WO2020093725A1 - 摄像光学系统 - Google Patents

摄像光学系统 Download PDF

Info

Publication number
WO2020093725A1
WO2020093725A1 PCT/CN2019/095616 CN2019095616W WO2020093725A1 WO 2020093725 A1 WO2020093725 A1 WO 2020093725A1 CN 2019095616 W CN2019095616 W CN 2019095616W WO 2020093725 A1 WO2020093725 A1 WO 2020093725A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
imaging optical
object side
imaging
Prior art date
Application number
PCT/CN2019/095616
Other languages
English (en)
French (fr)
Inventor
张凯元
徐标
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US17/257,027 priority Critical patent/US11914110B2/en
Publication of WO2020093725A1 publication Critical patent/WO2020093725A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an imaging optical system. More specifically, the application relates to an imaging optical system including six lenses.
  • the present application provides an imaging optical system applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an imaging optical system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a first lens Six lenses.
  • the first lens may have positive power, its object side may be convex, and the image side may be concave
  • the second lens may have negative power, its object side may be convex, and the image side may be concave
  • the third lens It has optical power
  • the fourth lens has optical power
  • the fifth lens may have positive optical power
  • the sixth lens may have negative optical power, and its object side surface may be concave.
  • the distance between the object side surface of the first lens and the imaging surface of the imaging optical system on the optical axis, TTL, and the half of the diagonal length of the effective pixel area on the imaging surface of the imaging optical system, ImgH, can satisfy TTL / ImgH ⁇ 1.5.
  • the total effective focal length f of the imaging optical system and the maximum half angle of view HFOV of the imaging optical system may satisfy 4.6 mm ⁇ f * tan (HFOV) ⁇ 7 mm.
  • the effective focal length f1 of the first lens and the effective focal length f6 of the sixth lens may satisfy -2.5 ⁇ f1 / f6 ⁇ -1.5.
  • the effective focal length f2 of the second lens and the effective focal length f5 of the fifth lens may satisfy -2.5 ⁇ f2 / (f5 * 2) ⁇ -1.5.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R4 of the image side of the second lens may satisfy 1 ⁇ R4 / R1 ⁇ 2.
  • the curvature radius R3 of the object side surface of the second lens and the curvature radius R11 of the object side surface of the sixth lens may satisfy -2.5 ⁇ R3 / R11 ⁇ -1.
  • the center thickness of the first lens on the optical axis CT1, the center thickness of the second lens on the optical axis CT2 and the center thickness of the third lens on the optical axis CT3 can satisfy 1 ⁇ CT1 / (CT2 + CT3) ⁇ 1.5.
  • the separation distance T56 between the fifth lens and the sixth lens on the optical axis and the separation distance T23 between the second lens and the third lens on the optical axis may satisfy 0.6 ⁇ T56 / T23 ⁇ 1.2.
  • the axial distance between the intersection of the image side of the fifth lens and the optical axis to the vertex of the effective half aperture of the image side of the fifth lens SAG52 and the center thickness of the fifth lens on the optical axis CT5 can satisfy 1 ⁇
  • the edge thickness ET6 of the sixth lens and the center thickness CT6 of the sixth lens on the optical axis may satisfy 1 ⁇ ET6 / CT6 ⁇ 2.
  • the total effective focal length f of the imaging optical system and the entrance pupil diameter EPD of the imaging optical system may satisfy f / EPD ⁇ 1.8.
  • This application uses six lenses.
  • the above-mentioned imaging optical system has ultra-thin, large aperture, large At least one beneficial effect such as image plane and high imaging quality.
  • FIGS. 2A to 2D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the imaging optical system of Example 1. curve;
  • FIG. 3 shows a schematic structural diagram of an imaging optical system according to Example 2 of the present application
  • FIGS. 4A to 4D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the imaging optical system of Example 2 curve;
  • FIG. 5 shows a schematic structural diagram of an imaging optical system according to Example 3 of the present application
  • FIGS. 6A to 6D respectively show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the imaging optical system of Example 3. curve;
  • FIGS. 8A to 8D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the imaging optical system of Example 4. curve;
  • FIGS. 10A to 10D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the imaging optical system of Example 5. curve;
  • FIGS. 12A to 12D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the imaging optical system of Example 6. curve;
  • FIG. 13 shows a schematic structural diagram of an imaging optical system according to Example 7 of the present application
  • FIGS. 14A to 14D show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the imaging optical system of Example 7 respectively curve;
  • FIG. 15 shows a schematic structural diagram of an imaging optical system according to Example 8 of the present application
  • FIGS. 16A to 16D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the imaging optical system of Example 8. curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the imaging optical system may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in sequence along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have positive power, its object side may be convex, and the image side may be concave; the second lens may have negative power, its object side may be convex, and the image side may be Concave surface; third lens has positive or negative power; fourth lens has positive or negative power; fifth lens may have positive power; sixth lens may have negative power, its object side Can be concave.
  • Reasonable control of the optical power and surface shape of the first lens and the second lens is beneficial to reduce the aberration of the field of view on the system axis, so that the system axis has good imaging performance.
  • the reasonable combination of the third lens, the fourth lens, and the fifth lens helps to balance the high-order aberrations generated by the lens, so that each field of view of the system has a small aberration.
  • the object side of the third lens may be convex.
  • the object side of the fifth lens may be convex, and the image side may be convex.
  • the image side of the sixth lens may be concave.
  • the imaging optical system of the present application may satisfy the conditional expression 4.6mm ⁇ f * tan (HFOV) ⁇ 7mm, where f is the total effective focal length of the imaging optical system, and HFOV is the maximum half-view of the imaging optical system Field angle. More specifically, f and HFOV may further satisfy 4.6 mm ⁇ f * tan (HFOV) ⁇ 5.0 mm, for example, 4.64 mm ⁇ f * tan (HFOV) ⁇ 4.71 mm.
  • HFOV 4.6mm ⁇ f * tan
  • the imaging optical system of the present application can satisfy the conditional expression TTL / ImgH ⁇ 1.5, where TTL is the distance from the object side of the first lens to the imaging surface of the imaging optical system on the optical axis, and ImgH is the imaging The effective pixel area on the imaging surface of the optical system is half the diagonal length. More specifically, TTL and ImgH can further satisfy 1.40 ⁇ TTL / ImgH ⁇ 1.42. By constraining the ratio of the axial distance between the object side of the first lens to the imaging plane and the image height, the ultra-thin characteristics of the system can be achieved.
  • the imaging optical system of the present application may satisfy the conditional expression -2.5 ⁇ f1 / f6 ⁇ -1.5, where f1 is the effective focal length of the first lens and f6 is the effective focal length of the sixth lens. More specifically, f1 and f6 may further satisfy -2.12 ⁇ f1 / f6 ⁇ -1.71.
  • the optical power of the system can be reasonably distributed so that the positive and negative spherical aberrations of the front group lens and the rear group lens cancel each other out.
  • the imaging optical system of the present application may satisfy the conditional expression -2.5 ⁇ f2 / (f5 * 2) ⁇ -1.5, where f2 is the effective focal length of the second lens and f5 is the effective focal length of the fifth lens . More specifically, f2 and f5 can further satisfy -2.19 ⁇ f2 / (f5 * 2) ⁇ -1.55. Reasonable distribution of the power of the second lens and the fifth lens, so that the ratio of the effective focal length of the second lens and the fifth lens is within a certain range, is beneficial to balance off-axis aberration of the imaging optical system.
  • the imaging optical system of the present application may satisfy the conditional expression 1 ⁇
  • the on-axis distance of the half-aperture vertex, CT5 is the center thickness of the fifth lens on the optical axis. More specifically, SAG52 and CT5 can further satisfy 1.17 ⁇
  • the imaging optical system of the present application may satisfy the conditional expression 1 ⁇ ET6 / CT6 ⁇ 2, where ET6 is the edge thickness of the sixth lens and CT6 is the center thickness of the sixth lens on the optical axis. More specifically, ET6 and CT6 can further satisfy 1.12 ⁇ ET6 / CT6 ⁇ 1.60. By reasonably controlling the ratio between the edge thickness and the center thickness of the sixth lens, the imaging optical system has good manufacturability and is easy to process and manufacture.
  • the imaging optical system of the present application may satisfy the conditional expression 1 ⁇ R4 / R1 ⁇ 2, where R1 is the radius of curvature of the object side of the first lens and R4 is the radius of curvature of the image side of the second lens . More specifically, R4 and R1 may further satisfy 1.46 ⁇ R4 / R1 ⁇ 1.81. Reasonable control of the ratio of the curvature radius of the image side of the fourth lens to the curvature radius of the object side of the first lens can effectively balance the axial aberration generated by the imaging optical system.
  • the imaging optical system of the present application may satisfy the conditional expression -2.5 ⁇ R3 / R11 ⁇ -1, where R3 is the radius of curvature of the object side of the second lens, and R11 is the object side of the sixth lens Radius of curvature. More specifically, R3 and R11 may further satisfy -2.32 ⁇ R3 / R11 ⁇ -1.44.
  • R3 and R11 may further satisfy -2.32 ⁇ R3 / R11 ⁇ -1.44.
  • the imaging optical system of the present application can satisfy the conditional expression 0.6 ⁇ T56 / T23 ⁇ 1.2, where T56 is the separation distance between the fifth lens and the sixth lens on the optical axis, and T23 is the second lens and The separation distance of the third lens on the optical axis. More specifically, T56 and T23 can further satisfy 0.77 ⁇ T56 / T23 ⁇ 1.14. By restricting the air gap between the fifth lens and the sixth lens and the air gap between the second lens and the third lens, the field curvature generated by the front group lens of the system and the field curvature generated by the rear group lens can be balanced to make the system Reasonable field music.
  • the imaging optical system of the present application may satisfy the conditional expression 1 ⁇ CT1 / (CT2 + CT3) ⁇ 1.5, where CT1 is the center thickness of the first lens on the optical axis and CT2 is the second lens at The central thickness on the optical axis, CT3 is the central thickness of the third lens on the optical axis. More specifically, CT1, CT2, and CT3 can further satisfy 1.18 ⁇ CT1 / (CT2 + CT3) ⁇ 1.36.
  • the ratio of the center thickness of the first lens to the sum of the center thicknesses of the second lens and the third lens it is possible to ensure that the optical system has good processability characteristics, and to ensure the imaging from the object side of the first lens to the optical system
  • the on-axis distance of the surface is controlled within a certain range.
  • the imaging optical system of the present application may satisfy the conditional expression f / EPD ⁇ 1.8, where f is the total effective focal length of the imaging optical system and EPD is the entrance pupil diameter of the imaging optical system. More specifically, f and EPD may further satisfy 1.65 ⁇ f / EPD ⁇ 1.75, for example, 1.69 ⁇ f / EPD ⁇ 1.70. Satisfying the conditional expression f / EPD ⁇ 1.8, the imaging optical system has the characteristics of a larger aperture, which can increase the luminous flux per unit time of the system and enhance the imaging effect in a dark environment; at the same time, it can reduce the aberration of the edge field of view.
