CN111352210A - 成像镜头 - Google Patents
成像镜头 Download PDFInfo
- Publication number
- CN111352210A CN111352210A CN201811563287.3A CN201811563287A CN111352210A CN 111352210 A CN111352210 A CN 111352210A CN 201811563287 A CN201811563287 A CN 201811563287A CN 111352210 A CN111352210 A CN 111352210A
- Authority
- CN
- China
- Prior art keywords
- lens
- imaging
- image
- imaging lens
- concave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均具有正光焦度;第三透镜的像侧面为凹面;第六透镜的物侧面为凹面;第八透镜的物侧面为凹面。第一透镜至第八透镜中任意相邻两透镜之间均具有空气间隔。
Description
技术领域
本申请涉及一种成像镜头,更具体地,涉及一种包括八片透镜的成像镜头。
背景技术
近年来,随着科学技术的发展,市场对适用于便携式电子产品的成像镜头的需求逐渐增加。一方面,随着手机镜头模组的快速发展,尤其是大尺寸、高像素CMOS芯片的普及,手机厂商对镜头的成像质量提出了更严苛的要求。另一方面,随着CCD与CMOS元件性能的提高及尺寸的减小,对于相配套的成像系统的高成像品质及小型化提出了更高的要求。
为了满足拍摄需要,对相配套的小型化成像系统在像素与成像品质上的要求逐渐提升,成像镜头逐渐朝大光圈、大视角以及高分辨率发展,因此,能够同时兼具小型化以及高成像品质的成像镜头是目前的预研方向。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的成像镜头。
一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第一透镜至第八透镜中任意相邻两透镜之间均可具有空气间隔。
在一个实施方式中,第二透镜的有效焦距f2与成像镜头的总有效焦距f可满足0.5<f2/f<1.3。
在一个实施方式中,成像镜头的成像面上有效像素区域对角线长的一半ImgH与第六透镜的有效焦距f6可满足0<ImgH/f6<1。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足0.3<|R6/R5|<0.8。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1与第二透镜在光轴上的中心厚度CT2可满足2<(CT2+CT1)/(CT2-CT1)<3。
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第八透镜的物侧面的曲率半径R15可满足0<R15/R11<1。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34与第七透镜和第八透镜在光轴上的间隔距离T78可满足0<T34/T78<1.3。
在一个实施方式中,第一透镜、第二透镜和第三透镜的组合焦距f123与第四透镜、第五透镜、第六透镜和第七透镜的组合焦距f4567可满足1.1<f123/f4567<2。
在一个实施方式中,第一透镜的物侧面至成像镜头的成像面在光轴上的距离TTL与第七透镜的有效焦距f7可满足0.5<TTL/f7<1.4。
在一个实施方式中,第一透镜至第八透镜分别在光轴上的中心厚度的总和∑CT与第一透镜至第八透镜中任意相邻两透镜在光轴上的间隔距离的总和∑AT可满足2<∑CT/∑AT<2.5。
在一个实施方式中,成像镜头的总有效焦距f与成像镜头的入瞳直径EPD可满足f/EPD<2。
另一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,成像镜头的成像面上有效像素区域对角线长的一半ImgH与第六透镜的有效焦距f6可满足0<ImgH/f6<1。
另一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第二透镜的有效焦距f2与成像镜头的总有效焦距f可满足0.5<f2/f<1.3。
再一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足0.3<|R6/R5|<0.8。
再一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第一透镜在光轴上的中心厚度CT1与第二透镜在光轴上的中心厚度CT2可满足2<(CT2+CT1)/(CT2-CT1)<3。
再一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第一透镜至第八透镜分别在光轴上的中心厚度的总和∑CT与第一透镜至第八透镜中任意相邻两透镜在光轴上的间隔距离的总和∑AT可满足2<∑CT/∑AT<2.5。
再一方面,本申请提供了这样一种成像镜头,该成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。其中,第二透镜、第六透镜和第七透镜均可具有正光焦度;第三透镜的像侧面可为凹面;第六透镜的物侧面可为凹面;第八透镜的物侧面可为凹面。其中,第一透镜、第二透镜和第三透镜的组合焦距f123与第四透镜、第五透镜、第六透镜和第七透镜的组合焦距f4567可满足1.1<f123/f4567<2。
本申请采用了八片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、超薄、大孔径、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图19示出了根据本申请实施例10的成像镜头的结构示意图;
图20A至图20D分别示出了实施例10的成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的成像镜头可包括例如八片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜。这八片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第八透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜具有光焦度;第二透镜可具有正光焦度;第三透镜具有光焦度,其像侧面可为凹面;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜可具有正光焦度,其物侧面可为凹面;第七透镜可具有正光焦度;第八透镜具有光焦度,其物侧面可为凹面。通过合理的控制系统的各个组元的光焦度的正负分配和进光量,来有效的平衡控制系统的低阶像差,同时通过控制全视场角,来有效地控制系统的成像范围。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的物侧面可为凸面;第三透镜可具有负光焦度,其物侧面可为凸面;第五透镜的物侧面可为凸面,像侧面可为凹面;第六透镜的像侧面可为凸面;第七透镜的物侧面可为凸面;第八透镜可具有负光焦度,其像侧面可为凹面。
