WO2020119171A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2020119171A1
WO2020119171A1 PCT/CN2019/102145 CN2019102145W WO2020119171A1 WO 2020119171 A1 WO2020119171 A1 WO 2020119171A1 CN 2019102145 W CN2019102145 W CN 2019102145W WO 2020119171 A1 WO2020119171 A1 WO 2020119171A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
optical
imaging lens
object side
Prior art date
Application number
PCT/CN2019/102145
Other languages
English (en)
French (fr)
Inventor
张佳莹
徐标
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020119171A1 publication Critical patent/WO2020119171A1/zh
Priority to US17/020,182 priority Critical patent/US20200409117A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including five lenses.
  • the present application provides an optical imaging lens applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens can have positive power and the object side can be convex; the second lens has power and the image side can be concave; the third lens has power; the fourth lens has power; the fifth lens May have negative power.
  • the combined effective focal length f of the optical imaging lens and the combined focal length f123 of the first lens, the second lens, and the third lens may satisfy 0.6 ⁇ f/f123 ⁇ 1.
  • the total effective focal length f of the optical imaging lens and the semi-FOV of the optical imaging lens can satisfy 4.1 mm ⁇ f*tan(Smei-FOV) ⁇ 4.8 mm.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging lens may satisfy 0.5 ⁇ f1/f ⁇ 1.
  • the total effective focal length f of the optical imaging lens, the effective focal length f1 of the first lens, and the effective focal length f5 of the fifth lens may satisfy 0.2 ⁇ f/(f1-f5) ⁇ 0.7.
  • the effective focal length f1 of the first lens and the combined focal length f45 of the fourth lens and the fifth lens may satisfy -0.6 ⁇ f1/f45 ⁇ 0.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R4 of the image side of the second lens may satisfy 0.2 ⁇ (R4-R1)/(R4+R1) ⁇ 0.7.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT3 of the third lens on the optical axis may satisfy 0.2 ⁇ CT2/CT3 ⁇ 0.5.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0.4 ⁇ CT5/CT4 ⁇ 0.9.
  • the separation distance between the first lens and the second lens on the optical axis is T12
  • the separation distance between the second lens and the third lens on the optical axis is T23
  • the separation distance between the third lens and the fourth lens on the optical axis may satisfy 0.2 ⁇ (T12+T23)/(T34+T45) ⁇ 0.7.
  • the optical imaging lens may further include a diaphragm, a distance SD from the diaphragm to the image side of the fifth lens on the optical axis, and a distance SD from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis
  • the distance TTL can satisfy 0.6 ⁇ SD/TTL ⁇ 0.9.
  • the optical imaging lens may further include a diaphragm, a distance TD from the object side of the first lens to the image side of the fifth lens on the optical axis, and the distance from the diaphragm to the imaging surface of the optical imaging lens on the optical axis
  • the distance SL can satisfy 0.7 ⁇ TD/SL ⁇ 1.
  • the distance between the object side of the first lens and the imaging surface of the optical imaging lens on the optical axis, TTL, and the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens, ImgH, can satisfy TTL/ImgH ⁇ 1.5.
  • the edge thickness ET2 of the second lens, the edge thickness ET3 of the third lens, the edge thickness ET4 of the fourth lens, and the edge thickness ET5 of the fifth lens may satisfy 0.2 ⁇ ET5/(ET2+ET3+ET4) ⁇ 0.7.
  • the axial distance from the intersection of the object side of the third lens and the optical axis to the vertex of the effective radius of the object side of the third lens SAG31, the intersection of the image side of the third lens and the optical axis to the image side of the third lens The on-axis distance of the effective radius vertex of SAG32, the intersection of the object side of the fifth lens and the optical axis to the on-axis distance of the effective radius vertex of the fifth lens SAG51, and the intersection of the image side of the fifth lens and the optical axis to the fifth
  • the axial distance SAG52 of the effective radius vertex of the image side of the lens can satisfy 0.2 ⁇ (SAG31+SAG32)/(SAG51+SAG52) ⁇ 0.7.
  • the dispersion coefficient V3 of the third lens may satisfy 36 ⁇ V3 ⁇ 40.
  • the refractive index N3 of the third lens may satisfy 1.55 ⁇ N3 ⁇ 1.58.
  • This application uses five lenses.
  • the above optical lens group has a miniaturized, large image surface, At least one beneficial effect such as high imaging quality.
  • FIG. 1 shows a schematic structural view of an optical imaging lens according to Example 1 of the present application
  • FIGS. 2A to 2D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 1. curve;
  • FIG. 3 shows a schematic structural view of an optical imaging lens according to Example 2 of the present application
  • FIGS. 4A to 4D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 2. curve;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Example 3 of the present application
  • FIGS. 6A to 6D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 3; curve;
  • FIGS. 8A to 8D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 4. curve;
  • FIGS. 10A to 10D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 5 respectively. curve;
  • FIGS. 12A to 12D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 6 respectively. curve;
  • FIGS. 14A to 14D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 7 respectively. curve;
  • FIGS. 16A to 16D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 8. curve;
  • FIG. 17 shows a schematic structural view of an optical imaging lens according to Example 9 of the present application
  • FIGS. 18A to 18D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging lens of Example 9 respectively. curve;
  • FIGS. 20A to 20D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 10; curve;
  • FIGS. 22A to 22D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging lens of Example 11. curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging lens according to the exemplary embodiment of the present application may include, for example, five lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are arranged in order from the object side to the image side along the optical axis.
  • any adjacent two lenses may have an air gap.
  • the first lens may have positive power and its object side may be convex; the second lens has power and its image side may be concave; the third lens has power; the fourth lens has Power; the fifth lens may have negative power.
  • the object side is convex, which is helpful to increase the angle of view, and also to compress the incident angle of light at the position of the diaphragm, reduce pupil aberration, and improve imaging quality.
  • the second lens with optical power has a concave image side, which is beneficial to increase the relative illuminance of the off-axis field of view and increase the angle of view.
  • the fifth lens with negative power can effectively shorten the total length of the system, which is conducive to miniaturization of the lens.
  • the optical imaging lens according to the present application may satisfy the conditional expression 4.1 mm ⁇ f*tan(Smei-FOV) ⁇ 4.8 mm, where f is the total effective focal length of the optical imaging lens, and Semi-FOV is optical The maximum half angle of view of the imaging lens. More specifically, f and Semi-FOV can further satisfy 4.42 mm ⁇ f*tan(Smei-FOV) ⁇ 4.57 mm. By constraining the maximum half angle of view of the imaging system and controlling the total effective focal length of the imaging system, the imaging effect of the system's large image plane is achieved.
  • the optical imaging lens according to the present application may satisfy the conditional expression TTL/ImgH ⁇ 1.5, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis, and ImgH is The effective pixel area on the imaging surface of the optical imaging lens is half the diagonal length. More specifically, TTL and ImgH can further satisfy 1.29 ⁇ TTL/ImgH ⁇ 1.33. By controlling the ratio of TTL and ImgH within a reasonable range, the size of the system is effectively compressed, and the ultra-thin characteristics of the lens are guaranteed, which is beneficial to meet the needs of the miniaturization of the imaging system.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.5 ⁇ f1/f ⁇ 1, where f1 is the effective focal length of the first lens and f is the total effective focal length of the optical imaging lens. More specifically, f1 and f can further satisfy 0.81 ⁇ f1/f ⁇ 0.99. Controlling the contribution of the first lens power to the focal length of the entire system can reduce the deflection angle of light and improve the imaging quality of the system. When the first lens satisfies 0.5 ⁇ f1/f ⁇ 1, the optical power is dispersed and it helps to shorten the total length of the system and realize the miniaturization of the module.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.6 ⁇ f/f123 ⁇ 1, where f is the total effective focal length of the optical imaging lens, and f123 is the first lens, the second lens, and the third The combined focal length of the lens. More specifically, f and f123 may further satisfy 0.80 ⁇ f/f123 ⁇ 0.98.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ f/(f1-f5) ⁇ 0.7, where f is the total effective focal length of the optical imaging lens, and f1 is the effective focal length of the first lens , F5 is the effective focal length of the fifth lens. More specifically, f, f1, and f5 can further satisfy 0.37 ⁇ f/(f1-f5) ⁇ 0.66.
  • the optical imaging lens according to the present application may satisfy the conditional expression -0.6 ⁇ f1/f45 ⁇ 0, where f1 is the effective focal length of the first lens and f45 is the combined focal length of the fourth lens and the fifth lens . More specifically, f1 and f45 can further satisfy -0.53 ⁇ f1/f45 ⁇ -0.12.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ (R4-R1)/(R4+R1) ⁇ 0.7, where R1 is the radius of curvature of the object side of the first lens and R4 is The radius of curvature of the image side of the second lens. More specifically, R1 and R4 can further satisfy 0.22 ⁇ (R4-R1)/(R4+R1) ⁇ 0.60.