  • the above-mentioned imaging optical system may further include a diaphragm to improve the imaging quality of the optical system.
  • the diaphragm can be set at any position as needed.
  • the diaphragm may be provided between the object side and the first lens; or, the diaphragm may be provided between the first lens and the second lens.
  • the above-mentioned imaging optical system may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging optical system according to the above-described embodiment of the present application may employ multiple lenses, such as the six described above.
  • the volume of the optical system can be effectively reduced, the sensitivity of the optical system can be reduced, and the optical system can be improved.
  • the processability makes the camera optical system more conducive to production and processing and applicable to portable electronic products.
  • the imaging optical system configured through the above can also have beneficial effects such as large image plane, large aperture, miniaturization, and high imaging quality.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens
  • At least one of the object side and the image side of the lens is an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberration and astigmatic aberration.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are aspheric mirror surfaces.
  • the number of lenses constituting the imaging optical system can be changed to obtain various results and advantages described in this specification without departing from the technical solution claimed in this application.
  • the imaging optical system is not limited to include six lenses. If necessary, the imaging optical system may further include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an imaging optical system according to Embodiment 1 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a third The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the aspherical apex to the height of the aspherical surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order terms coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S12 in Example 1. .
  • Table 3 shows the effective focal lengths f1 to f6 of the lenses in Example 1, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15
  • the effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 2A shows the on-axis chromatic aberration curve of the imaging optical system of Example 1, which indicates that rays of different wavelengths will deviate from the focus point after passing through the system.
  • 2B shows the astigmatism curve of the imaging optical system of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2C shows the distortion curve of the imaging optical system of Example 1, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 2D shows the magnification chromatic aberration curve of the imaging optical system of Example 1, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 2A to 2D that the imaging optical system provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an imaging optical system according to Embodiment 2 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 5 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the effective focal lengths f1 to f6 of the lenses in Example 2, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 4A shows the on-axis chromatic aberration curve of the imaging optical system of Example 2, which indicates that rays of different wavelengths will deviate from the focus point after passing through the system.
  • 4B shows the astigmatism curve of the imaging optical system of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the distortion curve of the imaging optical system of Example 2, which represents the distortion magnitude values corresponding to different image heights.
  • 4D shows the magnification chromatic aberration curve of the imaging optical system of Example 2, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 4A to 4D that the imaging optical system provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an imaging optical system according to Embodiment 3 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 3, where the units of the radius of curvature and thickness are both millimeters (mm).
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the effective focal lengths f1 to f6 of the lenses in Example 3, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 6A shows an on-axis chromatic aberration curve of the imaging optical system of Example 3, which indicates that rays of different wavelengths will deviate from the focus point after passing through the system.
  • 6B shows the astigmatism curve of the imaging optical system of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6C shows the distortion curve of the imaging optical system of Example 3, which represents the distortion magnitude values corresponding to different image heights.
  • 6D shows the magnification chromatic aberration curve of the imaging optical system of Example 3, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 6A to 6D that the imaging optical system provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 7 to 8D shows a schematic structural diagram of an imaging optical system according to Embodiment 4 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in Example 4, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 8A shows the on-axis chromatic aberration curve of the imaging optical system of Example 4, which represents that the light of different wavelengths will deviate from the focus point after passing through the system.
  • 8B shows the astigmatism curve of the imaging optical system of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8C shows the distortion curve of the imaging optical system of Example 4, which represents the distortion magnitude values corresponding to different image heights.
  • 8D shows the magnification chromatic aberration curve of the imaging optical system of Example 4, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 8A to 8D that the imaging optical system provided in Embodiment 4 can achieve good imaging quality.
  • FIGS. 9 to 10D shows a schematic structural diagram of an imaging optical system according to Embodiment 5 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 14 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the effective focal lengths f1 to f6 of the lenses in Example 5, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 10A shows an on-axis chromatic aberration curve of the imaging optical system of Example 5, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 10B shows the astigmatism curve of the imaging optical system of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10C shows the distortion curve of the imaging optical system of Example 5, which represents the distortion magnitude values corresponding to different image heights.
  • 10D shows the magnification chromatic aberration curve of the imaging optical system of Example 5, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be known from FIGS. 10A to 10D that the imaging optical system provided in Example 5 can achieve good imaging quality.
  • FIGS. 11 to 12D shows a schematic structural diagram of an imaging optical system according to Embodiment 6 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 17 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the effective focal lengths f1 to f6 of the lenses in Example 6, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 12A shows an on-axis chromatic aberration curve of the imaging optical system of Example 6, which indicates that rays of different wavelengths will deviate from the focus point after passing through the system.
  • 12B shows the astigmatism curve of the imaging optical system of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12C shows the distortion curve of the imaging optical system of Example 6, which represents the distortion magnitude values corresponding to different image heights.
  • 12D shows the magnification chromatic aberration curve of the imaging optical system of Example 6, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 12A to 12D that the imaging optical system provided in Embodiment 6 can achieve good imaging quality.
  • FIGS. 13 to 14D shows a schematic structural diagram of an imaging optical system according to Embodiment 7 of the present application.
  • the imaging optical system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side S5 is convex, and its image side S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and its image side surface S8 is convex.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the effective focal lengths f1 to f6 of the lenses in Example 7, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S15, and the imaging plane S15 The effective pixel area on the upper half of the diagonal is ImgH.
  • FIG. 14A shows an on-axis chromatic aberration curve of the imaging optical system of Example 7, which indicates that rays of different wavelengths will deviate from the focal point after passing through the system.
  • 14B shows the astigmatism curve of the imaging optical system of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 14C shows the distortion curve of the imaging optical system of Example 7, which represents the distortion magnitude values corresponding to different angles of view.
  • FIG. 14D shows the magnification chromatic aberration curve of the imaging optical system of Example 7, which represents the deviation of different image heights on the imaging plane after the light passes through the system. It can be seen from FIGS. 14A to 14D that the imaging optical system provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 to 16D shows a schematic structural diagram of an imaging optical system according to Embodiment 8 of the present application.
  • the imaging optical system includes, in order from the object side to the image side, along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, The four lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is a concave surface, and the image side surface S12 is a concave surface.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the imaging optical system of Example 8, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 23 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 24 shows the effective focal lengths f1 to f6 of the lenses in Example 8, the total effective focal length f of the imaging optical system, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S15, and the imaging surface S15 The effective pixel area is half the diagonal length of ImgH.
  • FIG. 16A shows an on-axis chromatic aberration curve of the imaging optical system of Example 8, which indicates that rays of different wavelengths will deviate from the focus point after passing through the system.
  • 16B shows the astigmatism curve of the imaging optical system of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • 16C shows the distortion curve of the imaging optical system of Example 8, which represents the distortion magnitude values corresponding to different image heights.
  • 16D shows the magnification chromatic aberration curve of the imaging optical system of Example 8, which represents the deviation of different image heights on the imaging plane after light passes through the system. It can be seen from FIGS. 16A to 16D that the imaging optical system provided in Example 8 can achieve good imaging quality.
  • Examples 1 to 8 satisfy the relationships shown in Table 25, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone. This imaging device is equipped with the imaging optical system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学系统,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜具有正光焦度,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜具有负光焦度,其物侧面(S3)为凸面,像侧面(S4)为凹面;第三透镜具有光焦度;第四透镜具有光焦度;第五透镜具有正光焦度;第六透镜具有负光焦度,其物侧面(S11)为凹面。第一透镜的物侧面至摄像光学系统的成像面(S15)在光轴上的距离TTL与摄像光学系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。