在示例性实施方式中,根据本申请的成像镜头可满足条件式f/EPD<2,其中,f为成像镜头的总有效焦距,EPD为成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.80≤f/EPD≤1.98。成像镜头的总有效焦距f与成像镜头的入瞳直径EPD满足f/EPD<2的配置,可在加大通光量的过程中,使系统具有大光圈、大孔径优势,从而在减小边缘视场的像差的同时增强暗环境下的成像效果,使得系统具有低敏感度。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0.5<f2/f<1.3,f2为第二透镜的有效焦距,f为成像镜头的总有效焦距。更具体地,f2和f进一步可满足0.87≤f2/f≤0.92。将第二透镜的光焦度控制在合理范围,能有效控制成像镜头的整体焦距,同时还有平衡场曲的作用。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0<ImgH/f6<1,其中,ImgH为成像镜头的成像面上有效像素区域对角线长的一半,f6为第六透镜的有效焦距。更具体地,ImgH和f6进一步可满足0.4<ImgH/f6<0.7,例如,0.48≤ImgH/f6≤0.61。通过合理控制ImgH和f6,可有效地压缩成像系统的总尺寸,以实现成像系统的小型化。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0.3<|R6/R5|<0.8,其中,R5为第三透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径。更具体地,R6和R5进一步可满足0.52≤|R6/R5|≤0.61。通过合理配置透镜的曲率半径,可以有效消除光学镜头组球差,获得高清晰度的图像。
在示例性实施方式中,根据本申请的成像镜头可满足条件式2<(CT2+CT1)/(CT2-CT1)<3,其中,CT1为第一透镜在光轴上的中心厚度,CT2为第二透镜在光轴上的中心厚度。更具体地,CT1和CT2进一步可满足2.14≤(CT2+CT1)/(CT2-CT1)≤2.73。合理控制第一透镜在光轴上的中心厚度以及第二透镜在光轴上的中心厚度,有助于镜片尺寸分布均匀,保证组装稳定性,并且有助于减小整个成像镜头的像差,缩短成像镜头的总长。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0<R15/R11<1,其中,R11为第六透镜的物侧面的曲率半径,R15为第八透镜的物侧面的曲率半径。更具体地,R11和R15进一步可满足0.4<R15/R11<0.8,例如,0.49≤R15/R11≤0.77。通过合理设置第六透镜物侧面的曲率半径和第八透镜物侧面的曲率半径,便于控制光线的偏折角度,使系统能容易匹配常用芯片。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0<T34/T78<1.3,其中,T34为第三透镜和第四透镜在光轴上的间隔距离,T78为第七透镜和第八透镜在光轴上的间隔距离。更具体地,T34和T78进一步可满足0.5<T34/T78<1.1,例如,0.69≤T34/T78≤1.06。通过合理配置第三透镜和第四透镜,以及第七透镜和第八透镜在光轴上的空气间隔,可以有效降低镜头的厚度敏感性,矫正场曲。
在示例性实施方式中,根据本申请的成像镜头可满足条件式2<∑CT/∑AT<2.5,其中,∑CT为第一透镜至第八透镜分别在光轴上的中心厚度的总和,∑AT为第一透镜至第八透镜中任意相邻两透镜在光轴上的间隔距离的总和。更具体地,∑CT和∑AT进一步可满足2.10≤∑CT/∑AT≤2.28。通过有效控制系统各透镜的中心厚度以及任意相邻两个具有光焦度的透镜之间在光轴上的空气间隔,使各镜片边缘厚度和镜片中心厚度之间平衡稳定,提升空间利用率,降低镜片加工和组装难度,保证了镜头小型化的同时,增强了系统的像差校正能力。
在示例性实施方式中,根据本申请的成像镜头可满足条件式1.1<f123/f4567<2,其中,f123为第一透镜、第二透镜和第三透镜的组合焦距,f4567为第四透镜、第五透镜、第六透镜和第七透镜的组合焦距。更具体地,f123和f4567进一步可满足1.58≤f123/f4567≤1.77。通过合理配置系统光焦度,可以有效校正像面近轴范围的畸变,从而提高系统的成像质量。
在示例性实施方式中,根据本申请的成像镜头可满足条件式0.5<TTL/f7<1.4,其中,TTL为第一透镜的物侧面至成像镜头的成像面在光轴上的距离,f7为第七透镜的有效焦距。更具体地,TTL和f7进一步可满足0.82≤TTL/f7≤1.14。通过对成像镜头的光学总长度和第七透镜有效焦距的合理控制,可有效地压缩成像镜头的总尺寸,以实现成像镜头的超薄特性与小型化,从而使得上述成像镜头能够较好地适用于尺寸受限的系统。
在示例性实施方式中,上述成像镜头还可包括光阑,以提升透镜组的成像质量。光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的成像镜头可采用多片镜片,例如上文所述的八片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得成像镜头更有利于生产加工并且可适用于便携式电子产品。通过上述配置的成像镜头还可具有超薄、大孔径、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以八个透镜为例进行了描述,但是该成像镜头不限于包括八个透镜。如果需要,该成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的成像镜头。图1示出了根据本申请实施例1的成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表1示出了实施例1的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S16的高次项系数A4、A6、A8、A10、A12、A14和A16。
表2
表3给出了实施例1中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -8.88 |
TTL(mm) | 4.79 | f4(mm) | -34.49 |
HFOV(°) | 41.3 | f5(mm) | -30.06 |
Fno | 1.98 | f6(mm) | 5.01 |
f(mm) | 3.50 | f7(mm) | 5.82 |
f1(mm) | -49.03 | f8(mm) | -2.70 |
f2(mm) | 3.20 |
表3
实施例1中的成像镜头满足:
f/EPD=1.98,其中,f为成像镜头的总有效焦距,EPD为成像镜头的入瞳直径;
f2/f=0.91,其中,f2为第二透镜E2的有效焦距,f为成像镜头的总有效焦距;
ImgH/f6=0.61,其中,ImgH为成像面S19上有效像素区域对角线长的一半,f6为第六透镜E6的有效焦距;
|R6/R5|=0.61,其中,R5为第三透镜E3的物侧面S5的曲率半径,R6为第三透镜E3的像侧面S6的曲率半径;
(CT2+CT1)/(CT2-CT1)=2.63,其中,CT1为第一透镜E1在光轴上的中心厚度,CT2为第二透镜E2在光轴上的中心厚度;
R15/R11=0.49,其中,R11为第六透镜E6的物侧面S11的曲率半径,R15为第八透镜E8的物侧面S15的曲率半径;
T34/T78=0.69,其中,T34为第三透镜E3和第四透镜E4在光轴上的间隔距离,T78为第七透镜E7和第八透镜E8在光轴上的间隔距离;
∑CT/∑AT=2.14,其中,∑CT为第一透镜E1至第八透镜E8分别在光轴上的中心厚度的总和,∑AT为第一透镜E1至第八透镜E8中任意相邻两透镜在光轴上的间隔距离的总和;
f123/f4567=1.61,其中,f123为第一透镜E1、第二透镜E2和第三透镜E3的组合焦距,f4567为第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7的组合焦距;
TTL/f7=0.82,其中,TTL为第一透镜E1的物侧面S1至成像面S19在光轴上的距离,f7为第七透镜E7的有效焦距。
图2A示出了实施例1的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图2D示出了实施例1的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表4示出了实施例2的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表4