  • R1 and R4 can further satisfy 0.22 ⁇ (R4-R1)/(R4+R1) ⁇ 0.60.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ CT2/CT3 ⁇ 0.5, where CT2 is the center thickness of the second lens on the optical axis and CT3 is the third lens on the optical axis The thickness of the center. More specifically, CT2 and CT3 can further satisfy 0.34 ⁇ CT2/CT3 ⁇ 0.48.
  • CT2 and CT3 can further satisfy 0.34 ⁇ CT2/CT3 ⁇ 0.48.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.4 ⁇ CT5/CT4 ⁇ 0.9, where CT4 is the center thickness of the fourth lens on the optical axis and CT5 is the fifth lens on the optical axis The thickness of the center. More specifically, CT5 and CT4 can further satisfy 0.47 ⁇ CT5/CT4 ⁇ 0.89.
  • CT5 and CT4 can further satisfy 0.47 ⁇ CT5/CT4 ⁇ 0.89.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ (T12+T23)/(T34+T45) ⁇ 0.7, where T12 is the first lens and the second lens on the optical axis Separation distance, T23 is the separation distance between the second lens and the third lens on the optical axis, T34 is the separation distance between the third lens and the fourth lens on the optical axis, and T45 is the fourth lens and the fifth lens on the optical axis The separation distance. More specifically, T12, T23, T34, and T45 can further satisfy 0.30 ⁇ (T12+T23)/(T34+T45) ⁇ 0.59. By reasonably controlling the air gap between the lenses in the optical system, the field curvature of the system can be effectively ensured, so that the off-axis field of view of the system can obtain good imaging quality, and the total length of the system can be effectively compressed.
  • the above-mentioned optical imaging lens may further include a diaphragm to improve the imaging quality of the lens group.
  • the diaphragm may be disposed between the object side and the first lens.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.6 ⁇ SD/TTL ⁇ 0.9, where SD is the distance from the diaphragm to the image side of the fifth lens on the optical axis, and TTL is the first The distance from the object side of the lens to the imaging surface of the optical imaging lens on the optical axis. More specifically, SD and TTL can further satisfy 0.74 ⁇ SD/TTL ⁇ 0.80.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.7 ⁇ TD/SL ⁇ 1, where TD is the distance on the optical axis from the object side of the first lens to the image side of the fifth lens, SL is the distance from the diaphragm to the imaging surface of the optical imaging lens on the optical axis. More specifically, TD and SL can further satisfy 0.87 ⁇ TD/SL ⁇ 0.93. Reasonably adjust the position of the diaphragm, and by controlling the ratio of the axial distance from the diaphragm to the imaging surface to the axial distance from the object side of the first lens to the image side of the last lens, the total length of the system is effectively shortened and the lens is miniaturized .
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ ET5/(ET2+ET3+ET4) ⁇ 0.7, where ET2 is the edge thickness of the second lens and ET3 is the edge of the third lens Thickness, ET4 is the edge thickness of the fourth lens, and ET5 is the edge thickness of the fifth lens. More specifically, ET2, ET3, ET4, and ET5 can further satisfy 0.23 ⁇ ET5/(ET2+ET3+ET4) ⁇ 0.64. By controlling the ratio of the thickness of the fifth lens edge to the sum of the thickness of the second, third, and fourth lens edges within a reasonable range, the system size is effectively compressed, and the optical element has good processability characteristics.
  • the optical imaging lens according to the present application may satisfy the conditional expression 0.2 ⁇ (SAG31+SAG32)/(SAG51+SAG52) ⁇ 0.7, where SAG31 is the intersection of the object side of the third lens and the optical axis to the first The axial distance of the effective radius vertex of the object side of the three lenses, SAG32 is the axial distance from the intersection of the image side of the third lens and the optical axis to the effective radius vertex of the image side of the third lens, and SAG51 is the object side of the fifth lens The axial distance from the intersection of the optical axis to the vertex of the effective radius of the object side of the fifth lens, SAG52 is the axial distance from the intersection of the image side of the fifth lens and the optical axis to the vertex of the effective radius of the image side of the fifth lens.
  • SAG31, SAG32, SAG51, and SAG52 can further satisfy 0.26 ⁇ (SAG31+SAG32)/(SAG51+SAG52) ⁇ 0.55. Satisfying this conditional formula can effectively reduce the incident angle of the chief ray on the object side of the third lens and the fifth lens, improve the matching between the lens and the chip, and help to better balance the miniaturization of the module and the relative illuminance of the off-axis field of view The relationship between.
  • N3 is the refractive index of the third lens.
  • the optical power of the third lens can be effectively improved, which in turn helps to increase the relative illuminance of the system, and is beneficial to correct the coma and sine of the optical system of the system, so that the system has good imaging performance .
  • the above optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiments of the present application may employ multiple lenses, such as the five described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens is more conducive to production and processing and can be applied to portable electronic products.
  • the optical lens with the above configuration can also have beneficial effects such as ultra-thin, large image surface, and high imaging quality.
  • the material of the third lens can be properly selected to further improve the imaging performance of the lens.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, the object side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens
  • At least one of the sum image side is an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are aspherical mirror surfaces.
  • the number of lenses constituting the optical imaging lens can be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to include five lenses. If desired, the optical imaging lens may also include other numbers of lenses.
  • optical imaging lens applicable to the above-mentioned embodiment.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the height of the aspheric surface along the optical axis at a height h, the distance from the aspheric surface vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S10 in Example 1. .
  • Table 3 shows the effective focal lengths f1 to f5 of the lenses in Example 1, the total effective focal length f of the optical imaging lens, and the total optical length TTL (that is, from the object side S1 of the first lens E1 to the imaging plane S13 at the optical axis Distance), half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, the maximum half angle of view Semi-FOV, and the ratio of the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 2A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 1, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 2B shows the astigmatism curve of the optical imaging lens of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2C shows the distortion curve of the optical imaging lens of Example 1, which represents the distortion magnitude value at different image heights.
  • 2D shows the magnification chromatic aberration curve of the optical imaging lens of Example 1, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 2A to 2D that the optical imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 5 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the effective focal lengths f1 to f5 of each lens in Example 2, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 2, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens.
  • 4B shows the astigmatism curve of the optical imaging lens of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the distortion curve of the optical imaging lens of Example 2, which represents the distortion magnitude value at different image heights.
  • 4D shows the magnification chromatic aberration curve of the optical imaging lens of Example 2, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 4A to 4D that the optical imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 3, in which the units of radius of curvature and thickness are both millimeters (mm).
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the effective focal lengths f1 to f5 of each lens in Example 3, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • 6A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 3, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 6B shows astigmatism curves of the optical imaging lens of Example 3, which represent meridional image plane curvature and sagittal image plane curvature.
  • 6C shows the distortion curve of the optical imaging lens of Example 3, which represents the distortion magnitude value at different image heights.
  • 6D shows the magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 7 to 8D The optical imaging lens according to Embodiment 4 of the present application is described below with reference to FIGS. 7 to 8D.
  • 7 is a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the effective focal lengths f1 to f5 of each lens in Example 4, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 8A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 4, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 8B shows the astigmatism curve of the optical imaging lens of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8C shows the distortion curve of the optical imaging lens of Example 4, which represents the distortion magnitude value at different image heights.
  • 8D shows the magnification chromatic aberration curve of the optical imaging lens of Example 4, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens.
  • the optical imaging lens provided in Example 4 can achieve good imaging quality.
  • FIGS. 9 to 10D The optical imaging lens according to Embodiment 5 of the present application is described below with reference to FIGS. 9 to 10D.
  • 9 is a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has a positive refractive power, and its object side surface S7 is a concave surface, and its image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 14 shows the coefficients of higher order terms that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the effective focal lengths f1 to f5 of each lens in Example 5, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 5, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens.
  • 10B shows the astigmatism curve of the optical imaging lens of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • Fig. 10C shows the distortion curve of the optical imaging lens of Example 5, which represents the distortion magnitude value at different image heights.
  • 10D shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens.
  • the optical imaging lens provided in Example 5 can achieve good imaging quality.
  • FIGS. 11 to 12D shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has a positive refractive power, and its object side surface S7 is a concave surface, and its image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 17 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the effective focal lengths f1 to f5 of each lens in Example 6, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 6, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 12B shows the astigmatism curve of the optical imaging lens of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12C shows the distortion curve of the optical imaging lens of Example 6, which represents the distortion magnitude values at different image heights.
  • FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 12A to 12D that the optical imaging lens provided in Example 6 can achieve good imaging quality.