Description

摄像光学系统
相关申请的交叉引用
本申请要求于2018年11月07日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811318627.6的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像光学系统,更具体地,本申请涉及一种包括六片透镜的摄像光学系统。
背景技术
随着科技的进步,具有摄像功能的电子产品快速发展,人们对适用于便携式电子产品的摄像光学系统的要求逐渐提高。同时,随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等图像传感器等技术的进步,使得芯片上像元数增加同时单像元的尺寸减小,这对配套使用的摄像光学系统的高成像性能也提出了越来越高的要求。
因此,需要一种具有大像面、大孔径,超薄等特性的摄像光学系统。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像光学系统。
本申请提供了这样一种摄像光学系统,该摄像光学系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜具有光焦度;第四透镜具有光焦度;第五透镜可具有正光焦度;第六透镜可具有负光焦度,其物侧面可为凹面。
在一个实施方式中,第一透镜的物侧面至摄像光学系统的成像面在光轴上的距离TTL与摄像光学系统的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.5。
在一个实施方式中,摄像光学系统的总有效焦距f与摄像光学系统的最大半视场角HFOV可满足4.6mm<f*tan(HFOV)<7mm。
在一个实施方式中,第一透镜的有效焦距f1与第六透镜的有效焦距f6可满足-2.5<f1/f6<-1.5。
在一个实施方式中,第二透镜的有效焦距f2与第五透镜的有效焦距f5可满足-2.5<f2/(f5*2)<-1.5。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第二透镜的像侧面的曲率半径R4可满足1<R4/R1<2。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第六透镜的物侧面的曲率半径R11 可满足-2.5<R3/R11<-1。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3可满足1<CT1/(CT2+CT3)<1.5。
在一个实施方式中,第五透镜和第六透镜在光轴上的间隔距离T56与第二透镜和第三透镜在光轴上的间隔距离T23可满足0.6<T56/T23<1.2。
在一个实施方式中,第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半口径顶点的轴上距离SAG52与第五透镜在光轴上的中心厚度CT5可满足1<|SAG52/CT5|<1.5。
在一个实施方式中,第六透镜的边缘厚度ET6与第六透镜在光轴上的中心厚度CT6可满足1<ET6/CT6<2。
在一个实施方式中,摄像光学系统的总有效焦距f与摄像光学系统的入瞳直径EPD可满足f/EPD<1.8。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像光学系统具有超薄、大孔径、大像面、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像光学系统的结构示意图;图2A至图2D分别示出了实施例1的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的摄像光学系统的结构示意图;图4A至图4D分别示出了实施例2的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的摄像光学系统的结构示意图;图6A至图6D分别示出了实施例3的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的摄像光学系统的结构示意图;图8A至图8D分别示出了实施例4的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的摄像光学系统的结构示意图;图10A至图10D分别示出了实施例5的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的摄像光学系统的结构示意图;图12A至图12D分别示出了实施例6的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的摄像光学系统的结构示意图;图14A至图14D分别示出了实施例7的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的摄像光学系统的结构示意图;图16A至图16D分别示出了实施例8的摄像光学系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像光学系统可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜具有正光焦度或负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有正光焦度;第六透镜可具有负光焦度,其物侧面可为凹面。
合理控制第一透镜和第二透镜的光焦度和面型,有利于减小系统轴上视场的像差,使系统轴上具有良好的成像性能。通过第三透镜、第四透镜、第五透镜的合理搭配,有利于平衡透镜产生 的高阶像差,使得系统各视场具有较小的像差。通过控制第六透镜的物侧面的面型为凹面,有利于系统主光线与像面的匹配。
在示例性实施方式中,第三透镜的物侧面可为凸面。
在示例性实施方式中,第五透镜的物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第六透镜的像侧面可为凹面。
在示例性实施方式中,本申请的摄像光学系统可满足条件式4.6mm<f*tan(HFOV)<7mm,其中,f为摄像光学系统的总有效焦距,HFOV为摄像光学系统的最大半视场角。更具体地,f和HFOV进一步可满足4.6mm<f*tan(HFOV)≤5.0mm,例如,4.64mm≤f*tan(HFOV)≤4.71mm。通过约束摄像光学系统的总有效焦距和最大半视场角,可以实现系统大像面的成像效果。
在示例性实施方式中,本申请的摄像光学系统可满足条件式TTL/ImgH<1.5,其中,TTL为第一透镜的物侧面至摄像光学系统的成像面在光轴上的距离,ImgH为摄像光学系统的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.40≤TTL/ImgH≤1.42。通过约束第一透镜物侧面至成像面的轴上距离和像高的比值,可以实现系统超薄的特性。
在示例性实施方式中,本申请的摄像光学系统可满足条件式-2.5<f1/f6<-1.5,其中,f1为第一透镜的有效焦距,f6为第六透镜的有效焦距。更具体地,f1和f6进一步可满足-2.12≤f1/f6≤-1.71。通过合理控制第一透镜和第六透镜的有效焦距的比值,能够合理分配系统的光焦度,使得前组透镜和后组透镜的正负球差相互抵消。
在示例性实施方式中,本申请的摄像光学系统可满足条件式-2.5<f2/(f5*2)<-1.5,其中,f2为第二透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f2和f5进一步可满足-2.19≤f2/(f5*2)≤-1.55。合理分配第二透镜和第五透镜的光焦度,使得第二透镜与第五透镜的有效焦距的比值在一定范围内,有利于平衡摄像光学系统的轴外像差。
在示例性实施方式中,本申请的摄像光学系统可满足条件式1<|SAG52/CT5|<1.5,其中,SAG52为第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半口径顶点的轴上距离,CT5为第五透镜在光轴上的中心厚度。更具体地,SAG52和CT5进一步可满足1.17≤|SAG52/CT5|≤1.36。满足条件式1<|SAG52/CT5|<1.5,可以有效地减小第五透镜像侧面上的主光线的入射角,从而能够有效地提高光学系统与芯片的匹配度。
在示例性实施方式中,本申请的摄像光学系统可满足条件式1<ET6/CT6<2,其中,ET6为第六透镜的边缘厚度,CT6为第六透镜在光轴上的中心厚度。更具体地,ET6和CT6进一步可满足1.12≤ET6/CT6≤1.60。通过合理控制第六透镜的边缘厚度和中心厚度的比值,使摄像光学系统具有良好的工艺性,易于加工制造。
在示例性实施方式中,本申请的摄像光学系统可满足条件式1<R4/R1<2,其中,R1为第一透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R4和R1进一步可满足1.46≤R4/R1≤1.81。合理控制第四透镜的像侧面的曲率半径与第一透镜的物侧面的曲率半径的比值,能够有效地平衡摄像光学系统产生的轴上像差。
在示例性实施方式中,本申请的摄像光学系统可满足条件式-2.5<R3/R11<-1,其中,R3为 第二透镜的物侧面的曲率半径,R11为第六透镜的物侧面的曲率半径。更具体地,R3和R11进一步可满足-2.32≤R3/R11≤-1.44。通过控制第二透镜的物侧面和第六透镜的物侧面的曲率半径的比值,可以将边缘视场的光线角度控制在合理范围内,从而能够有效地降低系统的敏感性。
在示例性实施方式中,本申请的摄像光学系统可满足条件式0.6<T56/T23<1.2,其中,T56为第五透镜和第六透镜在光轴上的间隔距离,T23为第二透镜和第三透镜在光轴上的间隔距离。更具体地,T56和T23进一步可满足0.77≤T56/T23≤1.14。通过约束第五透镜和第六透镜的空气间隙以及第二透镜和第三透镜的空气间隙,可以使系统前组透镜所产生的场曲和后组透镜所产生的场曲进行平衡,使系统具有合理的场曲。
在示例性实施方式中,本申请的摄像光学系统可满足条件式1<CT1/(CT2+CT3)<1.5,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度。更具体地,CT1、CT2和CT3进一步可满足1.18≤CT1/(CT2+CT3)≤1.36。通过合理控制第一透镜的中心厚度与第二透镜和第三透镜中心厚度之和的比值,可以保证光学系统具有良好的可加工特性,且可以保证从第一透镜的物侧面至光学系统的成像面的轴上距离被控制在一定的范围内。
在示例性实施方式中,本申请的摄像光学系统可满足条件式f/EPD<1.8,其中,f为摄像光学系统的总有效焦距,EPD为摄像光学系统的入瞳直径。更具体地,f和EPD进一步可满足1.65≤f/EPD≤1.75,例如,1.69≤f/EPD≤1.70。满足条件式f/EPD<1.8,摄像光学系统具有较大光圈的特点,从而可以增加系统单位时间内的光通量,增强暗环境下的成像效果;同时,可以减小边缘视场的像差。