由表4可知,在实施例2中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.1234E-01 | 1.9078E-02 | -2.7856E-03 | 5.0379E-03 | 5.9393E-03 | -8.1504E-04 | 2.7585E-04 |
S2 | -2.3796E-01 | 1.1256E-01 | -4.9457E-03 | 3.6622E-03 | 5.4669E-03 | -4.4079E-04 | 1.1285E-04 |
S3 | -1.4007E-01 | 2.8707E-02 | 2.1642E-03 | -2.6888E-03 | -1.3760E-03 | -2.6555E-04 | -1.7841E-04 |
S4 | -1.6921E-01 | 4.3343E-02 | -5.4880E-04 | -4.2163E-05 | 8.9260E-04 | -2.4472E-03 | 1.1124E-04 |
S5 | -1.7554E-01 | 9.5638E-02 | 9.7281E-04 | -2.0006E-03 | -1.2403E-03 | 4.7081E-04 | 2.2634E-05 |
S6 | -4.1342E-02 | 4.1814E-02 | -2.1081E-03 | -2.2730E-03 | 3.9702E-04 | 1.9762E-03 | 7.4142E-05 |
S7 | -2.2955E-01 | 5.0660E-01 | -1.3395E+00 | 2.1727E+00 | -1.9792E+00 | 9.8265E-01 | -2.1026E-01 |
S8 | -2.1341E-01 | 4.5780E-01 | -1.1963E+00 | 1.7942E+00 | -1.4465E+00 | 6.1266E-01 | -1.0859E-01 |
S9 | -1.5152E-01 | 1.1325E-02 | 1.4577E-03 | 1.6024E-01 | -2.1153E-01 | 1.1144E-01 | -2.2318E-02 |
S10 | -1.7312E-01 | 4.8958E-02 | 8.6488E-02 | -1.3732E-01 | 9.2683E-02 | -2.7303E-02 | 2.3356E-03 |
S11 | 4.8231E-02 | 4.7209E-02 | -1.4489E-01 | 1.5134E-01 | -7.4482E-02 | 1.7482E-02 | -1.5736E-03 |
S12 | 2.7813E-02 | -3.5826E-02 | 9.8033E-02 | -8.8253E-02 | 4.9601E-02 | -1.5298E-02 | 1.9098E-03 |
S13 | -7.7615E-02 | -3.4605E-02 | 5.0714E-02 | -3.4024E-02 | 1.1902E-02 | -2.1897E-03 | 1.7383E-04 |
S14 | -5.1481E-03 | -1.7532E-02 | 1.2893E-02 | -8.1610E-03 | 2.6815E-03 | -4.1779E-04 | 2.5368E-05 |
S15 | -2.0460E-02 | 3.3780E-02 | -1.8005E-02 | 7.1143E-03 | -1.5712E-03 | 1.7278E-04 | -7.3208E-06 |
S16 | -4.7431E-02 | 2.6330E-03 | 2.0865E-03 | -9.1013E-04 | 1.7088E-04 | -1.5500E-05 | 5.3923E-07 |
表5
表6给出了实施例2中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -8.12 |
TTL(mm) | 4.72 | f4(mm) | -26.61 |
HFOV(°) | 41.8 | f5(mm) | -43.73 |
Fno | 1.98 | f6(mm) | 5.05 |
f(mm) | 3.44 | f7(mm) | 5.65 |
f1(mm) | -65.49 | f8(mm) | -2.69 |
f2(mm) | 3.14 |
表6
图4A示出了实施例2的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图4D示出了实施例2的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的成像镜头。图5示出了根据本申请实施例3的成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表7示出了实施例3的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表7
由表7可知,在实施例3中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.2032E-01 | 4.5870E-02 | -1.0177E-01 | 2.2887E-01 | -2.8196E-01 | 2.1949E-01 | -7.5398E-02 |
S2 | -2.4062E-01 | 1.3488E-01 | -4.5063E-02 | 4.0592E-02 | 3.7209E-02 | -5.9510E-02 | 2.3457E-02 |
S3 | -1.3876E-01 | 2.9015E-02 | 3.0029E-03 | -2.2917E-03 | -2.0380E-03 | -2.0280E-03 | -1.7841E-04 |
S4 | -1.7030E-01 | 4.3197E-02 | -1.3268E-04 | 2.9546E-04 | 2.9959E-04 | -4.1863E-03 | 1.1124E-04 |
S5 | -1.7410E-01 | 9.5934E-02 | 5.7289E-04 | -2.4976E-03 | -1.1560E-03 | 1.4057E-03 | 2.2634E-05 |
S6 | -4.3204E-02 | 4.1079E-02 | -2.5663E-03 | -2.2897E-03 | 5.4314E-04 | 2.0012E-03 | 6.4576E-05 |
S7 | -2.2317E-01 | 4.7155E-01 | -1.3016E+00 | 2.2442E+00 | -2.1624E+00 | 1.1347E+00 | -2.5649E-01 |
S8 | -1.9867E-01 | 3.7755E-01 | -1.0623E+00 | 1.7053E+00 | -1.4527E+00 | 6.4956E-01 | -1.2165E-01 |
S9 | -1.5143E-01 | 1.1362E-02 | 1.4572E-03 | 1.6025E-01 | -2.1151E-01 | 1.1147E-01 | -2.2296E-02 |
S10 | -1.7234E-01 | 4.9700E-02 | 8.6731E-02 | -1.3727E-01 | 9.2673E-02 | -2.7322E-02 | 2.3197E-03 |
S11 | 7.8132E-02 | -3.4812E-02 | -2.3897E-02 | 4.7940E-02 | -2.2394E-02 | 3.1046E-03 | 9.4302E-05 |
S12 | 2.3320E-02 | -3.6939E-02 | 1.0819E-01 | -9.8369E-02 | 5.7267E-02 | -1.8522E-02 | 2.4183E-03 |