  • FIGS. 13 to 14D shows a schematic structural diagram of an optical imaging lens according to Example 7 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is concave and the image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the effective focal lengths f1 to f5 of each lens in Example 7, the total effective focal length f of the optical imaging lens, the total optical length TTL, the half of the diagonal length of the effective pixel area on the imaging surface S13 ImgH, the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 14A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 7, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 14B shows the astigmatism curve of the optical imaging lens of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Example 7, which represents the distortion magnitude value at different image heights.
  • 14D shows the magnification chromatic aberration curve of the optical imaging lens of Example 7, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 14A to 14D that the optical imaging lens provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 to 16D shows a schematic structural diagram of an optical imaging lens according to Embodiment 8 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side S1 is convex, and its image side S2 is convex.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 8, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 23 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 24 shows the effective focal lengths f1 to f5 of each lens in Example 8, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • 16A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 8, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens.
  • 16B shows the astigmatism curve of the optical imaging lens of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • 16C shows the distortion curve of the optical imaging lens of Example 8, which represents the distortion magnitude values at different image heights.
  • 16D shows the magnification chromatic aberration curve of the optical imaging lens of Example 8, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 16A to 16D that the optical imaging lens provided in Example 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of an optical imaging lens according to Example 9 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 9, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 26 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 9, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 27 shows the effective focal lengths f1 to f5 of each lens in Example 9, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • 18A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 9, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 18B shows the astigmatism curve of the optical imaging lens of Example 9, which represents meridional image plane curvature and sagittal image plane curvature.
  • Fig. 18C shows the distortion curve of the optical imaging lens of Example 9, which represents the distortion magnitude value at different image heights.
  • 18D shows the magnification chromatic aberration curve of the optical imaging lens of Example 9, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be known from FIGS. 18A to 18D that the optical imaging lens provided in Example 9 can achieve good imaging quality.
  • FIG. 19 shows a schematic structural diagram of an optical imaging lens according to Embodiment 10 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is convex, and its image side surface S8 is concave.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 28 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 10, where the units of radius of curvature and thickness are both millimeters (mm).
  • Table 29 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 10, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 30 shows the effective focal lengths f1 to f5 of each lens in Example 10, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging plane S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • FIG. 20A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 10, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens.
  • FIG. 20B shows the astigmatism curve of the optical imaging lens of Example 10, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 20C shows the distortion curve of the optical imaging lens of Example 10, which represents the distortion magnitude value at different image heights.
  • 20D shows the magnification chromatic aberration curve of the optical imaging lens of Example 10, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 20A to 20D that the optical imaging lens provided in Example 10 can achieve good imaging quality.
  • FIGS. 21 to 22D The optical imaging lens according to Embodiment 11 of the present application is described below with reference to FIGS. 21 to 22D.
  • 21 is a schematic structural diagram of an optical imaging lens according to Example 11 of the present application.
  • the optical imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, The fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, and its object side surface S1 is convex, and its image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • the optical imaging lens of this embodiment may further include an aperture STO disposed between the object side and the first lens E1 to improve imaging quality.
  • Table 31 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging lens of Example 11, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Table 32 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 11, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 33 shows the effective focal lengths f1 to f5 of each lens in Example 11, the total effective focal length f of the optical imaging lens, the total optical length TTL, half the diagonal length of the effective pixel area on the imaging surface S13, ImgH, and the maximum half-view The ratio of the field angle Semi-FOV and the total effective focal length f of the optical imaging lens to the entrance pupil diameter EPD.
  • 22A shows an on-axis chromatic aberration curve of the optical imaging lens of Example 11, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens.
  • 22B shows the astigmatism curve of the optical imaging lens of Example 11, which represents meridional image plane curvature and sagittal image plane curvature.
  • Fig. 22C shows the distortion curve of the optical imaging lens of Example 11, which represents the distortion magnitude at different image heights.
