WO2020134129A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2020134129A1
WO2020134129A1 PCT/CN2019/102148 CN2019102148W WO2020134129A1 WO 2020134129 A1 WO2020134129 A1 WO 2020134129A1 CN 2019102148 W CN2019102148 W CN 2019102148W WO 2020134129 A1 WO2020134129 A1 WO 2020134129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical
Prior art date
Application number
PCT/CN2019/102148
Other languages
English (en)
French (fr)
Inventor
徐武超
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020134129A1 publication Critical patent/WO2020134129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an optical imaging system, and more particularly, to an optical imaging system including five lenses.
  • the optical imaging system applied to it faces the challenges of high pixels, low cost, and ultrathinness.
  • the five-piece lens system is still its main choice.
  • the major smart terminal manufacturers are increasingly pursuing high-resolution and thinner lenses, and the large working image area and the total length of short systems have become the main factors of concern to various manufacturers.
  • the large working image plane means higher image resolution
  • the short total system length means that the lens can be thinner and thinner.
  • the realization of a large working image plane and the short total system length greatly reduces the design of the optical system while reducing costs. Difficulty.
  • the present application provides an optical imaging system applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an optical imaging system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens .
  • the first lens can have positive power, the object side can be convex, and the image side can be concave; the second lens can have negative power, the third lens can have negative power; the fourth lens can have positive power
  • the image side may be convex;
  • the fifth lens may have negative power, and the object side may be concave.
  • the distance between the object side surface of the first lens and the imaging surface of the optical imaging system on the optical axis, TTL, and the half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging system, ImgH, can satisfy 1 ⁇ TTL/ImgH ⁇ 1.3.
  • the effective focal length f2 of the second lens and the combined focal length f45 of the fourth lens and the fifth lens may satisfy 0 ⁇ f2/f45 ⁇ 1.6.
  • the effective focal length f5 of the fifth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy 0.2 ⁇ R8/f5 ⁇ 1.
  • the combined effective focal length f of the optical imaging system and the combined focal length f123 of the first lens, the second lens, and the third lens may satisfy 0.8 ⁇ f123/f ⁇ 1.3.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R2 of the image side of the first lens may satisfy 0 ⁇ R1/R2 ⁇ 0.9.
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -0.6 ⁇ f1/f2 ⁇ 0.
  • the curvature radius R9 of the object side of the fifth lens and the curvature radius R10 of the image side of the fifth lens may satisfy 0 ⁇
  • the separation distance T12 between the center thickness CT1 of the first lens on the optical axis and the first lens and the second lens on the optical axis may satisfy 0 ⁇ T12/CT1 ⁇ 0.3.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0 ⁇ CT5/CT4 ⁇ 0.7.
  • the sum of the separation distance of any two adjacent lenses on the optical axis of the first lens to the fifth lens ⁇ AT and the sum of the central thicknesses of the first lens and the fifth lens on the optical axis ⁇ CT, respectively It can satisfy 0 ⁇ AT/ ⁇ CT ⁇ 1.
  • the optical imaging system further includes a diaphragm, a distance SD from the diaphragm to the image side of the fifth lens on the optical axis, and an axis on the optical axis from the object side of the first lens to the image side of the fifth lens
  • the upper distance TD can satisfy 0.5 ⁇ SD/TD ⁇ 1.3.
  • the present application provides an optical imaging system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the first lens can have positive power, the object side can be convex, and the image side can be concave; the second lens can have negative power, the third lens can have negative power; the fourth lens can have positive power For the power, the image side may be convex; the fifth lens may have negative power, and the object side may be concave.
  • the effective focal length f2 of the second lens and the combined focal length f45 of the fourth lens and the fifth lens satisfy 0.36 ⁇ f2/f45 ⁇ 1.6.
  • the effective focal length f5 of the fifth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy 0.68 ⁇ R8/f5 ⁇ 1.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R2 of the image side of the first lens may satisfy 0.2 ⁇ R1/R2 ⁇ 0.9.
  • This application uses five lenses.
  • the above optical lens system has ultra-thin and high resolution , High image quality and other at least one beneficial effect.
  • FIGS. 2A to 2D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Example 1 respectively. curve;
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Example 2 of the present application
  • FIGS. 4A to 4D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging system of Example 2. curve;
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Example 3 of the present application
  • FIGS. 6A to 6D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Example 3, respectively. curve;
  • FIGS. 8A to 8D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging system of Example 4. curve;
  • FIGS. 10A to 10D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Example 5 respectively. curve;
  • FIGS. 12A to 12D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Example 6 respectively. curve;
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Example 7 of the present application
  • FIGS. 14A to 14D show on-axis chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberrations of the optical imaging system of Example 7 respectively. curve;
  • FIG. 15 shows a schematic structural diagram of an optical imaging system according to Example 8 of the present application
  • FIGS. 16A to 16D respectively show an on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration of the optical imaging system of Example 8. curve.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teaching of this application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave surface. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging system may include, for example, five lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are arranged in order along the optical axis from the object side to the image side.
  • any adjacent two lenses may have an air gap.
  • the first lens may have positive power, the object side may be convex, and the image side may be concave; the second lens may have negative power; the third lens may have negative power; The four lenses may have positive power and the image side may be convex; the fifth lens may have negative power and the object side may be concave.
  • Reasonable configuration of the surface shape and power of each lens can reduce the tolerance sensitivity while ensuring the performance of the optical system, making the optical system feasible for mass production.
  • the image side of the second lens may be concave.
  • the image side of the fifth lens may be concave.
  • the optical imaging system according to the present application may satisfy the conditional expression 1 ⁇ TTL/ImgH ⁇ 1.3, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis, ImgH is half the diagonal length of the effective pixel area on the imaging surface of the optical imaging system. More specifically, TTL and ImgH can further satisfy 1.09 ⁇ TTL/ImgH ⁇ 1.22. When TTL/ImgH meets the above conditions, it can meet the requirements of high resolution and ultra-thin lens.
  • the optical imaging system may satisfy the conditional expression 0 ⁇ f2/f45 ⁇ 1.6, where f2 is the effective focal length of the second lens and f45 is the combined focal length of the fourth lens and the fifth lens. More specifically, f2 and f45 may further satisfy 0.3 ⁇ f2/f45 ⁇ 1.5, for example, 0.36 ⁇ f2/f45 ⁇ 1.45. When f2/f45 satisfies the above conditions, the optical power of the second lens, the fourth lens, and the fifth lens can be better adjusted, which greatly improves the working performance of the optical system.
  • the optical imaging system may satisfy the conditional expression 0.2 ⁇ R8/f5 ⁇ 1, where f5 is the effective focal length of the fifth lens and R8 is the radius of curvature of the image side of the fourth lens. More specifically, R8 and f5 may further satisfy 0.5 ⁇ R8/f5 ⁇ 0.9, for example, 0.62 ⁇ R8/f5 ⁇ 0.83, and for example, 0.68 ⁇ R8/f5 ⁇ 0.83.