S13 | -9.1802E-02 | -2.8712E-02 | 3.7840E-02 | -2.3105E-02 | 6.8082E-03 | -9.7363E-04 | 6.4207E-05 |
S14 | 1.3111E-02 | -3.8848E-02 | 2.2020E-02 | -9.9975E-03 | 2.5747E-03 | -2.8785E-04 | 8.6755E-06 |
S15 | -2.2391E-02 | 3.6222E-02 | -1.7063E-02 | 6.1813E-03 | -1.3249E-03 | 1.4531E-04 | -6.2640E-06 |
S16 | -6.8690E-02 | 1.6849E-02 | -3.8197E-03 | 6.5282E-04 | -8.1025E-05 | 6.7110E-06 | -2.7825E-07 |
表8
表9给出了实施例3中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.72 |
TTL(mm) | 4.64 | f4(mm) | -23.72 |
HFOV(°) | 42.3 | f5(mm) | -87.39 |
Fno | 1.98 | f6(mm) | 5.27 |
f(mm) | 3.38 | f7(mm) | 5.01 |
f1(mm) | 663.67 | f8(mm) | -2.51 |
f2(mm) | 3.05 |
表9
图6A示出了实施例3的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图6D示出了实施例3的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的成像镜头。图7示出了根据本申请实施例4的成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表10示出了实施例4的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表10
由表10可知,在实施例4中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表11
表12给出了实施例4中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.82 |
TTL(mm) | 4.52 | f4(mm) | -15.78 |
HFOV(°) | 43.3 | f5(mm) | 78.62 |
Fno | 1.98 | f6(mm) | 5.59 |
f(mm) | 3.27 | f7(mm) | 4.43 |
f1(mm) | 126.71 | f8(mm) | -2.38 |
f2(mm) | 3.01 |
表12
图8A示出了实施例4的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图8D示出了实施例4的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的成像镜头。图9示出了根据本申请实施例5的成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表13示出了实施例5的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例5中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.3945E-01 | 9.8219E-02 | -2.9598E-01 | 8.2622E-01 | -1.2783E+00 | 1.1389E+00 | -4.3968E-01 |
S2 | -2.6055E-01 | 1.9825E-01 | -2.0002E-01 | 5.0898E-01 | -6.9750E-01 | 5.6000E-01 | -1.9796E-01 |
S3 | -1.4956E-01 | 7.0856E-02 | -1.5919E-01 | 4.3928E-01 | -5.9651E-01 | 3.6927E-01 | -9.2985E-02 |
S4 | -1.7175E-01 | 5.7063E-02 | -1.2523E-01 | 4.9879E-01 | -8.3938E-01 | 6.2699E-01 | -1.8087E-01 |
S5 | -1.8380E-01 | 1.2996E-01 | -1.8199E-01 | 6.3017E-01 | -1.0697E+00 | 8.2266E-01 | -2.3101E-01 |
S6 | -5.9311E-02 | 6.4816E-02 | -4.3991E-02 | 8.5672E-02 | -1.0272E-01 | 4.4306E-02 | 2.4367E-03 |
S7 | -1.9019E-01 | 2.5204E-01 | -6.9876E-01 | 1.3134E+00 | -1.4197E+00 | 9.3085E-01 | -2.7678E-01 |
S8 | -8.4906E-02 | -3.6431E-01 | 1.1510E+00 | -1.8404E+00 | 1.5445E+00 | -5.6429E-01 | 5.2870E-02 |
S9 | -1.2701E-01 | -5.2906E-01 | 2.0735E+00 | -3.6203E+00 | 3.4486E+00 | -1.6879E+00 | 3.3021E-01 |
S10 | -2.2233E-01 | 1.9363E-01 | -9.5244E-02 | -1.3979E-01 | 3.0413E-01 | -1.9625E-01 | 4.2875E-02 |
S11 | 1.2340E-01 | -2.3330E-02 | -2.4502E-01 | 4.0563E-01 | -2.7739E-01 | 9.0802E-02 | -1.1936E-02 |
S12 | 1.8712E-02 | -1.1368E-01 | 2.7812E-01 | -2.4964E-01 | 1.3378E-01 | -3.9589E-02 | 4.7836E-03 |
S13 | -9.5516E-02 | -9.4644E-02 | 1.0568E-01 | -8.0868E-02 | 3.2667E-02 | -5.9792E-03 | 3.9536E-04 |
S14 | 8.9858E-02 | -1.3057E-01 | 5.5976E-02 | -1.7158E-02 | 4.4894E-03 | -7.3456E-04 | 4.7497E-05 |
S15 | -2.3127E-02 | 3.8491E-02 | -1.2241E-02 | 2.2849E-03 | -2.6204E-04 | 1.7263E-05 | -4.7426E-07 |
S16 | -1.0256E-01 | 3.1365E-02 | -7.3531E-03 | 1.3943E-03 | -2.2494E-04 | 2.3728E-05 | -1.0513E-06 |
表14
表15给出了实施例5中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.37 |
TTL(mm) | 4.39 | f4(mm) | 1086.38 |
HFOV(°) | 43.7 | f5(mm) | -25.85 |
Fno | 1.98 | f6(mm) | 5.89 |
f(mm) | 3.19 | f7(mm) | 4.45 |
f1(mm) | 196.34 | f8(mm) | -2.39 |
f2(mm) | 2.89 |
表15