在示例性实施方式中,上述摄像光学系统还可包括光阑,以提升光学系统的成像质量。本领域技术人员应当理解,光阑可根据需要设置在任意位置处。例如,光阑可设置在物侧与第一透镜之间;或者,光阑可设置在第一透镜与第二透镜之间。可选地,上述摄像光学系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像光学系统可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小光学系统的体积、降低光学系统的敏感度并提高光学系统的可加工性,使得摄像光学系统更有利于生产加工并且可适用于便携式电子产品。通过上述配置的摄像光学系统还可具有大像面、大孔径、小型化、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像光学系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像光学系统不限于包括六个透镜。如果需要,该摄像光学系统还可包括其他数量的透镜。
下面将参照附图进一步描述可适用于上述实施方式的摄像光学系统的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像光学系统。图1示出了根据本申请实施例1的摄像光学系统的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095616-appb-000001
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019095616-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.4304E-03 8.6937E-03 -1.7385E-02 2.2318E-02 -1.8171E-02 9.3766E-03 -2.9888E-03 5.3601E-04 -4.2198E-05
S2 -1.9305E-02 1.8495E-02 -1.2501E-02 1.3562E-02 -1.7028E-02 1.3575E-02 -6.2576E-03 1.5410E-03 -1.5763E-04
S3 -6.4995E-02 6.1193E-02 -2.4692E-02 1.8002E-02 -3.1170E-02 3.2239E-02 -1.7531E-02 4.9060E-03 -5.5950E-04
S4 -4.6805E-02 6.0452E-02 -5.5829E-02 1.1431E-01 -1.8116E-01 1.7141E-01 -9.3332E-02 2.7227E-02 -3.2650E-03
S5 -3.5567E-02 1.9088E-02 -4.6905E-02 6.4179E-02 -6.2094E-02 3.8300E-02 -1.4397E-02 2.8259E-03 -1.9255E-04
S6 -6.0548E-02 2.2490E-02 -5.5819E-02 8.1464E-02 -8.7056E-02 6.0591E-02 -2.5833E-02 6.1451E-03 -6.2619E-04
S7 -7.3371E-02 2.1583E-02 -3.8994E-02 5.5579E-02 -5.7388E-02 3.8509E-02 -1.5642E-02 3.5511E-03 -3.4823E-04
S8 -5.8456E-02 2.9089E-02 -3.7065E-02 3.6498E-02 -2.3374E-02 9.6348E-03 -2.4647E-03 3.5555E-04 -2.1927E-05
S9 -2.5423E-02 7.7336E-05 6.6994E-04 -2.1733E-03 1.0800E-03 -9.5867E-05 -6.6958E-05 1.9214E-05 -1.4822E-06
S10 -3.6454E-02 1.3530E-02 -3.4348E-03 -1.0883E-03 9.2497E-04 -2.0948E-04 1.9551E-05 -5.4985E-07 -1.1891E-08
S11 -5.1822E-02 2.4423E-02 -1.2209E-02 4.2176E-03 -8.4210E-04 9.9621E-05 -6.9863E-06 2.7029E-07 -4.4678E-09
S12 -3.2057E-02 1.1499E-02 -3.5690E-03 7.8497E-04 -1.1952E-04 1.2161E-05 -7.8491E-07 2.8887E-08 -4.5800E-10
表2
表3给出了实施例1中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
f1(mm) 5.06 f6(mm) -2.42
f2(mm) -13.79 f(mm) 5.50
f3(mm) 28.04 TTL(mm) 6.70
f4(mm) -39.96 ImgH(mm) 4.75
f5(mm) 3.16    
表3
图2A示出了实施例1的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图2B示出了实施例1的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图2D示出了实施例1的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像光学系统能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的摄像光学系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像光学系统的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:第 一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000003
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.6839E-04 1.7656E-03 -1.2418E-03 -7.7395E-04 1.8774E-03 -1.5028E-03 6.0968E-04 -1.2917E-04 1.1026E-05
S2 -2.7923E-02 3.8825E-02 -2.9775E-02 1.0943E-02 9.4871E-04 -3.1714E-03 1.5118E-03 -3.2770E-04 2.8216E-05
S3 -5.5905E-02 6.6006E-02 -1.7672E-02 -4.7091E-02 8.1484E-02 -6.5346E-02 2.9927E-02 -7.4789E-03 7.9620E-04
S4 -3.2614E-02 3.0067E-02 6.2132E-02 -2.1587E-01 3.4338E-01 -3.2635E-01 1.8860E-01 -6.1117E-02 8.5692E-03
S5 -2.5235E-02 -2.0320E-02 9.3531E-02 -2.7693E-01 4.6108E-01 -4.6713E-01 2.8295E-01 -9.4468E-02 1.3401E-02
S6 -3.4772E-02 -2.7625E-02 7.8933E-02 -1.4204E-01 1.4785E-01 -9.8975E-02 4.1494E-02 -9.7910E-03 9.9344E-04
S7 -6.5684E-02 1.6684E-02 -1.8634E-02 2.4310E-02 -2.0087E-02 5.4894E-03 1.9420E-03 -1.3021E-03 1.8511E-04
S8 -6.5286E-02 1.9970E-02 -2.0365E-02 2.3511E-02 -1.6628E-02 7.0431E-03 -1.7037E-03 2.1562E-04 -1.1058E-05
S9 -2.9729E-02 7.6138E-03 -2.3739E-02 2.3017E-02 -1.2598E-02 4.3051E-03 -9.1596E-04 1.1040E-04 -5.6708E-06
S10 -2.0793E-02 1.0705E-02 -1.4037E-02 7.9693E-03 -2.2681E-03 3.7211E-04 -3.6470E-05 2.0125E-06 -4.8630E-08
S11 -2.7438E-02 -1.7458E-02 1.2274E-02 -3.0139E-03 4.0550E-04 -3.2828E-05 1.5963E-06 -4.2914E-08 4.8797E-10
S12 -3.6071E-02 8.3754E-03 -1.2470E-03 6.7244E-05 9.1734E-06 -2.1142E-06 1.7598E-07 -6.8108E-09 9.9945E-11
表5
f1(mm) 4.60 f6(mm) -2.40
f2(mm) -10.86 f(mm) 5.63
f3(mm) 50.14 TTL(mm) 6.72
f4(mm) -31.52 ImgH(mm) 4.79
f5(mm) 2.93    
表6
图4A示出了实施例2的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图4B示出了实施例2的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图4D示出了实施例2的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像光学系统能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像光学系统。图5示出了根据本申请实施例3的摄像光学系统的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000004
Figure PCTCN2019095616-appb-000005
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.8455E-04 -1.8415E-03 7.0305E-03 -1.1812E-02 1.1270E-02 -6.4869E-03 2.2060E-03 -4.0991E-04 3.1586E-05
S2 -3.8962E-02 3.1139E-02 -1.2208E-02 -3.9811E-03 8.7146E-03 -5.8702E-03 2.1461E-03 -4.2362E-04 3.5426E-05
S3 -6.3514E-02 5.1538E-02 -3.5825E-03 -3.6181E-02 4.7611E-02 -3.3413E-02 1.4103E-02 -3.3307E-03 3.3940E-04
S4 -3.1107E-02 3.0066E-02 1.8587E-02 -6.6870E-02 9.3919E-02 -8.1854E-02 4.5446E-02 -1.4526E-02 2.0412E-03
S5 -3.6172E-02 2.1062E-03 1.3706E-02 -8.9816E-02 1.7057E-01 -1.7837E-01 1.0639E-01 -3.4057E-02 4.5319E-03
S6 -7.5125E-02 3.1859E-02 -2.9536E-02 1.1341E-02 -3.7043E-03 9.7024E-04 3.1955E-04 -2.8116E-04 4.7835E-05
S7 -1.1104E-01 6.7344E-02 -9.5790E-02 1.2969E-01 -1.2133E-01 7.0317E-02 -2.3722E-02 4.2774E-03 -3.2002E-04
S8 -8.2078E-02 3.1259E-02 -2.5790E-02 2.5249E-02 -1.7216E-02 7.3954E-03 -1.9019E-03 2.6867E-04 -1.6046E-05
S9 -1.5898E-02 -4.9669E-03 -3.4240E-03 3.2894E-03 -1.2374E-03 3.0617E-04 -6.8124E-05 1.1216E-05 -7.8322E-07
S10 4.3050E-02 -2.2919E-02 5.0019E-03 -5.9588E-04 1.8852E-04 -3.7969E-05 6.5508E-07 4.7688E-07 -3.3748E-08
S11 -1.5253E-02 -1.5956E-02 8.5110E-03 -1.5257E-03 1.1588E-04 -1.0394E-07 -6.0884E-07 4.0038E-08 -8.6204E-10
S12 -6.8582E-02 1.7882E-02 -4.0525E-03 7.2327E-04 -9.7784E-05 9.4565E-06 -6.0929E-07 2.3160E-08 -3.8677E-10
表8
f1(mm) 5.03 f6(mm) -2.93
f2(mm) -11.95 f(mm) 5.60
f3(mm) 105.32 TTL(mm) 6.70
f4(mm) 603.85 ImgH(mm) 4.79
f5(mm) 3.77    
表9
图6A示出了实施例3的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图6B示出了实施例3的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图6D示出了实施例3的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像光学系统能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像光学系统。图7示出了根据本申请实施例4的摄像光学系统的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000006
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.4443E-04 -1.5339E-03 6.0097E-03 -1.0339E-02 1.0061E-02 -5.9117E-03 2.0503E-03 -3.8877E-04 3.0577E-05
S2 -4.1139E-02 3.5463E-02 -1.7248E-02 7.0787E-04 5.0563E-03 -3.7600E-03 1.3539E-03 -2.5467E-04 2.0011E-05
S3 -6.4431E-02 5.2544E-02 2.2704E-03 -5.5647E-02 7.5442E-02 -5.5854E-02 2.4615E-02 -5.9956E-03 6.2185E-04
S4 -3.1375E-02 3.3785E-02 -1.1602E-03 -1.2424E-02 3.7829E-03 8.2745E-03 -7.8169E-03 2.5960E-03 -2.6705E-04
S5 -3.6610E-02 3.7793E-03 1.9630E-03 -5.7343E-02 1.1865E-01 -1.2752E-01 7.6355E-02 -2.4287E-02 3.1922E-03
S6 -7.3271E-02 2.1772E-02 -8.2686E-03 -1.7810E-02 2.1785E-02 -1.2334E-02 4.1062E-03 -7.5490E-04 5.6513E-05
S7 -1.0906E-01 5.1032E-02 -5.7838E-02 7.4743E-02 -7.0592E-02 4.1351E-02 -1.3901E-02 2.4699E-03 -1.8117E-04
S8 -8.0643E-02 2.1895E-02 -8.9453E-03 7.1372E-03 -4.8565E-03 2.1305E-03 -5.6028E-04 8.2694E-05 -5.3011E-06
S9 -1.2433E-02 -1.2376E-02 6.8066E-03 -5.2606E-03 3.2272E-03 -1.1462E-03 2.1748E-04 -1.9754E-05 6.3230E-07
S10 4.5599E-02 -2.7729E-02 1.0527E-02 -4.0329E-03 1.4551E-03 -3.2036E-04 3.7985E-05 -2.2159E-06 4.7954E-08
S11 -2.1945E-02 -1.0015E-02 6.6490E-03 -1.2541E-03 1.0849E-04 -3.1334E-06 -1.7553E-07 1.5749E-08 -3.4351E-10
S12 -7.8976E-02 2.4034E-02 -6.3809E-03 1.2973E-03 -1.9098E-04 1.9293E-05 -1.2569E-06 4.7234E-08 -7.7106E-10
表11
f1(mm) 5.00 f6(mm) -2.92
f2(mm) -11.61 f(mm) 5.58
f3(mm) 93.35 TTL(mm) 6.70
f4(mm) 491.04 ImgH(mm) 4.75
f5(mm) 3.75    
表12
图8A示出了实施例4的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图8B示出了实施例4的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图8D示出了实施例4的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像光学系统能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像光学系统。图9示出了根据本申请实施例5的摄像光学系统的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000007
Figure PCTCN2019095616-appb-000008
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1959E-04 5.4931E-05 4.4085E-03 -9.5158E-03 9.9157E-03 -5.9980E-03 2.1130E-03 -4.0541E-04 3.2225E-05
S2 -2.2630E-02 2.5114E-02 -1.1958E-02 -3.4232E-03 8.5557E-03 -5.7668E-03 2.0377E-03 -3.8097E-04 2.9789E-05
S3 -5.8006E-02 5.8008E-02 1.8358E-03 -7.4808E-02 1.1189E-01 -8.9432E-02 4.2096E-02 -1.0905E-02 1.2026E-03
S4 -3.7728E-02 3.8862E-02 3.2027E-02 -1.2350E-01 1.8363E-01 -1.6306E-01 8.9772E-02 -2.8247E-02 3.9266E-03
S5 -3.1258E-02 1.2627E-02 -2.4556E-02 -8.8826E-03 7.6514E-02 -1.1966E-01 9.0765E-02 -3.4961E-02 5.4721E-03
S6 -4.5273E-02 -6.4765E-03 2.8081E-02 -6.4181E-02 6.7663E-02 -4.3372E-02 1.6907E-02 -3.5955E-03 3.1908E-04
S7 -7.0845E-02 2.5291E-02 -3.3997E-02 3.6562E-02 -2.9227E-02 1.3354E-02 -2.5633E-03 3.8080E-05 2.5063E-05
S8 -6.0880E-02 2.1368E-02 -1.9646E-02 1.7170E-02 -1.0384E-02 4.0797E-03 -9.5801E-04 1.2211E-04 -6.5479E-06
S9 -2.6285E-02 2.4847E-03 -7.1034E-03 4.8314E-03 -2.1365E-03 6.9039E-04 -1.5483E-04 2.0564E-05 -1.1595E-06
S10 -2.6211E-02 9.1155E-03 -7.3340E-03 3.3067E-03 -8.4854E-04 1.6018E-04 -2.2696E-05 1.9597E-06 -7.2365E-08
S11 -3.9298E-02 1.3553E-03 2.5358E-03 -4.3166E-04 2.0822E-07 6.7069E-06 -7.7459E-07 3.7575E-08 -7.0137E-10
S12 -3.7841E-02 1.2407E-02 -3.1923E-03 5.8561E-04 -7.7781E-05 7.2481E-06 -4.4712E-07 1.6307E-08 -2.6304E-10
表14
f1(mm) 4.74 f6(mm) -2.28
f2(mm) -11.17 f(mm) 5.53
f3(mm) 32.55 TTL(mm) 6.70
f4(mm) -30.28 ImgH(mm) 4.75
f5(mm) 2.81    