  • Reasonable configuration of lens profile and optical power is beneficial to correct spherical aberration and axial chromatic aberration of the optical system and improve imaging quality.
  • the optical imaging system may satisfy the conditional expression 0.8 ⁇ f123/f ⁇ 1.3, where f is the total effective focal length of the optical imaging system, and f123 is the first lens, the second lens, and the third The combined focal length of the lens. More specifically, f123 and f may further satisfy 1.0 ⁇ f123/f ⁇ 1.2, for example, 1.11 ⁇ f123/f ⁇ 1.16. Reasonable configuration of the power of each lens helps to ensure the compactness of the optical system structure.
  • the optical imaging system may satisfy the conditional expression 0 ⁇ R1/R2 ⁇ 0.9, where R1 is the radius of curvature of the object side of the first lens and R2 is the curvature of the image side of the first lens radius. More specifically, R1 and R2 may further satisfy 0.2 ⁇ R1/R2 ⁇ 0.6, for example, 0.34 ⁇ R1/R2 ⁇ 0.44. Reasonable configuration of the curvature radius of the object side and the image side of the first lens is beneficial to correct off-axis aberrations and obtain high-definition images.
  • the optical imaging system according to the present application may satisfy the conditional expression -0.6 ⁇ f1/f2 ⁇ 0, where f1 is the effective focal length of the first lens and f2 is the effective focal length of the second lens. More specifically, f1 and f2 can further satisfy -0.29 ⁇ f1/f2 ⁇ -0.08.
  • Reasonable configuration of the power of the first lens and the second lens is conducive to the elimination of chromatic aberration, and at the same time helps to ensure the compactness of the optical system.
  • the optical imaging system may satisfy the conditional expression 0 ⁇
  • the optical imaging system may satisfy the conditional expression 0 ⁇ T12/CT1 ⁇ 0.3, where CT1 is the center thickness of the first lens on the optical axis and T12 is the first lens and the second lens The separation distance on the optical axis. More specifically, T12 and CT1 may further satisfy 0.1 ⁇ T12/CT1 ⁇ 0.2, for example, 0.16 ⁇ T12/CT1 ⁇ 0.19. Satisfying this conditional expression can effectively reduce the thickness and interval sensitivity of the lens and meet the requirements of processability. At the same time, by configuring the on-axis separation distance of the lens, it is advantageous to achieve compactness of the optical system.
  • the optical imaging system may satisfy the conditional expression 0 ⁇ CT5/CT4 ⁇ 0.7, where CT4 is the center thickness of the fourth lens on the optical axis and CT5 is the fifth lens on the optical axis The thickness of the center. More specifically, CT5 and CT4 may further satisfy 0.2 ⁇ CT5/CT4 ⁇ 0.6, for example, 0.38 ⁇ CT5/CT4 ⁇ 0.53. Reasonable configuration of the center thickness of the lens can effectively reduce the sensitivity of the center thickness of the lens and help to correct the curvature of field.
  • the optical imaging system may satisfy the conditional expression 0 ⁇ AT/ ⁇ CT ⁇ 1, where ⁇ AT is any two adjacent lenses from the first lens to the fifth lens on the optical axis ⁇ CT is the sum of the center thicknesses of the first lens to the fifth lens on the optical axis, respectively. More specifically, ⁇ AT and ⁇ CT may further satisfy 0.3 ⁇ AT/ ⁇ CT ⁇ 0.7, for example, 0.42 ⁇ AT/ ⁇ CT ⁇ 0.54. Reasonable configuration of the center thickness of each lens and the separation distance on the axis will help to ensure the compactness of the optical system and meet the ultra-thin requirements.
  • the optical imaging system may further include a diaphragm, which may be disposed between the object side and the first lens.
  • the distance SD between the diaphragm and the image side of the fifth lens on the optical axis and the axial distance TD between the object side of the first lens and the image side of the fifth lens on the optical axis may satisfy 0.5 ⁇ SD/TD ⁇ 1.3. More specifically, SD and TD can further satisfy 0.92 ⁇ SD/TD ⁇ 0.93.
  • Reasonable configuration of the position of the diaphragm helps to ensure the compactness of the optical system structure, and helps to improve the imaging performance and relative brightness of the optical system.
  • the above optical imaging system may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface.
  • the optical imaging system may employ multiple lenses, such as the five described above.
  • multiple lenses such as the five described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging system through the above configuration can also have beneficial effects such as ultra-thin, high resolution, low cost, and high imaging quality, and can better meet the use requirements of most medium and mobile phone lenses.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, the object side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens
  • At least one of the sum image side is an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are aspherical mirror surfaces.
  • the number of lenses constituting the optical imaging lens can be changed to obtain various results and advantages described in this specification.
  • the optical imaging lens is not limited to include five lenses. If desired, the optical imaging lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a third The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is concave and the image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 1, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 below shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S10 in Example 1. .
  • Table 3 shows the ImgH, which is half the diagonal of the effective pixel area on the imaging plane S13 in Example 1, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • 2A shows an on-axis chromatic aberration curve of the optical imaging system of Example 1, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 2B shows the astigmatism curve of the optical imaging system of Example 1, which represents meridional image plane curvature and sagittal image plane curvature.
  • 2C shows the distortion curve of the optical imaging system of Example 1, which represents the distortion magnitude values at different image heights.
  • FIG. 2D shows the magnification chromatic aberration curve of the optical imaging system of Example 1, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 2A to 2D that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a third The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 2, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 2 the object side and the image side of any of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 5 shows the higher-order coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 6 shows the ImgH, which is half the diagonal of the effective pixel area on the imaging plane S13 in Example 2, the distance TTL on the optical axis from the object side S1 of the first lens E1 to the imaging plane S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging system of Example 2, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 4B shows the astigmatism curve of the optical imaging system of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the distortion curve of the optical imaging system of Example 2, which represents the distortion magnitude values at different image heights.
  • 4D shows the magnification chromatic aberration curve of the optical imaging system of Example 2, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 4A to 4D that the optical imaging system provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is concave and the image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 3, where the units of radius of curvature and thickness are both millimeters (mm).
  • Example 3 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 8 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the ImgH, which is half the diagonal length of the effective pixel area on the imaging surface S13 in Example 3, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • FIG. 6A shows an on-axis chromatic aberration curve of the optical imaging system of Example 3, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 6B shows the astigmatism curve of the optical imaging system of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • 6C shows the distortion curve of the optical imaging system of Example 3, which represents the distortion magnitude values at different image heights.
  • 6D shows the magnification chromatic aberration curve of the optical imaging system of Example 3, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 7 to 8D shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
  • the optical imaging system includes, in order from the object side to the image side, along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a third The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 4 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the ImgH, which is half the diagonal length of the effective pixel area on the imaging surface S13 in Example 4, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging system of Example 4, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 8B shows the astigmatism curve of the optical imaging system of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8C shows the distortion curve of the optical imaging system of Example 4, which represents the distortion magnitude values at different image heights.
