和R13进一步可满足0.80≤f/|R12|+f/R13≤1.95。满足条件式0.5<f/|R12|+f/R13<2.0,能够在一定程度上控制其三阶像散的贡献率,已将第六透镜和第七透镜的三阶像散控制在合理的范围内,实现微距高解像力的功效。
在示例性实施方式中,本申请的摄像透镜组可满足条件式-3.5<f/R15<-1.5,其中,f为摄像透镜组的总有效焦距,R15为第八透镜的物侧面的曲率半径。例如,f和R15可满足-3.25≤f/R15≤-1.83。满足条件式-3.5<f/R15<-1.5,可将第八透镜的物侧面的场曲贡献量控制在合理的范围,从而可平衡后组透镜所产生的场曲量。可选地,第八透镜的物侧面可为凹面。
在示例性实施方式中,上述摄像透镜组还可包括至少一个光阑。光阑可根据需要设置在适当位置处,例如设置在物侧与第一透镜之间。可选地,上述摄像透镜组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像透镜组可采用多片镜片,例如上文所述的八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像镜头的体积、降低成像镜头的敏感度并提高成像镜头的可加工性,使得摄像透镜组更有利于生产加工并且可适用于便携式电子产品。本申请提出了一种八片式镜头的解决方案,该摄像透镜组具有大像面、超薄、大孔径、良好成像质量等特点,能够匹配更高像素的传感器和更强的图像处理技术。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以八个透镜为例进行了描述,但是该摄像透镜组不限于包括八个透镜。如果需要,该摄像透镜组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像透镜组的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像透镜组。图1示出了根据本申请实施例1的摄像透镜组的结构示意图。
如图1所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表1示出了实施例1的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。
Figure PCTCN2019114315-appb-000001
表1
其中,f为摄像透镜组的总有效焦距,TTL为第一透镜E1的物侧面S1至摄像透镜组的成像面S19在光轴上的距离。
在实施例1中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019114315-appb-000002
其中,x为非球面沿与光轴平行的方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S16高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9209E-04 1.5545E-03 -1.0565E-03 3.2563E-04 -4.1718E-05 -2.0638E-06 5.6826E-07 -5.5261E-08 0.0000E+00
S2 6.4526E-03 -1.2909E-02 8.3378E-03 -2.3735E-03 2.8035E-04 -7.9801E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 7.3818E-03 -1.1486E-02 6.4625E-03 -4.6703E-04 -5.2829E-04 1.4840E-04 -1.0764E-05 0.0000E+00 0.0000E+00
S4 6.3905E-03 -1.9203E-03 4.1737E-04 1.5246E-03 -9.3061E-04 2.3194E-04 -2.3542E-05 0.0000E+00 0.0000E+00
S5 -4.1589E-03 2.2329E-03 -6.5220E-03 8.5675E-03 -6.5192E-03 3.2235E-03 -9.7444E-04 1.6594E-04 -1.2245E-05
S6 -7.0915E-04 -2.1865E-03 5.1520E-04 1.3944E-03 -2.1394E-03 1.5429E-03 -5.6874E-04 1.0660E-04 -7.5782E-06
S7 -3.5347E-03 -8.7546E-03 -1.4617E-03 7.5329E-03 -9.0625E-03 5.5333E-03 -1.9115E-03 3.5797E-04 -2.8528E-05
S8 8.0799E-03 -4.3556E-02 6.0606E-02 -5.9064E-02 3.7291E-02 -1.5334E-02 3.9644E-03 -5.8314E-04 3.7091E-05
S9 -1.1928E-02 -2.4760E-02 3.2273E-02 -2.3003E-02 1.0282E-02 -2.9973E-03 5.6351E-04 -6.2626E-05 3.1080E-06
S10 -1.7969E-02 -5.4529E-03 7.0198E-03 -3.3366E-03 8.6138E-04 -1.2066E-04 7.4222E-06 4.8823E-08 -1.9231E-08
S11 -3.5743E-03 -3.4033E-03 -8.9376E-04 1.5650E-03 -7.7856E-04 2.0665E-04 -3.1619E-05 2.6110E-06 -8.9200E-08
S12 -7.1517E-03 -2.8319E-03 5.7045E-04 2.1706E-04 -1.3321E-04 2.9963E-05 -3.4425E-06 2.0073E-07 -4.7207E-09
S13 -6.9982E-03 -3.2174E-03 3.9522E-04 2.1214E-05 -9.1753E-06 9.4297E-07 -4.7515E-08 1.2066E-09 -1.2362E-11
S14 7.2625E-03 -4.6377E-03 5.7034E-04 -1.3130E-05 -3.7184E-06 4.3884E-07 -2.2082E-08 5.4830E-10 -5.4698E-12
S15 6.5506E-04 -1.5069E-03 3.1848E-04 -2.7991E-05 1.3733E-06 -4.0656E-08 7.2283E-10 -7.0997E-12 2.9457E-14
S16 -6.2353E-03 -1.4539E-04 1.0683E-04 -1.3691E-05 8.9372E-07 -3.3838E-08 7.4994E-10 -8.9987E-12 4.4977E-14
表2
图2A示出了实施例1的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图2D示出了实施例1的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像透镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的摄像透镜组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像透镜组的结构示意图。
如图3所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六 透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表3示出了实施例2的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000003
表3
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.8361E-04 1.4873E-03 -9.9606E-04 3.0250E-04 -3.8188E-05 -1.8616E-06 5.0507E-07 -4.8397E-08 0.0000E+00
S2 5.7650E-03 -1.0901E-02 6.6554E-03 -1.7908E-03 1.9994E-04 -5.3793E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.9132E-03 -1.0410E-02 5.6681E-03 -3.9641E-04 -4.3394E-04 1.1796E-04 -8.2800E-06 0.0000E+00 0.0000E+00
S4 6.0226E-03 -1.7569E-03 3.7069E-04 1.3145E-03 -7.7895E-04 1.8847E-04 -1.8571E-05 0.0000E+00 0.0000E+00
S5 -5.2268E-03 7.9929E-03 -1.8458E-02 2.6327E-02 -2.3215E-02 1.2859E-02 -4.3216E-03 8.0753E-04 -6.4330E-05
S6 2.3133E-03 -4.8825E-03 8.0271E-03 -7.5572E-03 3.8848E-03 -8.6642E-04 -5.3647E-05 5.9380E-05 -6.8562E-06
S7 -2.1273E-02 4.5148E-02 -1.0378E-01 1.3386E-01 -1.1090E-01 5.8783E-02 -1.9236E-02 3.5118E-03 -2.7136E-04
S8 -2.6978E-03 -4.9141E-04 -1.7435E-02 2.7227E-02 -2.2845E-02 1.1610E-02 -3.5826E-03 6.1059E-04 -4.3490E-05
S9 -1.2434E-02 -2.5175E-02 4.2752E-02 -4.1426E-02 2.5306E-02 -9.5855E-03 2.1513E-03 -2.6021E-04 1.3014E-05
S10 -2.2588E-02 -4.4550E-04 5.3559E-03 -4.7477E-03 2.3851E-03 -7.2489E-04 1.2936E-04 -1.2381E-05 4.8813E-07
S11 -1.2470E-03 -1.4952E-02 1.3630E-02 -7.2950E-03 2.3872E-03 -4.9119E-04 6.1962E-05 -4.3684E-06 1.3163E-07
S12 -1.7595E-03 -1.0080E-02 5.7476E-03 -1.6202E-03 2.3240E-04 -1.2419E-05 -6.8885E-07 1.1364E-07 -3.8651E-09
S13 -2.3830E-03 -5.0907E-03 4.6963E-04 1.5186E-04 -4.5614E-05 5.2863E-06 -3.1606E-07 9.6542E-09 -1.1930E-10
S14 1.0488E-02 -6.0755E-03 7.2728E-04 1.3961E-05 -1.2060E-05 1.2934E-06 -6.5585E-08 1.6588E-09 -1.6822E-11
S15 8.5524E-04 -1.5708E-03 3.3439E-04 -3.0180E-05 1.5418E-06 -4.8213E-08 9.2001E-10 -9.8804E-12 4.5886E-14
S16 -5.3024E-03 -3.5196E-04 1.5650E-04 -1.9793E-05 1.3076E-06 -5.0118E-08 1.1198E-09 -1.3514E-11 6.8018E-14
表4
图4A示出了实施例2的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图4D示出了实施例2的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像透镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像透镜组。图5示出了根据本申请实施例3的摄像透镜组的结构示意图。
如图5所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表5示出了实施例3的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000004
Figure PCTCN2019114315-appb-000005
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.8135E-04 1.4695E-03 -9.8024E-04 2.9650E-04 -3.7282E-05 -1.8101E-06 4.8916E-07 -4.6685E-08 0.0000E+00
S2 5.8799E-03 -1.1229E-02 6.9234E-03 -1.8814E-03 2.1213E-04 -5.7640E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.7215E-03 -9.9798E-03 5.3581E-03 -3.6950E-04 -3.9883E-04 1.0690E-04 -7.3991E-06 0.0000E+00 0.0000E+00
S4 5.9026E-03 -1.7047E-03 3.5607E-04 1.2500E-03 -7.3332E-04 1.7565E-04 -1.7135E-05 0.0000E+00 0.0000E+00
S5 -3.0602E-03 -1.3533E-03 2.6599E-03 -3.3130E-03 2.7041E-03 -1.2672E-03 3.4897E-04 -5.0744E-05 2.8863E-06
S6 -2.3171E-05 -3.4904E-03 5.2231E-03 -4.6374E-03 2.6429E-03 -9.2517E-04 2.1565E-04 -3.3651E-05 3.0325E-06
S7 -8.3204E-03 -7.2517E-03 4.8659E-03 -6.2078E-03 4.7671E-03 -2.3434E-03 7.0461E-04 -1.1858E-04 8.5167E-06
S8 2.8649E-03 -2.2987E-02 2.4692E-02 -2.4624E-02 1.6727E-02 -7.2924E-03 1.9486E-03 -2.9044E-04 1.8501E-05
S9 -1.2403E-02 -1.1957E-02 1.0890E-02 -6.3979E-03 2.9310E-03 -9.6631E-04 2.0544E-04 -2.4896E-05 1.2939E-06
S10 -2.0719E-02 1.4201E-04 7.1625E-04 2.6685E-04 -2.8838E-04 9.1964E-05 -1.4989E-05 1.2818E-06 -4.6354E-08
S11 -5.7024E-03 -5.0508E-03 3.8933E-03 -1.9767E-03 6.0763E-04 -1.1768E-04 1.4169E-05 -9.7486E-07 2.9543E-08
S12 -7.9212E-03 -2.0100E-03 1.5870E-03 -5.6352E-04 1.0558E-04 -1.0217E-05 4.3474E-07 -8.0566E-10 -3.3510E-10
S13 -7.3770E-03 -1.3039E-03 2.0998E-04 -1.9182E-05 4.3804E-07 7.4692E-08 -6.3634E-09 1.9634E-10 -2.2313E-12
S14 3.9986E-03 -2.6172E-03 3.3795E-04 -2.4378E-05 9.3362E-07 2.2885E-09 -1.9395E-09 7.5181E-11 -9.4606E-13
S15 1.2619E-03 -1.6696E-03 3.4211E-04 -3.0269E-05 1.5164E-06 -4.6391E-08 8.6372E-10 -9.0314E-12 4.0791E-14
S16 -5.8140E-03 5.7975E-05 4.8220E-05 -5.6746E-06 3.1874E-07 -1.0472E-08 2.0504E-10 -2.2066E-12 9.9940E-15
表6
图6A示出了实施例3的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图6D示出了实施例3的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像透镜组能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像透镜组。图7示出了根据本申请实施例4的摄像透镜组的结构示意图。
如图7所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15 为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表7示出了实施例4的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9328E-04 1.5639E-03 -1.0651E-03 3.2894E-04 -4.2228E-05 -2.0933E-06 5.7753E-07 -5.6276E-08 0.0000E+00
S2 6.4458E-03 -1.2888E-02 8.3202E-03 -2.3673E-03 2.7947E-04 -7.9507E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 7.3601E-03 -1.1435E-02 6.4247E-03 -4.6362E-04 -5.2366E-04 1.4688E-04 -1.0638E-05 0.0000E+00 0.0000E+00
S4 6.3948E-03 -1.9223E-03 4.1793E-04 1.5271E-03 -9.3250E-04 2.3249E-04 -2.3605E-05 0.0000E+00 0.0000E+00
S5 -4.0932E-03 2.3010E-03 -7.1486E-03 9.3610E-03 -6.8468E-03 3.1721E-03 -8.8797E-04 1.3948E-04 -9.5329E-06
S6 -3.9040E-04 -3.2668E-03 2.4334E-03 -7.9829E-04 -5.5371E-04 8.3936E-04 -3.8423E-04 8.0380E-05 -6.0234E-06
S7 -3.1624E-03 -1.3268E-02 1.1889E-02 -1.2702E-02 9.0709E-03 -4.4307E-03 1.3856E-03 -2.4522E-04 1.8340E-05
S8 8.3622E-03 -4.5591E-02 6.5286E-02 -6.4448E-02 4.0916E-02 -1.6822E-02 4.3304E-03 -6.3264E-04 3.9919E-05
S9 -1.2869E-02 -2.2115E-02 2.9242E-02 -2.1208E-02 9.7119E-03 -2.9125E-03 5.6322E-04 -6.4060E-05 3.2295E-06
S10 -1.8869E-02 -3.0109E-03 4.3537E-03 -1.7947E-03 3.3044E-04 -8.0181E-06 -7.0221E-06 1.0751E-06 -5.0221E-08
S11 -3.8943E-03 -3.0401E-03 -1.0156E-03 1.5829E-03 -7.8738E-04 2.1140E-04 -3.2733E-05 2.7280E-06 -9.3819E-08
S12 -6.8171E-03 -3.5748E-03 1.2100E-03 -7.1212E-05 -5.7908E-05 1.8152E-05 -2.3445E-06 1.4496E-07 -3.5284E-09