表15
图10A示出了实施例5的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图10B示出了实施例5的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图10D示出了实施例5的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像光学系统能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像光学系统。图11示出了根据本申请实施例6的摄像光学系统的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出了实施例6中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000009
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.4139E-03 8.7840E-03 -1.8290E-02 2.4141E-02 -2.0119E-02 1.0584E-02 -3.4257E-03 6.2171E-04 -4.9195E-05
S2 -1.9943E-02 2.0585E-02 -1.6333E-02 1.8226E-02 -2.0826E-02 1.5608E-02 -6.9331E-03 1.6662E-03 -1.6741E-04
S3 -6.0400E-02 5.6714E-02 -2.4693E-02 2.0330E-02 -3.2454E-02 3.2096E-02 -1.7141E-02 4.7605E-03 -5.4138E-04
S4 -4.2915E-02 5.6159E-02 -5.5618E-02 1.1429E-01 -1.7688E-01 1.6514E-01 -8.9432E-02 2.6077E-02 -3.1345E-03
S5 -3.3966E-02 1.8224E-02 -4.8413E-02 7.1349E-02 -7.6087E-02 5.2971E-02 -2.2981E-02 5.4770E-03 -5.2917E-04
S6 -5.8782E-02 2.6178E-02 -6.4670E-02 9.2241E-02 -9.5630E-02 6.4647E-02 -2.6645E-02 6.0816E-03 -5.9043E-04
S7 -7.2733E-02 3.1488E-02 -6.4123E-02 9.5371E-02 -9.8226E-02 6.4659E-02 -2.5463E-02 5.4964E-03 -5.0263E-04
S8 -5.9897E-02 3.3743E-02 -4.3240E-02 4.1936E-02 -2.6579E-02 1.0873E-02 -2.7505E-03 3.8949E-04 -2.3436E-05
S9 -2.9939E-02 8.1716E-03 -1.0727E-02 7.6811E-03 -4.1637E-03 1.6185E-03 -3.9947E-04 5.4108E-05 -3.0024E-06
S10 -3.6162E-02 1.5609E-02 -7.5175E-03 2.0716E-03 -3.8593E-04 1.0098E-04 -2.2459E-05 2.4780E-06 -1.0220E-07
S11 -4.6436E-02 1.7751E-02 -8.2615E-03 2.9473E-03 -6.0149E-04 7.1757E-05 -5.0337E-06 1.9385E-07 -3.1795E-09
S12 -3.1960E-02 1.0861E-02 -3.2261E-03 6.9123E-04 -1.0411E-04 1.0574E-05 -6.8420E-07 2.5284E-08 -4.0245E-10
表17
f1(mm) 5.03 f6(mm) -2.37
f2(mm) -13.39 f(mm) 5.54
f3(mm) 28.23 TTL(mm) 6.73
f4(mm) -36.84 ImgH(mm) 4.75
f5(mm) 3.05    
表18
图12A示出了实施例6的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图12B示出了实施例6的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图12D示出了实施例6的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像光学系统能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像光学系统。图13示出了根据本申请实施例7的摄像光学系统的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出了实施例7中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000010
Figure PCTCN2019095616-appb-000011
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.4304E-03 8.6937E-03 -1.7385E-02 2.2318E-02 -1.8171E-02 9.3766E-03 -2.9888E-03 5.3601E-04 -4.2198E-05
S2 -1.9305E-02 1.8495E-02 -1.2501E-02 1.3562E-02 -1.7028E-02 1.3575E-02 -6.2576E-03 1.5410E-03 -1.5763E-04
S3 -6.4995E-02 6.1193E-02 -2.4692E-02 1.8002E-02 -3.1170E-02 3.2239E-02 -1.7531E-02 4.9060E-03 -5.5950E-04
S4 -4.6805E-02 6.0452E-02 -5.5829E-02 1.1431E-01 -1.8116E-01 1.7141E-01 -9.3332E-02 2.7227E-02 -3.2650E-03
S5 -3.5567E-02 1.9088E-02 -4.6905E-02 6.4179E-02 -6.2094E-02 3.8300E-02 -1.4397E-02 2.8259E-03 -1.9255E-04
S6 -6.0548E-02 2.2490E-02 -5.5819E-02 8.1464E-02 -8.7056E-02 6.0591E-02 -2.5833E-02 6.1451E-03 -6.2619E-04
S7 -7.3371E-02 2.1583E-02 -3.8994E-02 5.5579E-02 -5.7388E-02 3.8509E-02 -1.5642E-02 3.5511E-03 -3.4823E-04
S8 -5.8456E-02 2.9089E-02 -3.7065E-02 3.6498E-02 -2.3374E-02 9.6348E-03 -2.4647E-03 3.5555E-04 -2.1927E-05
S9 -2.5423E-02 7.7336E-05 6.6994E-04 -2.1733E-03 1.0800E-03 -9.5867E-05 -6.6958E-05 1.9214E-05 -1.4822E-06
S10 -3.6454E-02 1.3530E-02 -3.4348E-03 -1.0883E-03 9.2497E-04 -2.0948E-04 1.9551E-05 -5.4985E-07 -1.1891E-08
S11 -5.1822E-02 2.4423E-02 -1.2209E-02 4.2176E-03 -8.4210E-04 9.9621E-05 -6.9863E-06 2.7029E-07 -4.4678E-09
S12 -3.2057E-02 1.1499E-02 -3.5690E-03 7.8497E-04 -1.1952E-04 1.2161E-05 -7.8491E-07 2.8887E-08 -4.5800E-10
表20
f1(mm) 5.06 f6(mm) -2.42
f2(mm) -13.79 f(mm) 5.50
f3(mm) 28.04 TTL(mm) 6.70
f4(mm) -39.96 ImgH(mm) 4.75
f5(mm) 3.16    
表21
图14A示出了实施例7的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图14B示出了实施例7的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像光学系统的畸变曲线,其表示不同视场角所对应的畸变大小值。图14D示出了实施例7的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像光学系统能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像光学系统。图15示出了根据本申请实施例8的摄像光学系统的结构示意图。
如图15所示,根据本申请示例性实施方式的摄像光学系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表22示出了实施例8的摄像光学系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出实施例8中各透镜的有效焦距f1至f6、摄像光学系统的总有效焦距f、第一透镜E1的物侧面S1至成像面S15在光轴上的距离TTL以及成像面S15上的有效像素区域对角线长的一半ImgH。
Figure PCTCN2019095616-appb-000012
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.7743E-04 2.3864E-03 -3.4031E-03 3.3098E-03 -1.9609E-03 6.9680E-04 -1.6323E-04 2.6585E-05 -3.3161E-06
S2 -1.9753E-02 2.1802E-02 -1.7495E-02 1.4738E-02 -1.2321E-02 7.4936E-03 -2.8634E-03 6.0723E-04 -5.4691E-05
S3 -5.3755E-02 5.0974E-02 -2.1512E-02 8.0293E-03 -7.8392E-03 8.0507E-03 -4.3557E-03 1.1797E-03 -1.2701E-04
S4 -3.5519E-02 4.7268E-02 -3.7671E-02 6.0648E-02 -8.3671E-02 7.3585E-02 -3.7685E-02 1.0355E-02 -1.1526E-03