  • FIG. 22D shows the magnification chromatic aberration curve of the optical imaging lens of Example 11, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 22A to 22D that the optical imaging lens provided in Example 11 can achieve good imaging quality.
  • Examples 1 to 11 satisfy the relationships shown in Table 34, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)和第五透镜(L5)。第一透镜(L1)具有正光焦度,其物侧面(R1)为凸面;第二透镜(L2)具有光焦度,其像侧面(R4)为凹面;第三透镜(L3)具有光焦度;第四透镜(L4)具有光焦度;第五透镜(L5)具有负光焦度;以及光学成像镜头的总有效焦距f与第一透镜(L1)、第二透镜(L2)和第三透镜(L3)的组合焦距f123满足0.6<f/f123<1。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年12月11日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811511166.4的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,涉及一种包括五片透镜的光学成像镜头。
背景技术
随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的成像镜头的需求逐渐增大。一方面,由于例如智能手机等便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。另一方面,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对相配套的成像镜头的高成像品质及小型化均提出了更高的要求。
此外,光学材料的发展速度也是日新月异,新材料的提出和使用为在保证光学镜头成像质量的同时有效地减小设计难度提供了可能。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
本申请提供了这样一种光学成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜具有光焦度,其像侧面可为凹面;第三透镜具有光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜、第二透镜和第三透镜的组合焦距f123可满足0.6<f/f123<1。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的最大半视场角Semi-FOV可满足4.1mm<f*tan(Smei-FOV)<4.8mm。
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜头的总有效焦距f可满足0.5<f1/f<1。
在一个实施方式中,光学成像镜头的总有效焦距f、第一透镜的有效焦距f1与第五透镜的有效焦距f5可满足0.2<f/(f1-f5)<0.7。
在一个实施方式中,第一透镜的有效焦距f1与第四透镜和第五透镜的组合焦距f45可满足-0.6 <f1/f45<0。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第二透镜的像侧面的曲率半径R4可满足0.2<(R4-R1)/(R4+R1)<0.7。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3可满足0.2<CT2/CT3<0.5。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5可满足0.4<CT5/CT4<0.9。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12、第二透镜和第三透镜在光轴上的间隔距离T23、第三透镜和第四透镜在光轴上的间隔距离T34以及第四透镜和第五透镜在光轴上的间隔距离T45可满足0.2<(T12+T23)/(T34+T45)<0.7。
在一个实施方式中,光学成像镜头还可包括光阑,光阑至第五透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL可满足0.6<SD/TTL<0.9。
在一个实施方式中,光学成像镜头还可包括光阑,第一透镜的物侧面至第五透镜的像侧面在光轴上的距离TD与光阑至光学成像镜头的成像面在光轴上的距离SL可满足0.7<TD/SL<1。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.5。
在一个实施方式中,第二透镜的边缘厚度ET2、第三透镜的边缘厚度ET3、第四透镜的边缘厚度ET4以及第五透镜的边缘厚度ET5可满足0.2<ET5/(ET2+ET3+ET4)<0.7。
在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31、第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点的轴上距离SAG32、第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离SAG52可满足0.2<(SAG31+SAG32)/(SAG51+SAG52)<0.7。
在一个实施方式中,第三透镜的色散系数V3可满足36<V3<40。
在一个实施方式中,第三透镜的折射率N3可满足1.55<N3<1.58。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、大像面、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;图4A至图4D分别示出了实 施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的光学成像镜头的结构示意图;图20A至图20D分别示出了实施例10的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图21示出了根据本申请实施例11的光学成像镜头的结构示意图;图22A至图22D分别示出了实施例11的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需说明,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜具有光焦度,其像侧面可为凹面;第三透镜具有光焦度;第四透镜具有光焦度;第五透镜可具有负光焦度。具有正光焦度的第一透镜,其物侧面为凸面,有利于增大视场角,同时也有利于压缩光阑位置光线入射角,减小光瞳像差,提高成像质量。具有光焦度的第二透镜,其像侧面为凹面,有利于提高轴外视场的相对照度,增大视场角。具有负光焦度的第五透镜,可有效缩短系统总长,有利于实现镜头小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式4.1mm<f*tan(Smei-FOV)<4.8mm,其中,f为光学成像镜头的总有效焦距,Semi-FOV为光学成像镜头的最大半视场角。更具体地,f和Semi-FOV进一步可满足4.42mm≤f*tan(Smei-FOV)≤4.57mm。通过约束成像系统的最大半视场角和控制成像系统的总有效焦距,进而实现系统大像面的成像效果。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式TTL/ImgH<1.5,其中,TTL为第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离,ImgH为光学成像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.29≤TTL/ImgH≤1.33。通过控制TTL和ImgH的比值在合理范围内,有效地压缩了系统的尺寸,保证镜头的超薄特性,有利于满足成像系统小型化的需求。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.5<f1/f<1,其中,f1为第一透镜的有效焦距,f为光学成像镜头的总有效焦距。更具体地,f1和f进一步可满足0.81≤f1/f≤0.99。控制第一透镜光焦度对整个系统焦距的贡献量,可以减小光线的偏转角,提高系统的成像质量。在第一透镜满足0.5<f1/f<1时,光焦度分散且有助于缩短系统总长,实现模组小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.6<f/f123<1,其中,f为光学成像镜头的总有效焦距,f123为第一透镜、第二透镜和第三透镜的组合焦距。更具体地,f 和f123进一步可满足0.80≤f/f123≤0.98。通过控制此条件式在合理的范围内,能够控制三个透镜像差的贡献量,与前端光学元件产生的像差进行平衡,使系统像差处于合理的水平状态。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<f/(f1-f5)<0.7,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f、f1和f5进一步可满足0.37≤f/(f1-f5)≤0.66。通过控制此条件式在合理的范围内,使系统具有较小的球差,保证轴上视场良好的成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式-0.6<f1/f45<0,其中,f1为第一透镜的有效焦距,f45为第四透镜和第五透镜的组合焦距。更具体地,f1和f45进一步可满足-0.53≤f1/f45≤-0.12。通过控制第一透镜的有效焦距与第四透镜和第五透镜组合焦距的比值在合理范围内,可以减小边缘视场的像差,同时可避免光焦度过度集中所造成的系统公差敏感性增加的问题。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<(R4-R1)/(R4+R1)<0.7,其中,R1为第一透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R1和R4进一步可满足0.22≤(R4-R1)/(R4+R1)≤0.60。合理设置第一透镜物侧面的曲率半径与第二透镜像侧面的曲率半径的比值,使系统可以较好的实现光路的偏折,有助于改善第二透镜的光焦度和系统的相对照度,并可以有效地提高成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<CT2/CT3<0.5,其中,CT2为第二透镜在光轴上的中心厚度,CT3为第三透镜在光轴上的中心厚度。更具体地,CT2和CT3进一步可满足0.34≤CT2/CT3≤0.48。通过控制第二透镜和第三透镜中心厚度的比值,来将系统各视场的畸变贡献量控制在合理的范围内,使得系统总畸变量在一定范围内,有利于更好平衡模组小型化与增加第二透镜法兰尺寸之间的关系,进而有助于实现同一方向组装。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.4<CT5/CT4<0.9,其中,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度。更具体地,CT5和CT4进一步可满足0.47≤CT5/CT4≤0.89。通过控制第四透镜与第五透镜的中心厚度的比值,能够对系统的畸变量进行合理的调控,使系统的总畸变在一定范围内,并可有利于实现镜头小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<(T12+T23)/(T34+T45)<0.7,其中,T12为第一透镜和第二透镜在光轴上的间隔距离,T23为第二透镜和第三透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离,T45为第四透镜和第五透镜在光轴上的间隔距离。更具体地,T12、T23、T34和T45进一步可满足0.30≤(T12+T23)/(T34+T45)≤0.59。通过合理控制光学系统中各透镜之间的空气间隔,可以有效的保证系统的场曲,从而使系统的轴外视场获得良好的成像质量,同时可有效地压缩系统总长。
在示例性实施方式中,上述光学成像镜头还可包括光阑,以提升透镜组的成像质量。光阑可设置在物侧与第一透镜之间。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.6<SD/TTL<0.9,其中,SD为光阑至第五透镜的像侧面在光轴上的距离,TTL为第一透镜的物侧面至光学成像镜头的成像 面在光轴上的距离。更具体地,SD和TTL进一步可满足0.74≤SD/TTL≤0.80。通过控制光阑的位置,可改善系统的相对照度,并可有效地矫正与光阑有关的彗差、象散、畸变和轴向色差,提高成像质量,有利于实现镜头的小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.7<TD/SL<1,其中,TD为第一透镜的物侧面至第五透镜的像侧面在光轴上的距离,SL为光阑至光学成像镜头的成像面在光轴上的距离。更具体地,TD和SL进一步可满足0.87≤TD/SL≤0.93。合理调控光阑的位置,并通过控制光阑至成像面的轴上距离与第一透镜物侧面到最后一个透镜像侧面的轴上距离的比值,有效地缩短系统的总长,实现镜头的小型化。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<ET5/(ET2+ET3+ET4)<0.7,其中,ET2为第二透镜的边缘厚度,ET3为第三透镜的边缘厚度,ET4为第四透镜的边缘厚度,ET5为第五透镜的边缘厚度。更具体地,ET2、ET3、ET4和ET5进一步可满足0.23≤ET5/(ET2+ET3+ET4)≤0.64。通过控制第五透镜边缘厚度与第二、三、四透镜边缘厚度之和的比值在合理范围内,有效压缩了系统尺寸,保证了光学元件具有良好的可加工特性。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式0.2<(SAG31+SAG32)/(SAG51+SAG52)<0.7,其中,SAG31为第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离,SAG32为第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点的轴上距离,SAG51为第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点的轴上距离,SAG52为第五透镜的像侧面和光轴的交点至第五透镜的像侧面的有效半径顶点的轴上距离。更具体地,SAG31、SAG32、SAG51和SAG52进一步可满足0.26≤(SAG31+SAG32)/(SAG51+SAG52)≤0.55。满足该条件式,可以有效的减小第三透镜、第五透镜物侧面上主光线的入射角,提高镜头与芯片的匹配度,有利于更好平衡模组小型化与轴外视场相对照度之间的关系。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式36<V3<40,其中,V3为第三透镜的色散系数。更具体地,V3进一步可满足37≤V3≤39,例如,V3=38.00。合理控制第三透镜的色散系数,可有效改善系统的色差,进一步提高成像质量。
在示例性实施方式中,根据本申请的光学成像镜头可满足条件式1.55<N3<1.58,其中,N3为第三透镜的折射率。更具体地,N3进一步可满足1.56≤N3<1.58,例如,N3=1.57。通过使用具有合理折射率的材料,有效改善第三透镜的光焦度,进而有助于提高系统的相对照度,有利于矫正系统的光学系统的慧差、正弦差,使得系统具有良好的成像性能。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学镜头还可具有超薄、大像面、高成像质量等有 益效果。另外,可通过合理选择第三透镜的材质,进一步提高镜头的成像性能。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102145-appb-000001
Figure PCTCN2019102145-appb-000002
表1
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019102145-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.3347E-03 1.0409E-03 9.0835E-03 -3.4351E-02 6.4565E-02 -6.8834E-02 4.1847E-02 -1.3504E-02 1.7706E-03
S2 -2.9093E-02 2.3320E-02 -4.1072E-02 1.1577E-01 -2.3430E-01 2.9251E-01 -2.1864E-01 8.9755E-02 -1.5587E-02
S3 -5.2178E-02 5.4735E-02 -1.2462E-02 -2.0855E-02 2.1196E-02 2.3345E-03 -1.7158E-02 1.2069E-02 -2.9433E-03
S4 -3.5729E-02 5.1931E-02 -3.4797E-02 7.3969E-02 -1.8357E-01 2.7000E-01 -2.2490E-01 1.0096E-01 -1.8870E-02
S5 -5.4262E-02 -6.9274E-03 1.0003E-02 -3.3697E-02 6.0402E-02 -8.6183E-02 8.3171E-02 -4.5932E-02 1.1079E-02
S6 -4.0435E-02 -2.1076E-02 5.3382E-02 -1.0773E-01 1.3499E-01 -1.0796E-01 5.3296E-02 -1.4843E-02 1.7981E-03
S7 -3.4338E-03 -1.3222E-02 5.9929E-03 -3.5083E-03 1.7825E-03 -6.5233E-04 1.4734E-04 -1.7436E-05 8.2029E-07
S8 2.0320E-02 -1.8773E-02 8.7918E-03 -3.1953E-03 9.8307E-04 -2.1436E-04 2.8950E-05 -2.1455E-06 6.6591E-08
S9 -1.3070E-01 3.5947E-02 -2.4484E-03 -5.7466E-04 1.4968E-04 -1.5705E-05 8.9021E-07 -2.6745E-08 3.3407E-10
S10 -6.0532E-02 1.8811E-02 -3.7484E-03 5.2813E-04 -5.3803E-05 3.8446E-06 -1.8187E-07 5.1012E-09 -6.3914E-11
表2
表3给出了实施例1中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S13在光轴上的距离)、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
f1(mm) 4.57 f(mm) 5.04
f2(mm) -9.13 TTL(mm) 6.14
f3(mm) 16.02 ImgH(mm) 4.75
f4(mm) 6.17 Semi-FOV(°) 42.2
f5(mm) -3.45 f/EPD 2.02
表3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小 值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6给出了实施例2中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000004
表4
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.0314E-03 4.9948E-03 -7.2441E-03 6.3534E-03 1.7771E-03 -8.6313E-03 6.9490E-03 -2.3160E-03 2.4551E-04
S2 -3.3198E-02 2.4065E-02 -4.0168E-02 1.1761E-01 -2.4163E-01 3.0093E-01 -2.2232E-01 8.9694E-02 -1.5266E-02
S3 -6.3433E-02 6.4056E-02 -2.6179E-02 2.8603E-02 -8.3577E-02 1.2647E-01 -1.0233E-01 4.3724E-02 -7.9149E-03
S4 -4.3058E-02 7.0605E-02 -1.0560E-01 3.3829E-01 -7.7148E-01 1.0624E+00 -8.6391E-01 3.8528E-01 -7.2706E-02
S5 -5.7711E-02 -5.5868E-04 -8.4834E-03 4.8575E-02 -1.3248E-01 1.7869E-01 -1.2867E-01 4.6914E-02 -6.2578E-03
S6 -4.8875E-02 -1.7561E-02 5.8957E-02 -1.1885E-01 1.4475E-01 -1.0945E-01 5.0163E-02 -1.2773E-02 1.3974E-03
S7 7.2775E-03 -1.9088E-02 1.2562E-02 -8.4880E-03 3.6905E-03 -1.0080E-03 1.7011E-04 -1.5899E-05 6.2023E-07
S8 -6.4473E-04 7.3197E-04 -5.4834E-04 -6.2016E-04 4.0596E-04 -9.8624E-05 1.2274E-05 -7.8911E-07 2.0945E-08
S9 -1.1327E-01 2.4988E-02 -1.0622E-03 -4.3049E-04 9.6034E-05 -1.0016E-05 6.0569E-07 -2.0491E-08 3.0106E-10
S10 -5.4497E-02 1.6098E-02 -3.6196E-03 5.7163E-04 -5.9070E-05 3.6335E-06 -1.1321E-07 9.9332E-10 1.5761E-11
表5
f1(mm) 4.51 f(mm) 5.08
f2(mm) -9.70 TTL(mm) 6.14
f3(mm) 19.49 ImgH(mm) 4.73
f4(mm) 10.42 Semi-FOV(°) 41.9
f5(mm) -4.85 f/EPD 2.03
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9给出了实施例3中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000005
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.2634E-03 4.3203E-03 -6.7179E-03 1.1058E-02 -1.1084E-02 7.2856E-03 -3.5303E-03 1.2177E-03 -2.2342E-04
S2 -3.2952E-02 2.1367E-02 -1.6887E-02 3.0235E-02 -5.7685E-02 7.2238E-02 -5.5387E-02 2.3496E-02 -4.2289E-03
S3 -6.1090E-02 5.3677E-02 5.6781E-03 -7.7984E-02 1.4150E-01 -1.5966E-01 1.1304E-01 -4.4835E-02 7.4838E-03
S4 -3.7403E-02 5.3245E-02 -4.7809E-02 1.6208E-01 -4.2082E-01 6.1975E-01 -5.1928E-01 2.3371E-01 -4.3813E-02
S5 -5.5091E-02 5.7193E-03 -2.8144E-02 6.3125E-02 -1.0533E-01 1.0126E-01 -5.1896E-02 1.0869E-02 2.6386E-04
S6 -4.5913E-02 -1.1094E-02 4.3449E-02 -9.7687E-02 1.2504E-01 -9.7741E-02 4.5980E-02 -1.2002E-02 1.3458E-03
S7 -5.2874E-03 -7.4750E-03 6.8537E-03 -7.0533E-03 3.6809E-03 -1.0805E-03 1.8294E-04 -1.6534E-05 6.1629E-07
S8 1.1685E-02 -9.2207E-03 7.9943E-03 -5.9421E-03 2.3824E-03 -5.2122E-04 6.4028E-05 -4.1890E-06 1.1436E-07
S9 -8.7255E-02 3.7498E-02 -1.5020E-02 4.6126E-03 -8.6859E-04 9.8214E-05 -6.5687E-06 2.4030E-07 -3.7100E-09
S10 9.9166E-03 -1.3672E-02 4.9745E-03 -1.0888E-03 1.5902E-04 -1.5697E-05 9.9399E-07 -3.5839E-08 5.5252E-10
表8
f1(mm) 4.56 f(mm) 5.19
f2(mm) -9.99 TTL(mm) 6.14
f3(mm) 21.60 ImgH(mm) 4.66
f4(mm) 6.37 Semi-FOV(°) 40.8
f5(mm) -3.28 f/EPD 2.02
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小 值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12给出了实施例4中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000006
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4872E-03 8.5343E-03 -2.1075E-02 3.7530E-02 -4.3258E-02 3.2475E-02 -1.6100E-02 4.8563E-03 -6.9837E-04
S2 -4.3664E-02 3.0848E-02 -3.3931E-02 9.2855E-02 -1.9822E-01 2.5042E-01 -1.8533E-01 7.4496E-02 -1.2604E-02
S3 -7.1070E-02 6.4350E-02 -4.7786E-03 -3.4305E-02 2.8683E-02 -5.1876E-03 -6.4162E-03 4.7864E-03 -1.1998E-03
S4 -4.0933E-02 6.1456E-02 -6.9650E-02 2.5299E-01 -6.4400E-01 9.4218E-01 -7.9664E-01 3.6589E-01 -7.0666E-02
S5 -5.8207E-02 -1.0036E-02 6.0394E-02 -1.8133E-01 3.0597E-01 -3.3145E-01 2.3104E-01 -9.5599E-02 1.8312E-02
S6 -5.3932E-02 -1.3775E-02 6.2168E-02 -1.4098E-01 1.8423E-01 -1.4678E-01 7.0206E-02 -1.8547E-02 2.0894E-03
S7 7.1191E-03 -1.8816E-02 1.0849E-02 -7.2176E-03 3.1679E-03 -8.5647E-04 1.3750E-04 -1.1391E-05 3.4621E-07
S8 -6.9030E-03 9.4508E-03 -6.3577E-03 1.8703E-03 -2.6768E-04 1.4772E-05 6.8538E-07 -1.2761E-07 4.7025E-09
S9 -1.2962E-01 4.0872E-02 -8.2904E-03 1.4665E-03 -2.0984E-04 2.0765E-05 -1.2798E-06 4.3819E-08 -6.3446E-10
S10 -5.7281E-02 1.7706E-02 -3.9644E-03 5.6058E-04 -4.3163E-05 7.5134E-07 1.3764E-07 -9.9537E-09 2.0660E-10
表11
f1(mm) 4.50 f(mm) 5.12
f2(mm) -9.99 TTL(mm) 6.14
f3(mm) 21.92 ImgH(mm) 4.72
f4(mm) 11.22 Semi-FOV(°) 41.6
f5(mm) -4.84 f/EPD 2.03
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15给出了实施例5中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000007
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.8417E-03 4.0885E-03 -6.4615E-03 8.9314E-03 -6.2251E-03 3.3179E-04 1.8833E-03 -9.5247E-04 1.0824E-04
S2 -4.2010E-02 3.4517E-02 -5.0821E-02 1.2568E-01 -2.3750E-01 2.8120E-01 -2.0193E-01 8.0466E-02 -1.3685E-02
S3 -7.1793E-02 6.9641E-02 -3.4550E-02 8.3607E-02 -2.5686E-01 4.0145E-01 -3.4105E-01 1.5222E-01 -2.8121E-02
S4 -4.2004E-02 6.2540E-02 -5.6253E-02 1.8570E-01 -4.8658E-01 7.2236E-01 -6.0901E-01 2.7541E-01 -5.1949E-02
S5 -5.2730E-02 1.2419E-02 -8.1463E-02 2.4089E-01 -4.2449E-01 4.4403E-01 -2.7311E-01 9.0717E-02 -1.2245E-02
S6 -4.0814E-02 -2.0535E-02 4.0921E-02 -7.5616E-02 8.9960E-02 -6.9193E-02 3.2895E-02 -8.7969E-03 1.0245E-03
S7 1.2291E-03 -3.2686E-02 3.7157E-02 -3.4469E-02 2.0796E-02 -8.0260E-03 1.8719E-03 -2.3499E-04 1.2081E-05
S8 1.1855E-02 -1.2349E-02 7.0516E-03 -2.6420E-03 6.7457E-04 -1.0934E-04 1.0748E-05 -6.0057E-07 1.5378E-08
S9 -1.2781E-01 3.1135E-02 -1.7417E-03 -5.0962E-04 1.2260E-04 -1.2629E-05 7.1728E-07 -2.1878E-08 2.8060E-10
S10 -5.8442E-02 1.8143E-02 -4.0200E-03 6.3628E-04 -6.9872E-05 5.0573E-06 -2.2693E-07 5.7048E-09 -6.1652E-11
表14
f1(mm) 4.49 f(mm) 5.05
f2(mm) -10.18 TTL(mm) 6.14
f3(mm) 25.95 ImgH(mm) 4.62
f4(mm) 6.27 Semi-FOV(°) 41.4
f5(mm) -3.81 f/EPD 2.03
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小 值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18给出了实施例6中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000008
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.5753E-03 5.2176E-03 -7.3698E-03 9.5654E-03 -7.6128E-03 4.7847E-03 -3.2167E-03 1.6439E-03 -3.8525E-04
S2 -3.4257E-02 2.8616E-02 -5.7506E-02 1.7606E-01 -3.6400E-01 4.5686E-01 -3.4084E-01 1.3900E-01 -2.3902E-02
S3 -6.2438E-02 6.1065E-02 -2.2662E-02 3.7617E-02 -1.5052E-01 2.6347E-01 -2.3932E-01 1.1204E-01 -2.1532E-02
S4 -3.7535E-02 6.5086E-02 -9.0238E-02 3.1327E-01 -7.9346E-01 1.1904E+00 -1.0389E+00 4.9056E-01 -9.6956E-02
S5 -5.6464E-02 2.3877E-02 -1.0072E-01 2.4968E-01 -3.8669E-01 3.6325E-01 -2.0292E-01 6.1810E-02 -7.7580E-03
S6 -5.1547E-02 3.3950E-03 -1.6108E-02 1.9161E-02 -1.2504E-02 1.4110E-03 2.7940E-03 -1.5273E-03 2.5818E-04
S7 -1.3807E-02 -1.0431E-02 7.5921E-03 -9.1484E-03 7.4857E-03 -3.6776E-03 9.9816E-04 -1.3487E-04 7.0441E-06
S8 -4.6235E-03 2.5111E-03 -2.9648E-03 1.3405E-03 8.2001E-06 -1.3775E-04 3.7166E-05 -4.1072E-06 1.7079E-07
S9 -1.2940E-01 3.3013E-02 -2.2754E-03 -4.0738E-04 1.0512E-04 -1.0489E-05 5.6202E-07 -1.5951E-08 1.8876E-10
S10 -4.8102E-02 1.1681E-02 -1.6854E-03 1.2992E-04 -1.6846E-06 -6.2750E-07 5.6628E-08 -2.0270E-09 2.6991E-11
表17
f1(mm) 4.50 f(mm) 5.04
f2(mm) -10.41 TTL(mm) 6.14
f3(mm) 59.25 ImgH(mm) 4.61
f4(mm) 5.89 Semi-FOV(°) 41.4
f5(mm) -3.99 f/EPD 2.03
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21给出了实施例7中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000009
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 5.3915E-03 -3.1414E-03 2.7012E-02 -7.3085E-02 1.1719E-01 -1.1371E-01 6.5473E-02 -2.0604E-02 2.6999E-03
S2 -2.9336E-02 2.2835E-02 -4.0098E-02 1.2886E-01 -2.8635E-01 3.8026E-01 -2.9733E-01 1.2613E-01 -2.2365E-02
S3 -4.0418E-02 6.4880E-02 -3.6517E-03 -8.8688E-02 1.5766E-01 -1.5371E-01 9.0964E-02 -2.9652E-02 4.0716E-03
S4 -2.4571E-02 5.5004E-02 1.4741E-02 -1.2131E-01 2.0202E-01 -2.0483E-01 1.4569E-01 -6.8602E-02 1.6585E-02
S5 -6.4868E-02 -9.0433E-03 5.2027E-02 -2.5265E-01 6.1777E-01 -9.2216E-01 8.2421E-01 -4.0833E-01 8.7196E-02
S6 -5.0859E-02 -1.3438E-02 2.9494E-02 -5.5575E-02 6.2908E-02 -4.5922E-02 2.1722E-02 -6.2382E-03 8.7198E-04
S7 -3.0659E-03 -1.5340E-02 1.2949E-02 -1.0850E-02 6.0436E-03 -2.1354E-03 4.5033E-04 -5.0562E-05 2.3082E-06
S8 9.6923E-03 -8.3720E-03 4.5404E-03 -2.2595E-03 8.6869E-04 -2.1245E-04 3.0818E-05 -2.4171E-06 7.8967E-08
S9 -1.6160E-01 6.0164E-02 -1.4101E-02 2.7256E-03 -4.2065E-04 4.5552E-05 -3.1167E-06 1.1986E-07 -1.9727E-09
S10 -6.4930E-02 2.3239E-02 -5.7014E-03 1.0018E-03 -1.2406E-04 1.0395E-05 -5.5559E-07 1.6986E-08 -2.2494E-10
表20
f1(mm) 4.47 f(mm) 5.04
f2(mm) -9.04 TTL(mm) 6.14
f3(mm) 16.49 ImgH(mm) 4.73
f4(mm) 7.09 Semi-FOV(°) 42.0
f5(mm) -3.74 f/EPD 2.02
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小 值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24给出了实施例8中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000010
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.2990E-03 4.7846E-03 -7.8713E-03 -9.2307E-03 3.8825E-02 -5.3697E-02 3.7746E-02 -1.3623E-02 1.9971E-03
S2 -1.7434E-02 3.6687E-02 -6.4461E-02 9.4895E-02 -1.2797E-01 1.3494E-01 -9.7909E-02 4.2209E-02 -8.0243E-03
S3 -3.0356E-02 7.4809E-02 -8.3200E-02 6.2580E-02 -3.3985E-02 3.1984E-02 -4.0705E-02 2.8401E-02 -7.7507E-03
S4 -3.2769E-02 5.7992E-02 -9.0202E-02 1.4415E-01 -2.3011E-01 2.8526E-01 -2.2960E-01 1.0480E-01 -2.0369E-02
S5 -5.2249E-02 -2.1828E-02 7.7423E-02 -2.3772E-01 4.4408E-01 -5.5051E-01 4.3293E-01 -1.9574E-01 3.9139E-02
S6 -4.3915E-02 -1.9338E-02 4.7890E-02 -9.6829E-02 1.2187E-01 -9.8886E-02 4.9788E-02 -1.4172E-02 1.7577E-03
S7 -5.7936E-03 -8.3547E-03 2.1691E-03 -2.9441E-03 2.5907E-03 -1.1898E-03 2.8800E-04 -3.4648E-05 1.6408E-06
S8 2.5066E-03 2.0162E-03 -6.6838E-03 4.0280E-03 -1.0875E-03 1.3669E-04 -3.8635E-06 -7.3288E-07 5.2639E-08
S9 -1.7315E-01 5.9718E-02 -9.6893E-03 8.2414E-04 -2.7963E-05 -1.0294E-06 1.3561E-07 -4.9218E-09 6.4379E-11
S10 -6.1222E-02 1.7338E-02 -2.6787E-03 2.2517E-04 -6.4645E-06 -5.4263E-07 5.8065E-08 -2.0648E-09 2.6422E-11
表23
f1(mm) 4.07 f(mm) 5.00
f2(mm) -7.35 TTL(mm) 6.14
f3(mm) 24.61 ImgH(mm) 4.63
f4(mm) 6.31 Semi-FOV(°) 41.7
f5(mm) -3.75 f/EPD 2.03
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面 的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27给出了实施例9中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000011
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.5980E-03 5.4045E-03 -2.9469E-03 -9.9622E-03 2.9034E-02 -3.6080E-02 2.3790E-02 -8.2671E-03 1.1703E-03
S2 -4.7877E-02 2.3138E-02 -1.0586E-03 -9.6526E-03 1.2350E-02 -1.4383E-02 9.1939E-03 -1.3835E-03 -5.9005E-04
S3 -7.2638E-02 5.8635E-02 -5.3583E-02 1.8295E-01 -4.5383E-01 6.4937E-01 -5.4594E-01 2.5307E-01 -5.0450E-02
S4 -2.3086E-02 1.7056E-02 1.2245E-01 -3.6737E-01 6.4674E-01 -7.2049E-01 5.0150E-01 -1.9626E-01 3.3145E-02
S5 -4.3417E-02 -7.2619E-02 2.6296E-01 -6.5055E-01 1.0378E+00 -1.0705E+00 6.8573E-01 -2.4654E-01 3.8235E-02
S6 -4.2556E-02 -2.4859E-02 2.8714E-02 -2.2327E-02 7.0870E-03 3.3497E-03 -4.0035E-03 1.4686E-03 -1.8614E-04
S7 4.2423E-03 -3.0502E-02 1.8245E-02 -8.7842E-03 1.8242E-03 2.3900E-04 -2.3246E-04 5.4079E-05 -4.4312E-06
S8 2.3897E-02 -2.3204E-02 1.3251E-02 -5.1488E-03 1.1897E-03 -1.3276E-04 2.4101E-06 7.3473E-07 -4.4168E-08
S9 -1.3578E-01 3.7593E-02 -4.6005E-03 2.2472E-04 1.0651E-05 -2.2753E-06 1.4426E-07 -4.3758E-09 5.3481E-11
S10 -6.1619E-02 2.0342E-02 -4.9126E-03 8.3616E-04 -9.6910E-05 7.2553E-06 -3.2870E-07 8.0808E-09 -8.1763E-11
表26
f1(mm) 4.69 f(mm) 5.08
f2(mm) -20.00 TTL(mm) 6.14
f3(mm) -233.31 ImgH(mm) 4.65
f4(mm) 5.61 Semi-FOV(°) 41.5
f5(mm) -3.49 f/EPD 2.03
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小 值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的光学成像镜头。图19示出了根据本申请实施例10的光学成像镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表28示出了实施例10的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表30给出了实施例10中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000012
表28
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4618E-03 7.5704E-03 -2.2391E-02 5.3449E-02 -8.0582E-02 7.7534E-02 -4.6386E-02 1.5727E-02 -2.3279E-03
S2 -3.3451E-02 2.0143E-02 -3.1095E-02 1.0201E-01 -2.2594E-01 2.9866E-01 -2.3259E-01 9.8296E-02 -1.7436E-02
S3 -6.7433E-02 6.9630E-02 -3.7874E-02 9.2998E-02 -2.3865E-01 3.3107E-01 -2.5954E-01 1.0976E-01 -1.9681E-02
S4 -4.7252E-02 7.9874E-02 -1.1021E-01 3.4493E-01 -7.3657E-01 9.3856E-01 -7.0468E-01 2.9076E-01 -5.0852E-02
S5 -5.7869E-02 1.4747E-02 -6.2824E-02 1.7688E-01 -3.2076E-01 3.5798E-01 -2.3303E-01 7.9870E-02 -1.0187E-02
S6 -4.6585E-02 -2.3793E-02 8.7556E-02 -1.9312E-01 2.5599E-01 -2.1021E-01 1.0491E-01 -2.9198E-02 3.5016E-03
S7 -2.6664E-03 -2.1202E-02 1.7526E-02 -1.1341E-02 4.4899E-03 -1.1275E-03 1.7564E-04 -1.5004E-05 5.2264E-07
S8 -7.1122E-03 1.3622E-03 -4.8491E-04 -2.2870E-04 1.2399E-04 -2.3286E-05 2.2574E-06 -1.1497E-07 2.4563E-09
S9 -1.0236E-01 1.7524E-02 2.1937E-03 -1.3187E-03 2.3870E-04 -2.3600E-05 1.3601E-06 -4.2965E-08 5.7627E-10
S10 -5.7440E-02 1.7678E-02 -4.3918E-03 7.6357E-04 -8.3568E-05 5.3734E-06 -1.8464E-07 2.6609E-09 -2.6150E-12
表29
f1(mm) 4.61 f(mm) 5.03
f2(mm) -9.81 TTL(mm) 6.14
f3(mm) 11.47 ImgH(mm) 4.61
f4(mm) -120.25 Semi-FOV(°) 41.3
f5(mm) -9.01 f/EPD 2.02
表30
图20A示出了实施例10的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的光学成像镜头的畸变曲线,其表示不同像高处的畸变大小值。图20D示出了实施例10的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的光学成像镜头能够实现良好的成像品质。
实施例11
以下参照图21至图22D描述了根据本申请实施例11的光学成像镜头。图21示出了根据本申请实施例11的光学成像镜头的结构示意图。
如图21所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
本实施例的光学成像镜头还可包括设置在物侧与第一透镜E1之间的光阑STO,以提升成像质量。
表31示出了实施例11的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表32示出了可用于实施例11中各非球面 镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表33给出了实施例11中各透镜的有效焦距f1至f5、光学成像镜头的总有效焦距f、光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角Semi-FOV以及光学成像镜头的总有效焦距f与入瞳直径EPD的比值。
Figure PCTCN2019102145-appb-000013
表31
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.3281E-03 2.4812E-02 -6.3050E-02 1.0800E-01 -1.3588E-01 1.1785E-01 -6.6989E-02 2.1689E-02 -3.0002E-03
S2 -3.4889E-02 -1.1124E-01 3.9416E-01 -7.2395E-01 8.1044E-01 -5.2573E-01 1.6592E-01 -8.2492E-03 -5.3450E-03
S3 -6.2651E-02 1.7655E-02 -1.8176E-01 1.1473E+00 -2.9643E+00 4.2304E+00 -3.4709E+00 1.5349E+00 -2.8447E-01
S4 2.1100E-03 -1.2576E-01 8.0706E-01 -2.5073E+00 4.8968E+00 -6.0202E+00 4.5212E+00 -1.8915E+00 3.3762E-01
S5 -1.8965E-02 -2.4469E-01 1.0421E+00 -2.7567E+00 4.6209E+00 -4.9098E+00 3.2001E+00 -1.1640E+00 1.8013E-01
S6 -3.7815E-02 -6.8969E-02 1.3435E-01 -1.5624E-01 1.2206E-01 -6.2169E-02 2.0198E-02 -3.7664E-03 3.0236E-04
S7 1.4383E-02 -8.7009E-02 1.0904E-01 -1.0024E-01 6.0464E-02 -2.3656E-02 5.8252E-03 -8.2135E-04 5.0591E-05
S8 3.3013E-02 -4.3008E-02 3.3851E-02 -1.8584E-02 6.5698E-03 -1.4381E-03 1.8888E-04 -1.3686E-05 4.2118E-07
S9 -1.3351E-01 3.7458E-02 -4.4473E-03 1.3314E-04 2.9555E-05 -4.2120E-06 2.5201E-07 -7.5062E-09 9.0856E-11
S10 -6.2710E-02 2.1335E-02 -5.6673E-03 1.0906E-03 -1.4116E-04 1.1626E-05 -5.7760E-07 1.5716E-08 -1.7964E-10
表32
f1(mm) 4.96 f(mm) 5.03
f2(mm) 350.00 TTL(mm) 6.06
f3(mm) -19.69 ImgH(mm) 4.60
f4(mm) 6.20 Semi-FOV(°) 41.4
f5(mm) -3.69 f/EPD 2.04
表33
图22A示出了实施例11的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图22B示出了实施例11的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图22C示出了实施例11的光学成像镜头的畸变曲线,其表示不同像高处的畸变大 小值。图22D示出了实施例11的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图22A至图22D可知,实施例11所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例11分别满足表34中所示的关系。
Figure PCTCN2019102145-appb-000014
表34
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (31)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有光焦度,其像侧面为凹面;
    所述第三透镜具有光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度;以及
    所述光学成像镜头的总有效焦距f与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足0.6<f/f123<1。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的最大半视场角Semi-FOV满足4.1mm<f*tan(Smei-FOV)<4.8mm。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足0.5<f1/f<1。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第一透镜的有效焦距f1与所述第五透镜的有效焦距f5满足0.2<f/(f1-f5)<0.7。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第四透镜和所述第五透镜的组合焦距f45满足-0.6<f1/f45<0。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第二透镜的像侧面的曲率半径R4满足0.2<(R4-R1)/(R4+R1)<0.7。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足0.2<CT2/CT3<0.5。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足0.4<CT5/CT4<0.9。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23、所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34以及所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45满足0.2<(T12+T23)/(T34+T45)<0.7。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头还包括光阑,所述光阑至第五透镜的像侧面在所述光轴上的距离SD与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足0.6<SD/TTL<0.9。
  11. 根据权利要求10所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的距离TD与所述光阑至所述光学成像镜头的成像面在所述光轴上的距离SL满足0.7<TD/SL<1。
  12. 根据权利要求10所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
  13. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的边缘厚度ET2、所述第三透镜的边缘厚度ET3、所述第四透镜的边缘厚度ET4以及所述第五透镜的边缘厚度ET5满足0.2<ET5/(ET2+ET3+ET4)<0.7。
  14. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第三透镜的像侧面和所述所述光轴的交点至所述第三透镜的像侧面的有效半径顶点的轴上距离SAG32、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足0.2<(SAG31+SAG32)/(SAG51+SAG52)<0.7。
  15. 根据权利要求1至14中任一项所述的光学成像镜头,其特征在于,所述第三透镜的色散系数V3满足36<V3<40;以及
    所述第三透镜的折射率N3满足1.55<N3<1.58。
  16. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有光焦度,其像侧面为凹面;
    所述第三透镜具有光焦度;
    所述第四透镜具有光焦度;
    所述第五透镜具有负光焦度;以及
    所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL与所述光学成像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.5。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的最大半视场角Semi-FOV满足4.1mm<f*tan(Smei-FOV)<4.8mm。
  18. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足0.5<f1/f<1。
  19. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足0.6<f/f123<1。
  20. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第一透镜的有效焦距f1与所述第五透镜的有效焦距f5满足0.2<f/(f1-f5)<0.7。
  21. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第四透镜和所述第五透镜的组合焦距f45满足-0.6<f1/f45<0。
  22. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜的物侧面的曲率半径 R1与所述第二透镜的像侧面的曲率半径R4满足0.2<(R4-R1)/(R4+R1)<0.7。
  23. 根据权利要求16所述的光学成像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足0.2<CT2/CT3<0.5。
  24. 根据权利要求23所述的光学成像镜头,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足0.4<CT5/CT4<0.9。
  25. 根据权利要求16所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23、所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34以及所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45满足0.2<(T12+T23)/(T34+T45)<0.7。
  26. 根据权利要求16所述的光学成像镜头,其特征在于,所述光学成像镜头还包括光阑,所述光阑至第五透镜的像侧面在所述光轴上的距离SD与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足0.6<SD/TTL<0.9。
  27. 根据权利要求26所述的光学成像镜头,其特征在于,所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的距离TD与所述光阑至所述光学成像镜头的成像面在所述光轴上的距离SL满足0.7<TD/SL<1。
  28. 根据权利要求16所述的光学成像镜头,其特征在于,所述第二透镜的边缘厚度ET2、所述第三透镜的边缘厚度ET3、所述第四透镜的边缘厚度ET4以及所述第五透镜的边缘厚度ET5满足0.2<ET5/(ET2+ET3+ET4)<0.7。
  29. 根据权利要求16所述的光学成像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31、所述第三透镜的像侧面和所述所述光轴的交点至所述第三透镜的像侧面的有效半径顶点的轴上距离SAG32、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点的轴上距离SAG51以及所述第五透镜的像侧面和所述光轴的交点至所述第五透镜的像侧面的有效半径顶点的轴上距离SAG52满足0.2<(SAG31+SAG32)/(SAG51+SAG52)<0.7。
  30. 根据权利要求16至29中任一项所述的光学成像镜头,其特征在于,所述第三透镜的色散系数V3满足36<V3<40。
  31. 根据权利要求16至29中任一项所述的光学成像镜头,其特征在于,所述第三透镜的折射率N3满足1.55<N3<1.58。
PCT/CN2019/102145 2018-12-11 2019-08-23 光学成像镜头 WO2020119171A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/020,182 US20200409117A1 (en) 2018-12-11 2020-09-14 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811511166.4A CN109298516B (zh) 2018-12-11 2018-12-11 光学成像镜头
CN201811511166.4 2018-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/020,182 Continuation US20200409117A1 (en) 2018-12-11 2020-09-14 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2020119171A1 true WO2020119171A1 (zh) 2020-06-18

Family

ID=65142541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102145 WO2020119171A1 (zh) 2018-12-11 2019-08-23 光学成像镜头

Country Status (3)

Country Link
US (1) US20200409117A1 (zh)
CN (3) CN113866953B (zh)
WO (1) WO2020119171A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866953B (zh) * 2018-12-11 2024-01-26 浙江舜宇光学有限公司 光学成像镜头
CN117539030A (zh) * 2019-02-13 2024-02-09 浙江舜宇光学有限公司 光学成像镜头
CN109683287B (zh) * 2019-02-13 2024-04-23 浙江舜宇光学有限公司 光学成像镜头
CN110501806B (zh) * 2019-08-16 2021-04-09 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110471170B (zh) * 2019-08-27 2024-06-25 浙江舜宇光学有限公司 光学成像镜头
CN114236751B (zh) * 2019-08-27 2024-04-19 浙江舜宇光学有限公司 光学成像镜头
CN110596866A (zh) * 2019-10-29 2019-12-20 浙江舜宇光学有限公司 光学成像镜头
CN110850562B (zh) * 2019-11-22 2021-07-30 诚瑞光学(常州)股份有限公司 摄像光学镜头
WO2021119886A1 (zh) * 2019-12-16 2021-06-24 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN114035301A (zh) * 2021-09-29 2022-02-11 浙江舜宇光学有限公司 摄像镜头
CN114019655B (zh) * 2021-11-15 2023-08-08 江西晶超光学有限公司 光学镜头、摄像模组及电子设备
CN114609763B (zh) * 2022-02-25 2022-12-23 中国科学院西安光学精密机械研究所 一种小型化光学镜头、成像装置以及便携终端
CN116719153B (zh) * 2023-08-10 2023-12-05 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017834A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Opto, Inc. Imaging optical system and imaging lens device
CN101819315A (zh) * 2009-02-27 2010-09-01 柯尼卡美能达精密光学株式会社 摄像镜头、摄像装置以及便携终端
CN203480113U (zh) * 2013-02-08 2014-03-12 柯尼卡美能达株式会社 摄像透镜、摄像装置以及移动终端
CN203630433U (zh) * 2012-12-05 2014-06-04 康达智株式会社 摄像镜头
CN104570294A (zh) * 2013-10-18 2015-04-29 三星电机株式会社 镜头模块
CN105549185A (zh) * 2014-10-28 2016-05-04 Kolen株式会社 摄影镜头光学系统
CN109298516A (zh) * 2018-12-11 2019-02-01 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206516A (ja) * 2006-02-03 2007-08-16 Enplas Corp 撮像レンズ
CN102023370B (zh) * 2009-09-15 2012-05-23 大立光电股份有限公司 成像透镜系统
CN102346293B (zh) * 2010-07-30 2015-12-09 株式会社尼康 变焦镜头、光学设备和用于制造变焦镜头的方法
JP5654384B2 (ja) * 2011-02-28 2015-01-14 カンタツ株式会社 撮像レンズ
WO2012147357A1 (ja) * 2011-04-28 2012-11-01 富士フイルム株式会社 撮像レンズおよび撮像装置
CN103293638B (zh) * 2013-02-06 2016-03-23 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
CN103383489B (zh) * 2013-03-08 2016-08-03 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
CN109031630B (zh) * 2013-05-31 2021-04-06 株式会社尼康 变倍光学系统和成像装置
CN103969791B (zh) * 2013-12-09 2016-05-25 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
CN104407430B (zh) * 2014-12-02 2016-06-29 宁波舜宇车载光学技术有限公司 光学镜头
CN106802467B (zh) * 2016-12-14 2019-05-28 瑞声科技(新加坡)有限公司 摄像光学镜头
CN206757160U (zh) * 2017-04-18 2017-12-15 浙江舜宇光学有限公司 成像镜头
CN206990890U (zh) * 2017-07-25 2018-02-09 浙江舜宇光学有限公司 光学成像镜头
KR101956706B1 (ko) * 2017-08-18 2019-03-11 삼성전기주식회사 촬상 광학계
CN208044177U (zh) * 2018-04-13 2018-11-02 南昌欧菲精密光学制品有限公司 光学成像系统和电子装置
CN110456481B (zh) * 2019-08-19 2024-06-04 浙江舜宇光学有限公司 光学成像镜头
CN110542998A (zh) * 2019-10-18 2019-12-06 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060017834A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Opto, Inc. Imaging optical system and imaging lens device
CN101819315A (zh) * 2009-02-27 2010-09-01 柯尼卡美能达精密光学株式会社 摄像镜头、摄像装置以及便携终端
CN203630433U (zh) * 2012-12-05 2014-06-04 康达智株式会社 摄像镜头
CN203480113U (zh) * 2013-02-08 2014-03-12 柯尼卡美能达株式会社 摄像透镜、摄像装置以及移动终端
CN104570294A (zh) * 2013-10-18 2015-04-29 三星电机株式会社 镜头模块
CN105549185A (zh) * 2014-10-28 2016-05-04 Kolen株式会社 摄影镜头光学系统
CN109298516A (zh) * 2018-12-11 2019-02-01 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN113866953A (zh) 2021-12-31
CN113835198A (zh) 2021-12-24
CN109298516B (zh) 2023-11-14
CN113866953B (zh) 2024-01-26
CN109298516A (zh) 2019-02-01
CN113835198B (zh) 2022-09-02
US20200409117A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2020119171A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020119172A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2020024634A1 (zh) 光学成像镜片组
WO2019105139A1 (zh) 光学成像镜头
WO2020010878A1 (zh) 光学成像系统
WO2020007080A1 (zh) 摄像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2020119146A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019223263A1 (zh) 摄像镜头
WO2020010879A1 (zh) 光学成像系统
WO2019210672A1 (zh) 光学成像系统
WO2020107935A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020073702A1 (zh) 光学成像镜片组
WO2020001119A1 (zh) 摄像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2018153012A1 (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895813

Country of ref document: EP

Kind code of ref document: A1