S13 -7.0701E-03 -3.2524E-03 4.0548E-04 1.9945E-05 -9.1031E-06 9.4249E-07 -4.7653E-08 1.2125E-09 -1.2438E-11
S14 7.3093E-03 -4.6519E-03 5.7130E-04 -1.2853E-05 -3.7784E-06 4.4383E-07 -2.2292E-08 5.5268E-10 -5.5051E-12
S15 6.6425E-04 -1.5122E-03 3.1953E-04 -2.8099E-05 1.3797E-06 -4.0882E-08 7.2763E-10 -7.1563E-12 2.9747E-14
S16 -6.2218E-03 -1.4946E-04 1.0740E-04 -1.3730E-05 8.9506E-07 -3.3857E-08 7.4986E-10 -8.9930E-12 4.4931E-14
表8
图8A示出了实施例4的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图8D示出了实施例4的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像透镜组能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像透镜组。图9示出了根据本申请实施例5的摄像透镜组的结构示意图。
如图9所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表9示出了实施例5的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000007
Figure PCTCN2019114315-appb-000008
表9
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.0789E-04 4.5347E-03 -7.9718E-03 8.1107E-03 -5.0106E-03 1.9001E-03 -4.3386E-04 5.4833E-05 -2.9563E-06
S2 5.7665E-03 -1.4084E-02 1.5877E-02 -1.2552E-02 7.2109E-03 -2.8535E-03 7.2453E-04 -1.0521E-04 6.5908E-06
S3 7.1482E-03 -1.5385E-02 1.9893E-02 -1.7926E-02 1.1321E-02 -4.6796E-03 1.2039E-03 -1.7552E-04 1.1093E-05
S4 4.8566E-03 -2.3203E-03 4.0746E-03 -4.6909E-03 3.9653E-03 -2.0680E-03 6.4138E-04 -1.0868E-04 7.6927E-06
S5 -7.9421E-03 3.9255E-03 -5.5400E-03 6.8104E-03 -5.0672E-03 2.3854E-03 -6.8424E-04 1.1167E-04 -7.9461E-06
S6 3.4082E-03 -5.2974E-04 -7.6342E-03 1.2156E-02 -1.0151E-02 5.1576E-03 -1.5774E-03 2.6788E-04 -1.9271E-05
S7 -1.4443E-02 1.2459E-02 -2.8343E-02 3.1682E-02 -2.2565E-02 1.0202E-02 -2.8550E-03 4.5288E-04 -3.1322E-05
S8 -2.1740E-03 -1.9613E-02 2.8636E-02 -2.8909E-02 1.8375E-02 -7.3516E-03 1.7936E-03 -2.4333E-04 1.4052E-05
S9 -1.4628E-02 -1.0593E-02 1.1721E-02 -6.8519E-03 2.6430E-03 -6.8045E-04 1.1173E-04 -1.0467E-05 4.1486E-07
S10 -1.5517E-02 -4.9795E-03 5.9750E-03 -3.1740E-03 1.0819E-03 -2.4602E-04 3.5641E-05 -2.9468E-06 1.0487E-07
S11 -3.7976E-03 -7.2344E-04 -9.2172E-04 8.1637E-04 -3.4706E-04 8.3850E-05 -1.1735E-05 8.7730E-07 -2.6832E-08
S12 -1.0610E-02 1.5748E-04 -9.6724E-05 1.2650E-04 -4.9549E-05 9.8292E-06 -1.0323E-06 5.4974E-08 -1.1748E-09
S13 -6.3779E-03 -2.8602E-04 -3.6789E-04 9.2721E-05 -8.9350E-06 2.3230E-07 1.9740E-08 -1.4440E-09 2.6616E-11
S14 6.8206E-03 -1.6184E-03 -2.6358E-04 9.3606E-05 -1.1355E-05 7.4008E-07 -2.7418E-08 5.4233E-10 -4.4313E-12
S15 1.3228E-03 -1.5653E-03 3.0921E-04 -2.6569E-05 1.2920E-06 -3.8275E-08 6.8784E-10 -6.9157E-12 2.9884E-14
S16 -2.6992E-03 -1.1654E-03 2.4256E-04 -2.2695E-05 1.2045E-06 -3.8412E-08 7.2794E-10 -7.5391E-12 3.2790E-14
表10
图10A示出了实施例5的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图10D示出了实施例5的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像透镜组能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像透镜组。图11示出了根据本申请实施例6的摄像透镜组的结构示意图。
如图11所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序 穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表11示出了实施例6的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000009
表11
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9143E-04 1.5492E-03 -1.0518E-03 3.2379E-04 -4.1436E-05 -2.0475E-06 5.6314E-07 -5.4701E-08 0.0000E+00
S2 6.1140E-03 -1.1906E-02 7.4855E-03 -2.0742E-03 2.3848E-04 -6.6078E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.9966E-03 -1.0599E-02 5.8057E-03 -4.0848E-04 -4.4984E-04 1.2302E-04 -8.6869E-06 0.0000E+00 0.0000E+00
S4 6.2490E-03 -1.8569E-03 3.9910E-04 1.4416E-03 -8.7017E-04 2.1446E-04 -2.1525E-05 0.0000E+00 0.0000E+00
S5 -3.6308E-03 1.1858E-03 -3.8794E-03 5.8320E-03 -4.7516E-03 2.4432E-03 -7.4863E-04 1.2664E-04 -9.1622E-06
S6 -1.0662E-03 -2.8702E-03 4.2268E-03 -4.0095E-03 2.6528E-03 -1.1226E-03 3.2570E-04 -5.9250E-05 5.3475E-06
S7 -7.7452E-03 -8.8926E-03 4.1664E-03 -2.2199E-03 1.4609E-05 5.7167E-04 -3.1252E-04 7.4742E-05 -7.1127E-06
S8 8.2814E-04 -2.2585E-02 2.3700E-02 -2.0623E-02 1.2143E-02 -4.7589E-03 1.1841E-03 -1.6780E-04 1.0250E-05
S9 -1.4818E-02 -1.1349E-02 1.2141E-02 -6.4940E-03 2.1401E-03 -4.6808E-04 7.0658E-05 -6.9445E-06 3.2297E-07
S10 -2.0712E-02 -1.3059E-03 2.7380E-03 -8.8385E-04 6.6655E-05 2.4121E-05 -6.4563E-06 5.9135E-07 -1.8789E-08
S11 -7.1343E-03 -9.7331E-04 -5.8341E-04 5.1226E-04 -2.5442E-04 7.6256E-05 -1.3280E-05 1.2127E-06 -4.4189E-08
S12 -1.0071E-02 3.5250E-05 3.5775E-04 -2.2876E-04 6.3261E-05 -8.8038E-06 6.7452E-07 -2.7878E-08 5.0019E-10
S13 -1.0930E-02 -4.2299E-04 -9.9484E-05 3.5788E-05 -3.2567E-06 6.4766E-08 7.2515E-09 -4.5249E-10 7.6078E-12
S14 1.5579E-03 -1.7769E-03 -1.6192E-05 5.0093E-05 -7.4077E-06 5.4047E-07 -2.2175E-08 4.8901E-10 -4.5106E-12
S15 1.1840E-03 -1.6992E-03 3.5092E-04 -3.1191E-05 1.5678E-06 -4.8048E-08 8.9465E-10 -9.3376E-12 4.1995E-14
S16 -5.2041E-03 -2.8764E-04 1.1029E-04 -1.1987E-05 6.9334E-07 -2.3772E-08 4.8455E-10 -5.4134E-12 2.5448E-14
表12
图12A示出了实施例6的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图12D示出了实施例6的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像透镜组能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像透镜组。图13示出了根据本申请实施例7的摄像透镜组的结构示意图。
如图13所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表13示出了实施例7的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表14示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000010
Figure PCTCN2019114315-appb-000011
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.7887E-04 1.4501E-03 -9.6306E-04 2.9002E-04 -3.6306E-05 -1.7550E-06 4.7216E-07 -4.4864E-08 0.0000E+00
S2 6.0095E-03 -1.1602E-02 7.2320E-03 -1.9868E-03 2.2647E-04 -6.2212E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.9039E-03 -1.0389E-02 5.6529E-03 -3.9508E-04 -4.3219E-04 1.1741E-04 -8.2355E-06 0.0000E+00 0.0000E+00
S4 6.0185E-03 -1.7551E-03 3.7019E-04 1.3123E-03 -7.7737E-04 1.8802E-04 -1.8520E-05 0.0000E+00 0.0000E+00
S5 -9.7917E-03 2.4470E-02 -4.7121E-02 5.3105E-02 -3.6767E-02 1.6023E-02 -4.2577E-03 6.3085E-04 -3.9959E-05
S6 4.0583E-04 -1.2518E-02 2.9623E-02 -3.7638E-02 2.8427E-02 -1.3059E-02 3.6232E-03 -5.5947E-04 3.7415E-05
S7 -1.6047E-02 1.8188E-02 -4.9497E-02 6.2693E-02 -4.9052E-02 2.3922E-02 -7.1114E-03 1.1814E-03 -8.4290E-05
S8 1.3915E-02 -5.9417E-02 7.8465E-02 -6.9218E-02 3.9471E-02 -1.4604E-02 3.3795E-03 -4.4246E-04 2.4933E-05
S9 -1.1155E-02 -2.3882E-02 2.6300E-02 -1.5487E-02 5.9623E-03 -1.6415E-03 3.1981E-04 -3.8444E-05 2.0485E-06
S10 -2.1661E-02 -2.8923E-03 4.1674E-03 -1.1979E-03 4.3811E-05 4.1125E-05 -8.0422E-06 5.1185E-07 -6.3287E-09
S11 -7.2063E-03 2.2967E-03 -4.0531E-03 2.4422E-03 -9.1256E-04 2.1654E-04 -3.1568E-05 2.5438E-06 -8.5404E-08
S12 -1.2293E-02 2.8734E-03 -1.4255E-03 4.8669E-04 -1.1662E-04 1.9565E-05 -2.0311E-06 1.1359E-07 -2.5957E-09
S13 -1.1307E-02 -4.4616E-04 -4.3686E-04 1.3900E-04 -1.7513E-05 1.1706E-06 -4.2174E-08 7.3299E-10 -4.1961E-12
S14 6.3836E-03 -3.4475E-03 2.0125E-04 4.4659E-05 -9.1660E-06 7.6218E-07 -3.3818E-08 7.8412E-10 -7.4667E-12
S15 3.3108E-05 -1.4182E-03 3.1543E-04 -2.8388E-05 1.4206E-06 -4.2922E-08 7.8140E-10 -7.9113E-12 3.4242E-14
S16 -9.7345E-03 3.5550E-04 1.1909E-05 -3.5129E-06 2.3581E-07 -5.7364E-09 -8.0818E-11 6.8605E-12 -9.7226E-14
表14
图14A示出了实施例7的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图14D示出了实施例7的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像透镜组能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像透镜组。图15示出了根据本申请实施例8的摄像透镜组的结构示意图。
如图15所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表15示出了实施例8的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表16示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000012
表15
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.6948E-05 1.5657E-03 -2.4498E-03 2.2534E-03 -1.3098E-03 4.7987E-04 -1.0839E-04 1.3768E-05 -7.5258E-07
S2 3.1136E-03 -9.7061E-03 1.2607E-02 -1.0531E-02 5.8299E-03 -2.0996E-03 4.7268E-04 -6.0411E-05 3.3435E-06
S3 3.9226E-03 -9.8666E-03 1.5286E-02 -1.4462E-02 9.1299E-03 -3.7523E-03 9.6474E-04 -1.4077E-04 8.8668E-06
S4 3.4763E-03 -1.6964E-03 5.6565E-03 -6.6126E-03 4.9974E-03 -2.3896E-03 7.0014E-04 -1.1336E-04 7.6176E-06
S5 -7.5605E-03 2.4243E-03 -2.3027E-03 3.1102E-03 -2.4643E-03 1.2489E-03 -3.9017E-04 7.0852E-05 -5.6676E-06
S6 3.7453E-03 -4.1427E-03 1.3898E-03 5.9969E-05 -9.8691E-05 -8.7628E-05 8.7951E-05 -2.6354E-05 2.9256E-06
S7 -9.6117E-03 -2.0743E-03 -2.1531E-04 -5.5110E-04 7.0119E-04 -4.4010E-04 1.4531E-04 -2.4515E-05 1.6114E-06
S8 -5.2738E-03 -1.0622E-02 1.1165E-02 -9.1498E-03 4.8019E-03 -1.6149E-03 3.3708E-04 -3.9681E-05 2.0022E-06
S9 -1.4837E-02 -8.0829E-03 7.5887E-03 -3.3334E-03 7.9559E-04 -7.6287E-05 -7.0335E-06 2.3260E-06 -1.6350E-07
S10 -1.3854E-02 -6.0813E-03 6.2089E-03 -2.9741E-03 9.1980E-04 -1.9137E-04 2.5860E-05 -2.0473E-06 7.1474E-08
S11 -3.9146E-03 -2.6588E-03 9.2497E-04 -2.2220E-04 1.1498E-05 7.4110E-06 -1.9672E-06 1.9587E-07 -6.9409E-09
S12 -1.0093E-02 -2.2755E-04 3.2843E-04 -9.8645E-05 1.7470E-05 -1.8236E-06 1.2538E-07 -5.7059E-09 1.2597E-10
S13 -6.3302E-03 -7.0317E-04 -3.4840E-05 -5.8009E-06 6.4692E-06 -1.1282E-06 8.7221E-08 -3.1877E-09 4.4807E-11
S14 6.3389E-03 -1.8493E-03 -7.5379E-05 4.3550E-05 -4.4855E-06 2.0119E-07 -2.9102E-09 -6.1004E-11 1.7956E-12
S15 1.9029E-03 -1.7940E-03 3.5015E-04 -3.0643E-05 1.5369E-06 -4.7385E-08 8.9303E-10 -9.4804E-12 4.3547E-14
S16 -3.8584E-03 -8.9194E-04 2.0186E-04 -1.8892E-05 9.9315E-07 -3.1419E-08 5.9280E-10 -6.1342E-12 2.6740E-14
表16
图16A示出了实施例8的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图16D示出了实施例8的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像透镜组能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的摄像透镜组。图17示出了根据本申请实施例9的摄像透镜组的结构示意图。
如图17所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表17示出了实施例9的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表18示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000013
Figure PCTCN2019114315-appb-000014
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9992E-04 1.6174E-03 -1.1139E-03 3.4787E-04 -4.5162E-05 -2.2639E-06 6.3165E-07 -6.2242E-08 0.0000E+00
S2 5.8212E-03 -1.1061E-02 6.7859E-03 -1.8348E-03 2.0584E-04 -5.5652E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 7.1158E-03 -1.0871E-02 6.0052E-03 -4.2609E-04 -4.7322E-04 1.3051E-04 -9.2941E-06 0.0000E+00 0.0000E+00
S4 6.9553E-03 -2.1804E-03 4.9440E-04 1.8841E-03 -1.1998E-03 3.1196E-04 -3.3034E-05 0.0000E+00 0.0000E+00
S5 -4.0816E-03 -5.6997E-04 -1.4612E-03 3.1179E-03 -2.9011E-03 1.6775E-03 -5.7618E-04 1.1058E-04 -9.2533E-06
S6 2.1172E-03 -6.1942E-03 9.1211E-03 -1.0395E-02 8.0071E-03 -3.9741E-03 1.2574E-03 -2.3008E-04 1.8936E-05
S7 -5.9789E-03 -1.3913E-02 1.6450E-02 -1.7747E-02 1.2162E-02 -5.3323E-03 1.4217E-03 -2.0661E-04 1.2013E-05
S8 2.7499E-02 -7.2709E-02 8.0513E-02 -6.1544E-02 3.0841E-02 -1.0051E-02 2.0653E-03 -2.4414E-04 1.2655E-05
S9 3.1789E-02 -1.0150E-01 1.1115E-01 -7.6263E-02 3.3873E-02 -9.6978E-03 1.7312E-03 -1.7549E-04 7.6981E-06
S10 4.3050E-03 -5.0444E-02 5.1887E-02 -3.1555E-02 1.2360E-02 -3.1349E-03 4.9617E-04 -4.4386E-05 1.7060E-06
S11 -3.0907E-03 -7.5016E-03 1.3384E-03 5.0482E-04 -3.6968E-04 9.5791E-05 -1.2940E-05 8.4746E-07 -1.6687E-08
S12 -1.0862E-03 -2.6101E-03 -7.1455E-04 8.3610E-04 -2.8131E-04 5.1099E-05 -5.3537E-06 3.0360E-07 -7.1885E-09
S13 -1.1240E-02 5.9023E-04 -1.8860E-04 1.4953E-05 3.5617E-06 -7.6619E-07 5.5828E-08 -1.7876E-09 2.1260E-11
S14 -3.2500E-03 1.5850E-03 -1.7474E-04 -2.8546E-05 8.2093E-06 -8.2455E-07 4.1746E-08 -1.0550E-09 1.0565E-11
S15 1.1584E-02 1.7761E-04 -1.5066E-04 1.3092E-05 -5.5606E-07 1.3386E-08 -1.8494E-10 1.3655E-12 -4.1769E-15
S16 1.0054E-03 -2.7023E-04 1.7937E-05 -6.9870E-07 1.6653E-08 -2.7806E-10 3.1533E-12 -2.0911E-14 5.9406E-17
表18
图18A示出了实施例9的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图18D示出了实施例9的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的摄像透镜组能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的摄像透镜组。图19示出了根据本申请实施例10的摄像透镜组的结构示意图。
如图19所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凸面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表19示出了实施例10的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表20示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000015
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9258E-04 1.5583E-03 -1.0600E-03 3.2698E-04 -4.1927E-05 -2.0758E-06 5.7205E-07 -5.5675E-08 0.0000E+00
S2 5.6559E-03 -1.0593E-02 6.4059E-03 -1.7073E-03 1.8880E-04 -5.0313E-06 0.0000E+00 0.0000E+00 0.0000E+00
S3 6.9498E-03 -1.0493E-02 5.7283E-03 -4.0168E-04 -4.4087E-04 1.2016E-04 -8.4568E-06 0.0000E+00 0.0000E+00
S4 6.8697E-03 -2.1403E-03 4.8231E-04 1.8266E-03 -1.1560E-03 2.9873E-04 -3.1438E-05 0.0000E+00 0.0000E+00
S5 -4.5075E-03 9.8244E-04 -4.5043E-03 6.7681E-03 -5.6357E-03 2.9460E-03 -9.2796E-04 1.6348E-04 -1.2544E-05
S6 1.9478E-03 -6.0650E-03 9.9639E-03 -1.2438E-02 1.0216E-02 -5.2968E-03 1.7105E-03 -3.1285E-04 2.5125E-05
S7 -5.7459E-03 -1.4662E-02 1.9675E-02 -2.3825E-02 1.8507E-02 -9.2071E-03 2.7985E-03 -4.6976E-04 3.2873E-05
S8 2.6575E-02 -7.0931E-02 7.5841E-02 -5.5763E-02 2.6842E-02 -8.4395E-03 1.6877E-03 -1.9600E-04 1.0032E-05
S9 3.3118E-02 -1.0488E-01 1.1288E-01 -7.5252E-02 3.2339E-02 -8.9779E-03 1.5646E-03 -1.5623E-04 6.8110E-06
S10 6.8367E-03 -5.5990E-02 5.7047E-02 -3.4077E-02 1.3088E-02 -3.2653E-03 5.1081E-04 -4.5354E-05 1.7352E-06
S11 1.6280E-03 -1.3865E-02 5.4763E-03 -9.2125E-04 -1.2553E-04 9.2117E-05 -1.9166E-05 1.8595E-06 -6.8785E-08
S12 3.0481E-03 -7.6582E-03 2.2395E-03 -1.7126E-04 -6.6845E-05 2.2082E-05 -2.9166E-06 1.8725E-07 -4.7721E-09
S13 -8.8160E-03 -2.4459E-03 6.3371E-04 -1.0520E-04 1.2144E-05 -8.8423E-07 3.7065E-08 -7.9657E-10 6.6327E-12
S14 -1.4960E-03 -1.0786E-03 5.7189E-04 -1.4387E-04 1.9282E-05 -1.5073E-06 6.8273E-08 -1.6432E-09 1.6187E-11
S15 2.0483E-02 -1.5374E-03 3.6955E-05 1.3048E-06 -1.1370E-07 3.3137E-09 -4.8963E-11 3.6669E-13 -1.1059E-15
S16 8.6917E-03 -1.2334E-03 9.3510E-05 -4.5101E-06 1.4183E-07 -2.9075E-09 3.6972E-11 -2.6313E-13 7.9844E-16
表20
图20A示出了实施例10的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜 头后的会聚焦点偏离。图20B示出了实施例10的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图20D示出了实施例10的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的摄像透镜组能够实现良好的成像品质。
实施例11
以下参照图21至图22D描述了根据本申请实施例11的摄像透镜组。图21示出了根据本申请实施例11的摄像透镜组的结构示意图。
如图21所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表21示出了实施例11的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单位均为毫米(mm)。表22示出了可用于实施例11中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000016
Figure PCTCN2019114315-appb-000017
表21
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.4075E-04 1.8692E-04 -2.0560E-04 1.4678E-04 -6.4292E-05 1.6946E-05 -2.6583E-06 2.2781E-07 -8.2671E-09
S2 -6.5618E-03 9.6077E-03 -7.0759E-03 3.1056E-03 -8.5351E-04 1.4916E-04 -1.6172E-05 9.9814E-07 -2.7108E-08
S3 -6.1916E-03 9.9910E-03 -6.9830E-03 2.9342E-03 -7.5060E-04 1.1775E-04 -1.0884E-05 5.3035E-07 -1.0126E-08
S4 -4.9673E-04 2.7996E-03 -1.5079E-03 5.4722E-04 -1.0917E-04 1.4785E-05 -2.2248E-06 3.3013E-07 -2.2253E-08
S5 -4.0385E-03 9.1851E-04 -4.1624E-04 2.9246E-04 -1.3330E-04 4.4254E-05 -9.2397E-06 1.0656E-06 -5.0622E-08
S6 -1.6607E-03 -6.0164E-04 1.4845E-03 -1.2614E-03 6.5986E-04 -2.0959E-04 4.0029E-05 -4.2347E-06 1.9252E-07
S7 -7.1912E-03 -1.4115E-03 -4.7328E-04 5.3150E-04 -2.5714E-04 7.1999E-05 -1.1819E-05 1.0443E-06 -3.8488E-08
S8 2.2816E-03 -6.5349E-03 1.9536E-03 -3.3124E-04 8.9755E-06 8.2234E-06 -1.6522E-06 1.2707E-07 -3.3290E-09
S9 -7.2240E-03 -2.8435E-03 1.0888E-03 3.7782E-05 -1.0357E-04 2.7215E-05 -3.4092E-06 2.1352E-07 -5.3168E-09
S10 -1.4530E-02 1.2663E-03 -2.1729E-04 2.0694E-04 -8.2064E-05 1.5890E-05 -1.6735E-06 9.1923E-08 -2.0430E-09
S11 -5.5300E-03 7.0552E-04 -2.8765E-04 4.7015E-05 -1.4941E-06 -6.6494E-07 1.0480E-07 -6.1941E-09 1.3420E-10
S12 -6.8285E-03 1.4586E-03 -3.9192E-04 6.1114E-05 -5.2140E-06 1.8906E-07 4.0510E-09 -5.3912E-10 1.1947E-11
S13 -6.9294E-03 1.3864E-03 -2.3079E-04 2.0025E-05 -8.6956E-07 9.0341E-09 7.3942E-10 -2.9200E-11 3.2657E-13
S14 -6.4690E-03 1.8391E-03 -2.7748E-04 1.6875E-05 -2.5047E-08 -5.1405E-08 2.8090E-09 -6.3798E-11 5.5000E-13
S15 -3.0235E-03 1.0546E-03 -2.2267E-04 2.4571E-05 -1.5093E-06 5.4980E-08 -1.1898E-09 1.4180E-11 -7.1815E-14
S16 -2.6459E-03 -1.7185E-04 3.0186E-05 -1.9133E-06 6.7951E-08 -1.4664E-09 1.9033E-11 -1.3594E-13 4.0585E-16
表22
图22A示出了实施例11的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图22B示出了实施例11的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图22C示出了实施例11的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图22D示出了实施例11的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图22A至图22D可知,实施例11所给出的摄像透镜组能够实现良好的成像品质。
实施例12
以下参照图23至图24D描述了根据本申请实施例12的摄像透镜组。图23示出了根据本申请实施例12的摄像透镜组的结构示意图。
如图23所示,摄像透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凸面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
虽未示出,但可在物侧与第一透镜E1之间设置光阑以进一步提升镜头的成像质量。
表23示出了实施例12的摄像透镜组的基本参数表,其中,曲率半径、厚度和焦距的单 位均为毫米(mm)。表24示出了可用于实施例12中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2019114315-appb-000018
表23
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0461E-05 5.1315E-04 -6.3765E-04 4.1664E-04 -1.6779E-04 4.1095E-05 -6.0150E-06 4.7864E-07 -1.6040E-08
S2 -1.0118E-03 -4.4209E-04 1.3186E-03 -9.9907E-04 4.2446E-04 -1.0973E-04 1.6770E-05 -1.3825E-06 4.7109E-08
S3 -7.7691E-04 3.8393E-04 1.4262E-03 -1.1872E-03 5.3970E-04 -1.4700E-04 2.3298E-05 -1.9542E-06 6.6197E-08
S4 1.3241E-03 1.1006E-03 6.5572E-04 -6.2932E-04 3.3052E-04 -9.6574E-05 1.4954E-05 -1.0273E-06 1.1889E-08
S5 -5.3150E-03 2.2232E-03 -3.0796E-03 2.9926E-03 -1.7033E-03 5.9461E-04 -1.2450E-04 1.4347E-05 -7.0070E-07
S6 3.6564E-04 -2.3912E-03 3.9087E-03 -3.6832E-03 2.1936E-03 -8.0673E-04 1.7919E-04 -2.2059E-05 1.1611E-06
S7 -6.9753E-03 -1.1115E-03 -1.7415E-03 2.3510E-03 -1.6306E-03 6.5138E-04 -1.5239E-04 1.9329E-05 -1.0388E-06
S8 4.5465E-03 -1.0519E-02 3.9986E-03 -6.6097E-04 -2.6288E-04 1.7269E-04 -4.0312E-05 4.4719E-06 -1.9988E-07
S9 6.2824E-03 -1.9876E-02 1.0747E-02 -3.3679E-03 5.5611E-04 -1.2913E-05 -1.1824E-05 1.9534E-06 -1.0413E-07
S10 -1.7660E-03 -1.4277E-02 9.1151E-03 -3.7074E-03 1.0821E-03 -2.2079E-04 2.9132E-05 -2.1908E-06 7.0507E-08
S11 -5.4425E-03 -1.1269E-03 -1.3145E-04 6.7708E-05 -1.2352E-06 -2.8102E-06 4.9802E-07 -3.2179E-08 7.0879E-10
S12 -3.8750E-03 1.0741E-03 -6.3836E-04 1.4983E-04 -1.8508E-05 1.2762E-06 -4.3692E-08 3.6922E-10 9.7597E-12
S13 -9.0164E-03 2.2350E-03 -3.8893E-04 1.8812E-05 2.8325E-06 -4.7882E-07 2.9909E-08 -8.8582E-10 1.0343E-11
S14 -1.6946E-02 5.1286E-03 -6.6346E-04 9.4827E-06 6.5791E-06 -7.7392E-07 4.0303E-08 -1.0427E-09 1.0943E-11
S15 -6.6389E-03 8.2684E-03 -2.2092E-03 3.0244E-04 -2.4384E-05 1.2033E-06 -3.5749E-08 5.8713E-10 -4.0925E-12
S16 1.8959E-02 -2.9819E-03 2.5693E-04 -1.3598E-05 4.5909E-07 -9.9118E-09 1.3220E-10 -9.9014E-13 3.1761E-15
表24
图24A示出了实施例12的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图24B示出了实施例12的摄像透镜组的象散曲线,其表示子午像面 弯曲和弧矢像面弯曲。图24C示出了实施例12的摄像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图24D示出了实施例12的摄像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图24A至图24D可知,实施例12所给出的摄像透镜组能够实现良好的成像品质。
综上,实施例1至实施例12分别满足表25中所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9 10 11 12
TTL/ImgH 1.11 1.14 1.09 1.11 1.17 1.12 1.15 1.22 1.07 1.09 1.56 1.42
f×tan(Semi-FOV)(mm) 7.53 7.24 7.65 7.48 7.25 7.31 7.27 7.15 7.52 7.48 8.01 7.85
f/f1 1.00 1.04 0.97 1.00 1.02 0.99 1.04 1.06 0.90 0.88 1.12 1.03
f/f7 0.47 0.45 0.48 0.46 0.57 0.46 0.68 0.59 0.45 0.46 1.08 0.72
f2/f5 0.75 1.00 0.88 0.73 0.89 0.74 0.57 0.71 1.10 1.10 1.04 1.14
f/f3+f/f4 0.40 0.50 0.49 0.39 0.45 0.43 0.39 0.42 0.66 0.64 0.36 0.58
f6/f8 -3.66 -3.11 -4.98 -3.66 -5.70 -4.14 -3.58 -7.51 -3.51 -3.59 -6.20 -4.28
TTL/EPD 2.21 2.28 2.28 2.22 2.31 2.24 2.29 2.33 2.24 2.30 2.38 2.26
f/(T67+T78) 3.93 3.70 3.37 3.91 4.06 3.66 4.86 4.25 2.91 2.94 5.66 4.65
f/T56 12.43 13.04 13.60 12.32 11.42 12.90 11.19 12.37 14.27 14.84 11.14 16.64
f/(CT3+CT4+CT5) 6.21 5.51 6.28 6.19 6.15 6.08 6.07 5.74 5.41 5.37 8.25 6.59
ET7min/CT7 0.74 0.90 0.88 0.76 0.89 0.51 0.78 0.88 0.86 0.91 0.26 0.27
R5/R6 0.63 0.61 0.59 0.64 1.04 0.61 0.56 0.93 0.48 0.48 0.71 0.55
(R3-R4)/(R3+R4) 0.21 0.23 0.19 0.21 0.22 0.21 0.23 0.21 0.19 0.18 0.20 0.19
f/|R12|+f/R13 1.76 1.54 1.37 1.74 1.65 1.63 1.95 1.59 0.81 0.81 1.48 0.80
f/R15 -2.06 -2.10 -1.99 -2.06 -1.83 -1.96 -2.08 -1.89 -2.35 -2.81 -2.08 -3.25
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的摄像透镜组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (20)

  1. 摄像透镜组,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜、所述第四透镜、所述第六透镜和所述第七透镜具有正光焦度;
    所述第八透镜具有负光焦度;
    所述摄像透镜组的总有效焦距f与所述摄像透镜组的最大半视场角Semi-FOV满足f×tan(Semi-FOV)>6.0mm;以及
    所述摄像透镜组的总有效焦距f与所述第七透镜的有效焦距f7满足0.4<f/f7<1.2。
  2. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的成像面上有效像素区域对角线长的一半ImgH与所述第一透镜的物侧面至所述摄像透镜组的成像面在所述光轴上的距离TTL满足TTL/ImgH<1.6。
  3. 根据权利要求2所述的摄像透镜组,其特征在于,所述摄像透镜组的成像面上有效像素区域对角线长的一半ImgH与所述第一透镜的物侧面至所述摄像透镜组的成像面在所述光轴上的距离TTL满足TTL/ImgH<1.4。
  4. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f与所述第一透镜的有效焦距f1满足0.8<f/f1<1.2。
  5. 根据权利要求1所述的摄像透镜组,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5满足0.5<f2/f5<1.2。
  6. 根据权利要求1所述的摄像透镜组,其特征在于,所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足0.3<f/f3+f/f4<0.7。
  7. 根据权利要求1所述的摄像透镜组,其特征在于,所述第六透镜的有效焦距f6与所述第八透镜的有效焦距f8满足-8.0<f6/f8<-3.0。
  8. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f、所述第六透镜和所述第七透镜在所述光轴上的空气间隔T67与所述第七透镜和所述第八透镜在所述光轴上的空气间隔T78满足2.5<f/(T67+T78)<6。
  9. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f与所述第五透镜和所述第六透镜在所述光轴上的空气间隔T56满足11<f/T56<18。
  10. 根据权利要求1所述的摄像透镜组,其特征在于,所述第七透镜在与所述光轴平行的方向上的最小厚度ET7min与所述第七透镜在所述光轴上的中心厚度CT7满足0.5<ET7min/CT7<1.0。
  11. 根据权利要求1所述的摄像透镜组,其特征在于,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足0.45<R5/R6<1.2。
  12. 根据权利要求1所述的摄像透镜组,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0<(R3-R4)/(R3+R4)<0.25。
  13. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f、所述第六透镜的像侧面的曲率半径R12与所述第七透镜的物侧面的曲率半径R13满足0.5<f/|R12|+f/R13<2.0。
  14. 根据权利要求1所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f与所述第八透镜的物侧面的曲率半径R15满足-3.5<f/R15<-1.5。
  15. 根据权利要求1至14中任一项所述的摄像透镜组,其特征在于,所述第一透镜的 物侧面至所述摄像透镜组的成像面在所述光轴上的距离TTL与所述摄像透镜组的入瞳直径EPD满足2.1<TTL/EPD<2.5。
  16. 根据权利要求1至14中任一项所述的摄像透镜组,其特征在于,所述摄像透镜组的总有效焦距f、所述第三透镜在所述光轴上的中心厚度CT3、所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足5<f/(CT3+CT4+CT5)<9。
  17. 摄像透镜组,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
    所述第一透镜、所述第四透镜、所述第六透镜和所述第七透镜具有正光焦度;
    所述第八透镜具有负光焦度;
    所述第六透镜的像侧面和所述第七透镜的物侧面均为凸面;以及
    所述摄像透镜组的总有效焦距f与所述摄像透镜组的最大半视场角Semi-FOV满足f×tan(Semi-FOV)>6.0mm。
  18. 根据权利要求17所述的摄像透镜组,其特征在于,所述摄像透镜组的成像面上有效像素区域对角线长的一半ImgH与所述第一透镜的物侧面至所述摄像透镜组的成像面在所述光轴上的距离TTL满足TTL/ImgH<1.6。
  19. 根据权利要求17所述的摄像透镜组,其特征在于,所述第六透镜的有效焦距f6与所述第八透镜的有效焦距f8满足-8.0<f6/f8<-3.0。
  20. 根据权利要求17所述的摄像透镜组,其特征在于,所述第一透镜的物侧面至所述摄像透镜组的成像面在所述光轴上的距离TTL与所述摄像透镜组的入瞳直径EPD满足2.1<TTL/EPD<2.5。
PCT/CN2019/114315 2019-04-02 2019-10-30 摄像透镜组 WO2020199573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,706 US20220050268A1 (en) 2019-04-02 2019-10-30 Camera Lens Group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910260438.6 2019-04-02
CN201910260438.6A CN109870788B (zh) 2019-04-02 2019-04-02 摄像透镜组

Publications (1)

Publication Number Publication Date
WO2020199573A1 true WO2020199573A1 (zh) 2020-10-08

Family

ID=66921946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114315 WO2020199573A1 (zh) 2019-04-02 2019-10-30 摄像透镜组

Country Status (3)

Country Link
US (1) US20220050268A1 (zh)
CN (1) CN109870788B (zh)
WO (1) WO2020199573A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870788B (zh) * 2019-04-02 2024-04-19 浙江舜宇光学有限公司 摄像透镜组
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
JP7347991B2 (ja) * 2019-08-16 2023-09-20 東京晨美光学電子株式会社 撮像レンズ
CN110515187B (zh) 2019-09-27 2024-05-14 浙江舜宇光学有限公司 光学成像镜头
CN110542996B (zh) 2019-09-27 2024-05-03 浙江舜宇光学有限公司 光学成像透镜组
CN110554485A (zh) * 2019-10-17 2019-12-10 浙江舜宇光学有限公司 光学成像镜头
CN110632742A (zh) * 2019-11-06 2019-12-31 浙江舜宇光学有限公司 光学成像镜头
TWI709777B (zh) 2019-11-15 2020-11-11 大立光電股份有限公司 攝像鏡頭組、取像裝置及電子裝置
CN111077641B (zh) * 2019-12-04 2021-12-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111061036B (zh) * 2019-12-13 2021-02-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021114233A1 (zh) * 2019-12-13 2021-06-17 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007633B (zh) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007628B (zh) * 2019-12-23 2021-09-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110908082B (zh) * 2019-12-23 2021-10-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111007637B (zh) * 2019-12-23 2021-12-14 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI725714B (zh) * 2020-01-20 2021-04-21 大立光電股份有限公司 攝影用光學透鏡組、取像裝置及電子裝置
JP6754541B1 (ja) * 2020-03-25 2020-09-16 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN111352219B (zh) * 2020-05-25 2020-08-18 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN112394483A (zh) * 2020-11-25 2021-02-23 南昌欧菲光电技术有限公司 光学成像系统、取像模组和电子装置
JP2022114767A (ja) * 2021-01-27 2022-08-08 キヤノン株式会社 光学系、撮像装置、車載システムおよび移動装置
CN113204096B (zh) * 2021-04-28 2022-08-16 浙江舜宇光学有限公司 摄像镜头
CN113985580A (zh) * 2021-11-10 2022-01-28 浙江舜宇光学有限公司 摄像镜头
CN114236774A (zh) * 2022-01-21 2022-03-25 浙江舜宇光学有限公司 摄像镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208258A (ja) * 2004-01-21 2005-08-04 Casio Comput Co Ltd ズームレンズ
CN206757167U (zh) * 2017-05-18 2017-12-15 福建师范大学 一种长焦镜头
CN107608059A (zh) * 2017-11-08 2018-01-19 湖南戴斯光电有限公司 一种微畸变高分辨大视场光学镜头
CN107703609A (zh) * 2017-11-22 2018-02-16 浙江舜宇光学有限公司 光学成像镜头
CN107741630A (zh) * 2017-11-22 2018-02-27 浙江舜宇光学有限公司 光学成像镜头
CN109358413A (zh) * 2018-07-20 2019-02-19 瑞声声学科技(深圳)有限公司 摄像镜头
CN109490995A (zh) * 2015-08-11 2019-03-19 大立光电股份有限公司 摄像用光学系统、取像装置及电子装置
CN109870788A (zh) * 2019-04-02 2019-06-11 浙江舜宇光学有限公司 摄像透镜组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI569036B (zh) * 2015-12-31 2017-02-01 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
CN108121053B (zh) * 2017-12-29 2024-05-17 玉晶光电(厦门)有限公司 光学成像镜头
CN108445610B (zh) * 2018-06-05 2023-05-26 浙江舜宇光学有限公司 光学成像镜片组
JP6530538B1 (ja) * 2018-07-20 2019-06-12 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN109343203A (zh) * 2018-11-27 2019-02-15 浙江舜宇光学有限公司 光学成像透镜组
CN109343205A (zh) * 2018-12-14 2019-02-15 浙江舜宇光学有限公司 光学成像镜头
CN209690597U (zh) * 2019-04-02 2019-11-26 浙江舜宇光学有限公司 摄像透镜组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208258A (ja) * 2004-01-21 2005-08-04 Casio Comput Co Ltd ズームレンズ
CN109490995A (zh) * 2015-08-11 2019-03-19 大立光电股份有限公司 摄像用光学系统、取像装置及电子装置
CN206757167U (zh) * 2017-05-18 2017-12-15 福建师范大学 一种长焦镜头
CN107608059A (zh) * 2017-11-08 2018-01-19 湖南戴斯光电有限公司 一种微畸变高分辨大视场光学镜头
CN107703609A (zh) * 2017-11-22 2018-02-16 浙江舜宇光学有限公司 光学成像镜头
CN107741630A (zh) * 2017-11-22 2018-02-27 浙江舜宇光学有限公司 光学成像镜头
CN109358413A (zh) * 2018-07-20 2019-02-19 瑞声声学科技(深圳)有限公司 摄像镜头
CN109870788A (zh) * 2019-04-02 2019-06-11 浙江舜宇光学有限公司 摄像透镜组

Also Published As

Publication number Publication date
CN109870788A (zh) 2019-06-11
US20220050268A1 (en) 2022-02-17
CN109870788B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2020199573A1 (zh) 摄像透镜组
WO2019233160A1 (zh) 光学成像镜片组
WO2020119172A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020024633A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020038134A1 (zh) 光学成像系统
WO2020010878A1 (zh) 光学成像系统
WO2020007080A1 (zh) 摄像镜头
WO2020107962A1 (zh) 光学成像透镜组
WO2019105139A1 (zh) 光学成像镜头
WO2020168717A1 (zh) 光学成像镜头
WO2019101052A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020113985A1 (zh) 光学成像镜片组
WO2020191951A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2020010879A1 (zh) 光学成像系统
WO2020073702A1 (zh) 光学成像镜片组
WO2020029620A1 (zh) 光学成像镜片组
WO2020107935A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019100768A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922658

Country of ref document: EP

Kind code of ref document: A1