  • 8D shows the magnification chromatic aberration curve of the optical imaging system of Example 4, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be known from FIGS. 8A to 8D that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • FIGS. 9 to 10D shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is concave and the image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is a concave surface, and its image side surface S8 is a convex surface.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 5 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 14 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the ImgH, which is half the diagonal of the effective pixel area on the imaging surface S13 in Example 5, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • FIG. 10A shows an on-axis chromatic aberration curve of the optical imaging system of Example 5, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 10B shows the astigmatism curve of the optical imaging system of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10C shows the distortion curve of the optical imaging system of Example 5, which represents the distortion magnitude values at different image heights.
  • 10D shows the magnification chromatic aberration curve of the optical imaging system of Example 5, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 10A to 10D that the optical imaging system provided in Embodiment 5 can achieve good imaging quality.
  • FIGS. 11 to 12D shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is concave and the image side surface S6 is convex.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 6 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 17 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the half-diagonal length of the effective pixel area on the imaging plane S13 in Example 6, ImgH, the distance from the object side S1 of the first lens E1 to the imaging plane S13 on the optical axis, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • FIG. 12A shows an on-axis chromatic aberration curve of the optical imaging system of Example 6, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 12B shows the astigmatism curve of the optical imaging system of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • 12C shows the distortion curve of the optical imaging system of Example 6, which represents the distortion magnitude values at different image heights.
  • 12D shows the magnification chromatic aberration curve of the optical imaging system of Example 6, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 12A to 12D that the optical imaging system provided in Embodiment 6 can achieve good imaging quality.
  • FIGS. 13 to 14D shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is concave and the image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 7, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 7 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 20 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 21 shows the ImgH, which is half the diagonal of the effective pixel area on the imaging surface S13 in Example 7, the distance TTL on the optical axis from the object side surface S1 of the first lens E1 to the imaging surface S13, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • 14A shows an on-axis chromatic aberration curve of the optical imaging system of Example 7, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 14B shows the astigmatism curve of the optical imaging system of Example 7, which represents meridional image plane curvature and sagittal image plane curvature.
  • 14C shows the distortion curve of the optical imaging system of Example 7, which represents the distortion magnitude values at different image heights.
  • 14D shows the magnification chromatic aberration curve of the optical imaging system of Example 7, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 14A to 14D that the optical imaging system provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 to 16D shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application.
  • the optical imaging system includes, in order from the object side to the image side along the optical axis: an aperture STO, a first lens E1, a second lens E2, a third lens E3, a The four lens E4, the fifth lens E5, the filter E6, and the imaging surface S13.
  • the first lens E1 has positive refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is concave and the image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical imaging system of Example 8, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 8 the object side and the image side of any one of the first lens E1 to the fifth lens E5 are aspherical.
  • Table 23 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 24 shows the half-diagonal length of the effective pixel area on the imaging plane S13 in Example 8, ImgH, the distance from the object side S1 of the first lens E1 to the imaging plane S13 on the optical axis, and the maximum half angle of view HFOV , The aperture number Fno of the optical imaging system, the total effective focal length f of the optical imaging system, and the effective focal lengths f1 to f5 of the lenses.
  • 16A shows an on-axis chromatic aberration curve of the optical imaging system of Example 8, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens.
  • 16B shows the astigmatism curve of the optical imaging system of Example 8, which represents meridional image plane curvature and sagittal image plane curvature.
  • 16C shows the distortion curve of the optical imaging system of Example 8, which represents the distortion magnitude values at different image heights.
  • 16D shows the magnification chromatic aberration curve of the optical imaging system of Example 8, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens. It can be seen from FIGS. 16A to 16D that the optical imaging system provided in Embodiment 8 can achieve good imaging quality.
  • Examples 1 to 8 satisfy the relationships shown in Table 25, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging apparatus may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,成像系统沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和第五透镜(E5)。其中,第一透镜(E1)具有正光焦度,其物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(E2)具有负光焦度,第三透镜(E3)具有负光焦度;第四透镜(E4)具有正光焦度,其像侧面(S8)为凸面;第五透镜(E5)具有负光焦度,其物侧面(S9)为凹面。第一透镜(E1)的物侧面(S1)至光学成像系统的成像面(S13)在光轴上的距离TTL与光学成像系统的成像面(S13)上有效像素区域对角线长的一半ImgH满足1<TTL/ImgH<1.3。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2018年12月24日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811580013.5的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像系统,更具体地,涉及一种包括五片透镜的光学成像系统。
背景技术
随着近来智能手机事业和平板事业的快速发展,应用于其上的光学成像系统面临着高像素、低成本、超薄化的挑战。而对于大部分中低端机型来说,出于成本控制考虑,五片式的镜头系统仍是其主要选择。
近年来,各大智能终端厂商越来越追求镜头的高分辨率和轻薄化,超大工作像面和短系统总长成为各厂商关注的主要因素。超大工作像面意味着能提供更高的图像分辨率,短系统总长意味着镜头可以更加轻薄化,然而在实现降低成本的同时实现超大工作像面和短系统总长极大地提高了光学系统的设计难度。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统。
一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。其中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的成像面上有效像素区域对角线长的一半ImgH可满足1<TTL/ImgH<1.3。
在一个实施方式中,第二透镜的有效焦距f2与第四透镜和第五透镜的组合焦距f45可满足0<f2/f45<1.6。
在一个实施方式中,第五透镜的有效焦距f5与第四透镜的像侧面的曲率半径R8可满足0.2<R8/f5<1。
在一个实施方式中,光学成像系统的总有效焦距f与第一透镜、第二透镜和第三透镜的组合焦距f123可满足0.8<f123/f<1.3。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0<R1/R2<0.9。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-0.6<f1/f2<0。
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第五透镜的像侧面的曲率半径R10可满足0<|R9+R10|/|R9-R10|<1。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1与第一透镜和第二透镜在光轴上的间隔距离T12可满足0<T12/CT1<0.3。
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5可满足0<CT5/CT4<0.7。
在一个实施方式中,第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离的总和∑AT与第一透镜至第五透镜分别在光轴上的中心厚度的总和∑CT可满足0<∑AT/∑CT<1。
在一个实施方式中,光学成像系统还包括光阑,光阑至第五透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第五透镜的像侧面在光轴上的轴上距离TD可满足0.5<SD/TD<1.3。
另一方面,本申请提供了这样一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。其中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度,第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。其中,第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0.36≤f2/f45<1.6。
在一个实施方式中,第五透镜的有效焦距f5与第四透镜的像侧面的曲率半径R8可满足0.68≤R8/f5<1。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.2<R1/R2<0.9。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜系统具有超薄化、高分辨力、高成像质量等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2A至图2D分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4A至图4D分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6A至图6D分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8A至图8D分别示出了实 施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10A至图10D分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12A至图12D分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14A至图14D分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;图16A至图16D分别示出了实施例8的光学成像系统的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下 面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有正光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面。合理配置各透镜的面型与光焦度,可以在保证光学系统性能的同时,降低公差敏感性,使光学系统具有量产可行性。
在示例性实施方式中,第二透镜的像侧面可为凹面。
在示例性实施方式中,第五透镜的像侧面可为凹面。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式1<TTL/ImgH<1.3,其中,TTL为第一透镜的物侧面至光学成像系统的成像面在光轴上的距离,ImgH为光学成像系统的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.09≤TTL/ImgH≤1.22。当TTL/ImgH满足上述条件时,可以同时满足镜头高分辨力与超薄化的要求。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<f2/f45<1.6,其中,f2为第二透镜的有效焦距,f45为第四透镜和第五透镜的组合焦距。更具体地,f2和f45进一步可满足0.3<f2/f45<1.5,例如,0.36≤f2/f45≤1.45。当f2/f45满足上述条件时,可以更好地调配第二透镜与第四、第五透镜的光焦度,极大提升光学系统的工作性能。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0.2<R8/f5<1,其中,f5为第五透镜的有效焦距,R8为第四透镜的像侧面的曲率半径。更具体地,R8和f5进一步可满足0.5<R8/f5<0.9,例如,0.62≤R8/f5≤0.83,再例如,0.68≤R8/f5≤0.83。合理配置镜片面型与光焦度,有利于对光学系统球差与轴向色差进行矫正,提升成像品质。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0.8<f123/f<1.3,其中,f为光学成像系统的总有效焦距,f123为第一透镜、第二透镜和第三透镜的组合焦距。更具体地,f123和f进一步可满足1.0<f123/f<1.2,例如,1.11≤f123/f≤1.16。合理配置每个透镜的光焦度,有利于保证光学系统结构的紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<R1/R2<0.9,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.2<R1/R2<0.6,例如,0.34≤R1/R2≤0.44。合理配置第一透镜物侧面和像侧面的曲率半径,有利于对轴外像差进行矫正,获得高清晰度的图像。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式-0.6<f1/f2<0,其中,f1为第一透镜的有效焦距,f2为第二透镜的有效焦距。更具体地,f1和f2进一步可满足-0.29≤f1/f2≤-0.08。合理配置第一透镜与第二透镜光焦度,有利于色差消除,同时有助于保证光学系统结构紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<|R9+R10|/|R9-R10|<1,其中,R9为第五透镜的物侧面的曲率半径,R10为第五透镜的像侧面的曲率半径。更具体地,R9和R10进一步可满足0.04≤|R9+R10|/|R9-R10|≤0.61。满足该条件式,有利于确保镜头的CRA匹配,并有利于矫正镜头的场曲,保证各个视场的成像清晰度。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<T12/CT1<0.3,其中,CT1为第一透镜在光轴上的中心厚度,T12为第一透镜和第二透镜在光轴上的间隔距离。更具体地,T12和CT1进一步可满足0.1<T12/CT1<0.2,例如,0.16≤T12/CT1≤0.19。满足该条件式,可以有效降低镜头的厚度和间隔敏感性,满足可加工性的要求。同时,通过配置透镜的轴上间隔距离,有利于实现光学系统的结构紧凑性。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<CT5/CT4<0.7,其中,CT4为第四透镜在光轴上的中心厚度,CT5为第五透镜在光轴上的中心厚度。更具体地,CT5和CT4进一步可满足0.2<CT5/CT4<0.6,例如,0.38≤CT5/CT4≤0.53。合理配置透镜的中心厚度,可以有效降低镜头的中心厚度敏感性,并有利于矫正场曲。
在示例性实施方式中,根据本申请的光学成像系统可满足条件式0<∑AT/∑CT<1,其中,∑AT为第一透镜至第五透镜中任意相邻两透镜在光轴上的间隔距离的总和,∑CT为第一透镜至第五透镜分别在光轴上的中心厚度的总和。更具体地,∑AT和∑CT进一步可满足0.3<∑AT/∑CT<0.7,例如,0.42≤∑AT/∑CT≤0.54。合理配置各透镜的中心厚度及轴上间隔距离,有利于保证光学系统结构紧凑性,满足超薄化要求。
在示例性实施方式中,根据本申请的光学成像系统还可包括光阑,光阑可设置在物侧与第一透镜之间。可选地,光阑至第五透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第五透镜的像侧面在光轴上的轴上距离TD可满足0.5<SD/TD<1.3。更具体地,SD和TD进一步可满足0.92≤SD/TD≤0.93。合理配置光阑位置,有利保证光学系统结构紧凑性,并有利于提升光学系统的成像性能和相对亮度。
可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学成像系统还可具有超薄、高分辨力、低成本、高成像质量等有益效果,能够较好地满足大部分中手机镜头的使用需求。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像 质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000001
表1
由表1可知,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019102148-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.6417E-02 -4.2448E-01 5.4373E+00 -4.0933E+01 1.9347E+02 -5.7226E+02 1.0274E+03 -1.0255E+03 4.3441E+02
S2 -2.6106E-02 -6.4863E-01 1.3834E+01 -1.7015E+02 1.1730E+03 -4.8565E+03 1.2070E+04 -1.6696E+04 9.9010E+03
S3 -1.2721E-01 4.1145E-01 -1.2113E+00 -2.4959E+00 1.1128E+02 -7.7726E+02 2.6556E+03 -4.7042E+03 3.4472E+03
S4 -2.0337E-02 9.2030E-01 -1.4114E+01 2.2102E+02 -1.9350E+03 1.0043E+04 -3.0460E+04 4.9857E+04 -3.3980E+04
S5 -3.7477E-01 -4.4904E-02 8.4359E+00 -1.0046E+02 5.9999E+02 -2.0798E+03 4.2033E+03 -4.5762E+03 2.0467E+03
S6 -2.8816E-01 4.1329E-01 -1.7663E+00 6.1631E+00 -1.4469E+01 2.2928E+01 -2.2423E+01 1.1836E+01 -2.5586E+00
S7 -1.1311E-01 6.8982E-02 -6.1892E-02 -1.2649E-01 2.7871E-01 -2.0485E-01 7.3907E-02 -1.3332E-02 9.6481E-04
S8 -1.4814E-01 -1.0524E-01 4.5715E-01 -3.3229E-01 6.4683E-02 2.7192E-02 -1.6609E-02 3.2463E-03 -2.2943E-04
S9 -5.1260E-01 3.2811E-01 3.2926E-01 -5.0198E-01 2.8135E-01 -8.6623E-02 1.5479E-02 -1.5094E-03 6.2270E-05
S10 -4.3265E-01 5.6769E-01 -5.0154E-01 3.0244E-01 -1.2394E-01 3.3304E-02 -5.5490E-03 5.1687E-04 -2.0516E-05
表2
表3给出了实施例1中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.68
TTL(mm) 3.50 f2(mm) -15.71
HFOV(°) 44.25 f3(mm) -22.36
Fno 2.24 f4(mm) 1.95
f(mm) 3.02 f5(mm) -1.49
表3
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光 阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表4示出了实施例2的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000003
表4
由表4可知,在实施例2中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.2038E-04 5.2212E-01 -8.9308E+00 8.4319E+01 -4.6651E+02 1.5609E+03 -3.1104E+03 3.3969E+03 -1.5698E+03
S2 -5.1097E-02 -6.3632E-02 -1.0458E+00 -5.5066E-01 6.4401E+01 -4.4936E+02 1.4661E+03 -2.4450E+03 1.6605E+03
S3 -1.7108E-01 6.2333E-01 -5.3046E+00 4.3394E+01 -1.8948E+02 4.8715E+02 -7.2958E+02 5.2537E+02 -8.1135E+01
S4 -8.3414E-02 1.1573E+00 -1.0226E+01 1.1186E+02 -7.9192E+02 3.7374E+03 -1.0995E+04 1.8010E+04 -1.2450E+04
S5 -4.7060E-01 1.6408E+00 -1.5642E+01 9.5064E+01 -3.6082E+02 8.4136E+02 -1.1514E+03 8.2242E+02 -2.3007E+02
S6 -3.4835E-01 8.1819E-01 -4.3695E+00 1.6494E+01 -3.9844E+01 6.1535E+01 -5.7794E+01 2.9744E+01 -6.4083E+00
S7 -8.9332E-02 1.2727E-02 6.6457E-02 -2.9777E-01 3.9570E-01 -2.4538E-01 7.9977E-02 -1.3354E-02 9.0481E-04
S8 8.3555E-02 -7.2162E-01 1.4621E+00 -1.3530E+00 7.2766E-01 -2.4797E-01 5.3714E-02 -6.8009E-03 3.8287E-04
S9 -3.0508E-01 -2.5433E-01 1.0561E+00 -1.0120E+00 4.9872E-01 -1.4433E-01 2.4853E-02 -2.3673E-03 9.6321E-05
S10 -2.5480E-01 2.8651E-01 -2.4107E-01 1.4443E-01 -5.9581E-02 1.5849E-02 -2.5400E-03 2.2137E-04 -8.0400E-06
表5
表6给出了实施例2中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物 侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.76
TTL(mm) 3.50 f2(mm) -21.42
HFOV(°) 44.68 f3(mm) -18.16
Fno 2.24 f4(mm) 1.54
f(mm) 3.03 f5(mm) -1.22
表6
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表7示出了实施例3的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000004
Figure PCTCN2019102148-appb-000005
表7
由表7可知,在实施例3中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.5429E-02 -1.9429E-01 -5.6130E-01 2.4432E+01 -1.9949E+02 8.1858E+02 -1.8637E+03 2.2436E+03 -1.1201E+03
S2 -5.4552E-02 4.3075E-01 -1.0875E+01 1.1125E+02 -7.0210E+02 2.7514E+03 -6.4714E+03 8.3191E+03 -4.5089E+03
S3 -1.6595E-01 1.1453E+00 -1.6926E+01 1.7185E+02 -1.0462E+03 4.0222E+03 -9.5061E+03 1.2553E+04 -7.0970E+03
S4 -4.9807E-02 7.9899E-01 -8.1259E+00 1.1770E+02 -1.0097E+03 5.3650E+03 -1.6834E+04 2.8489E+04 -2.0025E+04
S5 -5.1036E-01 3.2425E+00 -3.7640E+01 2.6571E+02 -1.1718E+03 3.2265E+03 -5.3806E+03 4.9684E+03 -1.9587E+03
S6 -3.5364E-01 1.1290E+00 -6.9066E+00 2.7649E+01 -6.9722E+01 1.1030E+02 -1.0467E+02 5.4031E+01 -1.1633E+01
S7 -1.0262E-01 3.2633E-02 7.9226E-02 -3.3786E-01 4.2718E-01 -2.5703E-01 8.1921E-02 -1.3411E-02 8.9136E-04
S8 3.6331E-02 -5.6920E-01 1.2684E+00 -1.2438E+00 7.0988E-01 -2.5693E-01 5.8662E-02 -7.7227E-03 4.4568E-04
S9 -3.8759E-01 1.3496E-01 4.1720E-01 -4.8505E-01 2.4872E-01 -7.2820E-02 1.2648E-02 -1.2210E-03 5.0724E-05
S10 -2.5757E-01 3.0614E-01 -2.5273E-01 1.3860E-01 -4.9941E-02 1.1123E-02 -1.3992E-03 8.4081E-05 -1.4688E-06
表8
表9给出了实施例3中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.82
TTL(mm) 3.52 f2(mm) -26.40
HFOV(°) 44.78 f3(mm) -20.01
Fno 2.23 f4(mm) 1.63
f(mm) 3.03 f5(mm) -1.29
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光 阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表10示出了实施例4的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000006
表10
由表10可知,在实施例4中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4218E-02 -1.9701E-01 3.4808E-01 9.0128E+00 -8.6350E+01 3.6143E+02 -8.1396E+02 9.5708E+02 -4.6681E+02
S2 1.8653E-02 -1.7557E+00 2.5714E+01 -2.4128E+02 1.3802E+03 -4.9087E+03 1.0632E+04 -1.2926E+04 6.7832E+03
S3 -1.3022E-01 7.0756E-01 -1.5442E+01 2.0775E+02 -1.5085E+03 6.4914E+03 -1.6432E+04 2.2518E+04 -1.2874E+04
S4 -1.1873E-01 2.7956E+00 -3.9636E+01 4.0336E+02 -2.5318E+03 1.0050E+04 -2.4434E+04 3.3201E+04 -1.9341E+04
S5 -6.0835E-01 3.3346E+00 -3.0846E+01 1.7018E+02 -5.6479E+02 1.1036E+03 -1.1761E+03 5.3952E+02 -2.1188E+01
S6 -2.5486E-01 -8.9763E-01 1.0785E+01 -5.3220E+01 1.4310E+02 -2.2526E+02 2.0789E+02 -1.0426E+02 2.1930E+01
S7 -7.4157E-02 -1.5446E-02 2.0711E-01 -6.3372E-01 7.8661E-01 -4.9229E-01 1.6670E-01 -2.9296E-02 2.1022E-03
S8 -3.4667E-02 -4.1614E-01 1.0108E+00 -9.3570E-01 4.8462E-01 -1.5772E-01 3.2687E-02 -3.9830E-03 2.1755E-04
S9 -5.2069E-01 4.1677E-01 1.3049E-01 -2.9854E-01 1.6849E-01 -5.1028E-02 9.1580E-03 -9.2816E-04 4.1195E-05
S10 -2.5834E-01 2.2304E-01 -1.0071E-01 1.3157E-02 8.6698E-03 -5.4026E-03 1.3908E-03 -1.7584E-04 8.8143E-06
表11
表12给出了实施例4中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的 物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.89
TTL(mm) 3.55 f2(mm) -35.70
HFOV(°) 44.50 f3(mm) -12.83
Fno 2.25 f4(mm) 1.47
f(mm) 3.05 f5(mm) -1.23
表12
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表13示出了实施例5的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000007
Figure PCTCN2019102148-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.5136E-02 9.2025E-01 -1.0865E+01 7.9443E+01 -3.6270E+02 1.0404E+03 -1.8197E+03 1.7712E+03 -7.3804E+02
S2 1.2459E-02 -8.0508E-01 1.2761E+01 -1.4550E+02 1.0148E+03 -4.3082E+03 1.0809E+04 -1.4789E+04 8.5072E+03
S3 -1.3474E-01 4.9740E-01 -8.4340E-01 -6.0702E+00 1.3253E+02 -8.6063E+02 2.6623E+03 -4.1067E+03 2.5500E+03
S4 -3.1771E-02 1.5785E-01 6.9904E+00 -6.5742E+01 3.9607E+02 -1.5004E+03 3.4337E+03 -4.3372E+03 2.3437E+03
S5 -3.1022E-01 -6.0784E-01 1.1803E+01 -1.0687E+02 5.7267E+02 -1.8860E+03 3.7408E+03 -4.0953E+03 1.8937E+03
S6 -1.7855E-01 -7.6469E-02 3.1503E-01 -1.2217E+00 3.6791E+00 -8.2406E+00 1.2769E+01 -1.1039E+01 3.8717E+00
S7 -6.5130E-03 -3.8095E-01 1.5470E+00 -4.5416E+00 8.4813E+00 -9.8888E+00 6.8109E+00 -2.4950E+00 3.7267E-01
S8 1.4533E-01 -4.5664E-01 9.3228E-01 -1.3254E+00 1.5285E+00 -1.2165E+00 5.8194E-01 -1.4957E-01 1.5932E-02
S9 -3.8785E-01 2.0530E-01 1.6447E-01 -2.2268E-01 1.1088E-01 -3.0588E-02 4.9357E-03 -4.3764E-04 1.6512E-05
S10 -3.0813E-01 3.0920E-01 -2.2457E-01 1.1680E-01 -4.2875E-02 1.0617E-02 -1.6664E-03 1.4908E-04 -5.7857E-06
表14
表15给出了实施例5中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.70
TTL(mm) 3.53 f2(mm) -9.17
HFOV(°) 44.22 f3(mm) -2535.95
Fno 2.24 f4(mm) 2.35
f(mm) 3.02 f5(mm) -1.81
表15
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光 阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表16示出了实施例6的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000009
表16
由表16可知,在实施例6中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -6.5494E-03 4.7409E-01 -5.1959E+00 3.5434E+01 -1.4981E+02 3.9471E+02 -6.2761E+02 5.4752E+02 -2.0189E+02
S2 -1.9796E-02 -6.8398E-01 9.8025E+00 -1.0370E+02 6.6523E+02 -2.6217E+03 6.2051E+03 -8.1154E+03 4.5056E+03
S3 -1.0210E-01 -1.5292E-01 7.3709E+00 -8.1327E+01 5.4637E+02 -2.2152E+03 5.3065E+03 -6.9476E+03 3.8422E+03
S4 -1.5213E-02 8.7474E-01 -9.2931E+00 1.1289E+02 -7.9091E+02 3.4069E+03 -8.8137E+03 1.2560E+04 -7.5388E+03
S5 -3.5990E-01 4.8104E-01 -3.2830E+00 1.7947E+01 -8.5142E+01 3.0127E+02 -6.9216E+02 9.0498E+02 -5.2329E+02
S6 -2.7579E-01 3.6278E-01 -1.3129E+00 4.2665E+00 -1.0373E+01 1.8191E+01 -1.9618E+01 1.1180E+01 -2.5717E+00
S7 -1.1918E-01 7.1256E-02 -6.3346E-02 -1.0401E-01 2.4785E-01 -1.8714E-01 6.8734E-02 -1.2570E-02 9.1957E-04
S8 -1.3609E-01 -5.0723E-02 2.6125E-01 -9.0880E-02 -9.4192E-02 8.9045E-02 -3.0884E-02 5.0482E-03 -3.2495E-04
S9 -4.7480E-01 2.9220E-01 2.9448E-01 -4.3238E-01 2.3459E-01 -6.9848E-02 1.2059E-02 -1.1361E-03 4.5322E-05
S10 -3.5360E-01 4.1898E-01 -3.3436E-01 1.8250E-01 -6.8074E-02 1.6682E-02 -2.5274E-03 2.1295E-04 -7.6023E-06
表17
表18给出了实施例6中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的 物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.63
TTL(mm) 3.60 f2(mm) -13.00
HFOV(°) 43.49 f3(mm) -20.40
Fno 2.24 f4(mm) 2.06
f(mm) 3.11 f5(mm) -1.59
表18
图12A示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图12D示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000010
Figure PCTCN2019102148-appb-000011
表19
由表19可知,在实施例7中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.8348E-03 5.3838E-01 -6.4165E+00 4.7169E+01 -2.1321E+02 5.9946E+02 -1.0199E+03 9.6099E+02 -3.8578E+02
S2 -3.1903E-02 -4.7120E-01 6.7564E+00 -6.7671E+01 4.1299E+02 -1.5407E+03 3.4266E+03 -4.1872E+03 2.1603E+03
S3 -1.0461E-01 -1.5112E-01 6.1281E+00 -5.7290E+01 3.3742E+02 -1.2285E+03 2.6587E+03 -3.1437E+03 1.5628E+03
S4 -1.0311E-02 2.8364E-01 1.4534E+00 -9.8207E+00 5.5889E+01 -2.1599E+02 5.3147E+02 -7.5066E+02 4.8279E+02
S5 -3.4292E-01 7.8323E-01 -7.5404E+00 5.2135E+01 -2.4002E+02 7.1034E+02 -1.2986E+03 1.3368E+03 -6.0051E+02
S6 -2.6994E-01 4.0489E-01 -1.5994E+00 5.3845E+00 -1.2368E+01 1.9015E+01 -1.7924E+01 9.1469E+00 -1.9273E+00
S7 -1.0648E-01 5.0740E-02 -6.8248E-02 -1.5861E-03 8.7840E-02 -7.5406E-02 2.7945E-02 -4.9668E-03 3.4715E-04
S8 -1.0656E-01 -3.0019E-02 1.6183E-01 -3.5076E-02 -7.5165E-02 5.8853E-02 -1.8617E-02 2.8182E-03 -1.6858E-04
S9 -4.3804E-01 3.3367E-01 7.6476E-02 -1.9295E-01 1.0454E-01 -2.9361E-02 4.6923E-03 -4.0553E-04 1.4763E-05
S10 -2.8242E-01 3.0188E-01 -2.1707E-01 1.0690E-01 -3.6276E-02 8.1601E-03 -1.1411E-03 8.8939E-05 -2.9374E-06
表20
表21给出了实施例7中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.64
TTL(mm) 3.70 f2(mm) -11.02
HFOV(°) 42.61 f3(mm) -19.86
Fno 2.24 f4(mm) 2.21
f(mm) 3.20 f5(mm) -1.67
表21
图14A示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图14D示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光 阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019102148-appb-000012
表22
由表22可知,在实施例8中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.1836E-01 3.4548E+00 -4.8586E+01 4.1672E+02 -2.2396E+03 7.5745E+03 -1.5637E+04 1.7969E+04 -8.8058E+03
S2 1.5428E-01 -5.0686E+00 1.0293E+02 -1.2863E+03 9.7738E+03 -4.5693E+04 1.2812E+05 -1.9762E+05 1.2890E+05
S3 -1.1884E-02 -4.1521E+00 9.8207E+01 -1.2631E+03 9.8283E+03 -4.6808E+04 1.3327E+05 -2.0833E+05 1.3762E+05
S4 -2.2782E-01 5.3464E+00 -8.0139E+01 8.0167E+02 -5.0114E+03 1.9791E+04 -4.7930E+04 6.4923E+04 -3.7694E+04
S5 -4.3779E-01 1.1406E+00 -1.5679E+01 1.7712E+02 -1.2280E+03 5.1353E+03 -1.2751E+04 1.7401E+04 -1.0136E+04
S6 -3.7183E-01 1.1004E+00 -5.6989E+00 2.3188E+01 -6.4259E+01 1.1796E+02 -1.3335E+02 8.2455E+01 -2.1218E+01
S7 -8.2131E-02 3.6521E-02 2.5376E-02 -2.0751E-01 2.8094E-01 -1.7173E-01 5.4956E-02 -9.0140E-03 6.0090E-04
S8 -1.8931E-01 1.1498E-01 2.0630E-01 -3.0592E-01 1.8664E-01 -6.6550E-02 1.4803E-02 -1.9333E-03 1.1342E-04
S9 -3.6505E-01 1.5922E-01 2.5629E-01 -3.0469E-01 1.5053E-01 -4.1945E-02 6.8754E-03 -6.2108E-04 2.3934E-05
S10 -2.4466E-01 2.5147E-01 -1.8756E-01 9.9042E-02 -3.5931E-02 8.5092E-03 -1.2404E-03 1.0062E-04 -3.4723E-06
表23
表24给出了实施例8中成像面S13上有效像素区域对角线长的一半ImgH、第一透镜E1的 物侧面S1至成像面S13在光轴上的距离TTL、最大半视场角HFOV、光学成像系统的光圈数Fno、光学成像系统的总有效焦距f以及各透镜的有效焦距f1至f5。
ImgH(mm) 3.04 f1(mm) 2.77
TTL(mm) 3.30 f2(mm) -20.08
HFOV(°) 46.29 f3(mm) -31.61
Fno 2.24 f4(mm) 2.26
f(mm) 2.85 f5(mm) -1.58
表24
图16A示出了实施例8的光学成像系统的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像系统的畸变曲线,其表示不同像高处的畸变大小值。图16D示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表25中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
TTL/ImgH 1.15 1.15 1.16 1.17 1.16 1.18 1.22 1.09
f123/f 1.11 1.11 1.11 1.15 1.15 1.11 1.12 1.16
f2/f45 0.90 1.13 1.31 0.50 0.36 0.70 0.59 1.45
R1/R2 0.38 0.42 0.43 0.44 0.35 0.36 0.34 0.41
R8/f5 0.75 0.72 0.72 0.68 0.62 0.75 0.78 0.83
|R9+R10|/|R9-R10| 0.10 0.34 0.31 0.61 0.25 0.04 0.08 0.22
∑AT/∑CT 0.45 0.42 0.44 0.42 0.54 0.43 0.45 0.52
T12/CT1 0.16 0.16 0.17 0.19 0.18 0.16 0.16 0.16
CT5/CT4 0.44 0.41 0.42 0.38 0.51 0.41 0.40 0.53
f1/f2 -0.17 -0.13 -0.11 -0.08 -0.29 -0.20 -0.24 -0.14
SD/TD 0.91 0.91 0.91 0.91 0.91 0.90 0.91 0.91
表25
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,
    所述第三透镜具有负光焦度;
    所述第四透镜具有正光焦度,其像侧面为凸面;
    所述第五透镜具有负光焦度,其物侧面为凹面;以及
    所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足1<TTL/ImgH<1.3。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0<f2/f45<1.6。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜的有效焦距f5与所述第四透镜的像侧面的曲率半径R8满足0.2<R8/f5<1。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足0.8<f123/f<1.3。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0<R1/R2<0.9。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f1/f2<0。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足0<|R9+R10|/|R9-R10|<1。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足0<T12/CT1<0.3。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足0<CT5/CT4<0.7。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜至所述第五透镜中任意相邻两透镜在所述光轴上的间隔距离的总和∑AT与所述第一透镜至所述第五透镜分别在所述光轴上的中心厚度的总和∑CT满足0<∑AT/∑CT<1。
  11. 根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述光学成像系统还包括光阑,所述光阑至所述第五透镜的像侧面在所述光轴上的距离SD与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的轴上距离TD满足0.5<SD/TD<1.3。
  12. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其特征在于,
    所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
    所述第二透镜具有负光焦度,
    所述第三透镜具有负光焦度;
    所述第四透镜具有正光焦度,其像侧面为凸面;
    所述第五透镜具有负光焦度,其物侧面为凹面;以及
    所述第二透镜的有效焦距f2与所述第四透镜和所述第五透镜的组合焦距f45满足0.36≤f2/f45<1.6。
  13. 根据权利要求12所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f1/f2<0。
  14. 根据权利要求13所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述第一透镜、所述第二透镜和所述第三透镜的组合焦距f123满足0.8<f123/f<1.3。
  15. 根据权利要求12所述的光学成像系统,其特征在于,所述第五透镜的有效焦距f5与所述第四透镜的像侧面的曲率半径R8满足0.68≤R8/f5<1。
  16. 根据权利要求12所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.2<R1/R2<0.9。
  17. 根据权利要求12所述的光学成像系统,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第五透镜的像侧面的曲率半径R10满足0<|R9+R10|/|R9-R10|<1。
  18. 根据权利要求16所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12满足0<T12/CT1<0.3。
  19. 根据权利要求12所述的光学成像系统,其特征在于,所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5满足0<CT5/CT4<0.7。
  20. 根据权利要求19所述的光学成像系统,其特征在于,所述第一透镜至所述第五透镜中任意相邻两透镜在所述光轴上的间隔距离的总和∑AT与所述第一透镜至所述第五透镜分别在所述光轴上的中心厚度的总和∑CT满足0<∑AT/∑CT<1。
  21. 根据权利要求20所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的成像面上有效像素区域对角线长的一半ImgH满足1<TTL/ImgH<1.3。
  22. 根据权利要求12至21中任一项所述的光学成像系统,其特征在于,所述光学成像系统还包括光阑,所述光阑至所述第五透镜的像侧面在所述光轴上的距离SD与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的轴上距离TD满足0.5<SD/TD<1.3。
PCT/CN2019/102148 2018-12-24 2019-08-23 光学成像系统 WO2020134129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811580013.5 2018-12-24
CN201811580013.5A CN109358414B (zh) 2018-12-24 2018-12-24 光学成像系统

Publications (1)

Publication Number Publication Date
WO2020134129A1 true WO2020134129A1 (zh) 2020-07-02

Family

ID=65329271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102148 WO2020134129A1 (zh) 2018-12-24 2019-08-23 光学成像系统

Country Status (2)

Country Link
CN (2) CN109358414B (zh)
WO (1) WO2020134129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866959A (zh) * 2021-11-09 2021-12-31 辽宁中蓝光电科技有限公司 一种超广角光学镜头

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109358414B (zh) * 2018-12-24 2024-02-23 浙江舜宇光学有限公司 光学成像系统
CN110515178B (zh) * 2019-08-14 2021-10-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110488463B (zh) * 2019-08-19 2021-02-19 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110531492B (zh) * 2019-08-19 2021-04-13 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110596859B (zh) * 2019-08-19 2021-04-23 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN110596866A (zh) * 2019-10-29 2019-12-20 浙江舜宇光学有限公司 光学成像镜头
WO2021127824A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI750615B (zh) 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
CN114326029B (zh) * 2022-01-10 2024-03-19 浙江舜宇光学有限公司 光学成像镜头
CN114755805B (zh) * 2022-05-09 2023-12-26 浙江舜宇光学有限公司 光学成像系统
CN117631224B (zh) * 2024-01-26 2024-05-17 江西联益光学有限公司 光学镜头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207164A (ja) * 2001-01-10 2002-07-26 Asahi Optical Co Ltd カメラアタッチメントレンズ
CN103217781A (zh) * 2012-01-20 2013-07-24 大立光电股份有限公司 影像撷取光学系统组
CN203825277U (zh) * 2013-04-27 2014-09-10 株式会社光学逻辑 摄像镜头
CN204331129U (zh) * 2013-12-24 2015-05-13 富士胶片株式会社 摄像透镜及包括摄像透镜的摄像装置
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106569314A (zh) * 2015-10-13 2017-04-19 三星电机株式会社 光学成像系统
CN107741629A (zh) * 2017-11-17 2018-02-27 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN107797245A (zh) * 2017-11-17 2018-03-13 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN108008524A (zh) * 2017-11-17 2018-05-08 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN109358414A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI434096B (zh) * 2010-09-16 2014-04-11 Largan Precision Co Ltd 光學攝像透鏡組
TWI421563B (zh) * 2011-05-11 2014-01-01 Largan Precision Co Ltd 影像拾取光學鏡頭組
CN106980167B (zh) * 2016-01-15 2019-07-23 新巨科技股份有限公司 成像镜片组
CN107870407B (zh) * 2016-09-22 2021-01-05 新巨科技股份有限公司 五片式成像镜片组
US10007094B1 (en) * 2016-12-11 2018-06-26 Zhejiang Sunny Optics Co., Ltd. Image pickup optical lens system
CN107085284B (zh) * 2017-06-13 2022-10-11 浙江舜宇光学有限公司 摄像镜头
CN107219614B (zh) * 2017-08-07 2022-09-06 浙江舜宇光学有限公司 光学成像镜头
CN108802967A (zh) * 2018-04-18 2018-11-13 南昌欧菲精密光学制品有限公司 光学成像系统及电子装置
CN108398770B (zh) * 2018-06-05 2021-01-26 浙江舜宇光学有限公司 光学成像镜头
CN108802973A (zh) * 2018-08-31 2018-11-13 浙江舜宇光学有限公司 影像镜头
CN209471293U (zh) * 2018-12-24 2019-10-08 浙江舜宇光学有限公司 光学成像系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207164A (ja) * 2001-01-10 2002-07-26 Asahi Optical Co Ltd カメラアタッチメントレンズ
CN103217781A (zh) * 2012-01-20 2013-07-24 大立光电股份有限公司 影像撷取光学系统组
CN203825277U (zh) * 2013-04-27 2014-09-10 株式会社光学逻辑 摄像镜头
CN204331129U (zh) * 2013-12-24 2015-05-13 富士胶片株式会社 摄像透镜及包括摄像透镜的摄像装置
CN105988185A (zh) * 2015-04-10 2016-10-05 浙江舜宇光学有限公司 摄像镜头
CN106569314A (zh) * 2015-10-13 2017-04-19 三星电机株式会社 光学成像系统
CN107741629A (zh) * 2017-11-17 2018-02-27 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN107797245A (zh) * 2017-11-17 2018-03-13 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN108008524A (zh) * 2017-11-17 2018-05-08 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN109358414A (zh) * 2018-12-24 2019-02-19 浙江舜宇光学有限公司 光学成像系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866959A (zh) * 2021-11-09 2021-12-31 辽宁中蓝光电科技有限公司 一种超广角光学镜头

Also Published As

Publication number Publication date
CN109358414A (zh) 2019-02-19
CN114236754A (zh) 2022-03-25
CN114236754B (zh) 2023-12-29
CN109358414B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2020134129A1 (zh) 光学成像系统
WO2020019794A1 (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
WO2020107962A1 (zh) 光学成像透镜组
WO2020007080A1 (zh) 摄像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020113985A1 (zh) 光学成像镜片组
WO2020107935A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2020038134A1 (zh) 光学成像系统
WO2020119146A1 (zh) 光学成像镜头
WO2020007069A1 (zh) 光学成像镜片组
WO2019223263A1 (zh) 摄像镜头
WO2020073703A1 (zh) 光学透镜组
WO2020119171A1 (zh) 光学成像镜头
WO2020168717A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020164236A1 (zh) 光学成像镜头
WO2020119145A1 (zh) 摄像镜头
WO2020107936A1 (zh) 光学成像系统
WO2020151251A1 (zh) 光学透镜组
WO2020019796A1 (zh) 光学成像系统
WO2019233143A1 (zh) 光学成像镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904585

Country of ref document: EP

Kind code of ref document: A1