WO2020073703A1 - 光学透镜组 - Google Patents

光学透镜组 Download PDF

Info

Publication number
WO2020073703A1
WO2020073703A1 PCT/CN2019/095612 CN2019095612W WO2020073703A1 WO 2020073703 A1 WO2020073703 A1 WO 2020073703A1 CN 2019095612 W CN2019095612 W CN 2019095612W WO 2020073703 A1 WO2020073703 A1 WO 2020073703A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
lens group
image side
satisfy
Prior art date
Application number
PCT/CN2019/095612
Other languages
English (en)
French (fr)
Inventor
宋立通
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to JP2020541521A priority Critical patent/JP7052052B2/ja
Publication of WO2020073703A1 publication Critical patent/WO2020073703A1/zh
Priority to US17/009,688 priority patent/US20200400923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical lens group, and more specifically, the present application relates to an optical lens group including six lenses.
  • a wide-angle lens has the advantages of a large field of view and a long depth of field, so it is usually used to shoot a wide range of scenery.
  • wide-angle lenses have also been more widely used in these fields, such as being used for important functions such as panoramic image capture and object positioning in.
  • high requirements are placed on the dimensions, imaging quality, and angle of view of the wide-angle lens.
  • the present application provides an optical lens group applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an optical lens group including the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in order from the object side to the image side along the optical axis Lens and sixth lens.
  • the first lens can have negative power;
  • the second lens has positive power or negative power, the image side can be concave;
  • the third lens has positive power or negative power, the image side can be The convex surface;
  • the fourth lens may have a positive power, and the object side surface may be a convex surface;
  • the fifth lens may have a negative power; and the sixth lens has a positive power or a negative power.
  • the third lens may be a glass lens.
  • the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 1.5 ⁇ CT3 / CT4 ⁇ 2.5.
  • the refractive index N1 of the first lens and the refractive index N3 of the third lens may satisfy N1 / N3 ⁇ 0.9.
  • the third lens may have positive refractive power, and the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy -2 ⁇ f1 / f3 ⁇ -1.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical lens group may satisfy -4 ⁇ f1 / f ⁇ -1.8.
  • the effective focal length f1 of the first lens and the effective focal length f5 of the fifth lens may satisfy 1.3 ⁇ f1 / f5 ⁇ 2.1.
  • the curvature radius R7 of the object side of the fourth lens and the curvature radius R8 of the image side of the fourth lens may satisfy -2 ⁇ R7 / R8 ⁇ -1.
  • the image side of the sixth lens may have an inflection point and a critical point; the vertical distance YC62 from the critical point of the image side of the sixth lens to the optical axis and the effective half aperture DT62 of the image side of the sixth lens may be Satisfy 0.5 ⁇ YC62 / DT62 ⁇ 1.
  • the edge thickness ET6 of the sixth lens and the center thickness CT6 of the sixth lens on the optical axis may satisfy 0.6 ⁇ ET6 / CT6 ⁇ 1.
  • the distance between the intersection of the image side of the first lens and the optical axis to the vertex of the maximum effective half-aperture apex of the image side of the first lens on the optical axis is SAG12 from the object side of the first lens to the image side of the sixth lens
  • the separation distance TD on the optical axis can satisfy 1 ⁇ SAG12 ⁇ 10 / TD ⁇ 2.
  • the effective half-aperture DT62 on the image side of the sixth lens and the half of the diagonal length of the effective pixel area on the imaging surface of the optical lens group, ImgH can satisfy 0.5 ⁇ DT62 / ImgH ⁇ 1.
  • the distance from the object side of the first lens to the imaging surface of the optical lens group on the optical axis is TTL
  • the effective pixel area on the imaging surface of the optical lens group is half the diagonal length of ImgH
  • the maximum of the optical lens group The semi-field angle semiFOV can satisfy TTL / (ImgH ⁇ tan (semiFOV / 2)) ⁇ 6.
  • the separation distance between the third lens and the fourth lens on the optical axis T34, the separation distance between the fourth lens and the fifth lens on the optical axis T45 and the fifth lens and the sixth lens on the optical axis can satisfy (T34 + T45) / T56 ⁇ 3.
  • the object side of the second lens may be convex.
  • This application uses six lenses.
  • the above optical lens group has a miniaturized, high imaging quality, At least one beneficial effect such as super wide angle.
  • FIGS. 2A to 2C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 1;
  • FIG 3 shows a schematic structural diagram of an optical lens group according to Example 2 of the present application
  • FIGS. 4A to 4C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 2;
  • FIG. 5 shows a schematic structural diagram of an optical lens group according to Example 3 of the present application
  • FIGS. 6A to 6C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 3;
  • FIG. 7 shows a schematic structural diagram of an optical lens group according to Example 4 of the present application
  • FIGS. 8A to 8C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 4;
  • FIGS. 10A to 10C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 5;
  • FIG 11 shows a schematic structural diagram of an optical lens group according to Example 6 of the present application
  • FIGS. 12A to 12C respectively show an on-axis chromatic aberration curve, astigmatism curve, and magnification chromatic aberration curve of the optical lens group of Example 6.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface of each lens closest to the subject is called the object side of the lens, and the surface of each lens closest to the imaging plane is called the image side of the lens.
  • the optical lens group according to the exemplary embodiment of the present application may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in sequence along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have negative power; the second lens may have positive or negative power, and its image side may be concave; the third lens may have power, and its image side may It is convex, and the third lens can be a lens made of glass; the fourth lens can have positive power and the object side can be convex; the fifth lens can have negative power; the sixth lens has positive power or negative light Power.
  • the third lens may be arranged to have positive power.
  • the object side of the second lens may be arranged as a convex surface.
  • the image side of the first lens may be concave.
  • the second lens may have negative power.
  • the image side of the fourth lens may be convex.
  • the object side of the fifth lens may be concave.
  • the sixth lens may have positive power, its object side may be convex, and the image side may be concave.
  • the optical lens group of the present application may satisfy the conditional expression TTL / (ImgH ⁇ tan (semiFOV / 2)) ⁇ 6, where TTL is the object side of the first lens to the imaging surface of the optical lens group at The distance on the optical axis, ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical lens group, and semiFOV is the maximum half angle of view of the optical lens group.
  • TTL, ImgH, and semiFOV can further satisfy 3.5 ⁇ TTL / (ImgH ⁇ tan (semiFOV / 2)) ⁇ 6.0, for example, 4.04 ⁇ TTL / (ImgH ⁇ tan (semiFOV / 2)) ⁇ 5.02. Satisfying the conditional TTL / (ImgH ⁇ tan (semiFOV / 2)) ⁇ 6 enables the lens to have the characteristics of both a large field of view and a short total optical length, which can better meet the requirements of wide-angle and small lens size.
  • the optical lens group of the present application may satisfy the conditional expression N1 / N3 ⁇ 0.9, where N1 is the refractive index of the first lens and N3 is the refractive index of the third lens. More specifically, N1 and N3 may further satisfy 0.7 ⁇ N1 / N3 ⁇ 0.9, for example, 0.86 ⁇ N1 / N3 ⁇ 0.89. Satisfying the conditional expression N1 / N3 ⁇ 0.9, the lens can better eliminate the vertical chromatic aberration and the axial chromatic aberration, thereby greatly reducing the risk of purple fringing during lens use.
  • the optical lens group of the present application may satisfy the conditional expression (T34 + T45) / T56 ⁇ 3, where T34 is the separation distance between the third lens and the fourth lens on the optical axis, and T45 is the fourth The separation distance between the lens and the fifth lens on the optical axis, T56 is the separation distance between the fifth lens and the sixth lens on the optical axis. More specifically, T34, T45, and T56 can further satisfy 0.29 ⁇ (T34 + T45) /T56 ⁇ 2.73. Satisfying the conditional expression (T34 + T45) / T56 ⁇ 3, high image quality can be obtained while taking into account the shorter system size.
  • the optical lens group of the present application may satisfy the conditional expression 1.5 ⁇ CT3 / CT4 ⁇ 2.5, where CT3 is the central thickness of the third lens on the optical axis and CT4 is the fourth lens on the optical axis Center thickness. More specifically, CT3 and CT4 can further satisfy 1.73 ⁇ CT3 / CT4 ⁇ 2.23. Satisfying the conditional expression 1.5 ⁇ CT3 / CT4 ⁇ 2.5 can effectively eliminate the field curvature and ensure the lens has better processability.
  • the optical lens group of the present application may satisfy the conditional expression-2 ⁇ f1 / f3 ⁇ -1, where f1 is the effective focal length of the first lens and f3 is the effective focal length of the third lens. More specifically, f1 and f3 can further satisfy ⁇ 1.80 ⁇ f1 / f3 ⁇ ⁇ 1.00. Satisfying the conditional expression -1.5 ⁇ f1 / f3 ⁇ -1 is conducive to correcting the spherical aberration of the system and ensuring the image quality.
  • the optical lens group of the present application may satisfy the conditional expression -4 ⁇ f1 / f ⁇ -1.8, where f1 is the effective focal length of the first lens and f is the total effective focal length of the optical lens group. More specifically, f1 and f can further satisfy -3.81 ⁇ f1 / f ⁇ -1.91. By reasonably configuring the power of the first lens, the spherical aberration of the system can be effectively corrected.
  • the optical lens group of the present application may satisfy the conditional expression -2 ⁇ R7 / R8 ⁇ -1, where R7 is the radius of curvature of the object side of the fourth lens and R8 is the image side of the fourth lens Radius of curvature. More specifically, R7 and R8 can further satisfy -1.96 ⁇ R7 / R8 ⁇ -1.12. Satisfying the conditional expression-2 ⁇ R7 / R8 ⁇ -1, can effectively correct astigmatic aberrations, thereby obtaining high-quality imaging effects.
  • the optical lens group of the present application may satisfy the conditional expression 0.6 ⁇ ET6 / CT6 ⁇ 1, where ET6 is the edge thickness of the sixth lens and CT6 is the center thickness of the sixth lens on the optical axis. More specifically, ET6 and CT6 can further satisfy 0.76 ⁇ ET6 / CT6 ⁇ 0.97. Satisfying the conditional expression 0.6 ⁇ ET6 / CT6 ⁇ 1 makes the lens have higher imaging quality, effectively reduces the size of the optical lens group, and allows the system to have easy processing characteristics.
  • the image side of the sixth lens may have at least one inflection point and at least one critical point
  • the optical lens group of the present application may satisfy the conditional expression 0.5 ⁇ YC62 / DT62 ⁇ 1, where YC62 is the first The critical point on the image side of the six lens (the critical point on the image side of the sixth lens refers to the point on the image side of the sixth lens that is tangent to the tangent plane perpendicular to the optical axis except for the intersection with the optical axis) to the vertical of the optical axis Distance, DT62 is the effective half aperture of the image side of the sixth lens. More specifically, YC62 and DT62 can further satisfy 0.66 ⁇ YC62 / DT62 ⁇ 0.85. Satisfying the conditional expression 0.5 ⁇ YC62 / DT62 ⁇ 1 is beneficial to correct the field curvature aberration of the off-axis field of view and obtain higher imaging quality.
  • the optical lens group of the present application may satisfy the conditional expression 1 ⁇ SAG12 ⁇ 10 / TD ⁇ 2, where SAG12 is the maximum effective half of the intersection of the image side of the first lens and the optical axis to the image side of the first lens The distance of the aperture vertex on the optical axis, TD is the separation distance between the object side of the first lens and the image side of the sixth lens on the optical axis. More specifically, SAG12 and TD can further satisfy 1.09 ⁇ SAG12 ⁇ 10 / TD ⁇ 1.86. Satisfying the conditional expression 1 ⁇ SAG12 ⁇ 10 / TD ⁇ 2, can ensure the lens has a lower tolerance sensitivity, so that the lens has better processability.
  • the optical lens group of the present application may satisfy the conditional expression 0.5 ⁇ DT62 / ImgH ⁇ 1, where DT62 is the effective half aperture of the image side of the sixth lens and ImgH is the effective pixel on the imaging surface of the optical lens group The area is half the diagonal. More specifically, DT62 and ImgH can further satisfy 0.58 ⁇ DT62 / ImgH ⁇ 0.82. Satisfying the conditional formula 0.5 ⁇ DT62 / ImgH ⁇ 1, can effectively compress the outer diameter of the rear end of the lens, thereby ensuring the processability of the lens.
  • the above optical lens group may further include at least one diaphragm to improve the imaging quality of the lens group.
  • the diaphragm may be disposed between the third lens and the fourth lens.
  • the above optical lens group may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical lens group according to the above embodiments of the present application may employ multiple lenses, such as the six lenses described above.
  • the volume of the lens group can be effectively reduced, the sensitivity of the lens group can be reduced, and the lens group can be improved.
  • the processability makes the optical lens group more conducive to production and processing and applicable to portable electronic products.
  • the optical lens group with the above configuration can also have beneficial effects such as miniaturization, high imaging quality, and ultra-wide angle.
  • the aspheric mirror surface is often used as the mirror surface of each lens.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations. With the use of aspheric lenses, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving imaging quality.
  • At least one of the object side and the image side of each of the first lens, the second lens, the fourth lens, the fifth lens, and the sixth lens may be aspherical. Further, the object side surface and the image side surface of each of the first lens, the second lens, the fourth lens, the fifth lens, and the sixth lens are aspherical surfaces.
  • the number of lenses constituting the optical lens group can be changed to obtain various results and advantages described in this specification without departing from the technical solution claimed in the present application.
  • the optical lens group is not limited to include six lenses. If necessary, the optical lens group may further include other numbers of lenses. Specific examples of the optical lens group applicable to the above-described embodiment will be further described below with reference to the drawings.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is convex, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14, and A 16 that can be used for the aspheric mirrors S1-S4 and S7-S12 in Example 1.
  • Table 3 shows the total optical length TTL of the optical lens group in Example 1 (that is, the distance from the object side S1 of the first lens E1 to the imaging plane S15 on the optical axis), the diagonal of the effective pixel area on the imaging plane S15 The half length ImgH, the maximum half angle of view semiFOV, the total effective focal length f of the optical lens group, and the effective focal lengths f1 to f6 of each lens.
  • FIG. 3 shows a schematic structural diagram of an optical lens group according to Embodiment 2 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, Four lens E4, fifth lens E5, sixth lens E6, filter E7, and imaging plane S15.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is convex, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface, and the image side surface S12 of the sixth lens E6 has an inflection point and a critical point.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Example 2 the object side S5 and the image side S6 of the third lens E3 are spherical, and the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, and the sixth lens
  • the object side and the image side of any lens in E6 are aspherical.
  • Table 5 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • FIG. 4A shows an on-axis chromatic aberration curve of the optical lens group of Example 2, which indicates that rays of different wavelengths will deviate from the focus point after passing through the lens group.
  • 4B shows the astigmatism curve of the optical lens group of Example 2, which represents meridional image plane curvature and sagittal image plane curvature.
  • 4C shows the magnification chromatic aberration curve of the optical lens group of Example 2, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens group. It can be seen from FIGS. 4A to 4C that the optical lens group provided in Example 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical lens group according to Embodiment 3 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a Four lens E4, fifth lens E5, sixth lens E6, filter E7, and imaging plane S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is convex, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface, and the image side surface of the sixth lens E6 has a reflex point and a critical point.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 3, in which the units of radius of curvature and thickness are both millimeters (mm).
  • Example 3 the object side S5 and the image side S6 of the third lens E3 are spherical, and the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, and the sixth lens
  • the object side and the image side of any lens in E6 are aspherical.
  • Table 8 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 9 shows the total optical length TTL of the optical lens group in Example 3, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, the maximum half angle of view semiFOV, the total effective focal length f of the optical lens group, and the lenses Effective focal length f1 to f6.
  • FIG. 6A shows the on-axis chromatic aberration curve of the optical lens group of Example 3, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens group.
  • 6B shows the astigmatism curve of the optical lens group of Example 3, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 6C shows the chromatic aberration of magnification of the optical lens group of Example 3, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens group. It can be seen from FIGS. 6A to 6C that the optical lens group provided in Example 3 can achieve good imaging quality.
  • FIGS. 7 to 8C shows a schematic structural diagram of an optical lens group according to Example 4 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a Four lens E4, fifth lens E5, sixth lens E6, filter E7, and imaging plane S15.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is concave, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface, and the image side surface of the sixth lens E6 has a reflex point and a critical point.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 4, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 4 the object side S5 and the image side S6 of the third lens E3 are spherical, and the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, and the sixth lens
  • the object side and the image side of any lens in E6 are aspherical.
  • Table 11 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 12 shows the total optical length TTL of the optical lens group in Example 4, half the diagonal length of the effective pixel area on the imaging surface S15, ImgH, the maximum half angle of view semiFOV, the total effective focal length f of the optical lens group, and each lens Effective focal length f1 to f6.
  • FIG. 8A shows the on-axis chromatic aberration curve of the optical lens group of Example 4, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens group.
  • 8B shows the astigmatism curve of the optical lens group of Example 4, which represents meridional image plane curvature and sagittal image plane curvature.
  • 8C shows the chromatic aberration of magnification of the optical lens group of Example 4, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens group.
  • the optical lens group provided in Example 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical lens group according to Embodiment 5 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, Four lens E4, fifth lens E5, sixth lens E6, filter E7, and imaging plane S15.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is convex, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has a positive refractive power, the object side surface S11 is a convex surface, and the image side surface S12 is a concave surface, and the image side surface of the sixth lens E6 has a reflex point and a critical point.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 5, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 5 the object side S5 and the image side S6 of the third lens E3 are spherical, and the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, and the sixth lens
  • the object side and the image side of any lens in E6 are aspherical.
  • Table 14 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the total optical length TTL of the optical lens group in Example 5, half the diagonal length of the effective pixel area on the imaging surface S15 ImgH, the maximum half angle of view semiFOV, the total effective focal length f of the optical lens group, and each lens Effective focal length f1 to f6.
  • FIG. 10A shows the on-axis chromatic aberration curve of the optical lens group of Example 5, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens group.
  • 10B shows the astigmatism curve of the optical lens group of Example 5, which represents meridional image plane curvature and sagittal image plane curvature.
  • 10C shows the chromatic aberration of magnification of the optical lens group of Example 5, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens group.
  • the optical lens group provided in Example 5 can achieve good imaging quality.
  • FIGS. 11 to 12C shows a schematic structural diagram of an optical lens group according to Example 6 of the present application.
  • the optical lens group includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, an aperture STO, a The four lens E4, the fifth lens E5, the sixth lens E6 and the imaging surface S13.
  • the first lens E1 has negative refractive power, its object side S1 is convex, and its image side S2 is concave.
  • the second lens E2 has negative refractive power, and its object side surface S3 is concave and the image side surface S4 is concave.
  • the third lens E3 has positive power, the object side S5 is convex, the image side S6 is convex, and the third lens E3 may be made of glass.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging plane S13.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conic coefficient of each lens of the optical lens group of Example 6, wherein the units of radius of curvature and thickness are both millimeters (mm).
  • Example 6 the object side S5 and the image side S6 of the third lens E3 are spherical, and the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, and the sixth lens
  • the object side and the image side of any lens in E6 are aspherical.
  • Table 17 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 18 shows the total optical length TTL of the optical lens group in Example 6, half the diagonal length of the effective pixel area on the imaging surface S13 ImgH, the maximum half angle of view semiFOV, the total effective focal length f of the optical lens group, and each lens Effective focal length f1 to f6.
  • FIG. 12A shows the on-axis chromatic aberration curve of the optical lens group of Example 6, which indicates that rays of different wavelengths will deviate from the focal point after passing through the lens group.
  • 12B shows the astigmatism curve of the optical lens group of Example 6, which represents meridional image plane curvature and sagittal image plane curvature.
  • FIG. 12C shows the chromatic aberration of magnification of the optical lens group of Example 6, which represents the deviation of different image heights on the imaging plane of light rays passing through the lens group. It can be known from FIGS. 12A to 12C that the optical lens group provided in Example 6 can achieve good imaging quality.
  • Examples 1 to 6 satisfy the relationships shown in Table 19, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学透镜组,光学透镜组沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)具有负光焦度;第二透镜(E2)具有光焦度,其像侧面为凹面;第三透镜(E3)具有光焦度,其像侧面为凸面;第四透镜(E4)具有正光焦度,其物侧面为凸面;第五透镜(E5)具有负光焦度;第六透镜(E6)具有光焦度。第三透镜(E3)为玻璃材质的透镜;以及第三透镜(E3)于光轴上的中心厚度CT3与第四透镜(E4)于光轴上的中心厚度CT4满足1.5<CT3/CT4<2.5。

Description

光学透镜组
相关申请的交叉引用
本申请要求于2018年10月10日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811179873.8的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学透镜组,更具体地,本申请涉及一种包括六片透镜的光学透镜组。
背景技术
广角镜头具有视场大、景深长的优点,因而通常被用于拍摄宽阔范围的景物。近年来,随着虚拟现实技术/增强现实技术(VR/AR)等新兴技术的发展,广角镜头也随之在这些领域中得到更广泛的应用,例如被应用于全景图像捕捉、物体定位等重要功能中。为了使这些功能可以得到较佳的实现,对广角镜头的尺寸、成像质量、视场角等方面均提出了较高的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学透镜组。
一方面,本申请提供了这样一种光学透镜组,该光学透镜组沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度,其像侧面可为凹面;第三透镜具有正光焦度或负光焦度,其像侧面可为凸面;第四透镜可具有正光焦度,其物侧面可为凸面;第五透镜可具有负光焦度;以及第六透镜具有正光焦度或负光焦度。其中,第三透镜可为玻璃材质的透镜。
在一个实施方式中,第三透镜于光轴上的中心厚度CT3与第四透镜于光轴上的中心厚度CT4可满足1.5<CT3/CT4<2.5。
在一个实施方式中,第一透镜的折射率N1与第三透镜的折射率N3可满足N1/N3<0.9。
在一个实施方式中,第三透镜可具有正光焦度,并且第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足-2<f1/f3≤-1。
在一个实施方式中,第一透镜的有效焦距f1与光学透镜组的总有效焦距f可满足-4<f1/f<-1.8。
在一个实施方式中,第一透镜的有效焦距f1与第五透镜的有效焦距f5可满足1.3<f1/f5<2.1。
在一个实施方式中,第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8可满足-2<R7/R8<-1。
在一个实施方式中,第六透镜的像侧面可具有反曲点和临界点;第六透镜的像侧面的临界点 至光轴的垂直距离YC62与第六透镜的像侧面的有效半口径DT62可满足0.5<YC62/DT62<1。
在一个实施方式中,第六透镜的边缘厚度ET6与第六透镜于光轴上的中心厚度CT6可满足0.6<ET6/CT6<1。
在一个实施方式中,第一透镜的像侧面和光轴的交点至第一透镜像侧面的最大有效半口径顶点在光轴上的距离SAG12与第一透镜的物侧面至第六透镜的像侧面在光轴上的间隔距离TD可满足1<SAG12×10/TD<2。
在一个实施方式中,第六透镜的像侧面的有效半口径DT62与光学透镜组的成像面上有效像素区域对角线长的一半ImgH可满足0.5<DT62/ImgH<1。
在一个实施方式中,第一透镜的物侧面至光学透镜组的成像面在光轴上的距离TTL、光学透镜组的成像面上有效像素区域对角线长的一半ImgH和光学透镜组的最大半视场角semiFOV可满足TTL/(ImgH×tan(semiFOV/2))<6。
在一个实施方式中,第三透镜和第四透镜在光轴上的间隔距离T34、第四透镜和第五透镜在光轴上的间隔距离T45与第五透镜和第六透镜在光轴上的间隔距离T56可满足(T34+T45)/T56<3。
在一个实施方式中,第二透镜的物侧面可为凸面。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学透镜组具有小型化、高成像质量、超广角等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学透镜组的结构示意图;图2A至图2C分别示出了实施例1的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学透镜组的结构示意图;图4A至图4C分别示出了实施例2的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学透镜组的结构示意图;图6A至图6C分别示出了实施例3的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学透镜组的结构示意图;图8A至图8C分别示出了实施例4的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学透镜组的结构示意图;图10A至图10C分别示出了实施例5的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学透镜组的结构示意图;图12A至图12C分别示出了实施例6的光学透镜组的轴上色差曲线、象散曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学透镜组可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度,其像侧面可为凹面;第三透镜可具有光焦度,其像侧面可为凸面,并且第三透镜可为玻璃材质的透镜;第四透镜可具有正光焦度,其物侧面可为凸面;第五透镜可具有负光焦度;第六透镜具有正光焦度或负光焦度。通过合理搭配镜头各透镜光焦度及表面凹凸组合,可以较好的平衡系统的球差和场曲像差,获得较高的成像质量。可选地,可将第三透镜布置成具有正光焦度。可选地,可将第二透镜的物侧面布置成凸面。
在示例性实施方式中,第一透镜的像侧面可为凹面。
在示例性实施方式中,第二透镜可具有负光焦度。
在示例性实施方式中,第四透镜的像侧面可为凸面。
在示例性实施方式中,第五透镜的物侧面可为凹面。
在示例性实施方式中,第六透镜可具有正光焦度,其物侧面可为凸面,像侧面为凹面。
在示例性实施方式中,本申请的光学透镜组可满足条件式TTL/(ImgH×tan(semiFOV/2))<6,其中,TTL为第一透镜的物侧面至光学透镜组的成像面在光轴上的距离,ImgH为光学透镜组的成像面上有效像素区域对角线长的一半,semiFOV为光学透镜组的最大半视场角。更具体地,TTL、ImgH和semiFOV进一步可满足3.5<TTL/(ImgH×tan(semiFOV/2))<6.0,例如4.04≤TTL/(ImgH×tan(semiFOV/2))≤5.02。满足条件式TTL/(ImgH×tan(semiFOV/2))<6,可使镜头同时具备大视场和较短光学总长度的特点,从而能够更好地满足广角化和镜头小尺寸的要求。
在示例性实施方式中,本申请的光学透镜组可满足条件式N1/N3<0.9,其中,N1为第一透镜的折射率,N3为第三透镜的折射率。更具体地,N1和N3进一步可满足0.7<N1/N3<0.9,例如,0.86≤N1/N3≤0.89。满足条件式N1/N3<0.9,镜头可更好地消除垂轴色差和轴向色差,从而大幅减小镜头使用中产生紫边的风险。
在示例性实施方式中,本申请的光学透镜组可满足条件式(T34+T45)/T56<3,其中,T34为第三透镜和第四透镜在光轴上的间隔距离,T45为第四透镜和第五透镜在光轴上的间隔距离,T56为第五透镜和第六透镜在光轴上的间隔距离。更具体地,T34、T45和T56进一步可满足0.29≤(T34+T45)/T56≤2.73。满足条件式(T34+T45)/T56<3,可在兼顾较短系统尺寸的同时获得高成像质量。
在示例性实施方式中,本申请的光学透镜组可满足条件式1.5<CT3/CT4<2.5,其中,CT3为第三透镜于光轴上的中心厚度,CT4为第四透镜于光轴上的中心厚度。更具体地,CT3和CT4进一步可满足1.73≤CT3/CT4≤2.23。满足条件式1.5<CT3/CT4<2.5,可有效消除场曲,并保证镜头具有较好的加工性。
在示例性实施方式中,本申请的光学透镜组可满足条件式-2<f1/f3≤-1,其中,f1为第一透镜的有效焦距,f3为第三透镜的有效焦距。更具体地,f1和f3进一步可满足-1.80≤f1/f3≤-1.00。满足条件式-1.5<f1/f3≤-1,有利于矫正系统球差,保证像质。
在示例性实施方式中,本申请的光学透镜组可满足条件式-4<f1/f<-1.8,其中,f1为第一透镜的有效焦距,f为光学透镜组的总有效焦距。更具体地,f1和f进一步可满足-3.81≤f1/f≤-1.91。通过合理配置第一透镜的光焦度,可有效矫正系统球差。
在示例性实施方式中,本申请的光学透镜组可满足条件式1.3<f1/f5<2.1,其中,f1为第一透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f1和f5进一步可满足1.33≤f1/f5≤2.06。通过合理配置第一透镜与第五透镜的光焦度比例,可有效矫正轴向色差。
在示例性实施方式中,本申请的光学透镜组可满足条件式-2<R7/R8<-1,其中,R7为第四透镜的物侧面的曲率半径,R8为第四透镜的像侧面的曲率半径。更具体地,R7和R8进一步可满 足-1.96≤R7/R8≤-1.12。满足条件式-2<R7/R8<-1,可有效矫正像散像差,从而获得高质量成像效果。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.6<ET6/CT6<1,其中,ET6为第六透镜的边缘厚度,CT6为第六透镜于光轴上的中心厚度。更具体地,ET6和CT6进一步可满足0.76≤ET6/CT6≤0.97。满足条件式0.6<ET6/CT6<1,使得镜头具有更高的成像质量,有效减小光学透镜组尺寸,并可使系统具有易于加工的工艺特点。
在示例性实施方式中,第六透镜的像侧面可具有至少一个反曲点和至少一个临界点,并且本申请的光学透镜组可满足条件式0.5<YC62/DT62<1,其中,YC62为第六透镜像侧面的临界点(第六透镜像侧面的临界点是指第六透镜像侧面上,除了与光轴的交点外,与光轴相垂直的切面相切的点)至光轴的垂直距离,DT62为第六透镜的像侧面的有效半口径。更具体地,YC62和DT62进一步可满足0.66≤YC62/DT62≤0.85。满足条件式0.5<YC62/DT62<1,有利于矫正轴外视场的场曲像差,获得较高的成像质量。
在示例性实施方式中,本申请的光学透镜组可满足条件式1<SAG12×10/TD<2,其中,SAG12为第一透镜像侧面和光轴的交点至第一透镜像侧面的最大有效半口径顶点在光轴上的距离,TD为第一透镜的物侧面至第六透镜的像侧面在光轴上的间隔距离。更具体地,SAG12和TD进一步可满足1.09≤SAG12×10/TD≤1.86。满足条件式1<SAG12×10/TD<2,可保证镜头具有较低的公差敏感度,从而使得镜头具有较好的可加工性。
在示例性实施方式中,本申请的光学透镜组可满足条件式0.5<DT62/ImgH<1,其中,DT62为第六透镜像侧面的有效半口径,ImgH为光学透镜组的成像面上有效像素区域对角线长的一半。更具体地,DT62和ImgH进一步可满足0.58≤DT62/ImgH≤0.82。满足条件式0.5<DT62/ImgH<1,可有效压缩镜头后端外径尺寸,从而保证镜头的可加工性。
在示例性实施方式中,上述光学透镜组还可包括至少一个光阑,以提升透镜组的成像质量。光阑可设置在第三透镜与第四透镜之间。可选地,上述光学透镜组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学透镜组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小透镜组的体积、降低透镜组的敏感度并提高透镜组的可加工性,使得光学透镜组更有利于生产加工并且可适用于便携式电子产品。通过上述配置的光学透镜组还可具有小型化、高成像质量、超广角等有益效果。
在本申请的实施方式中,各透镜的镜面多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个可为非球面。进一步地,第一透镜、第二透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧 面均为非球面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学透镜组不限于包括六个透镜。如果需要,该光学透镜组还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的光学透镜组的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学透镜组。图1示出了根据本申请实施例1的光学透镜组的结构示意图。
如图1所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,且第六透镜E6的像侧面S12具有反曲点和临界点。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000001
表1
由表1可知,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019095612-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S4及S7-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.7132E-04 5.7565E-05 -2.3954E-06 3.4969E-08 0.0000E+00 0.0000E+00 0.0000E+00
S2 -9.6427E-03 6.3834E-03 -1.8507E-03 3.8427E-04 -2.8224E-05 0.0000E+00 0.0000E+00
S3 3.7373E-04 -1.8848E-03 2.3176E-04 -4.4450E-06 -6.4217E-07 0.0000E+00 0.0000E+00
S4 2.8608E-02 -7.1520E-03 -6.0982E-03 3.3393E-03 -5.0755E-04 0.0000E+00 0.0000E+00
S7 1.0780E-02 -3.5450E-01 2.2008E+00 -8.3491E+00 1.7329E+01 -1.9534E+01 9.0187E+00
S8 1.3090E-01 -1.0426E+00 3.3232E+00 -6.5502E+00 7.7194E+00 -4.9954E+00 1.3573E+00
S9 9.6211E-02 -2.3773E-01 8.2469E-01 -1.5036E+00 1.0692E+00 9.2346E-03 -1.7836E-01
S10 -2.6074E-01 1.0203E+00 -1.8118E+00 2.3357E+00 -2.0455E+00 1.0545E+00 -2.3077E-01
S11 -7.1404E-02 -6.0906E-03 9.8057E-02 -1.3846E-01 9.6649E-02 -3.6121E-02 5.6026E-03
S12 -2.9672E-04 -5.8844E-02 4.4653E-02 -1.7320E-02 3.8160E-03 -4.6203E-04 2.3667E-05
表2
表3给出实施例1中光学透镜组的光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S15在光轴上的距离)、成像面S15上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 10.29 f2(mm) -3.19
ImgH(mm) 2.51 f3(mm) 3.70
semiFOV(°) 90.2 f4(mm) 1.61
f(mm) 1.18 f5(mm) -2.18
f1(mm) -4.50 f6(mm) 4.95
表3
图2A示出了实施例1的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图2B示出了实施例1的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图2A至图2C可知,实施例1所给出的光学透镜组能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学透镜组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学透镜组的结构示意图。
如图3所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,且第六透镜E6的像侧面S12具有反曲点和临界点。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000003
表4
由表4可知,在实施例2中,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -9.5464E-04 1.2036E-04 -5.9578E-06 1.4618E-07 0.0000E+00 0.0000E+00 0.0000E+00
S2 -1.7092E-02 1.4028E-02 -4.5123E-03 1.2215E-03 -1.2856E-04 0.0000E+00 0.0000E+00
S3 -8.8954E-03 -5.1780E-03 5.3358E-04 3.9470E-06 -2.9251E-06 0.0000E+00 0.0000E+00
S4 2.8228E-02 -1.3811E-02 -1.9271E-02 1.1659E-02 -2.3119E-03 0.0000E+00 0.0000E+00
S7 1.0781E-02 -5.8171E-01 4.8939E+00 -2.4395E+01 6.5258E+01 -9.2607E+01 5.2638E+01
S8 2.0147E-01 -1.9495E+00 6.9880E+00 -1.6673E+01 2.4903E+01 -2.0941E+01 7.4642E+00
S9 7.9907E-02 -2.5578E-02 -1.0064E+00 5.0618E+00 -1.2495E+01 1.4895E+01 -6.4276E+00
S10 -3.6367E-01 1.9602E+00 -4.7645E+00 8.3885E+00 -9.8326E+00 6.6962E+00 -1.9384E+00
S11 -9.3858E-02 7.5800E-02 -7.8040E-02 1.0335E-01 -9.5866E-02 4.3600E-02 -7.2912E-03
S12 1.7655E-03 -9.1211E-02 1.0360E-01 -6.3654E-02 2.2441E-02 -4.4834E-03 3.9712E-04
表5
表6给出实施例2中光学透镜组的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 8.73 f2(mm) -3.52
ImgH(mm) 1.98 f3(mm) 3.28
semiFOV(°) 82.5 f4(mm) 1.50
f(mm) 1.03 f5(mm) -1.98
f1(mm) -3.45 f6(mm) 4.65
表6
图4A示出了实施例2的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图4B示出了实施例2的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图4A至图4C可知,实施例2所给出的光学透镜组能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学透镜组。图5示出了根据本申请实施例3的光学透镜组的结构示意图。
如图5所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。 第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,且第六透镜E6的像侧面具有反曲点和临界点。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000004
表7
由表7可知,在实施例3中,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.1641E-03 -3.6800E-05 -4.9838E-06 2.0323E-07 0.0000E+00 0.0000E+00 0.0000E+00
S2 -2.8504E-02 2.8484E-02 -9.6229E-03 1.8965E-03 -1.2856E-04 0.0000E+00 0.0000E+00
S3 -1.4156E-02 -7.4626E-03 1.0425E-03 3.0178E-05 -2.9251E-06 0.0000E+00 0.0000E+00
S4 3.4787E-02 -2.6248E-02 -7.3794E-02 3.6082E-02 -2.3119E-03 0.0000E+00 0.0000E+00
S7 2.4608E-02 -7.6934E-01 5.8466E+00 -2.9253E+01 7.8936E+01 -1.1722E+02 7.1300E+01
S8 1.7255E-01 -2.1584E+00 8.9116E+00 -2.2826E+01 3.5162E+01 -2.9977E+01 1.0731E+01
S9 1.7980E-02 -4.1661E-01 2.2557E+00 -5.1636E+00 4.8704E+00 5.5416E-02 -1.4101E+00
S10 -5.1654E-01 2.0051E+00 -4.5655E+00 7.9586E+00 -9.3174E+00 6.3279E+00 -1.8244E+00
S11 -3.6613E-02 -1.0366E-01 3.0474E-01 -4.8593E-01 4.4024E-01 -2.1676E-01 4.4293E-02
S12 3.8698E-02 -1.4999E-01 1.2384E-01 -6.1434E-02 1.7382E-02 -2.7726E-03 1.8711E-04
表8
表9给出实施例3中光学透镜组的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 7.50 f2(mm) -3.18
ImgH(mm) 1.84 f3(mm) 3.05
semiFOV(°) 82.5 f4(mm) 1.59
f(mm) 1.06 f5(mm) -2.21
f1(mm) -3.77 f6(mm) 3.26
表9
图6A示出了实施例3的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图6B示出了实施例3的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图6A至图6C可知,实施例3所给出的光学透镜组能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学透镜组。图7示出了根据本申请实施例4的光学透镜组的结构示意图。
如图7所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,且第六透镜E6的像侧面具有反曲点和临界点。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000005
Figure PCTCN2019095612-appb-000006
表10
由表10可知,在实施例4中,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 6.4486E-03 8.5476E-02 0.0000E+00 0.0000E+00 0.0000E+00
S3 -5.7288E-01 3.8785E-01 -3.8428E-02 -1.8778E-01 -4.8017E-19
S4 -2.2557E-01 1.3383E+00 -2.0807E+00 9.3550E+00 -2.9518E-20
S7 3.8657E-02 -7.6026E-02 4.2342E-01 -7.2253E-01 -3.0234E-20
S8 -8.3376E-02 9.5725E-01 -1.4862E+00 1.0355E+00 -2.9838E-20
S9 -1.8455E-01 5.7499E-01 -2.4403E+00 3.2920E+00 -2.9991E-20
S10 3.4220E-01 -9.3028E-03 -1.5429E+00 1.9658E+00 -2.9318E-20
S11 -2.9788E-01 3.4869E-01 4.7714E-02 -4.8604E-01 -3.6599E-20
S12 -3.9058E-01 2.4138E-01 -6.3265E-02 -3.5567E-02 -5.7854E-20
表11
表12给出实施例4中光学透镜组的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 4.36 f2(mm) -5.56
ImgH(mm) 1.20 f3(mm) 1.79
semiFOV(°) 82.5 f4(mm) 1.19
f(mm) 0.93 f5(mm) -1.35
f1(mm) -2.01 f6(mm) 5.90
表12
图8A示出了实施例4的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图8B示出了实施例4的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图8A至图8C可知,实施例4所给出的光学透镜组能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学透镜组。图9示出了根据本申请实 施例5的光学透镜组的结构示意图。
如图9所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面,且第六透镜E6的像侧面具有反曲点和临界点。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000007
表13
由表13可知,在实施例5中,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 8.4374E-04 9.6096E-04 0.0000E+00 0.0000E+00 0.0000E+00
S3 -3.9351E-02 4.5619E-03 2.3863E-05 -5.8237E-05 -2.2406E-22
S4 -1.1230E-02 1.7260E-02 -3.8853E-03 2.9013E-03 -1.5205E-24
S7 3.2915E-03 -6.1092E-04 8.5105E-04 -3.2344E-04 -1.5576E-24
S8 -5.8893E-03 1.1305E-02 -3.0665E-03 1.8505E-04 2.2220E-22
S9 -1.3687E-02 4.8242E-03 -4.6565E-03 9.2000E-04 -1.5455E-24
S10 2.2886E-02 -6.3963E-04 -2.8560E-03 6.2161E-04 -1.5104E-24
S11 -1.5219E-02 4.6191E-03 -1.6761E-04 -1.5074E-04 -1.8864E-24
S12 2.9003E-03 -1.5791E-04 -1.1031E-05 -2.9952E-24 0.0000E+00
表14
表15给出实施例5中光学透镜组的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 11.30 f2(mm) -10.82
ImgH(mm) 3.00 f3(mm) 4.27
semiFOV(°) 86.0 f4(mm) 2.93
f(mm) 2.25 f5(mm) -3.21
f1(mm) -4.28 f6(mm) 13.07
表15
图10A示出了实施例5的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图10B示出了实施例5的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图10A至图10C可知,实施例5所给出的光学透镜组能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学透镜组。图11示出了根据本申请实施例6的光学透镜组的结构示意图。
如图11所示,根据本申请示例性实施方式的光学透镜组沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、光阑STO、第四透镜E4、第五透镜E5、第六透镜E6和成像面S13。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面,且第三透镜E3可为玻璃材质。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表16示出了实施例6的光学透镜组的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2019095612-appb-000008
Figure PCTCN2019095612-appb-000009
表16
由表16可知,在实施例6中,第三透镜E3的物侧面S5和像侧面S6均为球面,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14
S1 -5.1180E-04 1.9127E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 1.2235E-03 -9.8278E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 4.5198E-03 2.7472E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.7496E-01 -3.9243E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S7 8.7315E-04 -1.0572E+00 5.9127E+00 -1.6905E+01 1.4503E+01 0.0000E+00
S8 3.9381E-01 -1.6635E+00 4.1152E+00 -6.6907E+00 2.2468E+00 0.0000E+00
S9 4.2454E-01 -1.3171E+00 2.0226E+00 -2.5066E+00 0.0000E+00 0.0000E+00
S10 1.1950E-01 -3.7646E-02 -9.1249E-02 -5.1741E-02 4.9806E-29 0.0000E+00
S11 1.7216E-01 -3.7902E-01 4.9725E-01 -4.1001E-01 1.8106E-01 -3.3480E-02
S12 -3.0309E-02 1.2582E-01 -2.4607E-01 2.6178E-01 -1.4476E-01 3.3125E-02
表17
表18给出实施例6中光学透镜组的光学总长度TTL、成像面S13上有效像素区域对角线长的一半ImgH、最大半视场角semiFOV、光学透镜组的总有效焦距f以及各透镜的有效焦距f1至f6。
TTL(mm) 7.39 f2(mm) -1.65
ImgH(mm) 2.00 f3(mm) 1.65
semiFOV(°) 82.5 f4(mm) 1.49
f(mm) 1.22 f5(mm) -1.96
f1(mm) -2.96 f6(mm) 3.91
表18
图12A示出了实施例6的光学透镜组的轴上色差曲线,其表示不同波长的光线经由透镜组后的会聚焦点偏离。图12B示出了实施例6的光学透镜组的象散曲线,其表示子午像面弯曲和弧矢 像面弯曲。图12C示出了实施例6的光学透镜组的倍率色差曲线,其表示光线经由透镜组后在成像面上的不同的像高的偏差。根据图12A至图12C可知,实施例6所给出的光学透镜组能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表19中所示的关系。
Figure PCTCN2019095612-appb-000010
表19
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学透镜组。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (24)

  1. 光学透镜组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;所述第二透镜具有光焦度,其像侧面为凹面;所述第三透镜具有光焦度,其像侧面为凸面;所述第四透镜具有正光焦度,其物侧面为凸面;所述第五透镜具有负光焦度;所述第六透镜具有光焦度;所述第三透镜为玻璃材质的透镜;以及所述第三透镜于所述光轴上的中心厚度CT3与所述第四透镜于所述光轴上的中心厚度CT4满足1.5<CT3/CT4<2.5。
  2. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的折射率N1与所述第三透镜的折射率N3满足N1/N3<0.9。
  3. 根据权利要求1所述的光学透镜组,其特征在于,所述第三透镜具有正光焦度,并且所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-2<f1/f3≤-1。
  4. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的有效焦距f1与所述光学透镜组的总有效焦距f满足-4<f1/f<-1.8。
  5. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的有效焦距f1与所述第五透镜的有效焦距f5满足1.3<f1/f5<2.1。
  6. 根据权利要求1所述的光学透镜组,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足-2<R7/R8<-1。
  7. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的边缘厚度ET6与所述第六透镜于所述光轴上的中心厚度CT6满足0.6<ET6/CT6<1。
  8. 根据权利要求7所述的光学透镜组,其特征在于,所述第六透镜的像侧面具有反曲点和临界点;所述第六透镜像侧面的临界点至所述光轴的垂直距离YC62与所述第六透镜的像侧面的有效半口径DT62满足0.5<YC62/DT62<1。
  9. 根据权利要求1所述的光学透镜组,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足(T34+T45)/T56<3。
  10. 根据权利要求1所述的光学透镜组,其特征在于,所述第一透镜的像侧面和所述光轴的交点至所述第一透镜像侧面的最大有效半口径顶点在所述光轴上的距离SAG12与所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的间隔距离TD满足1<SAG12×10/TD<2。
  11. 根据权利要求1所述的光学透镜组,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述光学透镜组的成像面上有效像素区域对角线长的一半ImgH满足0.5<DT62/ImgH<1。
  12. 根据权利要求1至11中任一项所述的光学透镜组,其特征在于,所述第一透镜的物侧面至所述光学透镜组的成像面在所述光轴上的距离TTL、所述光学透镜组的成像面上有效像素区域对角线长的一半ImgH与所述光学透镜组的最大半视场角semiFOV满足TTL/(ImgH×tan(semiFOV/2))<6。
  13. 光学透镜组,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;所述第二透镜具有光焦度,其物侧面为凸面,像侧面为凹面;所述第三透镜具有光焦度,其像侧面为凸面;所述第四透镜具有正光焦度,其物侧面为凸面;所述第五透镜具有负光焦度;所述第六透镜具有光焦度;所述第三透镜为玻璃材质的透镜;以及
    所述第六透镜的像侧面具有反曲点和临界点,所述临界点至所述光轴的垂直距离YC62与所述第六透镜的像侧面的有效半口径DT62满足0.5<YC62/DT62<1。
  14. 根据权利要求13所述的光学透镜组,其特征在于,所述第三透镜具有正光焦度,并且所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-2<f1/f3≤-1。
  15. 根据权利要求13所述的光学透镜组,其特征在于,所述第一透镜的有效焦距f1与所述光学透镜组的总有效焦距f满足-4<f1/f<-1.8。
  16. 根据权利要求13所述的光学透镜组,其特征在于,所述第一透镜的有效焦距f1与所述第五透镜的有效焦距f5满足1.3<f1/f5<2.1。
  17. 根据权利要求14所述的光学透镜组,其特征在于,所述第一透镜的折射率N1与所述第三透镜的折射率N3满足N1/N3<0.9。
  18. 根据权利要求13所述的光学透镜组,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足-2<R7/R8<-1。
  19. 根据权利要求13所述的光学透镜组,其特征在于,所述第三透镜于所述光轴上的中心厚度CT3与所述第四透镜于所述光轴上的中心厚度CT4满足1.5<CT3/CT4<2.5。
  20. 根据权利要求13所述的光学透镜组,其特征在于,所述第六透镜的边缘厚度ET6与所述第六透镜于所述光轴上的中心厚度CT6满足0.6<ET6/CT6<1。
  21. 根据权利要求13所述的光学透镜组,其特征在于,所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34、所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56满足(T34+T45)/T56<3。
  22. 根据权利要求13至21中任一项所述的光学透镜组,其特征在于,所述第一透镜的像侧面和所述光轴的交点至所述第一透镜像侧面的最大有效半口径顶点在所述光轴上的距离SAG12与所述第一透镜的物侧面至所述第六透镜的像侧面在所述光轴上的间隔距离TD满足1<SAG12×10/TD<2。
  23. 根据权利要求13至21中任一项所述的光学透镜组,其特征在于,所述第六透镜的像侧面的有效半口径DT62与所述光学透镜组的成像面上有效像素区域对角线长的一半ImgH满足0.5<DT62/ImgH<1。
  24. 根据权利要求13至21中任一项所述的光学透镜组,其特征在于,所述第一透镜的物侧面至所述光学透镜组的成像面在所述光轴上的距离TTL、所述光学透镜组的成像面上有效像素区域对角线长的一半ImgH与所述光学透镜组的最大半视场角semiFOV满足TTL/(ImgH×tan(semiFOV/2))<6。
PCT/CN2019/095612 2018-10-10 2019-07-11 光学透镜组 WO2020073703A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020541521A JP7052052B2 (ja) 2018-10-10 2019-07-11 光学レンズ群
US17/009,688 US20200400923A1 (en) 2018-10-10 2020-09-01 Optical lens group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811179873.8A CN108983401B (zh) 2018-10-10 2018-10-10 光学透镜组
CN201811179873.8 2018-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/009,688 Continuation US20200400923A1 (en) 2018-10-10 2020-09-01 Optical lens group

Publications (1)

Publication Number Publication Date
WO2020073703A1 true WO2020073703A1 (zh) 2020-04-16

Family

ID=64543454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095612 WO2020073703A1 (zh) 2018-10-10 2019-07-11 光学透镜组

Country Status (4)

Country Link
US (1) US20200400923A1 (zh)
JP (1) JP7052052B2 (zh)
CN (2) CN111352221B (zh)
WO (1) WO2020073703A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111352221B (zh) * 2018-10-10 2021-09-10 浙江舜宇光学有限公司 光学透镜组
CN109116522B (zh) * 2018-11-12 2024-04-23 浙江舜宇光学有限公司 摄像镜头
TWI821225B (zh) * 2018-12-14 2023-11-11 光芒光學股份有限公司 鏡頭及其製造方法
WO2022120525A1 (zh) * 2020-12-07 2022-06-16 欧菲光集团股份有限公司 光学镜头、摄像头模组、电子装置和车辆
CN114594568A (zh) * 2020-12-07 2022-06-07 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
KR102494374B1 (ko) * 2020-12-28 2023-02-06 에이테크솔루션(주) 자동차용 렌즈 조립체
WO2022226830A1 (zh) * 2021-04-28 2022-11-03 欧菲光集团股份有限公司 光学系统、摄像模组、电子设备及汽车
TWI764764B (zh) * 2021-06-22 2022-05-11 佳凌科技股份有限公司 光學成像鏡頭
CN114089512B (zh) * 2022-01-24 2022-07-05 江西联益光学有限公司 光学镜头及成像设备
CN114114649B (zh) * 2022-01-26 2022-06-24 江西联创电子有限公司 光学镜头
CN115236841B (zh) * 2022-09-22 2023-03-24 江西联创电子有限公司 光学镜头
CN116299999B (zh) * 2023-01-28 2024-05-07 湖北华鑫光电有限公司 一种2g4p超广角高清车载光学镜头及成像装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105204140A (zh) * 2015-10-28 2015-12-30 东莞市宇瞳光学科技有限公司 一种高清超广角定焦镜头
CN205157867U (zh) * 2015-10-28 2016-04-13 东莞市宇瞳光学科技股份有限公司 一种高清超广角定焦镜头
CN107783256A (zh) * 2016-08-24 2018-03-09 株式会社理光 摄像镜头、相机装置、车载相机装置、传感装置、车载传感装置
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN208833990U (zh) * 2018-10-10 2019-05-07 浙江舜宇光学有限公司 光学透镜组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288986A (ja) * 1992-04-10 1993-11-05 Olympus Optical Co Ltd 内視鏡用観察光学系
TWI533018B (zh) * 2013-08-28 2016-05-11 揚明光學股份有限公司 定焦鏡頭
CN104570286B (zh) * 2014-12-08 2017-06-27 青岛歌尔声学科技有限公司 一种微型鱼眼镜头及头戴显示设备
US10302918B2 (en) * 2015-02-06 2019-05-28 Sony Corporation Imaging lens and imaging unit
CN106569320B (zh) * 2015-10-12 2019-06-25 今国光学工业股份有限公司 六片式广角镜头
CN205067849U (zh) * 2015-10-22 2016-03-02 舜宇光学(中山)有限公司 一种新型日夜两用广角监控镜头
CN107479170B (zh) * 2016-06-08 2020-06-23 今国光学工业股份有限公司 广角六片式镜头
TWI644141B (zh) * 2016-10-14 2018-12-11 大立光電股份有限公司 光學取像系統組、取像裝置及電子裝置
KR20180069466A (ko) * 2016-12-15 2018-06-25 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
CN108957709B (zh) * 2017-05-18 2021-01-26 信泰光学(深圳)有限公司 广角镜头
TWI656376B (zh) * 2017-08-30 2019-04-11 大立光電股份有限公司 影像擷取系統鏡片組、取像裝置及電子裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044250A (ja) * 2012-08-24 2014-03-13 Sony Corp 撮像レンズおよび撮像装置
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105204140A (zh) * 2015-10-28 2015-12-30 东莞市宇瞳光学科技有限公司 一种高清超广角定焦镜头
CN205157867U (zh) * 2015-10-28 2016-04-13 东莞市宇瞳光学科技股份有限公司 一种高清超广角定焦镜头
CN107783256A (zh) * 2016-08-24 2018-03-09 株式会社理光 摄像镜头、相机装置、车载相机装置、传感装置、车载传感装置
CN108983401A (zh) * 2018-10-10 2018-12-11 浙江舜宇光学有限公司 光学透镜组
CN208833990U (zh) * 2018-10-10 2019-05-07 浙江舜宇光学有限公司 光学透镜组

Also Published As

Publication number Publication date
JP7052052B2 (ja) 2022-04-11
CN111352221B (zh) 2021-09-10
CN108983401B (zh) 2023-08-04
JP2021513105A (ja) 2021-05-20
CN108983401A (zh) 2018-12-11
US20200400923A1 (en) 2020-12-24
CN111352221A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2020073703A1 (zh) 光学透镜组
WO2020093725A1 (zh) 摄像光学系统
WO2020107962A1 (zh) 光学成像透镜组
WO2020082814A1 (zh) 成像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020164236A1 (zh) 光学成像镜头
WO2020119146A1 (zh) 光学成像镜头
WO2020107936A1 (zh) 光学成像系统
WO2020024635A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020019796A1 (zh) 光学成像系统
WO2019233040A1 (zh) 摄像透镜组
WO2020042799A1 (zh) 光学成像镜片组
WO2020164247A1 (zh) 光学成像系统
WO2019233143A1 (zh) 光学成像镜片组
WO2019237776A1 (zh) 光学成像系统
WO2019233142A1 (zh) 光学成像镜头
WO2020029613A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870776

Country of ref document: EP

Kind code of ref document: A1