S5 -2.5235E-02 4.0995E-03 -1.1843E-03 -1.1831E-02 2.1359E-02 -1.8391E-02 8.8409E-03 -2.2723E-03 2.4695E-04
S6 -8.7117E-02 6.1185E-02 -8.3678E-02 9.0415E-02 -7.3315E-02 4.2295E-02 -1.6419E-02 3.7947E-03 -3.9101E-04
S7 -1.0300E-01 6.7252E-02 -1.1947E-01 1.7267E-01 -1.7206E-01 1.1155E-01 -4.5002E-02 1.0195E-02 -9.8828E-04
S8 -5.9950E-02 2.8359E-02 -3.7625E-02 3.9499E-02 -2.6620E-02 1.1260E-02 -2.9207E-03 4.2484E-04 -2.6291E-05
S9 -2.1949E-02 1.9926E-03 -5.6128E-03 4.6594E-03 -2.5959E-03 9.8518E-04 -2.3712E-04 3.1322E-05 -1.6839E-06
S10 -1.6699E-02 -5.5300E-04 1.1342E-03 -1.0255E-03 4.6622E-04 -9.8038E-05 1.0423E-05 -5.4592E-07 1.1071E-08
S11 -4.1572E-02 1.2360E-02 -4.4245E-03 1.4142E-03 -2.6222E-04 2.8151E-05 -1.7626E-06 6.0225E-08 -8.7260E-10
S12 -2.6863E-02 8.2350E-03 -2.1921E-03 4.3476E-04 -6.2544E-05 6.1421E-06 -3.8615E-07 1.3888E-08 -2.1506E-10
表23
f1(mm) 4.84 f6(mm) -2.68
f2(mm) -13.58 f(mm) 5.54
f3(mm) -79.05 TTL(mm) 6.70
f4(mm) 40.84 ImgH(mm) 4.75
f5(mm) 3.88    
表24
图16A示出了实施例8的摄像光学系统的轴上色差曲线,其表示不同波长的光线经由系统后的会聚焦点偏离。图16B示出了实施例8的摄像光学系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像光学系统的畸变曲线,其表示不同像高处所对应的畸变大小值。图16D示出了实施例8的摄像光学系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像光学系统能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
f*TAN(HFOV)(mm) 4.64 4.71 4.67 4.66 4.64 4.64 4.64 4.64
TTL/ImgH 1.41 1.40 1.40 1.41 1.41 1.42 1.41 1.41
f1/f6 -2.09 -1.92 -1.72 -1.71 -2.08 -2.12 -2.09 -1.81
f2/(f5*2) -2.18 -1.85 -1.58 -1.55 -1.99 -2.19 -2.18 -1.75
|SAG52/CT5| 1.35 1.17 1.28 1.27 1.35 1.36 1.35 1.17
ET6/CT6 1.60 1.12 1.39 1.37 1.24 1.57 1.60 1.46
R4/R1 1.81 1.46 1.47 1.62 1.52 1.71 1.81 1.77
R3/R11 -2.27 -2.26 -1.44 -1.94 -2.16 -2.10 -2.27 -2.32
T56/T23 0.99 0.77 1.14 1.11 0.80 0.92 0.99 1.03
CT1/(CT2+CT3) 1.21 1.30 1.22 1.18 1.36 1.21 1.21 1.18
f/EPD 1.69 1.70 1.69 1.69 1.70 1.70 1.69 1.69
表25
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像光学系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 摄像光学系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜具有光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有正光焦度;
    所述第六透镜具有负光焦度,其物侧面为凹面;
    所述第一透镜的物侧面至所述摄像光学系统的成像面在所述光轴上的距离TTL与所述摄像光学系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
  2. 根据权利要求1所述的摄像光学系统,其特征在于,所述摄像光学系统的总有效焦距f与所述摄像光学系统的最大半视场角HFOV满足4.6mm<f*tan(HFOV)<7mm。
  3. 根据权利要求1所述的摄像光学系统,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足-2.5<f1/f6<-1.5。
  4. 根据权利要求1所述的摄像光学系统,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5满足-2.5<f2/(f5*2)<-1.5。
  5. 根据权利要求1所述的摄像光学系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第二透镜的像侧面的曲率半径R4满足1<R4/R1<2。
  6. 根据权利要求1所述的摄像光学系统,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第六透镜的物侧面的曲率半径R11满足-2.5<R3/R11<-1。
  7. 根据权利要求1所述的摄像光学系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足1<CT1/(CT2+CT3)<1.5。
  8. 根据权利要求1所述的摄像光学系统,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足0.6<T56/T23<1.2。
  9. 根据权利要求1所述的摄像光学系统,其特征在于,所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半口径顶点的轴上距离SAG52与所述第五透镜在所述光轴上的中心厚度CT5满足1<|SAG52/CT5|<1.5。
  10. 根据权利要求1所述的摄像光学系统,其特征在于,所述第六透镜的边缘厚度ET6与所述第六透镜在所述光轴上的中心厚度CT6满足1<ET6/CT6<2。
  11. 根据权利要求1至10中任一项所述的摄像光学系统,其特征在于,所述摄像光学系统的 总有效焦距f与所述摄像光学系统的入瞳直径EPD满足f/EPD<1.8。
  12. 摄像光学系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜具有光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有正光焦度;
    所述第六透镜具有负光焦度,其物侧面为凹面;
    所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半口径顶点的轴上距离SAG52与所述第五透镜在所述光轴上的中心厚度CT5满足1<|SAG52/CT5|<1.5。
  13. 根据权利要求12所述的摄像光学系统,其特征在于,所述第一透镜的有效焦距f1与所述第六透镜的有效焦距f6满足-2.5<f1/f6<-1.5。
  14. 根据权利要求12所述的摄像光学系统,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5满足-2.5<f2/(f5*2)<-1.5。
  15. 根据权利要求12所述的摄像光学系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第二透镜的像侧面的曲率半径R4满足1<R4/R1<2。
  16. 根据权利要求12所述的摄像光学系统,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第六透镜的物侧面的曲率半径R11满足-2.5<R3/R11<-1。
  17. 根据权利要求12所述的摄像光学系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足1<CT1/(CT2+CT3)<1.5。
  18. 根据权利要求12所述的摄像光学系统,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23满足0.6<T56/T23<1.2。
  19. 根据权利要求12所述的摄像光学系统,其特征在于,所述第六透镜的边缘厚度ET6与所述第六透镜在所述光轴上的中心厚度CT6满足1<ET6/CT6<2。
  20. 根据权利要求17至19中任一项所述的摄像光学系统,其特征在于,所述第一透镜的物侧面至所述摄像光学系统的成像面在所述光轴上的距离TTL与所述摄像光学系统的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
  21. 根据权利要求12至19中任一项所述的摄像光学系统,其特征在于,所述摄像光学系统的总有效焦距f与所述摄像光学系统的最大半视场角HFOV满足4.6mm<f*tan(HFOV)<7mm。
  22. 根据权利要求12至19中任一项所述的摄像光学系统,其特征在于,所述摄像光学系统的总有效焦距f与所述摄像光学系统的入瞳直径EPD满足f/EPD<1.8。
PCT/CN2019/095616 2018-11-07 2019-07-11 摄像光学系统 WO2020093725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,027 US11914110B2 (en) 2018-11-07 2019-07-11 Photographic optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811318627.6 2018-11-07
CN201811318627.6A CN109031629A (zh) 2018-11-07 2018-11-07 摄像光学系统

Publications (1)

Publication Number Publication Date
WO2020093725A1 true WO2020093725A1 (zh) 2020-05-14

Family

ID=64614432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095616 WO2020093725A1 (zh) 2018-11-07 2019-07-11 摄像光学系统

Country Status (3)

Country Link
US (1) US11914110B2 (zh)
CN (2) CN113296244B (zh)
WO (1) WO2020093725A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296244B (zh) 2018-11-07 2022-11-04 浙江舜宇光学有限公司 适用于便携式电子产品的摄像光学系统
CN109358416B (zh) * 2018-12-25 2024-04-19 浙江舜宇光学有限公司 摄像镜头
CN109839728B (zh) * 2018-12-31 2021-03-19 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109856780B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109856779B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109839727B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109828360B (zh) * 2018-12-31 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109870786B (zh) * 2018-12-31 2021-03-02 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110007432B (zh) * 2018-12-31 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
JP6859402B2 (ja) * 2019-01-29 2021-04-14 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 広角レンズ
JP6796171B2 (ja) * 2019-01-31 2020-12-02 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ
CN110244436B (zh) * 2019-06-29 2021-09-21 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110376711B (zh) * 2019-06-29 2021-11-05 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110262004B (zh) * 2019-06-29 2021-09-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110412733B (zh) * 2019-06-29 2021-09-17 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110426823B (zh) * 2019-09-03 2024-05-14 浙江舜宇光学有限公司 光学成像透镜组
CN111025603B (zh) * 2020-01-06 2021-11-30 浙江舜宇光学有限公司 光学成像镜头
CN111427136B (zh) * 2020-06-09 2020-09-04 瑞声通讯科技(常州)有限公司 摄像光学镜头
WO2022120678A1 (zh) * 2020-12-10 2022-06-16 欧菲光集团股份有限公司 光学系统、取像模组及电子设备
CN112904535B (zh) * 2021-02-07 2022-09-02 浙江舜宇光学有限公司 摄像镜头组
CN113484994B (zh) * 2021-08-02 2023-08-11 浙江舜宇光学有限公司 光学成像镜头
CN114326047B (zh) * 2022-02-14 2023-09-22 浙江舜宇光学有限公司 成像镜头
CN114647064A (zh) * 2022-04-20 2022-06-21 浙江舜宇光学有限公司 光学成像透镜组
CN114994871B (zh) * 2022-07-12 2024-06-14 浙江舜宇光学有限公司 摄影镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778745A (zh) * 2012-08-24 2012-11-14 江西联创电子有限公司 高像素鱼眼镜头的透镜成像系统
CN105807409A (zh) * 2014-12-30 2016-07-27 大立光电股份有限公司 摄像光学镜片组、取像装置及电子装置
CN105988187A (zh) * 2015-07-17 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106483637A (zh) * 2015-08-31 2017-03-08 康达智株式会社 摄像镜头
CN106802469A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109031629A (zh) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
CN209044159U (zh) * 2018-11-07 2019-06-28 浙江舜宇光学有限公司 摄像光学系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006514B2 (ja) * 2004-12-16 2012-08-22 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5102110B2 (ja) * 2008-05-27 2012-12-19 富士フイルム株式会社 撮像レンズおよびこの撮像レンズを用いた撮像装置
WO2013114812A1 (ja) * 2012-01-30 2013-08-08 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP5752850B2 (ja) * 2012-04-02 2015-07-22 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP6191820B2 (ja) * 2013-10-04 2017-09-06 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN106062611B (zh) * 2014-03-23 2018-10-23 浙江舜宇光学有限公司 摄像镜头及其模组和终端
KR102380229B1 (ko) * 2015-03-06 2022-03-29 삼성전자주식회사 촬영 렌즈계 및 이를 포함한 촬영 장치
KR101834728B1 (ko) * 2016-01-28 2018-03-06 주식회사 코렌 촬영 렌즈 광학계
KR101914041B1 (ko) * 2016-08-03 2018-11-02 주식회사 코렌 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
CN106802468B (zh) * 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头
CN113238349B (zh) * 2017-08-17 2022-06-07 浙江舜宇光学有限公司 光学成像镜头
CN107783261B (zh) * 2017-12-12 2023-06-16 浙江舜宇光学有限公司 光学成像镜头
CN109507787A (zh) * 2018-03-07 2019-03-22 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778745A (zh) * 2012-08-24 2012-11-14 江西联创电子有限公司 高像素鱼眼镜头的透镜成像系统
CN105807409A (zh) * 2014-12-30 2016-07-27 大立光电股份有限公司 摄像光学镜片组、取像装置及电子装置
CN105988187A (zh) * 2015-07-17 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106483637A (zh) * 2015-08-31 2017-03-08 康达智株式会社 摄像镜头
CN106802469A (zh) * 2016-12-14 2017-06-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109031629A (zh) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
CN209044159U (zh) * 2018-11-07 2019-06-28 浙江舜宇光学有限公司 摄像光学系统

Also Published As

Publication number Publication date
US20210255432A1 (en) 2021-08-19
CN113296244A (zh) 2021-08-24
CN109031629A (zh) 2018-12-18
CN113296244B (zh) 2022-11-04
US11914110B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
WO2019169853A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2020007080A1 (zh) 摄像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020107935A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2019223263A1 (zh) 摄像镜头
WO2020073702A1 (zh) 光学成像镜片组
WO2020186759A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020164236A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020073703A1 (zh) 光学透镜组
WO2020107936A1 (zh) 光学成像系统
WO2020088024A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2020238495A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882180

Country of ref document: EP

Kind code of ref document: A1