图10A示出了实施例5的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图10D示出了实施例5的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的成像镜头。图11示出了根据本申请实施例6的成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表16示出了实施例6的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表16
由表16可知,在实施例6中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.4162E-01 | 9.0367E-02 | -1.9093E-01 | 3.6590E-01 | -3.2705E-01 | 1.3882E-01 | -1.7097E-02 |
S2 | -2.5749E-01 | 1.9760E-01 | -2.3446E-01 | 5.5848E-01 | -7.8299E-01 | 6.2781E-01 | -2.1501E-01 |
S3 | -1.4431E-01 | 6.9830E-02 | -1.6938E-01 | 4.5128E-01 | -6.2356E-01 | 4.1398E-01 | -1.1838E-01 |
S4 | -2.1418E-01 | 3.2955E-01 | -8.2760E-01 | 1.5302E+00 | -1.7704E+00 | 1.1168E+00 | -2.9903E-01 |
S5 | -2.1754E-01 | 3.6742E-01 | -6.9390E-01 | 1.1984E+00 | -1.4319E+00 | 9.4886E-01 | -2.5092E-01 |
S6 | -6.2446E-02 | 7.7318E-02 | 2.6743E-02 | -1.5907E-01 | 2.0346E-01 | -1.3542E-01 | 4.4345E-02 |
S7 | -1.6559E-01 | 1.3634E-01 | -4.1152E-01 | 8.3089E-01 | -8.1581E-01 | 4.7032E-01 | -1.3260E-01 |
S8 | -1.0290E-01 | -1.7782E-01 | 2.7641E-01 | -3.4297E-02 | -2.1939E-01 | 2.2228E-01 | -7.0604E-02 |
S9 | -1.5359E-01 | -2.1891E-01 | 7.4367E-01 | -8.9132E-01 | 5.7565E-01 | -1.9117E-01 | 2.4434E-02 |
S10 | -1.8938E-01 | 5.6579E-02 | 1.3328E-01 | -2.5068E-01 | 2.1816E-01 | -9.2681E-02 | 1.5058E-02 |
S11 | 1.1896E-01 | -1.2034E-01 | 4.9537E-02 | 2.6710E-02 | -2.5055E-02 | 5.1371E-03 | -9.2452E-05 |
S12 | 2.1163E-02 | -5.7414E-02 | 1.4622E-01 | -1.2865E-01 | 7.6997E-02 | -2.6532E-02 | 3.6931E-03 |
S13 | -8.7726E-02 | -2.3280E-02 | 2.4053E-02 | -2.3077E-02 | 1.0165E-02 | -2.0451E-03 | 1.7920E-04 |
S14 | 6.7375E-02 | -5.2536E-02 | -5.5842E-04 | 7.5427E-03 | -2.8899E-03 | 5.8355E-04 | -5.1181E-05 |
S15 | -2.5045E-02 | 2.9876E-02 | -4.4683E-03 | -1.3368E-04 | 1.2771E-04 | -1.6630E-05 | 8.5760E-07 |
S16 | -1.1491E-01 | 4.4088E-02 | -1.3625E-02 | 2.9835E-03 | -4.3767E-04 | 3.8028E-05 | -1.4509E-06 |
表17
表18给出了实施例6中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.47 |
TTL(mm) | 4.52 | f4(mm) | -18.43 |
HFOV(°) | 42.4 | f5(mm) | -3115.99 |
Fno | 1.91 | f6(mm) | 5.56 |
f(mm) | 3.28 | f7(mm) | 4.01 |
f1(mm) | 301.28 | f8(mm) | -2.21 |
f2(mm) | 2.90 |
表18
图12A示出了实施例6的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图12D示出了实施例6的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的成像镜头。图13示出了根据本申请实施例7的成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表19示出了实施例7的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表19
由表19可知,在实施例7中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.3715E-01 | 8.8176E-02 | -1.8854E-01 | 3.5344E-01 | -3.0251E-01 | 1.0970E-01 | -4.9152E-03 |
S2 | -2.6678E-01 | 2.2453E-01 | -2.6219E-01 | 5.8853E-01 | -8.0970E-01 | 6.2126E-01 | -1.9660E-01 |
S3 | -1.5815E-01 | 9.6131E-02 | -1.5813E-01 | 4.0842E-01 | -5.8064E-01 | 3.6165E-01 | -8.8334E-02 |
S4 | -2.1344E-01 | 3.3189E-01 | -7.2611E-01 | 1.1616E+00 | -1.2626E+00 | 7.7938E-01 | -2.0665E-01 |
S5 | -2.3580E-01 | 3.9195E-01 | -5.6469E-01 | 7.3479E-01 | -8.4121E-01 | 6.0580E-01 | -1.7131E-01 |
S6 | -7.6026E-02 | 6.9148E-02 | 2.0204E-01 | -6.4073E-01 | 8.5330E-01 | -5.7256E-01 | 1.6184E-01 |
S7 | -1.2769E-01 | -3.2931E-02 | -5.1583E-02 | 4.0233E-01 | -6.0154E-01 | 5.3460E-01 | -2.0498E-01 |
S8 | -6.2394E-02 | -4.7298E-01 | 1.2422E+00 | -1.7908E+00 | 1.5384E+00 | -6.6591E-01 | 1.0454E-01 |
S9 | -1.8208E-01 | -2.5992E-01 | 1.2226E+00 | -2.1406E+00 | 2.0681E+00 | -1.0332E+00 | 2.0536E-01 |
S10 | -2.1831E-01 | 1.7553E-01 | -9.1295E-02 | -6.0175E-02 | 1.6487E-01 | -1.0462E-01 | 2.1357E-02 |
S11 | 1.4581E-01 | -1.7630E-01 | 6.2784E-02 | 1.0809E-01 | -1.2455E-01 | 5.0847E-02 | -7.7539E-03 |
S12 | 3.2304E-02 | -1.2184E-01 | 2.5497E-01 | -2.0934E-01 | 1.0559E-01 | -3.0049E-02 | 3.5092E-03 |
S13 | -8.3567E-02 | -7.1106E-02 | 8.9228E-02 | -7.2377E-02 | 2.8067E-02 | -4.5578E-03 | 2.2684E-04 |
S14 | 9.7816E-02 | -1.0521E-01 | 4.5534E-02 | -2.1717E-02 | 8.4630E-03 | -1.6832E-03 | 1.2525E-04 |
S15 | -2.6002E-02 | 3.0499E-02 | -2.6799E-03 | -1.4915E-03 | 4.8708E-04 | -5.8795E-05 | 2.7237E-06 |
S16 | -1.1029E-01 | 4.0997E-02 | -1.2366E-02 | 2.7327E-03 | -4.1850E-04 | 3.8038E-05 | -1.4776E-06 |
表20
表21给出了实施例7中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.66 |
TTL(mm) | 4.47 | f4(mm) | -19.76 |
HFOV(°) | 43.2 | f5(mm) | -226.61 |
Fno | 1.80 | f6(mm) | 6.12 |
f(mm) | 3.25 | f7(mm) | 3.94 |
f1(mm) | 182.29 | f8(mm) | -2.23 |
f2(mm) | 2.85 |
表21
图14A示出了实施例7的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图14D示出了实施例7的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的成像镜头。图15示出了根据本申请实施例8的成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凹面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表22示出了实施例8的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表22
由表22可知,在实施例8中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.3733E-01 | 8.6163E-02 | -1.7945E-01 | 3.3452E-01 | -2.8026E-01 | 9.7446E-02 | -2.7094E-03 |
S2 | -2.6694E-01 | 2.2316E-01 | -2.5754E-01 | 5.8627E-01 | -8.2155E-01 | 6.4339E-01 | -2.0782E-01 |
S3 | -1.5778E-01 | 9.4925E-02 | -1.5451E-01 | 4.0792E-01 | -6.0042E-01 | 3.9594E-01 | -1.0521E-01 |
S4 | -2.1244E-01 | 3.3100E-01 | -7.3211E-01 | 1.1760E+00 | -1.2800E+00 | 7.9606E-01 | -2.1450E-01 |
S5 | -2.3644E-01 | 3.9191E-01 | -5.4918E-01 | 6.6649E-01 | -7.1840E-01 | 5.0812E-01 | -1.4321E-01 |
S6 | -7.7501E-02 | 7.1130E-02 | 2.1345E-01 | -6.8256E-01 | 9.1201E-01 | -6.1004E-01 | 1.7049E-01 |
S7 | -1.3030E-01 | -1.5208E-02 | -8.2615E-02 | 4.1922E-01 | -5.9432E-01 | 5.2076E-01 | -1.9916E-01 |
S8 | -5.9266E-02 | -5.1098E-01 | 1.4190E+00 | -2.1838E+00 | 1.9790E+00 | -9.0519E-01 | 1.5439E-01 |
S9 | -1.7860E-01 | -3.0918E-01 | 1.4472E+00 | -2.6267E+00 | 2.6116E+00 | -1.3366E+00 | 2.7224E-01 |
S10 | -2.2111E-01 | 1.9795E-01 | -1.4474E-01 | 1.1536E-02 | 1.0603E-01 | -7.8040E-02 | 1.6422E-02 |
S11 | 1.4645E-01 | -1.7761E-01 | 6.0084E-02 | 1.1554E-01 | -1.3125E-01 | 5.3589E-02 | -8.1900E-03 |
S12 | 3.1439E-02 | -1.1867E-01 | 2.4894E-01 | -2.0366E-01 | 1.0253E-01 | -2.9149E-02 | 3.4004E-03 |
S13 | -8.5099E-02 | -6.5507E-02 | 8.1851E-02 | -6.6891E-02 | 2.5817E-02 | -4.0870E-03 | 1.8742E-04 |
S14 | 9.6999E-02 | -1.0480E-01 | 4.5593E-02 | -2.1688E-02 | 8.3900E-03 | -1.6583E-03 | 1.2276E-04 |
S15 | -2.5867E-02 | 3.0374E-02 | -2.5661E-03 | -1.5512E-03 | 5.0322E-04 | -6.0987E-05 | 2.8420E-06 |
S16 | -1.1135E-01 | 4.2246E-02 | -1.2995E-02 | 2.9055E-03 | -4.4470E-04 | 4.0054E-05 | -1.5381E-06 |
表23
表24给出了实施例8中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.64 |
TTL(mm) | 4.48 | f4(mm) | -47.99 |
HFOV(°) | 43.2 | f5(mm) | -27.57 |
Fno | 1.80 | f6(mm) | 6.03 |
f(mm) | 3.25 | f7(mm) | 3.94 |
f1(mm) | 174.72 | f8(mm) | -2.22 |
f2(mm) | 2.85 |
表24
图16A示出了实施例8的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图16D示出了实施例8的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的成像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的成像镜头。图17示出了根据本申请实施例9的成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表25示出了实施例9的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表25
由表25可知,在实施例9中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
表26
表27给出了实施例9中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
ImgH(mm) | 3.08 | f3(mm) | -6.53 |
TTL(mm) | 4.51 | f4(mm) | -12.99 |
HFOV(°) | 43.5 | f5(mm) | 41.32 |
Fno | 1.98 | f6(mm) | 6.01 |
f(mm) | 3.24 | f7(mm) | 4.31 |
f1(mm) | 163.67 | f8(mm) | -2.25 |
f2(mm) | 2.88 |
表27
图18A示出了实施例9的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图18D示出了实施例9的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的成像镜头能够实现良好的成像品质。
实施例10
以下参照图19至图20D描述了根据本申请实施例10的成像镜头。图19示出了根据本申请实施例10的成像镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、第八透镜E8、滤光片E9和成像面S19。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有正光焦度,其物侧面S13为凸面,像侧面S14为凸面。第八透镜E8具有负光焦度,其物侧面S15为凹面,像侧面S16为凹面。滤光片E9具有物侧面S17和像侧面S18。来自物体的光依序穿过各表面S1至S18并最终成像在成像面S19上。
表28示出了实施例10的成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
表28
由表28可知,在实施例10中,第一透镜E1至第八透镜E8中的任意一个透镜的物侧面和像侧面均为非球面。表29示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 |
S1 | -1.4880E-01 | 1.0415E-01 | -1.5740E-01 | 2.3496E-01 | -1.1584E-01 | -3.8369E-02 | 4.2027E-02 |
S2 | -2.7252E-01 | 2.9711E-01 | -4.2241E-01 | 8.4190E-01 | -1.1272E+00 | 8.7422E-01 | -2.9130E-01 |
S3 | -1.5792E-01 | 1.3516E-01 | -2.0259E-01 | 3.9460E-01 | -5.6914E-01 | 4.3992E-01 | -1.4903E-01 |
S4 | -1.9172E-01 | 1.9802E-01 | -2.9544E-01 | 4.2564E-01 | -5.0843E-01 | 3.7631E-01 | -1.2636E-01 |
S5 | -2.0624E-01 | 2.3890E-01 | -6.8234E-02 | -2.2878E-01 | 3.3400E-01 | -1.9683E-01 | 5.0930E-02 |
S6 | -7.7777E-02 | 5.9295E-02 | 2.1755E-01 | -6.2367E-01 | 7.8268E-01 | -5.0540E-01 | 1.3756E-01 |
S7 | -1.1641E-01 | -8.1609E-02 | 2.3779E-01 | -3.8817E-01 | 4.8115E-01 | -2.4912E-01 | 3.2216E-02 |
S8 | -8.9902E-02 | -2.3764E-01 | 5.9236E-01 | -7.9962E-01 | 6.5433E-01 | -2.6124E-01 | 3.5465E-02 |
S9 | -1.9018E-01 | -1.5605E-01 | 6.5856E-01 | -9.0482E-01 | 7.3570E-01 | -3.3624E-01 | 6.4287E-02 |
S10 | -1.8878E-01 | 3.3367E-02 | 9.6492E-02 | -1.3517E-01 | 1.4194E-01 | -8.2884E-02 | 1.8121E-02 |
S11 | 1.3905E-01 | -1.2806E-01 | -7.1993E-03 | 1.2639E-01 | -1.0119E-01 | 3.3066E-02 | -4.1327E-03 |
S12 | 4.6193E-03 | -1.0635E-04 | 3.9444E-02 | -2.2903E-02 | 1.3834E-02 | -5.8191E-03 | 8.8455E-04 |
S13 | -1.1134E-01 | 2.2803E-02 | -3.5292E-02 | 3.0941E-02 | -1.5423E-02 | 3.7874E-03 | -3.4416E-04 |
S14 | 6.5885E-02 | -5.1219E-02 | 1.7425E-02 | -5.7340E-03 | 1.3522E-03 | -1.6625E-04 | 6.1490E-06 |
S15 | -4.0242E-02 | 5.8092E-02 | -2.0824E-02 | 3.9622E-03 | -3.8919E-04 | 1.5929E-05 | -2.2528E-09 |
S16 | -1.2145E-01 | 5.6441E-02 | -2.1366E-02 | 5.1635E-03 | -7.3576E-04 | 5.6707E-05 | -1.8278E-06 |
表29
表30给出了实施例10中成像面S19上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S19在光轴上的距离TTL、最大半视场角HFOV、光圈数Fno、成像镜头的总有效焦距f以及各透镜的有效焦距f1至f8。
表30
图20A示出了实施例10的成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图20B示出了实施例10的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的成像镜头的畸变曲线,其表示不同像高情况下的畸变大小值。图20D示出了实施例10的成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图20A至图20D可知,实施例10所给出的成像镜头能够实现良好的成像品质。
综上,实施例1至实施例10分别满足表31中所示的关系。
条件式\实施例 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
f/EPD | 1.98 | 1.98 | 1.98 | 1.98 | 1.98 | 1.91 | 1.80 | 1.80 | 1.98 | 1.86 |
f2/f | 0.91 | 0.91 | 0.90 | 0.92 | 0.91 | 0.88 | 0.88 | 0.88 | 0.89 | 0.87 |
ImgH/f6 | 0.61 | 0.61 | 0.58 | 0.55 | 0.52 | 0.55 | 0.50 | 0.51 | 0.51 | 0.48 |
f123/f4567 | 1.61 | 1.63 | 1.70 | 1.70 | 1.68 | 1.77 | 1.69 | 1.69 | 1.59 | 1.58 |
∑CT/∑AT | 2.14 | 2.12 | 2.16 | 2.25 | 2.21 | 2.26 | 2.14 | 2.15 | 2.28 | 2.10 |
TTL/f7 | 0.82 | 0.84 | 0.93 | 1.02 | 0.99 | 1.13 | 1.13 | 1.14 | 1.05 | 1.06 |
|R6/R5| | 0.61 | 0.58 | 0.52 | 0.55 | 0.53 | 0.55 | 0.55 | 0.55 | 0.54 | 0.55 |
R15/R11 | 0.49 | 0.51 | 0.57 | 0.66 | 0.77 | 0.62 | 0.71 | 0.70 | 0.68 | 0.74 |
(CT2+CT1)/(CT2-CT1) | 2.63 | 2.73 | 2.58 | 2.52 | 2.38 | 2.21 | 2.41 | 2.37 | 2.29 | 2.14 |
T34/T78 | 0.69 | 0.70 | 0.77 | 0.88 | 0.87 | 0.98 | 1.05 | 1.06 | 0.88 | 0.83 |
表31
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (10)
1.成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
所述第二透镜、第六透镜和第七透镜均具有正光焦度;
所述第三透镜的像侧面为凹面;
所述第六透镜的物侧面为凹面;
所述第八透镜的物侧面为凹面;以及
所述第一透镜至所述第八透镜中任意相邻两透镜之间均具有空气间隔。
2.根据权利要求1所述的成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述成像镜头的总有效焦距f满足0.5<f2/f<1.3。
3.根据权利要求1所述的成像镜头,其特征在于,所述成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述第六透镜的有效焦距f6满足0<ImgH/f6<1。
4.根据权利要求1所述的成像镜头,其特征在于,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足0.3<|R6/R5|<0.8。
5.根据权利要求1所述的成像镜头,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第二透镜在所述光轴上的中心厚度CT2满足2<(CT2+CT1)/(CT2-CT1)<3。
6.根据权利要求1所述的成像镜头,其特征在于,所述第六透镜的物侧面的曲率半径R11与所述第八透镜的物侧面的曲率半径R15满足0<R15/R11<1。
7.根据权利要求1所述的成像镜头,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34与所述第七透镜和所述第八透镜在所述光轴上的间隔距离T78满足0<T34/T78<1.3。
8.根据权利要求1至7中任一项所述的成像镜头,其特征在于,所述第一透镜至所述第八透镜分别在所述光轴上的中心厚度的总和∑CT与所述第一透镜至所述第八透镜中任意相邻两透镜在所述光轴上的间隔距离的总和∑AT满足2<∑CT/∑AT<2.5。
9.根据权利要求1至7中任一项所述的成像镜头,其特征在于,所述成像镜头的总有效焦距f与所述成像镜头的入瞳直径EPD满足f/EPD<2。
10.成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第八透镜,其特征在于,
所述第二透镜、第六透镜和第七透镜均具有正光焦度;
所述第三透镜的像侧面为凹面;
所述第六透镜的物侧面为凹面;
所述第八透镜的物侧面为凹面;以及
所述成像镜头的成像面上有效像素区域对角线长的一半ImgH与所述第六透镜的有效焦距f6满足0<ImgH/f6<1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811563287.3A CN111352210A (zh) | 2018-12-20 | 2018-12-20 | 成像镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811563287.3A CN111352210A (zh) | 2018-12-20 | 2018-12-20 | 成像镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111352210A true CN111352210A (zh) | 2020-06-30 |
Family
ID=71192064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811563287.3A Pending CN111352210A (zh) | 2018-12-20 | 2018-12-20 | 成像镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111352210A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022073847A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2022073846A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2022073849A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
-
2018
- 2018-12-20 CN CN201811563287.3A patent/CN111352210A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022073847A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2022073846A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2022073849A (ja) * | 2020-10-30 | 2022-05-17 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107741630B (zh) | 光学成像镜头 | |
CN110346897B (zh) | 光学成像镜头 | |
CN109085693B (zh) | 光学成像镜头 | |
CN114137695B (zh) | 光学成像镜头 | |
CN110007444B (zh) | 光学成像镜头 | |
CN107219613B (zh) | 光学成像镜头 | |
CN108873256B (zh) | 光学成像系统 | |
CN109212720B (zh) | 成像镜头 | |
CN107843977B (zh) | 光学成像镜头 | |
CN111239978B (zh) | 光学成像镜头 | |
CN110426822B (zh) | 光学成像镜头 | |
CN110850557B (zh) | 光学成像镜头 | |
CN107436481B (zh) | 摄像透镜组 | |
CN113835198B (zh) | 光学成像镜头 | |
CN110346919B (zh) | 光学成像镜头 | |
CN108089317B (zh) | 光学成像镜头 | |
CN107167900B (zh) | 光学成像镜头 | |
CN107219610B (zh) | 成像镜头 | |
CN107664830B (zh) | 光学成像镜头 | |
CN113917666A (zh) | 光学成像镜头 | |
CN113296244A (zh) | 摄像光学系统 | |
CN107436477B (zh) | 光学成像镜头 | |
CN109031620B (zh) | 光学成像镜片组 | |
CN108279483B (zh) | 摄像镜头组 | |
CN211293433U (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |