CN113238349B - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
CN113238349B
CN113238349B CN202110701226.4A CN202110701226A CN113238349B CN 113238349 B CN113238349 B CN 113238349B CN 202110701226 A CN202110701226 A CN 202110701226A CN 113238349 B CN113238349 B CN 113238349B
Authority
CN
China
Prior art keywords
lens
optical imaging
image
imaging lens
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110701226.4A
Other languages
English (en)
Other versions
CN113238349A (zh
Inventor
张凯元
宋博
胡亚斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN202110701226.4A priority Critical patent/CN113238349B/zh
Publication of CN113238349A publication Critical patent/CN113238349A/zh
Application granted granted Critical
Publication of CN113238349B publication Critical patent/CN113238349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面为凸面;具有光焦度的第二透镜,其像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;以及具有光焦度的第六透镜,其物侧面和像侧面均为凹面。第四透镜的有效焦距f4与光学成像镜头的总有效焦距f满足‑0.25<f/f4<0。

Description

光学成像镜头
分案申请声明
本申请是2017年8月17日递交的发明名称为“光学成像镜头”、申请号为201710705074.9的中国发明专利申请的分案申请。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的光学成像镜头。
背景技术
随着科学技术的发展,便携式电子产品逐步兴起,具有摄像功能的便携式电子产品得到人们更多的青睐,因此市场对适用于便携式电子产品的摄像镜头的需求逐渐增大。由于便携式电子产品趋于小型化,限制了镜头的总长,从而增加了镜头的设计难度。
同时,随着例如感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等常用感光元件性能的提高及尺寸的减小,使得感光元件的像元数增加及像元尺寸减小,从而对于相配套的光学成像镜头的高成像品质及小型化提出了更高的要求。
像元尺寸的减小意味着在相同曝光时间内,镜头的通光量将会变小。但是,在环境昏暗(如阴雨天、黄昏等)的条件下,镜头需要具有较大的通光量才能确保成像品质。现有镜头通常配置的光圈数Fno(镜头的总有效焦距/镜头的入瞳直径)均在2.0或2.0以上。此类镜头虽能满足小型化要求,却无法在光线不足的情况下保证镜头的成像品质,故光圈数Fno为2.0或2.0以上镜头已经无法满足更高阶的成像要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
本申请提供一种光学成像镜头,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面为凸面;具有光焦度的第二透镜,其像侧面为凹面;具有光焦度的第三透镜;具有光焦度的第四透镜;具有正光焦度的第五透镜,其像侧面为凸面;以及具有光焦度的第六透镜,其物侧面和像侧面均为凹面。第四透镜的有效焦距f4与光学成像镜头的总有效焦距f满足-0.25<f/f4<0。
在一个实施方式中,第一透镜的有效焦距f1与光学成像镜头的总有效焦距f可满足0.7<f1/f<1。
在一个实施方式中,第二透镜可具有负光焦度,其有效焦距f2与光学成像镜头的总有效焦距f可满足-2.1<f2/f<-1.7。
在一个实施方式中,第三透镜可具有正光焦度,其有效焦距f3与第三透镜的像侧面的曲率半径R6可满足0<f3/|R6|<2。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面的轴上距离TTL与光学成像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.5。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.8。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12可满足0mm<T12<0.2mm。
在一个实施方式中,第五透镜于光轴上的中心厚度CT5可满足0.6mm<CT5<0.8mm。
在一个实施方式中,第一透镜的像侧面可为凹面,光学成像镜头的总有效焦距f与第一透镜的像侧面的曲率半径R2可满足0.2<f/R2<0.7。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足-1.1<(R6+R5)/(R6-R5)<3。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足-1.5<(R10+R9)/(R10-R9)<0。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足-1<R12/R11≤-0.4。
在一个实施方式中,第一透镜的物侧面至光学成像镜头的成像面的轴上距离TTL可满足TTL<4.8mm。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,在加大通光量的过程中,使系统具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。同时,通过上述配置的光学成像镜头可具有超薄、小型化、大孔径、低敏感度、小畸变、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。
第一透镜可具有正光焦度,其有效焦距f1与光学成像镜头的总有效焦距f之间可满足0.7<f1/f<1,更具体地,f1和f进一步可满足0.79≤f1/f≤0.90。通过将第一透镜的正光焦度控制在合理范围内,使得第一透镜能够承担系统所需要的正的光焦度,也使得第一透镜所贡献的球差在一合理可控的范围,从而保证后续光学透镜能合理地校正第一正透镜贡献的负球差,进而可较好地保证系统轴上视场的像质。
第一透镜的物侧面可为凸面,像侧面可为凹面。光学成像镜头的总有效焦距f与第一透镜像侧面的曲率半径R2之间可满足0.2<f/R2<0.7,更具体地,f和R2进一步可满足0.22≤f/R2≤0.62。通过控制第一透镜像侧面的曲率半径R2,能够在一定程度上控制第一透镜像侧面的五阶球差贡献率,以平衡第一透镜物侧面所产生的五阶球差,进而将第一透镜的五阶球差控制在合理的范围之内。
第二透镜具有正光焦度或负光焦度。可选地,第二透镜可具有负光焦度,其有效焦距f2与光学成像镜头的总有效焦距f之间可满足-2.1<f2/f<-1.7,更具体地,f2和f进一步可满足-2.06≤f2/f≤-1.76。通过合理地控制第二透镜的负光焦度,能将其产生的正球差有效地约束在合理区间内,使得第二负透镜所产生的正球差与第一正透镜产生的负球差迅速抵消平衡,使得轴上视场及其附近视场具有良好的成像质量。
第二透镜的物侧面可为凸面,像侧面可为凹面。
第三透镜具有正光焦度或负光焦度。可选地,第三透镜可具有正光焦度。第三透镜的有效焦距f3与第三透镜像侧面的曲率半径R6之间可满足0<f3/|R6|<2,更具体地,f3和R6进一步可满足0.32≤f3/|R6|≤1.88。通过将第三透镜像侧面的曲率半径R6控制在合理区间范围内,能够将第三透镜的三阶像散量控制在合理范围,进而能平衡前端(即,物侧与第三透镜之间的各透镜)和后端(即,第三透镜与像侧之间的各透镜)光学透镜产生的像散量,使得系统具有良好的成像质量。
第三透镜物侧面的曲率半径R5与第三透镜像侧面的曲率半径R6之间可满足-1.1<(R6+R5)/(R6-R5)<3,更具体地,R5和R6进一步可满足-1.05≤(R6+R5)/(R6-R5)≤2.74。合理控制第三透镜物侧面和像侧面的曲率半径,可改善系统球差,从而提升成像质量。
第四透镜具有正光焦度或负光焦度。可选地,第四透镜可具有负光焦度,其有效焦距f4与光学成像镜头的总有效焦距f之间可满足-0.25<f/f4<0,更具体地,f4和f进一步可满足-0.19≤f/f4≤-0.01。通过合适的光焦度的选择,使得系统具有良好的成像质量和较低的敏感性,使得系统容易注塑加工并可以较高的良率组立出来。
第五透镜可具有正光焦度,其像侧面可为凸面。第五透镜物侧面的曲率半径R9与第五透镜像侧面的曲率半径R10之间可满足-1.5<(R10+R9)/(R10-R9)<0,更具体地,R9和R10进一步可满足-1.00≤(R10+R9)/(R10-R9)≤-0.85。通过合理控制第五透镜物侧面和像侧面的曲率半径,能够对系统各个视场的主光线在成像面的入射角有一合理的控制,进而满足光学系统设计CRA(主光线角度)的要求。
第五透镜于光轴上的中心厚度CT5满足0.6mm<CT5<0.8mm,更具体地,CT5进一步可满足0.66mm≤CT5≤0.72mm。通过对第五透镜中心厚度的合理控制,能够对系统的畸变量进行合理的调控,从而使得系统最终平衡后的畸变在一合理的区间范围。
第六透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凹面。第六透镜物侧面的曲率半径R11与第六透镜像侧面的曲率半径R12之间可满足-1<R12/R11≤-0.4,更具体地,R11和R12进一步可满足-0.96≤R12/R11≤-0.41。通过控制第六透镜像侧面R12的曲率半径,能够调控光线在第六透镜表面的投影高度,进而控制第六透镜像侧面的口径。
可通过调整各透镜在光轴上的间隔距离以确保系统在结构上的可行性。例如,第一透镜和第二透镜在光轴上的间隔距离T12可满足,0mm<T12<0.2mm,更具体地,T12进一步可满足0.03mm≤T12≤0.17mm。
光学成像镜头的光学总长度TTL(即,从第一透镜的物侧面的中心至光学成像镜头的成像面的轴上距离)可满足TTL<4.8mm,更具体地,TTL进一步可满足4.69mm≤TTL≤4.72mm。满足条件式TTL<4.8mm,体现了镜头的超薄特性。
光学成像镜头的光学总长度TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH之间可满足TTL/ImgH≤1.5,更具体地,TTL和ImgH进一步可满足1.39≤TTL/ImgH≤1.40。通过对镜头的光学总长度和像高比例的控制,可有效地压缩成像镜头的总尺寸,以实现光学成像镜头的超薄特性与小型化,从而使得该光学成像镜头能够较好地适用于例如便携式电子产品等尺寸受限的系统。
光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD之间可满足f/EPD≤1.8,更具体地,f和EPD进一步可满足1.69≤f/EPD≤1.80。光学成像镜头的光圈数Fno(即,镜头的总有效焦距f/镜头的入瞳直径EPD)越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。光圈数Fno的缩小,可有效地提升像面亮度,使得镜头能够更好地满足光线不足时的拍摄需求。镜头配置成满足条件式f/EPD≤1.8,可在加大通光量的过程中,使镜头具有大光圈优势,从而在改善边缘光线像差的同时增强暗环境下的成像效果。同时,还有利于改善成像系统的高级慧差和象散,提升镜头的成像品质。
在示例性实施方式中,光学成像镜头还可设置有至少一光阑,以进一步提升镜头的成像质量。可选地,光阑可设置在第一透镜与第二透镜之间。本领域技术人员应当理解的是,光阑可根据需要设置于物侧与像侧之间的任意位置处,即,光阑的设置不应局限于第一透镜与第二透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理的光焦度的分配和高阶非球面参数的优化选择,提出一种可适用于便携带电子产品的,具有超薄大孔径和良好成像质量的光学成像镜头。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure BDA0003128168400000071
表1
在本实施例中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
Figure BDA0003128168400000072
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.2018E-03 3.1471E-02 -1.5064E-01 4.4709E-01 -8.2602E-01 9.5158E-01 -6.6710E-01 2.6011E-01 -4.3453E-02
S2 -2.9334E-02 6.4432E-02 -1.7114E-01 5.1874E-01 -1.1276E+00 1.5356E+00 -1.2652E+00 5.7491E-01 -1.1081E-01
S3 -1.1437E-01 2.2287E-01 2.2559E-01 -2.4271E+00 7.9746E+00 -1.5280E+01 1.7534E+01 -1.1085E+01 2.9603E+00
S4 -9.3994E-02 3.0128E-01 -3.5998E-01 7.8865E-01 -2.3724E+00 5.1571E+00 -6.6205E+00 4.6506E+00 -1.3670E+00
S5 -1.2251E-01 5.8183E-01 -4.2678E+00 1.9749E+01 -5.7543E+01 1.0489E+02 -1.1592E+02 7.0871E+01 -1.8322E+01
S6 -7.7339E-02 -2.6028E-01 1.9124E+00 -7.3594E+00 1.6574E+01 -2.2989E+01 1.9319E+01 -9.0487E+00 1.8188E+00
S7 -1.5343E-01 -4.3882E-02 4.4579E-01 -1.1486E+00 1.6051E+00 -1.4169E+00 8.7180E-01 -3.7411E-01 8.0400E-02
S8 -1.3571E-01 -6.9713E-02 2.8767E-01 -4.0750E-01 2.4270E-01 3.7525E-02 -1.2086E-01 5.5242E-02 -8.3144E-03
S9 -9.4242E-03 -5.5480E-02 -1.4816E-01 4.3966E-01 -5.7599E-01 4.3091E-01 -1.8753E-01 4.4092E-02 -4.3174E-03
S10 9.8297E-02 -2.4382E-01 2.1446E-01 -1.1198E-01 4.5067E-02 -1.4592E-02 3.2933E-03 -4.2858E-04 2.3646E-05
S11 -2.8738E-02 -2.2152E-01 2.5401E-01 -1.2494E-01 3.5091E-02 -6.0510E-03 6.3678E-04 -3.7689E-05 9.6466E-07
S12 -1.3438E-01 6.9307E-02 -2.6737E-02 6.8597E-03 -1.0231E-03 3.0431E-05 1.6302E-05 -2.4643E-06 1.1007E-07
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离)以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000081
表3
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表6示出了实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000091
表4
Figure BDA0003128168400000092
Figure BDA0003128168400000101
表5
Figure BDA0003128168400000102
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表9示出了实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000111
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.2372E-03 2.2638E-02 -7.3207E-02 1.9978E-01 -3.6713E-01 4.3070E-01 -3.0723E-01 1.2130E-01 -2.0357E-02
S2 3.6965E-12 -2.9760E-20 1.4076E-29 -5.7005E-37 1.1789E-44 -1.3702E-52 9.0613E-61 -3.1859E-69 4.6258E-78
S3 -3.9899E-02 -2.3684E-02 2.2004E-01 -5.1184E-01 6.6567E-01 -4.8261E-01 1.9270E-01 -3.9716E-02 3.3058E-03
S4 -2.1674E-02 -3.6403E-02 5.2145E-01 -2.7470E+00 8.9676E+00 -1.8378E+01 2.2842E+01 -1.5684E+01 4.5360E+00
S5 -4.6849E-02 -1.6596E-01 1.0844E+00 -5.4492E+00 1.5454E+01 -2.6852E+01 2.8043E+01 -1.6179E+01 3.9405E+00
S6 -1.3769E-01 1.3260E-01 -7.9077E-02 -1.0990E+00 3.7335E+00 -6.8124E+00 7.4405E+00 -4.4254E+00 1.0970E+00
S7 -2.8361E-01 3.4021E-01 -4.8603E-01 3.2904E-01 3.3357E-01 -1.8775E+00 2.9932E+00 -2.0380E+00 5.0435E-01
S8 -2.7583E-01 3.5454E-01 -7.7535E-01 1.6278E+00 -2.4210E+00 2.2521E+00 -1.2242E+00 3.5562E-01 -4.2738E-02
S9 -8.7014E-02 7.8686E-02 -3.7956E-01 8.4890E-01 -1.0480E+00 7.6951E-01 -3.4026E-01 8.3902E-02 -8.8145E-03
S10 -1.2811E-01 2.1068E-01 -4.2070E-01 5.3993E-01 -3.9393E-01 1.6896E-01 -4.2561E-02 5.8490E-03 -3.3945E-04
S11 -1.5633E-01 4.4936E-03 8.3838E-02 -5.3358E-02 1.6612E-02 -3.0451E-03 3.3541E-04 -2.0620E-05 5.4491E-07
S12 -1.4681E-01 1.0162E-01 -5.5149E-02 2.1635E-02 -6.0439E-03 1.1490E-03 -1.4017E-04 9.8943E-06 -3.0660E-07
表8
Figure BDA0003128168400000112
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表12示出了实施例4中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000121
Figure BDA0003128168400000131
表10
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.0962E-03 -1.7919E-02 1.5641E-01 -5.4777E-01 1.0880E+00 -1.3015E+00 9.2785E-01 -3.6364E-01 5.9993E-02
S2 -7.9553E-02 3.5465E-01 -6.2860E-01 -1.9810E-02 2.4761E+00 -5.3486E+00 5.5349E+00 -2.9232E+00 6.3239E-01
S3 -1.3901E-01 4.1727E-01 -4.4612E-01 -1.4795E+00 7.3543E+00 -1.4549E+01 1.5622E+01 -8.8892E+00 2.1103E+00
S4 -5.5602E-02 2.2282E-02 1.3017E+00 -8.9688E+00 3.2836E+01 -7.2248E+01 9.5471E+01 -6.9856E+01 2.1869E+01
S5 -8.9891E-02 4.7988E-02 -5.0376E-01 1.3651E+00 -1.7307E+00 -1.5066E+00 7.9741E+00 -9.9008E+00 4.4150E+00
S6 -1.1070E-01 -1.9065E-01 1.3556E+00 -5.7192E+00 1.3885E+01 -2.1189E+01 2.0037E+01 -1.0677E+01 2.4520E+00
S7 -2.4266E-01 1.9768E-01 -5.3676E-01 1.6307E+00 -3.6415E+00 4.6453E+00 -3.1412E+00 1.0360E+00 -1.3006E-01
S8 -2.3429E-01 2.0643E-01 -4.6354E-01 1.1481E+00 -1.8883E+00 1.8713E+00 -1.0646E+00 3.2080E-01 -3.9797E-02
S9 -7.2507E-02 4.2411E-02 -3.5487E-01 8.8708E-01 -1.1552E+00 8.8638E-01 -4.0888E-01 1.0477E-01 -1.1367E-02
S10 -1.2751E-01 2.1577E-01 -4.3789E-01 5.7013E-01 -4.2170E-01 1.8298E-01 -4.6515E-02 6.4370E-03 -3.7543E-04
S11 -1.6996E-01 3.3090E-02 5.7797E-02 -3.9900E-02 1.2326E-02 -2.1850E-03 2.2923E-04 -1.3242E-05 3.2348E-07
S12 -1.5053E-01 1.0815E-01 -5.9459E-02 2.3049E-02 -6.2865E-03 1.1680E-03 -1.4066E-04 9.9512E-06 -3.1378E-07
表11
Figure BDA0003128168400000132
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000141
表13
Figure BDA0003128168400000142
Figure BDA0003128168400000151
表14
Figure BDA0003128168400000152
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表18示出了实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000161
表16
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.7162E-04 -4.3655E-03 5.3153E-02 -1.9167E-01 3.7214E-01 -4.3617E-01 3.0496E-01 -1.1759E-01 1.8985E-02
S2 -9.3470E-02 3.9236E-01 -1.0142E+00 1.9951E+00 -3.0139E+00 3.2904E+00 -2.3980E+00 1.0282E+00 -1.9396E-01
S3 -1.6533E-01 5.1388E-01 -7.5235E-01 -1.1536E-01 3.4784E+00 -8.1209E+00 9.4782E+00 -5.7552E+00 1.4495E+00
S4 -9.0491E-02 2.8011E-01 -2.3672E-01 -7.5047E-01 4.0019E+00 -9.3432E+00 1.3199E+01 -1.0843E+01 4.0189E+00
S5 -9.1670E-02 -4.7733E-02 5.9891E-01 -5.0309E+00 2.1156E+01 -5.2012E+01 7.4723E+01 -5.8319E+01 1.9192E+01
S6 -1.0753E-01 -1.4497E-01 8.9649E-01 -3.6108E+00 8.3949E+00 -1.2307E+01 1.1224E+01 -5.8011E+00 1.3017E+00
S7 -2.1862E-01 1.1189E-01 -4.4952E-01 1.6998E+00 -4.0028E+00 5.3599E+00 -3.9545E+00 1.5188E+00 -2.4309E-01
S8 -2.0637E-01 1.1557E-01 -3.1317E-01 9.0238E-01 -1.5180E+00 1.4891E+00 -8.2583E-01 2.3983E-01 -2.8440E-02
S9 -5.3842E-02 1.2241E-02 -3.0706E-01 8.0354E-01 -1.0427E+00 7.9247E-01 -3.6112E-01 9.1126E-02 -9.7116E-03
S10 -1.1734E-01 1.8755E-01 -3.7758E-01 4.8157E-01 -3.4483E-01 1.4457E-01 -3.5600E-02 4.7912E-03 -2.7282E-04
S11 -1.5411E-01 -2.0030E-03 8.9531E-02 -5.5964E-02 1.7263E-02 -3.1306E-03 3.3992E-04 -2.0525E-05 5.3098E-07
S12 -1.5261E-01 1.0559E-01 -5.6017E-02 2.1015E-02 -5.4993E-03 9.6483E-04 -1.0772E-04 6.9626E-06 -1.9961E-07
表17
Figure BDA0003128168400000162
Figure BDA0003128168400000171
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表21示出了实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000172
Figure BDA0003128168400000181
表19
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.0657E-04 -1.2589E-02 8.9430E-02 -2.9210E-01 5.5053E-01 -6.3938E-01 4.4786E-01 -1.7402E-01 2.8531E-02
S2 -9.6389E-02 3.9074E-01 -8.9604E-01 1.3437E+00 -1.2282E+00 4.6501E-01 2.1263E-01 -2.7965E-01 8.0678E-02
S3 -1.6962E-01 5.3935E-01 -8.3008E-01 1.3253E-02 3.4487E+00 -8.4352E+00 1.0096E+01 -6.2503E+00 1.6011E+00
S4 -9.0003E-02 2.6729E-01 -6.7959E-02 -1.8274E+00 7.9094E+00 -1.7873E+01 2.4274E+01 -1.8741E+01 6.4064E+00
S5 -9.1496E-02 -9.0206E-02 1.0147E+00 -7.2476E+00 2.8319E+01 -6.6557E+01 9.2879E+01 -7.1099E+01 2.3080E+01
S6 -1.1343E-01 -1.2355E-01 7.9419E-01 -3.2057E+00 7.3541E+00 -1.0666E+01 9.6781E+00 -5.0021E+00 1.1285E+00
S7 -2.2606E-01 1.2239E-01 -4.9908E-01 1.9051E+00 -4.4708E+00 5.9750E+00 -4.4389E+00 1.7377E+00 -2.8790E-01
S8 -2.1173E-01 1.2033E-01 -3.1758E-01 9.1787E-01 -1.5389E+00 1.4941E+00 -8.1649E-01 2.3262E-01 -2.6901E-02
S9 -5.6048E-02 1.5845E-02 -3.1808E-01 8.3488E-01 -1.0880E+00 8.2906E-01 -3.7901E-01 9.6085E-02 -1.0298E-02
S10 -1.2485E-01 2.0638E-01 -4.1609E-01 5.3415E-01 -3.8804E-01 1.6554E-01 -4.1503E-02 5.6850E-03 -3.2927E-04
S11 -1.5715E-01 2.1407E-03 8.7017E-02 -5.5066E-02 1.7066E-02 -3.1053E-03 3.3834E-04 -2.0510E-05 5.3300E-07
S12 -1.5745E-01 1.1302E-01 -6.2577E-02 2.4509E-02 -6.6724E-03 1.2148E-03 -1.4045E-04 9.3591E-06 -2.7447E-07
表20
Figure BDA0003128168400000182
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表22示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表24示出了实施例8中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000191
Figure BDA0003128168400000201
表22
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.2273E-04 -7.2302E-03 7.1161E-02 -2.5774E-01 5.1654E-01 -6.2892E-01 4.5743E-01 -1.8334E-01 3.0835E-02
S2 -9.9919E-02 4.0223E-01 -9.2213E-01 1.3911E+00 -1.3076E+00 5.6996E-01 1.1890E-01 -2.3124E-01 6.9960E-02
S3 -1.7306E-01 5.4868E-01 -8.0064E-01 -2.4247E-01 4.2695E+00 -9.9362E+00 1.1717E+01 -7.2084E+00 1.8403E+00
S4 -8.9457E-02 2.5337E-01 9.9941E-02 -2.7156E+00 1.0612E+01 -2.2897E+01 2.9884E+01 -2.2184E+01 7.2924E+00
S5 -9.4630E-02 -5.2614E-02 7.2128E-01 -5.8652E+00 2.4258E+01 -5.9138E+01 8.4696E+01 -6.6140E+01 2.1816E+01
S6 -1.1113E-01 -1.6505E-01 1.0981E+00 -4.4051E+00 1.0232E+01 -1.5000E+01 1.3687E+01 -7.0949E+00 1.6030E+00
S7 -2.3000E-01 1.3792E-01 -5.1487E-01 1.9042E+00 -4.4388E+00 5.9233E+00 -4.3904E+00 1.7015E+00 -2.7480E-01
S8 -2.1879E-01 1.4613E-01 -3.7491E-01 1.0277E+00 -1.7006E+00 1.6593E+00 -9.2243E-01 2.6981E-01 -3.2279E-02
S9 -5.9877E-02 1.0460E-02 -2.7767E-01 7.4308E-01 -9.7618E-01 7.4769E-01 -3.4390E-01 8.7856E-02 -9.4937E-03
S10 -1.3239E-01 2.1441E-01 -4.1652E-01 5.2809E-01 -3.8273E-01 1.6336E-01 -4.0999E-02 5.6202E-03 -3.2560E-04
S11 -1.6814E-01 2.0964E-02 7.2970E-02 -4.9102E-02 1.5484E-02 -2.8348E-03 3.0910E-04 -1.8673E-05 4.8154E-07
S12 -1.5922E-01 1.1603E-01 -6.5021E-02 2.5806E-02 -7.1475E-03 1.3313E-03 -1.5826E-04 1.0873E-05 -3.2859E-07
表23
Figure BDA0003128168400000202
表24
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,光学成像镜头沿着光轴从物侧至成像侧依序包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和成像面S15。光学成像镜头还可包括设置于成像面S15的感光元件。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面,且第一透镜E1的物侧面S1和像侧面S2均为非球面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面,且第二透镜E2的物侧面S3和像侧面S4均为非球面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3的物侧面S5和像侧面S6均为非球面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面,且第四透镜E4的物侧面S7和像侧面S8均为非球面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面,且第五透镜E5的物侧面S9和像侧面S10均为非球面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面,且第六透镜E6的物侧面S11和像侧面S12均为非球面。
可选地,光学成像镜头还可包括具有物侧面S13和像侧面S14的滤光片E7。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
可选地,可在第一透镜E1与第二透镜E2之间设置用于限制光束的光阑STO,以提升光学成像镜头的成像质量。
表25示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了实施例9中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学成像镜头的光学总长度TTL以及光学成像镜头成像面S15上有效像素区域对角线长的一半ImgH。
Figure BDA0003128168400000211
表25
Figure BDA0003128168400000212
Figure BDA0003128168400000221
表26
Figure BDA0003128168400000222
表27
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足以下表28所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.79 1.69 1.79 1.78 1.80 1.79 1.78 1.80 1.79
TTL/ImgH 1.39 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
f/f4 -0.01 -0.18 -0.19 -0.16 -0.14 -0.15 -0.14 -0.15 -0.15
f1/f 0.90 0.82 0.81 0.79 0.81 0.81 0.81 0.80 0.81
f2/f -2.02 -1.94 -2.06 -1.80 -1.77 -1.77 -1.78 -1.76 -1.82
T12(mm) 0.17 0.07 0.03 0.03 0.05 0.05 0.05 0.05 0.05
CT5(mm) 0.66 0.72 0.68 0.66 0.66 0.66 0.66 0.67 0.68
f/R2 0.62 0.35 0.29 0.22 0.30 0.30 0.30 0.30 0.33
f3/|R6| 1.57 1.40 1.88 1.85 0.62 0.73 0.64 0.50 0.32
(R10+R9)/(R10-R9) -1.00 -0.88 -0.85 -0.92 -1.00 -1.00 -1.00 -0.99 -0.99
R12/R11 -0.55 -0.96 -0.45 -0.50 -0.47 -0.47 -0.47 -0.44 -0.41
(R6+R5)/(R6-R5) 2.74 2.52 -1.05 -1.02 0.33 0.21 0.30 0.45 0.65
TTL(mm) 4.69 4.72 4.69 4.69 4.69 4.70 4.69 4.69 4.69
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (11)

1.光学成像镜头,沿光轴由物侧至像侧依序包括:
具有正光焦度的第一透镜,其物侧面为凸面;
具有负光焦度的第二透镜,其像侧面为凹面;
具有正光焦度的第三透镜;
具有光焦度的第四透镜;
具有正光焦度的第五透镜,其像侧面为凸面;以及
具有光焦度的第六透镜,其物侧面和像侧面均为凹面,
其中,所述第四透镜的有效焦距f4与所述光学成像镜头的总有效焦距f满足-0.25<f/f4<0,
所述第三透镜的有效焦距f3与所述第三透镜的像侧面的曲率半径R6满足0<f3/|R6|<2,以及
所述第二透镜的有效焦距f2满足-2.1<f2/f<-1.7。
2.根据权利要求1所述的光学成像镜头,其中,所述第一透镜的有效焦距f1满足0.7<f1/f<1。
3.根据权利要求1所述的光学成像镜头,其中,所述第一透镜物侧面至所述光学成像镜头的成像面的轴上距离TTL与所述成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
4.根据权利要求3所述的光学成像镜头,其中,所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.8。
5.根据权利要求1所述的光学成像镜头,其中,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足0mm<T12<0.2mm。
6.根据权利要求1所述的光学成像镜头,其中,所述第五透镜于所述光轴上的中心厚度CT5满足0.6mm<CT5<0.8mm。
7.根据权利要求1所述的光学成像镜头,其中,所述第一透镜的像侧面为凹面,所述第一透镜的像侧面的曲率半径R2满足0.2<f/R2<0.7。
8.根据权利要求1所述的光学成像镜头,其中,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足-1.1<(R6+R5)/(R6-R5)<3。
9.根据权利要求1所述的光学成像镜头,其中,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足-1.5<(R10+R9)/(R10-R9)<0。
10.根据权利要求1所述的光学成像镜头,其中,所述第六透镜的物侧面的曲率半径R11与所述第六透镜的像侧面的曲率半径R12满足-1<R12/R11≤-0.4。
11.根据权利要求1至10中任一项所述的光学成像镜头,其中,所述第一透镜的物侧面至所述光学成像镜头的成像面的轴上距离TTL满足TTL<4.8mm。
CN202110701226.4A 2017-08-17 2017-08-17 光学成像镜头 Active CN113238349B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110701226.4A CN113238349B (zh) 2017-08-17 2017-08-17 光学成像镜头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710705074.9A CN107272161B (zh) 2017-08-17 2017-08-17 光学成像镜头
CN202110701226.4A CN113238349B (zh) 2017-08-17 2017-08-17 光学成像镜头

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710705074.9A Division CN107272161B (zh) 2017-08-17 2017-08-17 光学成像镜头

Publications (2)

Publication Number Publication Date
CN113238349A CN113238349A (zh) 2021-08-10
CN113238349B true CN113238349B (zh) 2022-06-07

Family

ID=60077434

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110701226.4A Active CN113238349B (zh) 2017-08-17 2017-08-17 光学成像镜头
CN201710705074.9A Active CN107272161B (zh) 2017-08-17 2017-08-17 光学成像镜头

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710705074.9A Active CN107272161B (zh) 2017-08-17 2017-08-17 光学成像镜头

Country Status (1)

Country Link
CN (2) CN113238349B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033756A1 (zh) * 2017-08-17 2019-02-21 浙江舜宇光学有限公司 光学成像镜头
KR102000009B1 (ko) * 2017-11-20 2019-07-15 삼성전기주식회사 촬상 광학계
CN107843977B (zh) * 2017-12-14 2020-04-17 浙江舜宇光学有限公司 光学成像镜头
CN109975950B (zh) * 2017-12-27 2021-06-04 宁波舜宇车载光学技术有限公司 光学镜头
CN107976788B (zh) * 2018-01-22 2023-11-21 浙江舜宇光学有限公司 光学成像镜头
CN109669256A (zh) * 2018-03-07 2019-04-23 浙江舜宇光学有限公司 光学成像镜头
CN109031629A (zh) * 2018-11-07 2018-12-18 浙江舜宇光学有限公司 摄像光学系统
CN111025603B (zh) * 2020-01-06 2021-11-30 浙江舜宇光学有限公司 光学成像镜头
CN113495341B (zh) * 2020-03-19 2022-12-16 新巨科技股份有限公司 六片式成像镜片组
CN111552065B (zh) * 2020-05-27 2022-03-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111399196B (zh) * 2020-06-08 2020-08-25 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN113514934B (zh) * 2021-04-21 2022-12-13 浙江舜宇光学有限公司 光学成像透镜组
CN113204098B (zh) * 2021-05-08 2022-08-16 浙江舜宇光学有限公司 摄像透镜组
CN113484996B (zh) * 2021-09-07 2021-11-26 江西联益光学有限公司 光学镜头
CN114740597B (zh) * 2022-03-23 2023-08-08 江西晶超光学有限公司 光学镜头、摄像模组及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243613A (ja) * 1985-08-22 1987-02-25 Canon Inc コンバ−タ−レンズ
DK2405134T3 (da) * 2010-07-06 2013-05-27 Ge Energy Power Conversion Technology Ltd Drejningsmomentstyringsfremgangsmåde for generator
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
JP6243613B2 (ja) * 2012-03-08 2017-12-06 株式会社三共 遊技機
JP6175903B2 (ja) * 2013-05-28 2017-08-09 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2016004196A (ja) * 2014-06-18 2016-01-12 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
CN104808319B (zh) * 2015-01-23 2017-07-25 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN109669257B (zh) * 2015-09-30 2021-06-04 大立光电股份有限公司 成像用光学系统、取像装置及电子装置
CN105445915B (zh) * 2015-12-31 2017-08-11 浙江舜宇光学有限公司 摄像镜头
JP6082839B1 (ja) * 2016-11-03 2017-02-15 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN106802468B (zh) * 2016-12-14 2019-05-31 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
CN107272161B (zh) 2022-09-23
CN113238349A (zh) 2021-08-10
CN107272161A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN113238349B (zh) 光学成像镜头
CN109212719B (zh) 光学成像系统
CN109960019B (zh) 光学成像镜头
CN108646394B (zh) 光学成像镜头
CN107219613B (zh) 光学成像镜头
CN107843977B (zh) 光学成像镜头
CN110703412B (zh) 光学成像系统
CN111239978B (zh) 光学成像镜头
CN108089317B (zh) 光学成像镜头
CN107436481B (zh) 摄像透镜组
CN106896481B (zh) 成像镜头
CN107167900B (zh) 光学成像镜头
CN111458838B (zh) 光学透镜组
CN107219610B (zh) 成像镜头
CN117741916A (zh) 光学成像透镜组
CN107436477B (zh) 光学成像镜头
CN113835198A (zh) 光学成像镜头
CN109358405B (zh) 摄像透镜系统
CN111399175A (zh) 成像镜头
CN107167902B (zh) 光学成像镜头
CN107656358B (zh) 光学镜头
CN112684593B (zh) 光学成像镜头
CN111580249A (zh) 光学成像镜头
CN111352210A (zh) 成像镜头
CN211086745U (zh) 光学成像系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant