WO2020119145A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020119145A1
WO2020119145A1 PCT/CN2019/099393 CN2019099393W WO2020119145A1 WO 2020119145 A1 WO2020119145 A1 WO 2020119145A1 CN 2019099393 W CN2019099393 W CN 2019099393W WO 2020119145 A1 WO2020119145 A1 WO 2020119145A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image side
imaging lens
object side
Prior art date
Application number
PCT/CN2019/099393
Other languages
English (en)
French (fr)
Inventor
丁玲
吕赛锋
闻人建科
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020119145A1 publication Critical patent/WO2020119145A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to an imaging lens, and more particularly, to an imaging lens including seven lenses.
  • CMOS complementary metal oxide semiconductor
  • CCD photosensitive coupling element
  • the present application provides a camera lens applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides an imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens Lens, sixth lens and seventh lens.
  • the first lens may have negative power
  • the fourth lens may have positive power
  • the seventh lens may have negative power
  • at least one of the first lens to the seventh lens may have non-rotationally symmetric Sphere.
  • the effective focal length fx of the imaging lens in the X-axis direction and the effective focal length fy of the imaging lens in the Y-axis direction may satisfy 0.8 ⁇ fx/fy ⁇ 1.2.
  • the FOV of the camera lens can satisfy 150° ⁇ FOV ⁇ 190°.
  • the effective focal length fx of the camera lens in the X-axis direction and the entrance pupil diameter EPDx of the camera lens in the X-axis direction can satisfy fx/EPDx ⁇ 2.0; and the effective focal length fy of the camera lens in the Y-axis direction and the camera lens
  • the entrance pupil diameter EPDy in the Y-axis direction can satisfy fy/EPDy ⁇ 2.0.
  • the effective focal length f7 of the seventh lens and the effective focal length f1 of the first lens may satisfy 0.3 ⁇ f7/f1 ⁇ 1.3.
  • the effective focal length f4 of the fourth lens and the effective focal length f6 of the sixth lens may satisfy 0.5 ⁇ f4/f6 ⁇ 1.5.
  • the radius of curvature R10 of the image side of the fifth lens and the effective focal length f5 of the fifth lens may satisfy -1 ⁇ R10/f5 ⁇ 0.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R2 of the image side of the first lens may satisfy 0.2 ⁇ (R1-R2)/(R1+R2) ⁇ 0.7.
  • the radius of curvature R7 of the object side of the fourth lens, the radius of curvature R8 of the image side of the fourth lens, the radius of curvature R3 of the object side of the second lens, and the radius of curvature R4 of the image side of the second lens may be Satisfy 0.3 ⁇ (R7-R8)/(R3+R4) ⁇ 1.3.
  • the distance T12 between the first lens and the second lens on the optical axis, the center thickness CT4 of the fourth lens on the optical axis, the center thickness CT6 of the sixth lens on the optical axis, and the seventh lens are
  • the central thickness CT7 on the optical axis can satisfy 0.8 ⁇ T12/(CT4+CT6+CT7) ⁇ 1.8.
  • the effective half aperture DT12 of the image side of the first lens, the effective half aperture DT22 of the image side of the second lens, and the effective half aperture DT32 of the image side of the third lens can satisfy 0.8 ⁇ DT12/(DT22+ DT32) ⁇ 1.2.
  • the edge thickness ET6 of the sixth lens and the center thickness CT6 of the sixth lens may satisfy 0.5 ⁇ ET6/CT6*5 ⁇ 1.5.
  • the imaging lens may further include a diaphragm, a distance SL from the diaphragm to the imaging surface of the imaging lens on the optical axis, and a distance from the center of the object side surface of the first lens to the imaging surface of the imaging lens on the optical axis TTL can satisfy 0.3 ⁇ SL/TTL ⁇ 0.6.
  • the image side of the sixth lens may be convex.
  • the object side of the seventh lens may be concave, and the image side may be concave.
  • This application uses multiple (for example, seven) lenses.
  • the above-mentioned imaging lens is miniaturized , Wide-angle, and high-resolution at least one beneficial effect.
  • the off-axis meridional and sagittal aberrations of the camera lens are corrected simultaneously, which greatly improves the optical performance of the optical system.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application
  • FIG. 3 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • FIG. 4 schematically shows the RMS spot diameter of the imaging lens of Embodiment 2 in the first quadrant
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • FIG. 7 shows a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • FIG. 10 schematically shows a case where the RMS spot diameter of the imaging lens of Example 5 is within the first quadrant
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • FIG. 12 schematically shows a case where the RMS spot diameter of the imaging lens of Example 6 is within the first quadrant
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • FIG. 15 is a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • FIG. 16 schematically shows a case where the RMS spot diameter of the imaging lens of Example 8 is within the first quadrant.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave. In each lens, the surface closest to the subject is called the object side of the lens; in each lens, the surface closest to the imaging plane is called the image side of the lens.
  • the direction parallel to the optical axis is the Z axis direction
  • the direction perpendicular to the Z axis and located in the meridian plane of the central field of view is the Y axis direction
  • the direction perpendicular to the Z axis and located in the sagittal plane of the central field of view is the X-axis direction.
  • all parameter symbols (for example, radius of curvature, etc.) other than the parameter symbols related to the field of view herein represent characteristic parameter values along the Y-axis direction of the camera lens.
  • R1 in the conditional expression "(R1-R2)/(R1+R2)" represents the radius of curvature R1y in the Y-axis direction of the object side surface of the first lens
  • R2 represents the The radius of curvature R2y in the Y-axis direction of the image side.
  • the imaging lens according to the exemplary embodiment of the present application may include, for example, seven lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens lens.
  • the seven lenses are arranged in order from the object side to the image side along the optical axis.
  • any adjacent two lenses may have an air gap.
  • the first lens may have negative power
  • the fourth lens may have positive power
  • the seventh lens may have negative power.
  • Reasonable configuration of the power of each lens can not only effectively correct the spherical aberration and chromatic aberration of the system, but also avoid excessive concentration of the power on a single lens, reduce the sensitivity of the lens, and provide a wider tolerance for the actual processing and assembly process condition.
  • the fifth lens may have negative power.
  • the sixth lens may have positive power.
  • the image side of the sixth lens may be convex; the object side of the seventh lens may be concave, and the image side may be concave.
  • the object side of the first lens may be convex and the image side may be concave; the object side of the second lens may be convex and the image side may be concave; the object side of the fourth lens may be convex and the image The side surface may be convex; the image side of the fifth lens may be concave.
  • the image quality may be further improved by setting the object side surface and/or the image side surface of at least one of the first lens to the seventh lens to be a non-rotationally symmetric aspheric surface.
  • the non-rotationally symmetric aspheric surface is a freeform surface.
  • the non-rotationally symmetric component is added. Therefore, the introduction of the non-rotationally symmetric aspherical surface in the lens system is beneficial to the off-axis meridional aberration and Sagittal aberration can be effectively corrected, which can effectively reduce the astigmatism and field curvature of the off-axis field of view, greatly improving the performance of the optical system.
  • the camera lens according to the present application may include at least one non-rotationally symmetric aspheric surface, for example, including one non-rotationally symmetric aspheric surface, two non-rotationally symmetric aspheric surfaces, three non-rotationally symmetric aspheric surfaces, or more Rotationally symmetric aspheric surface.
  • the imaging lens of the present application may satisfy the conditional expression 0.8 ⁇ fx/fy ⁇ 1.2, where fx is the effective focal length in the X-axis direction of the imaging lens and fy is the effective focal length in the Y-axis direction of the imaging lens. More specifically, fx and fy may further satisfy 0.83 ⁇ fx/fy ⁇ 1.11. Satisfying the conditional expression 0.8 ⁇ fx/fy ⁇ 1.2 can ensure that the system has a small spherical aberration in both the X-axis and Y-axis directions.
  • the imaging lens of the present application may satisfy the conditional expression 150° ⁇ FOV ⁇ 190°, where FOV is the full angle of view of the imaging lens. More specifically, FOV can further satisfy 164° ⁇ FOV ⁇ 176°. Reasonable control of the field of view can not only ensure that the system has excellent imaging quality for a wider field of view, but also avoid low illumination at the edge of the field of view.
  • the camera lens of the present application may satisfy the conditional expression fi/EPDi ⁇ 2.0, where i is x or y.
  • i is x
  • fx is the effective focal length of the imaging lens in the X-axis direction
  • EPDx is the diameter of the entrance pupil of the imaging lens in the X-axis direction
  • i is y
  • fy is the effective focal length of the imaging lens in the Y-axis direction
  • EPDy is the diameter of the entrance pupil of the imaging lens in the Y-axis direction, fy/EPDy ⁇ 2.0.
  • fx and EPDx may further satisfy 1.79 ⁇ fi/EPDi ⁇ 1.98, and fy and EPDy may further satisfy 1.79 ⁇ fi/EPDi ⁇ 1.98. Satisfying the conditional fi/EPDi ⁇ 2.0 can effectively increase the light flux of the system, improve the illumination of the edge field of view, and ensure that the lens has a good shooting effect in the dark environment.
  • the imaging lens of the present application may satisfy the conditional expression 0.3 ⁇ f7/f1 ⁇ 1.3, where f7 is the effective focal length of the seventh lens and f1 is the effective focal length of the first lens. More specifically, f7 and f1 may further satisfy 0.51 ⁇ f7/f1 ⁇ 1.02.
  • Reasonable control of the effective focal lengths of the first lens and the seventh lens not only prevents the power from concentrating on the first lens, but also helps to reduce the sensitivity of the first lens, and also helps balance the spherical aberration and the spherical aberration that are not completely eliminated by the first six lenses. Field music.
  • the imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ f4/f6 ⁇ 1.5, where f4 is the effective focal length of the fourth lens and f6 is the effective focal length of the sixth lens. More specifically, f4 and f6 can further satisfy 0.79 ⁇ f4/f6 ⁇ 1.23. Reasonably control the power of the fourth lens and the sixth lens, reduce the deflection angle of the light at the fourth lens and the sixth lens, and avoid the total reflection ghost image caused by the excessive deflection angle. In addition, it can also Effectively balance the astigmatism produced by these two lenses.
  • the imaging lens of the present application may satisfy the conditional expression -1 ⁇ R10/f5 ⁇ 0, where R10 is the radius of curvature of the image side of the fifth lens, and f5 is the effective focal length of the fifth lens. More specifically, R10 and f5 may further satisfy -0.8 ⁇ R10/f5 ⁇ -0.3, for example, -0.72 ⁇ R10/f5 ⁇ -0.36.
  • Reasonable configuration of the ratio of the radius of curvature of the image side of the fifth lens and the effective focal length of the fifth lens can not only reduce the deflection of light at the lens, but also reduce the high-level coma and astigmatism generated by the lens.
  • the imaging lens of the present application may satisfy the conditional expression 0.2 ⁇ (R1-R2)/(R1+R2) ⁇ 0.7, where R1 is the radius of curvature of the object side of the first lens and R2 is the first The radius of curvature of the image side of the lens. More specifically, R1 and R2 may further satisfy 0.40 ⁇ (R1-R2)/(R1+R2) ⁇ 0.52. Reasonable control of the curvature radius of the object side and the image side of the first lens can not only converge the light of a wide angle of view, but also reduce the astigmatism and distortion generated by the first lens.
  • the imaging lens of the present application may satisfy the conditional expression 0.3 ⁇ (R7-R8)/(R3+R4) ⁇ 1.3, where R7 is the radius of curvature of the object side of the fourth lens and R8 is the fourth The radius of curvature of the image side of the lens, R3 is the radius of curvature of the object side of the second lens, and R4 is the radius of curvature of the image side of the second lens. More specifically, R7, R8, R3, and R4 can further satisfy 0.39 ⁇ (R7-R8)/(R3+R4) ⁇ 1.11. By reasonably controlling R7, R8, R3 and R4, the incidence angle and exit angle of light rays in the fourth lens and the second lens are controlled to reduce the sensitivity of these two lenses, in addition, it can effectively balance the advanced Coma.
  • the imaging lens of the present application may satisfy the conditional expression 0.8 ⁇ T12/(CT4+CT6+CT7) ⁇ 1.8, where T12 is the separation distance between the first lens and the second lens on the optical axis, CT4 Is the center thickness of the fourth lens on the optical axis, CT6 is the center thickness of the sixth lens on the optical axis, and CT7 is the center thickness of the seventh lens on the optical axis. More specifically, T12, CT4, CT6, and CT7 can further satisfy 0.93 ⁇ T12/(CT4+CT6+CT7) ⁇ 1.78. Reasonable control of T12, CT4, CT6 and CT7 to ensure the miniaturization of the lens and the feasibility of the actual processing of these lenses. In addition, it also helps to reduce the incidence angle of light entering the second lens and reduce the sensitivity of the second lens Sex.
  • the imaging lens of the present application may further include an aperture to improve the imaging quality of the lens.
  • the diaphragm may be disposed between the third lens and the fourth lens.
  • the distance SL between the diaphragm and the imaging surface of the imaging lens on the optical axis and the distance TTL between the center of the object side surface of the first lens and the imaging surface of the imaging lens on the optical axis can satisfy 0.3 ⁇ SL/TTL ⁇ 0.6. More specifically, SL and TTL can further satisfy 0.43 ⁇ SL/TTL ⁇ 0.50.
  • the ratio range between SL and TTL By reasonably controlling the ratio range between SL and TTL, it can ensure that the off-axis field of view has a large amount of light flux, enhance the off-axis field of view illuminance, and also help to reduce the size of the lens before and after the diaphragm.
  • the imaging lens of the present application can satisfy the conditional expression 0.8 ⁇ DT12/(DT22+DT32) ⁇ 1.2, where DT12 is the effective half aperture of the image side of the first lens and DT22 is the image of the second lens The effective half-aperture on the side, DT32 is the effective half-aperture on the image side of the third lens. More specifically, DT12, DT22 and DT32 can further satisfy 0.91 ⁇ DT12/(DT22+DT32) ⁇ 0.99. Reasonable control of the effective half-aperture of the image side of the first lens, the second lens, and the third lens can not only reduce the size of the lens front end, but also increase the angle of view acceptable to the system.
  • the imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ ET6/CT6*5 ⁇ 1.5, where ET6 is the edge thickness of the sixth lens and CT6 is the center thickness of the sixth lens. More specifically, ET6 and CT6 can further satisfy 0.59 ⁇ ET6/CT6*5 ⁇ 1.32. Reasonable control of the edge thickness and center thickness of the sixth lens can further reduce the size while ensuring the manufacturability of the lens, in addition, it can also reduce the deflection of light at the sixth lens.
  • the above camera lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiments of the present application may use multiple lenses, such as the seven described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the camera lens is more conducive to production and processing and can be applied to portable electronic products.
  • the image quality can be further improved.
  • the camera lens with the above configuration can also have beneficial effects such as wide angle, high resolution, and large aperture.
  • the mirror surface of each lens is mostly an aspheric mirror surface.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations. With the use of aspheric lenses, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving imaging quality.
  • At least one of the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens may be aspherical .
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens may be aspherical.
  • the number of lenses constituting the imaging lens can be changed to obtain various results and advantages described in this specification.
  • the imaging lens is not limited to include seven lenses. If necessary, the camera lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • an imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is a concave surface, and the image side surface S14 is a concave surface in the Y-axis direction and a convex surface in the X-axis direction. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 1 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X and conic coefficient Y of each lens of the imaging lens of Example 1, wherein the radius of curvature X, the radius of curvature Y and the thickness of The units are all in millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the height of the aspheric surface along the optical axis at a height h, the distance from the aspheric surface vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , and A 16 that can be used for the aspheric mirrors S1, S2, S4, S6-S13 in Example 1. , A 18 and A 20 .
  • the object side surface S3 of the second lens E2, the object side surface S5 of the third lens E3, and the image side surface S14 of the seventh lens E7 are non-rotationally symmetric aspheric surfaces (ie, AAS surfaces), which are non-rotational
  • AAS surfaces non-rotationally symmetric aspheric surfaces
  • the shape of a symmetric aspheric surface can be defined by, but not limited to, the following non-rotationally symmetric aspheric surface formula:
  • z is the vector height of the surface parallel to the Z-axis direction
  • Kx and Ky are the conic coefficients in the X and Y-axis directions
  • AR , BR, CR, DR, ER, FR, GR, HR, JR are the 4th order, 6th order, 8th order, 10th order, 12th order, 14th order, 16th order, 18th order, 20th in the asymmetrical rotationally symmetric component Order coefficients
  • AP, BP, CP, DP, EP, FP, GP, HP, JP are the 4th, 6th, 8th, 10th, 12th, 14th, 16th orders of the aspheric non-rotationally symmetric components , 18th and 20th order coefficients.
  • Table 3 shows the coefficients that can be used for the non-rotationally symmetric as
  • AAS surface AR AP BR BP CR CP S3 2.8002E-06 1.1420E+01 3.6473E-02 1.1929E-01 -1.8598E-01 -4.2530E-03 S5 -6.5404E-02 1.4636E-01 -1.8570E-01 -4.0363E-02 1.3721E+00 -6.3747E-04 S14 -3.4978E-01 -1.1283E-02 3.6147E-01 -4.5228E-03 -2.7477E-01 -7.2577E-04
  • Table 4 shows the effective focal lengths f1 to f7 of the lenses in Example 1, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 2 shows the size of the field angle of the RMS spot diameter of the imaging lens of Embodiment 1 in different object spaces in the first quadrant. It can be seen from FIG. 2 that the imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • an imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 5 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 2, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 2 the object side and image side of any one of the third lens E3, fifth lens E5, sixth lens E6, and seventh lens E7, and the image side S2 of the first lens E1 ,
  • the image side S4 of the second lens E2 and the image side S8 of the fourth lens E4 are aspheric;
  • the object side S1 of the first lens E1, the object side S3 of the second lens E2, and the object side S7 of the fourth lens E4 are Non-rotationally symmetric aspheric surface.
  • Table 6 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 7 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S1, S3, and S7 in Embodiment 2, wherein the non-rotationally symmetric aspheric surface type can be obtained from the above embodiment
  • the formula (2) given in 1 is limited.
  • AAS surface AR AP BR BP CR CP S1 2.7703E-03 -1.9327E-01 -3.5194E-04 -4.3360E-02 6.3163E-05 6.5391E-03 S3 2.3031E-02 -6.8625E-02 -7.8064E-02 -2.9685E-02 8.3149E-02 -1.3696E-02 S7 7.9785E-03 1.3871E-01 2.7518E-02 1.3397E-02 -1.3885E-01 -2.0243E-02
  • Table 8 shows the effective focal lengths f1 to f7 of the lenses in Example 2, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 4 shows the size of the field angle of the RMS spot diameter of the imaging lens of Embodiment 2 in different object spaces in the first quadrant. It can be seen from FIG. 4 that the imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has a positive refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 9 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 3, where the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 3 the object side and the image side of any one of the third lens E3, fourth lens E4, fifth lens E5, sixth lens E6, and seventh lens E7, the first lens
  • the image side surface S2 of E1 and the object side surface S3 of the second lens E2 are both aspherical; the object side surface S1 of the first lens E1 and the image side surface S4 of the second lens E2 are non-rotationally symmetric aspheric surfaces.
  • Table 10 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 11 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S1 and S4 in Embodiment 3, where the non-rotationally symmetric aspheric surface type can be used in the above Embodiment 1
  • the given formula (2) is limited.
  • AAS surface AR AP BR BP CR CP S1 3.4554E-03 -2.8172E-01 -2.3166E-03 -4.2550E-03 9.1151E-04 1.3464E-03 S4 4.8207E-02 3.0207E-02 -1.4905E-01 1.5763E-02 1.5708E-01 6.0982E-03
  • Table 12 shows the effective focal lengths f1 to f7 of the lenses in Example 3, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 6 shows the size of the field angle of the RMS spot diameter of the imaging lens of Embodiment 3 in different object spaces in the first quadrant. It can be seen from FIG. 6 that the imaging lens provided in Example 3 can achieve good imaging quality.
  • FIGS. 7 and 8. 7 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 13 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 4, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 4 the object side and image side of any one of the third lens E3, the fourth lens E4, the fifth lens E5, the sixth lens E6, and the seventh lens E7, the first lens
  • the image side surface S2 of E1 and the object side surface S3 of the second lens E2 are both aspherical; the object side surface S1 of the first lens E1 and the image side surface S4 of the second lens E2 are non-rotationally symmetric aspheric surfaces.
  • Table 14 shows the high-order coefficients that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S1 and S4 in Embodiment 4, where the non-rotationally symmetric aspheric surface type can be used in the above Embodiment 1
  • the given formula (2) is limited.
  • AAS surface AR AP BR BP CR CP S1 3.5155E-03 2.6166E-01 -2.3461E-03 1.0208E-03 9.1087E-04 -1.5362E-03 S4 4.4492E-02 -4.8570E-02 -1.5025E-01 -1.6671E-02 1.5662E-01 -7.5099E-03
  • Table 16 shows the effective focal lengths f1 to f7 of the lenses in Example 4, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 8 shows the size of the field angle of the RMS spot diameter of the imaging lens of Example 4 in different object spaces in the first quadrant. As can be seen from FIG. 8, the imaging lens provided in Example 4 can achieve good imaging quality.
  • FIGS. 9 and 10 shows a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 17 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 5, where the radius of curvature X, the radius of curvature Y, and the thickness of The unit is millimeter (mm).
  • Example 5 the object side and image side of any one of the second lens E2, fifth lens E5, sixth lens E6, and seventh lens E7, and the image side S2 of the first lens E1 ,
  • the image side S6 of the third lens E3 and the image side S8 of the fourth lens E4 are aspheric;
  • the object side S1 of the first lens E1, the object side S5 of the third lens E3, and the object side S7 of the fourth lens E4 are Non-rotationally symmetric aspheric surface.
  • Table 18 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 19 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S1, S5, and S7 in Example 5, where the non-rotationally symmetric aspherical surface type can be obtained from the above embodiment
  • the formula (2) given in 1 is limited.
  • AAS surface AR AP BR BP CR CP S1 2.7480E-03 -3.4033E-01 -5.8317E-04 -9.1717E-02 1.9645E-05 -4.0594E-02 S5 4.0585E-02 1.1558E-01 -1.1319E-01 -7.0101E-03 -2.5520E-01 1.9810E-02
  • Table 20 shows the effective focal lengths f1 to f7 of the lenses in Example 5, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 10 shows the size of the field angle of the RMS spot diameter of the imaging lens of Embodiment 5 in different object spaces in the first quadrant. It can be seen from FIG. 10 that the imaging lens provided in Example 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has negative refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is concave.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave in the Y-axis direction, convex surface in the X-axis direction, and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 21 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 6, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 6 the object side and image side of any one of the second lens E2, sixth lens E6, and seventh lens E7, the image side S2 of the first lens E1, and the third lens E3
  • the image side S6 of the fourth lens E4, the image side S8 of the fourth lens E4, and the image side S10 of the fifth lens E5 are all aspherical; the object side S1 of the first lens E1, the object side S5 of the third lens E3, and the fourth lens E4
  • the object side surface S7 and the object side surface S9 of the fifth lens E5 are non-rotationally symmetric aspheric surfaces.
  • Table 22 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 23 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S1, S5, S7, and S9 in Example 6, where the non-rotationally symmetric aspheric surface type can be The formula (2) given in Example 1 is limited.
  • Table 24 shows the effective focal lengths f1 to f7 of the lenses in Example 6, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 12 shows the size of the field angle of the RMS spot diameter of the imaging lens of Embodiment 6 in different object spaces in the first quadrant. It can be seen from FIG. 12 that the imaging lens provided in Example 6 can achieve good imaging quality.
  • FIGS. 13 and 14 shows a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is convex, and its image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is concave and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 25 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 7, where the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 7 the object side surface and image of any one of the first lens E1, the second lens E2, the fourth lens E4, the fifth lens E5, the sixth lens E6, and the seventh lens E7
  • Both the side surface and the object side surface S5 of the third lens E3 are aspherical; the image side surface S6 of the third lens E3 is a non-rotationally symmetric aspherical surface.
  • Table 26 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 27 shows the rotationally symmetric component and the higher-order coefficients of the non-rotationally symmetric component that can be used in the non-rotationally symmetric aspheric surface S6 in Embodiment 7, where the non-rotationally symmetric aspheric surface type can be given in Embodiment 1 above
  • the formula (2) is limited.
  • Table 28 shows the effective focal lengths f1 to f7 of the lenses in Example 7, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 14 shows the size of the field angle of the RMS spot diameter of the imaging lens of Example 7 in different object spaces in the first quadrant. It can be seen from FIG. 14 that the imaging lens provided in Example 7 can achieve good imaging quality.
  • FIGS. 15 and 16 shows a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a Five lens E5, sixth lens E6, seventh lens E7 and imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is a convex surface, and its image side surface S2 is a concave surface.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has negative refractive power, and its object side surface S5 is a concave surface, and its image side surface S6 is a convex surface.
  • the fourth lens E4 has positive refractive power, and its object side surface S7 is convex, and its image side surface S8 is convex.
  • the fifth lens E5 has negative refractive power, and its object side surface S9 is concave and the image side surface S10 is concave.
  • the sixth lens E6 has positive refractive power, and its object side surface S11 is convex, and its image side surface S12 is convex.
  • the seventh lens E7 has negative refractive power, and its object side surface S13 is concave and the image side surface S14 is concave. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the imaging lens of this embodiment may further include a stop STO (not shown) provided between the third lens E3 and the fourth lens E4 to improve the imaging quality.
  • Table 29 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 8, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • the object side surface and image of any one of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, the fifth lens E5, and the seventh lens E7 Both the side surface and the object side surface S11 of the sixth lens E6 are aspherical; the image side surface S12 of the sixth lens E6 is a non-rotationally symmetric aspherical surface.
  • Table 30 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 8, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 31 shows the rotationally symmetric component and the higher-order coefficients of the non-rotationally symmetric component that can be used in the non-rotationally symmetric aspheric surface S12 in Example 8, where the non-rotationally symmetric aspheric surface type can be given in Embodiment 1 (2) is limited.
  • Table 32 shows the effective focal lengths f1 to f7 of the lenses in Example 8, the effective focal length fx of the imaging lens in the X-axis direction, the effective focal length fy of the imaging lens in the Y-axis direction, and the center of the object side S1 of the first lens E1
  • the distance TTL to the imaging plane S15 on the optical axis and the diagonal length of the effective pixel area on the imaging plane S15 is ImgH, which is half the length.
  • FIG. 16 shows the size of the field angle of the RMS spot diameter of the imaging lens of Example 8 in different object spaces in the first quadrant. It can be seen from FIG. 16 that the imaging lens provided in Example 8 can achieve good imaging quality.
  • Examples 1 to 8 satisfy the relationships shown in Table 33, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the camera device is equipped with the camera lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,摄像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7)。其中,第一透镜(E1)具有负光焦度;第四透镜(E4)具有正光焦度;第七透镜(E7)具有负光焦度;第一透镜(E1)至第七透镜(E7)中的至少一个透镜具有非旋转对称的非球面。摄像镜头的X轴方向的有效焦距fx与摄像镜头的Y轴方向的有效焦距fy满足0.8<fx/fy<1.2。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2018年12月11日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811507963.5的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括七片透镜的摄像镜头。
背景技术
近年来,随着手机摄像领域的快速发展,以及大尺寸、高像素的互补性氧化金属半导体元件(CMOS)或感光耦合元件(CCD)的芯片的普及,各大手机厂商在追求镜头轻薄化与小型化的同时,更是对镜头的成像质量提出了严苛的要求。除了要求镜头成像具备高分辨率和大孔径,还要求在较广的视场范围内都具有优良的成像品质。
然而,目前市场主流的镜头大多采用的镜片面型是一种旋转对称(轴对称)的非球面,这类旋转对称的非球面可以看成是子午平面内一条曲线绕光轴旋转360度而形成的,其只在子午平面内有足够的自由度,因此仅能较好地矫正子午像差,却不能很好地矫正弧矢像差。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头。
本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有负光焦度;第四透镜可具有正光焦度;第七透镜可具有负光焦度;第一透镜至第七透镜中的至少一个透镜可具有非旋转对称的非球面。
在一个实施方式中,摄像镜头的X轴方向的有效焦距fx与摄像镜头的Y轴方向的有效焦距fy可满足0.8<fx/fy<1.2。
在一个实施方式中,摄像镜头的全视场角FOV可满足150°<FOV<190°。
在一个实施方式中,摄像镜头的X轴方向的有效焦距fx与摄像镜头的X轴方向的入瞳直径EPDx可满足fx/EPDx<2.0;并且摄像镜头的Y轴方向的有效焦距fy与摄像镜头的Y轴方向的入瞳直径EPDy可满足fy/EPDy<2.0。
在一个实施方式中,第七透镜的有效焦距f7与第一透镜的有效焦距f1可满足0.3<f7/f1<1.3。
在一个实施方式中,第四透镜的有效焦距f4与第六透镜的有效焦距f6可满足0.5<f4/f6<1.5。
在一个实施方式中,第五透镜的像侧面的曲率半径R10与第五透镜的有效焦距f5可满足-1<R10/f5<0。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足0.2<(R1-R2)/(R1+R2)<0.7。
在一个实施方式中,第四透镜的物侧面的曲率半径R7、第四透镜的像侧面的曲率半径R8、第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4可满足0.3<(R7-R8)/(R3+R4)<1.3。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12、第四透镜在光轴上的中心厚度CT4、第六透镜在光轴上的中心厚度CT6以及第七透镜在光轴上的中心厚度CT7可满足0.8<T12/(CT4+CT6+CT7)<1.8。
在一个实施方式中,第一透镜的像侧面的有效半口径DT12、第二透镜的像侧面的有效半口径DT22以及第三透镜的像侧面的有效半口径DT32可满足0.8<DT12/(DT22+DT32)<1.2。
在一个实施方式中,第六透镜的边缘厚度ET6与第六透镜的中心厚度CT6可满足0.5<ET6/CT6*5<1.5。
在一个实施方式中,摄像镜头还可包括光阑,光阑至摄像镜头的成像面在光轴上的距离SL与第一透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离TTL可满足0.3<SL/TTL<0.6。
在一个实施方式中,第六透镜的像侧面可为凸面。
在一个实施方式中,第七透镜的物侧面可为凹面,像侧面可为凹面。
本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有小型化、广角和高像素等至少一个有益效果。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差同时进行矫正,极大地提升了光学系统的光学性能。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2示意性示出了实施例1的摄像镜头的RMS光斑直径在第一象限内的情况;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4示意性示出了实施例2的摄像镜头的RMS光斑直径在第一象限内的情况;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6示意性示出了实施例3的摄像镜头的RMS光斑直径在第一象限内的情况;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8示意性示出了实施例4的摄像镜头的RMS光斑直径在第一象限内的情况;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10示意性示出了实施例5的摄像镜头的RMS光斑直径在第一象限内的情况;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12示意性示出了实施例6的摄像镜头的RMS光斑直径在第一象限内的情况;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14示意性示出了实施例7的摄像镜头的RMS光斑直径在第一象限内的情况;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;
图16示意性示出了实施例8的摄像镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。
在本文中,我们定义平行于光轴的方向为Z轴方向,与Z轴垂直且位于中心视场子午平面内的方向为Y轴方向,与Z轴垂直且位于中心视场弧矢平面内的方向为X轴方向。除非另有说明,否则本文中除涉及视场的参量符号以外的各参量符号(例如,曲率半径等)均表示沿摄像镜头的Y轴方向的特征参量值。例如,在没有特别说明的情况下,条件式“(R1-R2)/(R1+R2)”中的R1表示第一透镜的物侧面的Y轴方向的曲率半径R1y,R2表示第一透镜的像侧面的Y轴方向的曲率半径R2y。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除 非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第七透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度,第四透镜可具有正光焦度,第七透镜可具有负光焦度。合理配置各个透镜的光焦度,既能有效地矫正系统的球差和色差,还能避免光焦度过度集中在单个镜片,降低镜片的敏感性,为实际加工和组装工艺提供更宽松的公差条件。
在示例性实施方式中,第五透镜可具有负光焦度。
在示例性实施方式中,第六透镜可具有正光焦度。
在示例性实施方式中,第六透镜的像侧面可为凸面;第七透镜的物侧面可为凹面,像侧面可为凹面。合理分配第六透镜和第七透镜面型,减小光线在第七透镜处的入射角和出射角,使系统主光线角度与芯片可以更好地匹配,同时有利于避免由于偏折角度过大而产生全反射鬼像。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面;第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜的物侧面可为凸面,像侧面可为凸面;第五透镜的像侧面可为凹面。
在示例性实施方式中,可通过将第一透镜至第七透镜中的至少一个透镜的物侧面和/或像侧面设置为非旋转对称的非球面,来进一步提升像质。非旋转对称的非球面是一种自由曲面,在旋转对称的非球面基础上,增加了非旋转对称分量,因而在透镜系统中引入非旋转对称的非球面有利于通过对轴外子午像差和弧矢像差进行有效矫正,能有效地减小轴外视场的像散和场曲,极大地提升光学系统的性能。根据本申请的摄像镜头可包括至少一个非旋转对称的非球面,例如,包括一个非旋转对称的非球面、两个非旋转对称的非球面、三个非旋转对称的非球面或更多个非旋转对称的非球面。
在下述实施例中,实施例1中第二透镜的物侧面、第三透镜的物侧面以及第七透镜的像侧面;实施例2中第一透镜的物侧面、第二透镜的物侧面以及第四透镜的物侧面;实施例3中第一透镜的物侧面和第二透镜的像侧面;实施例4中第一透镜的物侧面和第二透镜的像侧面;实施例5中第一透镜的物侧面、第三透镜的物侧面以及第四透镜的物侧面;实施例6中第一透镜的物侧面、第三透镜的物侧面、第四透镜的物侧面以及第五透镜的物侧面;实施例7中第三透镜的像侧面;实施例8中第六透镜的像侧面均为非旋转对称的非球面,即,自由曲面。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<fx/fy<1.2,其中,fx为摄像镜头的X轴方向的有效焦距,fy为摄像镜头的Y轴方向的有效焦距。更具体地,fx和fy进一步可满足0.83≤fx/fy≤1.11。满足条件式0.8<fx/fy<1.2,能够保证系统在X轴和Y轴方向都具有较小的球差。
在示例性实施方式中,本申请的摄像镜头可满足条件式150°<FOV<190°,其中,FOV为摄像镜头的全视场角。更具体地,FOV进一步可满足164°≤FOV≤176°。合理控制视场角,既能保证系统对较广的视场范围都具有优良成像品质,还能避免边缘视场照度偏低。
在示例性实施方式中,本申请的摄像镜头可满足条件式fi/EPDi<2.0,其中i为x或y。当i为x时,fx为摄像镜头的X轴方向的有效焦距,EPDx为摄像镜头的X轴方向的入瞳直径,fx/EPDx<2.0。当i为y时,fy为摄像镜头的Y轴方向的有效焦距,EPDy为摄像镜头的Y轴方向的入瞳直径,fy/EPDy<2.0。更具体地,fx和EPDx进一步可满足1.79≤fi/EPDi≤1.98,fy和EPDy进一步可满足1.79≤fi/EPDi≤1.98。满足条件式fi/EPDi<2.0,可有效地增大系统的通光量,提升边缘视场的照度,保证镜头在光线较暗的环境下也具有良好的拍摄效果。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.3<f7/f1<1.3,其中,f7为第七透镜的有效焦距,f1为第一透镜的有效焦距。更具体地,f7和f1进一步可满足0.51≤f7/f1≤1.02。合理控制第一透镜和第七透镜的有效焦距,既能避免光焦度集中在第一透镜,利于降低第一透镜的敏感性,同时还有利于平衡前面六个镜片未完全消除的球差和场曲。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<f4/f6<1.5,其中,f4为第四透镜的有效焦距,f6为第六透镜的有效焦距。更具体地,f4和f6进一步可满足0.79≤f4/f6≤1.23。合理控制第四透镜和第六透镜的光焦度,减小光线在第四透镜和第六透镜处的偏折角度,避免因偏折角度过大而产生的全反射鬼像,此外,还可以有效地平衡这两个镜片产生的像散。
在示例性实施方式中,本申请的摄像镜头可满足条件式-1<R10/f5<0,其中,R10为第五透镜的像侧面的曲率半径,f5为第五透镜的有效焦距。更具体地,R10和f5进一步可满足-0.8<R10/f5<-0.3,例如,-0.72≤R10/f5≤-0.36。合理配置第五透镜像侧面的曲率半径和第五透镜有效焦距的比值,既可以减缓光线在该镜片处的偏折,还可以减小该镜片产生的高级彗差和像散。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.2<(R1-R2)/(R1+R2)<0.7,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足0.40≤(R1-R2)/(R1+R2)≤0.52。合理控制第一透镜的物侧面和像侧面的曲率半径,既可以有效地会聚大角度视场光线,还可以减小第一透镜产生的像散和畸变。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.3<(R7-R8)/(R3+R4)<1.3,其中,R7为第四透镜的物侧面的曲率半径,R8为第四透镜的像侧面的曲率半径,R3为第二透镜的物侧面的曲率半径,R4为第二透镜的像侧面的曲率半径。更具体地,R7、R8、R3和R4进一步可满足0.39≤(R7-R8)/(R3+R4)≤1.11。通过合理控制R7、R8、R3和R4,控制光线在第四透镜和第二透镜的入射角和出射角,降低这两个镜片的敏感性,此外,还能有效平衡这两个镜片产生的高级彗差。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<T12/(CT4+CT6+CT7)<1.8,其中,T12为第一透镜和第二透镜在光轴上的间隔距离,CT4为第四透镜在光轴上的中心厚度,CT6为第六透镜在光轴上的中心厚度,CT7为第七透镜在光轴上的中心厚度。更具体地,T12、CT4、CT6和CT7进一步可满足0.93≤T12/(CT4+CT6+CT7)≤1.78。合理控制T12、CT4、CT6和CT7, 以在保证镜头小型化的同时,保证这些镜片实际加工的可行性,此外,还有利于减小光线进入第二透镜的入射角,降低第二透镜的敏感性。
在示例性实施方式中,本申请的摄像镜头还可包括光阑,以提升镜头的成像质量。光阑可设置在第三透镜与第四透镜之间。光阑至摄像镜头的成像面在光轴上的距离SL与第一透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离TTL可满足0.3<SL/TTL<0.6。更具体地,SL和TTL进一步可满足0.43≤SL/TTL≤0.50。通过合理控制SL与TTL的比值范围,既能保证轴外视场具有较大的通光量,增强轴外视场照度,还有利于减小光阑前后镜片的尺寸。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.8<DT12/(DT22+DT32)<1.2,其中,DT12为第一透镜的像侧面的有效半口径,DT22为第二透镜的像侧面的有效半口径,DT32为第三透镜的像侧面的有效半口径。更具体地,DT12、DT22和DT32进一步可满足0.91≤DT12/(DT22+DT32)≤0.99。合理控制第一透镜、第二透镜和第三透镜像侧面的有效半口径,既可以减小镜头前端尺寸,还可以增大系统可接受的视场角。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<ET6/CT6*5<1.5,其中,ET6是第六透镜的边缘厚度,CT6为第六透镜的中心厚度。更具体地,ET6和CT6进一步可满足0.59≤ET6/CT6*5≤1.32。合理控制第六透镜的边缘厚度和中心厚度,可在保证该镜片工艺性的同时进一步减小尺寸,此外,还可以减缓光线在第六透镜处的偏折。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,可以进一步提升成像像质。通过上述配置的摄像镜头还可具有广角、高分辨率、大孔径等有益效果。
在本申请的实施方式中,各透镜的镜面多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面中的至少一个可为非球面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜中的每个透镜的物侧面和像侧面均可为非球面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该摄像镜头不限于包括七个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1和图2描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14在Y轴方向为凹面,在X轴方向为凸面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000001
表1
应当理解的是,上表中没有特别标示(空白处)的“曲率半径X”和“圆锥系数X”与对应的“曲率半径Y”和“圆锥系数Y”数值保持一致。以下各实施例中均与此类似。
由表1可知,第一透镜E1、第四透镜E4、第五透镜E5和第六透镜E6中的任意一个透镜的物侧面和像侧面,第二透镜E2的像侧面S4,第三透镜E3的像侧面S6以及第七透镜E7的物侧面S13均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019099393-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1、S2、S4、S6-S13的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.4449E-01 -4.0758E-03 2.9349E-03 -2.1262E-03 1.0570E-03 -3.2536E-05 -1.3564E-04 4.4720E-05 -4.6481E-06
S2 6.4184E-02 3.9135E-02 1.8464E-02 -8.6679E-03 -5.6073E-03 -5.0265E-03 -7.8539E-04 -5.6553E-04 5.6629E-04
S4 -1.6329E-02 -5.5041E-03 -1.2443E-05 9.4669E-05 7.6958E-05 -4.5130E-05 1.0325E-05 -8.0119E-06 1.6330E-06
S6 -6.6069E-03 3.5413E-03 8.1493E-05 -2.7338E-04 -1.2204E-04 1.4275E-05 1.4139E-05 2.3420E-05 2.0252E-05
S7 -1.0380E-03 1.9385E-03 2.9131E-04 6.9794E-05 -1.4886E-05 6.2031E-06 -6.9227E-06 -5.0318E-06 8.4592E-06
S8 -1.7079E-02 3.4317E-03 5.3480E-04 1.3465E-04 -1.4706E-05 7.4556E-06 -6.5787E-06 -1.4031E-06 -6.2384E-06
S9 -1.4602E-01 5.4174E-03 -3.9485E-05 1.8218E-04 -1.5456E-04 3.5419E-05 -1.9499E-05 1.6033E-06 -4.2503E-07
S10 -8.8744E-02 1.0733E-02 6.5272E-06 4.7534E-04 -4.2203E-04 1.9058E-04 -7.3039E-05 1.5777E-05 -1.3180E-06
S11 5.4918E-03 -4.9493E-03 1.6150E-04 7.8498E-04 -1.9425E-04 2.6811E-04 -8.7080E-05 1.0450E-05 -5.9322E-07
S12 -1.8656E-01 1.7550E-02 -8.2525E-03 1.7237E-03 2.9190E-04 5.1849E-04 1.5316E-04 1.3618E-04 6.8660E-05
S13 -7.7922E-01 1.2023E-01 -2.0666E-02 3.9603E-03 -3.9224E-04 4.9948E-04 -3.7351E-04 1.3860E-04 -1.9884E-05
表2
由表1还可以看出,第二透镜E2的物侧面S3、第三透镜E3的物侧面S5以及第七透镜E7的像侧面S14为非旋转对称的非球面(即,AAS面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:
Figure PCTCN2019099393-appb-000003
其中,z为平行于Z轴方向的面的矢高;Cx、Cy分别为X、Y轴方向面顶点的曲率(=1/曲率半径);Kx、Ky分别为X、Y轴方向圆锥系数;AR、BR、CR、DR、ER、FR、GR、HR、JR分别为非球面旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数;AP、BP、CP、DP、EP、FP、GP、HP、JP分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数。下表3给出了可用于实施例1中的非旋转对 称的非球面S3、S5和S14的各系数。
AAS面 AR AP BR BP CR CP
S3 2.8002E-06 1.1420E+01 3.6473E-02 1.1929E-01 -1.8598E-01 -4.2530E-03
S5 -6.5404E-02 1.4636E-01 -1.8570E-01 -4.0363E-02 1.3721E+00 -6.3747E-04
S14 -3.4978E-01 -1.1283E-02 3.6147E-01 -4.5228E-03 -2.7477E-01 -7.2577E-04
AAS面 DR DP ER EP FR FP
S3 6.3939E-01 -4.7422E-04 -1.3654E+00 1.2415E-04 1.7799E+00 1.3161E-05
S5 -7.3083E+00 5.4600E-04 2.3889E+01 -8.2330E-05 -4.7721E+01 -2.6897E-05
S14 1.4800E-01 1.6636E-04 -5.7302E-02 1.7329E-05 1.5858E-02 -6.7896E-05
AAS面 GR GP HR HP JR JP
S3 -1.4104E+00 -4.3094E-05 6.2028E-01 5.4595E-05 -1.1562E-01 6.4918E-05
S5 5.7680E+01 8.2035E-05 -3.8688E+01 -6.6793E-05 1.0980E+01 -4.7070E-04
S14 -2.9379E-03 6.7925E-05 3.1887E-04 -3.4060E-06 -1.5484E-05 -1.4066E-03
表3
表4给出了实施例1中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -2.78 f7(mm) -2.85
f2(mm) 7.05 fx(mm) 1.16
f3(mm) -19.21 fy(mm) 1.41
f4(mm) 2.42 TTL(mm) 7.75
f5(mm) -3.38 ImgH(mm) 2.37
f6(mm) 2.01
表4
图2示出了实施例1的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图2可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3和图4描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像 侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表5示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000004
表5
由表5可知,在实施例2中,第三透镜E3、第五透镜E5、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面,第一透镜E1的像侧面S2,第二透镜E2的像侧面S4以及第四透镜E4的像侧面S8均为非球面;第一透镜E1的物侧面S1、第二透镜E2的物侧面S3以及第四透镜E4的物侧面S7为非旋转对称的非球面。
表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7示出了可用于实施例2中非旋转对称的非球面S1、S3和S7的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 2.3465E-01 6.3082E-02 2.1192E-02 8.0560E-03 3.3184E-03 1.2944E-03 4.6628E-04 1.1812E-04 3.4662E-05
S4 -5.2318E-02 -8.9469E-03 6.8059E-03 1.4976E-03 2.4248E-04 1.6011E-04 8.6168E-05 2.1305E-05 9.6933E-06
S5 -4.0631E-02 -4.6218E-03 1.2812E-03 1.0554E-04 -1.1336E-04 -2.2841E-05 4.0192E-06 8.1818E-07 -1.0891E-06
S6 -1.7006E-03 -1.1233E-03 -1.0815E-04 -2.8034E-05 -3.2834E-05 -6.0254E-06 1.5226E-06 9.3152E-07 -3.3214E-07
S8 -9.6832E-03 4.3339E-03 -1.8870E-04 -2.7964E-05 -3.4998E-05 -1.9200E-05 -1.1648E-05 -4.5806E-06 -1.4146E-06
S9 -1.5034E-01 3.5503E-03 -2.7356E-04 1.7862E-04 2.4901E-04 1.0595E-04 2.6975E-05 1.8566E-06 -4.1196E-07
S10 -6.4201E-02 1.3720E-02 1.5041E-03 -2.6648E-04 3.1253E-04 1.8982E-05 3.2914E-05 2.5992E-06 1.4536E-06
S11 1.5953E-02 -2.4197E-03 -1.8841E-03 7.8255E-04 -3.4507E-05 -1.0618E-04 -1.1089E-04 -7.2531E-05 -3.2622E-05
S12 -3.0114E-01 4.5428E-03 -3.5410E-03 1.6302E-03 -7.3816E-04 -4.1653E-04 -2.9162E-05 9.0402E-05 4.7005E-05
S13 -4.4431E-01 4.0067E-02 4.2011E-03 2.1925E-03 2.2857E-04 -7.5246E-05 -7.0691E-05 -3.4841E-05 2.4814E-06
S14 -6.6535E-01 2.6361E-02 -2.9663E-03 9.7812E-03 7.9532E-04 1.7803E-04 1.3915E-04 9.4217E-05 -2.5316E-05
表6
AAS面 AR AP BR BP CR CP
S1 2.7703E-03 -1.9327E-01 -3.5194E-04 -4.3360E-02 6.3163E-05 6.5391E-03
S3 2.3031E-02 -6.8625E-02 -7.8064E-02 -2.9685E-02 8.3149E-02 -1.3696E-02
S7 7.9785E-03 1.3871E-01 2.7518E-02 1.3397E-02 -1.3885E-01 -2.0243E-02
AAS面 DR DP ER EP FR FP
S1 -3.2884E-05 -2.4591E-04 8.0129E-06 -1.0607E-04 -1.0147E-06 9.4391E-05
S3 -2.3566E-01 9.7214E-04 3.6689E-01 3.3610E-04 -3.4104E-01 -2.6217E-04
S7 1.1639E+00 -3.3679E-03 -5.1746E+00 2.1696E-04 1.2615E+01 1.7507E-04
AAS面 GR GP HR HP JR JP
S1 7.1449E-08 -4.5178E-05 -2.6485E-09 -1.7135E-05 4.0182E-11 5.5168E-04
S3 1.9983E-01 9.2411E-05 -6.5598E-02 1.6233E-04 8.9045E-03 -1.0637E-03
S7 -1.7464E+01 -1.7811E-04 1.2935E+01 7.3765E-05 -3.9991E+00 1.0432E-03
表7
表8给出了实施例2中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -3.78 f7(mm) -1.93
f2(mm) -122.00 fx(mm) 1.69
f3(mm) 16.70 fy(mm) 1.61
f4(mm) 2.44 TTL(mm) 7.40
f5(mm) -6.12 ImgH(mm) 2.36
f6(mm) 2.17
表8
图4示出了实施例2的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图4可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5和图6描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像 侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表9示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000005
表9
由表9可知,在实施例3中,第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面,第一透镜E1的像侧面S2以及第二透镜E2的物侧面S3均为非球面;第一透镜E1的物侧面S1和第二透镜E2的像侧面S4为非旋转对称的非球面。
表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11示出了可用于实施例3中非旋转对称的非球面S1和S4的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 2.0457E-01 5.6259E-02 2.3871E-02 9.4016E-03 3.7805E-03 1.1541E-03 2.4478E-04 -2.0237E-05 -6.5531E-06
S3 -2.7366E-02 -9.6887E-03 5.7396E-04 1.7664E-04 7.2544E-06 -8.2933E-06 2.6266E-06 -1.7883E-06 3.4583E-07
S5 -4.0142E-02 -5.3322E-03 1.3285E-03 -1.4802E-04 -1.6448E-04 -8.9667E-05 -8.7373E-05 -4.9714E-05 -1.6129E-05
S6 -1.5814E-03 -7.3164E-04 1.1822E-04 -2.2360E-04 -1.1819E-05 5.9528E-05 3.2491E-05 1.7135E-05 4.9656E-06
S7 3.7519E-03 1.1510E-03 2.8425E-04 6.4650E-05 7.3819E-06 2.4164E-06 1.0859E-05 9.1506E-06 2.5536E-06
S8 -9.2324E-03 4.5687E-03 4.3745E-05 -1.4325E-04 -1.6485E-04 -9.0819E-05 -2.7960E-05 -2.1198E-06 3.1937E-06
S9 -1.4804E-01 2.5791E-03 -9.1146E-04 -6.3646E-05 1.9040E-05 4.2937E-06 -1.8357E-05 -8.9897E-06 -5.1854E-06
S10 -6.2930E-02 1.1200E-02 2.0861E-04 2.1352E-04 4.1446E-04 1.5841E-04 9.7734E-05 3.7366E-05 1.4986E-05
S11 1.3755E-02 -2.2716E-03 -1.7456E-03 1.4242E-03 -4.0578E-04 3.4019E-05 -1.8842E-04 -3.8901E-05 -2.8859E-05
S12 -2.9543E-01 3.4216E-03 -4.2291E-03 -3.0474E-04 -8.2478E-04 -2.0295E-04 1.0326E-04 4.3428E-05 -1.4446E-05
S13 -4.2555E-01 3.9108E-02 6.1615E-03 1.0596E-03 -1.3065E-04 -4.6319E-04 -1.7696E-04 -1.5670E-05 -6.3161E-06
S14 -6.8332E-01 4.0852E-02 6.7273E-03 4.0172E-03 4.4909E-04 -1.5316E-03 -1.3828E-04 -1.3863E-04 -9.9145E-05
表10
AAS面 AR AP BR BP CR CP
S1 3.4554E-03 -2.8172E-01 -2.3166E-03 -4.2550E-03 9.1151E-04 1.3464E-03
S4 4.8207E-02 3.0207E-02 -1.4905E-01 1.5763E-02 1.5708E-01 6.0982E-03
AAS面 DR DP ER EP FR FP
S1 -2.2753E-04 -1.1679E-04 3.6656E-05 -3.4295E-05 -3.8054E-06 5.9091E-05
S4 -6.1298E-01 -1.4554E-03 1.2733E+00 3.8975E-05 -1.4809E+00 2.7949E-04
AAS面 GR GP HR HP JR JP
S1 2.4500E-07 -3.4119E-05 -8.8566E-09 1.2570E-05 1.3699E-10 4.2681E-04
S4 1.1235E+00 -3.9069E-04 -5.3275E-01 2.4470E-04 1.1618E-01 3.2713E-03
表11
表12给出了实施例3中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -3.27 f7(mm) -2.71
f2(mm) 27.68 fx(mm) 1.55
f3(mm) 31.24 fy(mm) 1.42
f4(mm) 2.47 TTL(mm) 7.48
f5(mm) -5.11 ImgH(mm) 2.33
f6(mm) 2.05
表12
图6示出了实施例3的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图6可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7和图8描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表13示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000006
表13
由表13可知,在实施例4中,第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面,第一透镜E1的像侧面S2以及第二透镜E2的物侧面S3均为非球面;第一透镜E1的物侧面S1和第二透镜E2的像侧面S4为非旋转对称的非球面。
表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了可用于实施例4中非旋转对称的非球面S1和S4的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 4.6440E-03 5.6150E-02 3.1886E-02 1.5104E-02 7.6455E-03 3.5979E-03 1.6290E-03 5.7724E-04 1.5766E-04
S3 -2.7030E-02 -8.9947E-03 1.1153E-04 9.0738E-05 2.2793E-05 -7.9174E-06 5.3436E-06 -1.5158E-07 -3.7068E-07
S5 -3.8735E-02 -6.6328E-03 2.4576E-03 -6.9235E-04 -5.3884E-04 -1.0501E-04 1.7739E-05 2.3249E-05 6.3316E-06
S6 -3.1041E-03 2.7342E-04 1.0168E-03 -4.4969E-04 -3.0485E-04 -9.4301E-05 -1.1500E-05 4.6782E-06 3.1430E-06
S7 4.7824E-03 8.3569E-04 7.7874E-05 1.7438E-05 -5.3105E-06 -9.4479E-06 -1.3368E-05 -1.0418E-05 -3.6383E-06
S8 -1.0894E-02 4.5910E-03 -3.0725E-04 -6.0196E-06 -8.5389E-05 -5.5591E-05 -4.7199E-05 -2.6364E-05 -9.1030E-06
S9 -1.4798E-01 2.4425E-03 -1.7499E-03 -2.5894E-04 7.7547E-05 -3.3398E-05 -2.7390E-05 -1.2889E-05 -2.6166E-06
S10 -6.4463E-02 1.1224E-02 1.2576E-04 -2.3859E-04 4.9718E-04 -7.8115E-06 6.7996E-05 1.6273E-05 1.6606E-05
S11 1.3877E-02 -3.5549E-03 -2.1112E-03 1.5162E-03 -7.7741E-05 6.7330E-05 -1.4797E-04 -3.7793E-05 -4.4596E-05
S12 -2.8636E-01 3.0041E-03 -6.3512E-03 1.4190E-03 -1.3189E-03 -5.3151E-04 -3.5991E-04 -1.0764E-04 -2.9188E-05
S13 -4.3877E-01 4.9989E-02 -7.5596E-04 1.6636E-03 4.6800E-05 7.6029E-05 -7.3306E-05 -1.2959E-05 -1.9291E-06
S14 -7.1058E-01 2.5710E-02 -6.3741E-03 1.3746E-02 8.7395E-04 -3.4856E-04 2.8985E-05 -1.6945E-04 3.6013E-05
表14
AAS面 AR AP BR BP CR CP
S1 3.5155E-03 2.6166E-01 -2.3461E-03 1.0208E-03 9.1087E-04 -1.5362E-03
S4 4.4492E-02 -4.8570E-02 -1.5025E-01 -1.6671E-02 1.5662E-01 -7.5099E-03
AAS面 DR DP ER EP FR FP
S1 -2.2745E-04 1.6539E-04 3.6656E-05 3.1067E-05 -3.8054E-06 -4.8059E-05
S4 -6.1377E-01 1.6839E-03 1.2720E+00 -5.7753E-05 -1.4822E+00 -3.6710E-04
AAS面 GR GP HR HP JR JP
S1 2.4500E-07 4.6527E-05 -8.8566E-09 -2.9170E-05 1.3699E-10 -4.2408E-04
S4 1.1227E+00 4.7253E-04 -5.3238E-01 -1.9336E-04 1.1856E-01 -3.6679E-03
表15
表16给出了实施例4中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -3.20 f7(mm) -1.64
f2(mm) 32.57 fx(mm) 1.34
f3(mm) 29.39 fy(mm) 1.46
f4(mm) 2.43 TTL(mm) 7.51
f5(mm) -4.88 ImgH(mm) 2.33
f6(mm) 1.97
表16
图8示出了实施例4的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图8可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9和图10描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表17示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000007
表17
由表17可知,在实施例5中,第二透镜E2、第五透镜E5、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面,第一透镜E1的像侧面S2,第三透镜E3的像侧面S6以及第四透镜E4的像侧面S8均为非球面;第一透镜E1的物侧面S1、第三透镜E3的物侧面S5以及第四透镜E4的物侧面S7为非旋转对称的非球面。
表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19示出了可用于实施例5中非旋转对称的非球面S1、S5和S7的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 -7.5833E-02 1.0442E-01 2.9294E-02 1.5761E-02 7.3987E-03 3.2616E-03 1.2807E-03 4.1725E-04 2.3335E-04
S3 -3.1311E-02 -9.9096E-03 7.6836E-04 2.2169E-04 3.6388E-05 -3.3661E-05 1.5428E-05 -8.6254E-06 1.9224E-06
S4 -6.6815E-02 -1.2465E-02 4.4804E-03 5.6324E-04 -9.3421E-05 7.2460E-05 3.0431E-05 -3.2596E-05 -1.6428E-05
S6 4.7392E-03 -2.5777E-04 -8.0736E-04 -9.5197E-05 -1.0523E-04 -2.8708E-05 -9.4624E-06 8.9179E-07 1.5520E-06
S8 -1.1388E-02 7.2811E-03 -1.0699E-03 -7.7532E-04 -7.8491E-05 1.7171E-04 1.3193E-04 4.1503E-05 1.4533E-05
S9 -1.7002E-01 1.0553E-02 1.4471E-03 -3.4682E-05 -3.0906E-04 -4.8854E-04 -8.1886E-05 7.7257E-05 4.1076E-05
S10 -4.7151E-02 1.3860E-02 2.0148E-03 -1.9053E-03 7.5492E-04 -6.2790E-04 6.8885E-05 1.1411E-04 3.9135E-05
S11 4.9552E-02 -1.7445E-02 3.8567E-03 -2.1460E-03 8.9895E-04 -3.3573E-04 6.8404E-05 5.6018E-06 -8.8097E-06
S12 -2.8478E-01 5.4755E-03 3.6867E-04 -4.4303E-03 -5.8742E-04 1.8538E-03 3.5287E-04 -8.3167E-05 -1.9295E-04
S13 -4.1844E-01 4.0164E-02 2.1414E-02 1.4521E-05 -3.7936E-03 -9.2219E-04 5.0741E-04 8.1519E-04 2.9423E-04
S14 -4.6961E-01 1.1276E-01 1.1156E-02 -1.7273E-02 -9.0177E-03 8.2083E-05 5.3353E-03 3.0898E-03 7.0688E-04
表18
AAS面 AR AP BR BP CR CP
S1 2.7480E-03 -3.4033E-01 -5.8317E-04 -9.1717E-02 1.9645E-05 -4.0594E-02
S5 4.0585E-02 1.1558E-01 -1.1319E-01 -7.0101E-03 -2.5520E-01 1.9810E-02
S7 2.2764E-03 -1.1920E-01 9.0143E-02 7.9075E-02 -4.5408E-01 -8.2749E-04
AAS面 DR DP ER EP FR FP
S1 1.6206E-05 -2.8968E-03 -3.7243E-06 1.8703E-04 4.1365E-07 1.1254E-04
S5 1.7366E+00 -1.3844E-03 -6.6063E+00 -2.5957E-04 1.3999E+01 4.6394E-04
S7 1.3628E+00 -5.2537E-03 -2.4820E+00 2.5522E-03 2.3151E+00 6.7377E-04
AAS面 GR GP HR HP JR JP
S1 -2.6513E-08 -1.7249E-04 9.4232E-10 1.5620E-04 -1.4435E-11 9.3798E-04
S5 -1.6384E+01 -5.2257E-04 9.8405E+00 1.6001E-04 -2.4162E+00 9.5813E-03
S7 -2.1509E-01 -1.2512E-01 -8.8621E-01 6.6128E-03 7.1176E-01 -2.2502E-02
表19
表20给出了实施例5中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -2.74 f7(mm) -2.12
f2(mm) -14.98 fx(mm) 1.25
f3(mm) 8.38 fy(mm) 1.13
f4(mm) 2.25 TTL(mm) 7.18
f5(mm) -17.03 ImgH(mm) 2.35
f6(mm) 1.97
表20
图10示出了实施例5的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图10可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11和图12描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9在Y轴方向为凹面,在X轴方向为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表21示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000008
表21
由表21可知,在实施例6中,第二透镜E2、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面,第一透镜E1的像侧面S2,第三透镜E3的像侧面S6,第四透镜E4的像侧面S8以及第五透镜E5的像侧面S10均为非球面;第一透镜E1的物侧面S1、第三透镜E3的物侧面S5、第四透镜E4的物侧面S7以及第五透镜E5的物侧面S9为非旋转对称的非球面。
表22示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23示出了可用于实施例6中非旋转对称的非球面S1、S5、S7和S9的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 -2.6474E-01 5.5857E-02 2.9294E-02 1.5761E-02 7.3987E-03 3.2616E-03 1.2807E-03 2.3464E-04 7.9677E-05
S3 -3.3128E-02 -9.9096E-03 5.8834E-04 3.0560E-04 4.2578E-05 -4.2075E-05 1.7543E-05 -6.4360E-06 1.0843E-06
S4 -7.1499E-02 -1.2465E-02 4.4804E-03 7.2857E-04 -1.7663E-04 7.2460E-05 3.0280E-05 -1.6401E-05 -7.0101E-06
S6 8.5602E-03 2.1353E-03 -1.2517E-03 -2.7271E-04 -2.2107E-04 -1.8357E-05 7.1659E-06 2.3443E-05 4.0244E-06
S8 -1.2858E-02 7.5716E-03 -5.3776E-04 -1.8931E-04 -6.0153E-04 -1.8435E-04 2.1745E-04 1.9225E-04 4.0932E-05
S10 -4.6695E-02 8.8432E-03 3.1386E-03 -1.2930E-03 1.3420E-04 -5.1126E-04 3.1951E-04 -1.5789E-04 -1.2670E-05
S11 5.0024E-02 -1.9137E-02 4.2901E-03 -2.1104E-03 9.1141E-04 -4.5798E-04 2.1714E-04 -9.0401E-05 2.6439E-05
S12 -2.7027E-01 1.8893E-03 -2.0138E-03 -3.0991E-03 -3.2860E-04 1.6872E-03 3.5729E-04 -5.5678E-04 -5.2208E-04
S13 -4.2009E-01 5.6677E-02 1.3734E-02 1.2365E-03 -4.3130E-03 -2.5972E-03 5.0605E-04 1.5606E-03 5.3493E-04
S14 -5.1997E-01 1.0855E-01 -2.2347E-02 -1.5363E-02 -1.3676E-03 2.8557E-03 1.4054E-03 -2.2552E-03 -2.0159E-03
表22
AAS面 AR AP BR BP CR CP
S1 3.1162E-03 2.8359E-02 -5.5692E-04 -1.7492E-03 1.9172E-05 -3.2139E-02
S5 5.0938E-02 -2.7788E-01 -1.1803E-01 -4.6743E-02 -2.6477E-01 -6.5297E-02
S7 -1.7961E-04 2.5637E+00 1.2511E-01 -6.3036E-02 -4.1629E-01 -2.5533E-03
S9 -5.0185E-01 5.0240E-04 1.8238E+00 1.6052E-04 -1.8555E+01 -1.0711E-04
AAS面 DR DP ER EP FR FP
S1 1.6202E-05 -4.7276E-05 -3.7245E-06 -1.3123E-04 4.1357E-07 1.0813E-04
S5 1.7370E+00 5.2832E-03 -6.5940E+00 3.4148E-03 1.4031E+01 -4.4663E-03
S7 1.3513E+00 7.9444E-03 -2.5890E+00 -3.7818E-03 2.0810E+00 -1.2541E-02
S9 1.1889E+02 4.0372E-05 -4.5609E+02 -1.6026E-05 1.0486E+03 3.9029E-06
AAS面 GR GP HR HP JR JP
S1 -2.6520E-08 -7.0859E-05 9.4235E-10 1.1523E-05 -1.4385E-11 8.2184E-04
S5 -1.6353E+01 2.3410E-03 9.8665E+00 1.5205E-02 -2.7467E+00 -1.9322E-02
S7 -3.2398E-01 -2.0860E-01 -1.8836E+00 3.3180E-02 6.0374E-01 -2.5086E-01
S9 -1.4229E+03 1.8657E-05 1.0532E+03 -1.1780E-04 -3.2614E+02 2.1849E-03
表23
表24给出了实施例6中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -2.36 f7(mm) -2.12
f2(mm) -14.92 fx(mm) 0.85
f3(mm) 9.40 fy(mm) 0.96
f4(mm) 2.10 TTL(mm) 6.98
f5(mm) -10.69 ImgH(mm) 2.34
f6(mm) 1.71
表24
图12示出了实施例6的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图12可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13和图14描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表25示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000009
表25
由表25可知,在实施例7中,第一透镜E1、第二透镜E2、第四透镜E4、第五透镜E5、第六透镜E6和第七透镜E7中的任意一个透镜的物侧面和像侧面以及第三透镜E3的物侧面S5均为非球面;第三透镜E3的像侧面S6为非旋转对称的非球面。
表26示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了可用于实施例7中非旋转对称的非球面S6的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.7262E-01 9.3799E-03 2.7189E-03 -1.5805E-03 2.0299E-04 6.6067E-05 -1.4410E-05 4.9276E-06 -4.7818E-06
S2 -3.4865E-01 8.5528E-02 -5.9395E-03 8.8903E-03 -2.0224E-04 1.0998E-03 -1.9552E-04 7.3721E-05 -8.6898E-05
S3 -2.6952E-02 -4.5334E-03 2.0829E-03 1.2768E-03 4.2231E-04 1.0032E-04 1.4552E-05 -4.5832E-06 -9.1425E-07
S4 -3.1730E-02 -5.4487E-03 2.1245E-03 5.9035E-04 3.6460E-05 -6.7547E-06 -1.8165E-06 -2.7685E-06 4.9654E-07
S5 -5.6721E-02 -4.2459E-04 7.5780E-04 -1.9906E-05 -6.4096E-05 -1.6565E-06 -7.2928E-06 1.0495E-06 -3.6125E-06
S7 6.1621E-04 -1.9555E-04 1.8692E-05 3.7722E-05 -1.2160E-05 6.7943E-06 -3.2533E-06 3.3251E-06 -1.8142E-06
S8 -1.5301E-02 4.7267E-03 7.6085E-05 2.1565E-05 -5.0949E-06 -4.5699E-06 -1.2798E-06 -3.8918E-07 1.1087E-07
S9 -1.9348E-01 9.6374E-03 2.6236E-05 -2.3626E-04 5.0077E-05 -1.5551E-05 -5.8334E-06 -6.5102E-06 1.8028E-07
S10 -9.0388E-02 2.4751E-02 3.0049E-04 -2.2107E-04 2.0137E-04 -1.7657E-05 4.2032E-06 2.0970E-05 7.6677E-06
S11 3.3954E-02 -7.7075E-03 2.0799E-03 1.5231E-05 2.6130E-05 1.2367E-05 -3.2666E-05 1.6944E-05 1.9716E-06
S12 -1.3402E-01 -1.0497E-02 -1.5122E-03 1.2342E-03 6.7812E-04 2.9898E-04 9.7111E-05 1.1356E-05 -4.1554E-06
S13 -7.5141E-01 8.5717E-02 -1.2242E-02 4.1003E-03 2.4532E-04 3.3045E-04 2.5317E-04 3.6704E-06 7.4628E-06
S14 -7.3929E-01 1.1609E-01 -3.7841E-02 9.5712E-03 -3.1203E-03 1.0474E-03 -9.7708E-05 4.4824E-06 4.0321E-05
表26
AAS面 AR AP BR BP CR CP
S6 -1.3316E-02 8.9504E-02 3.3249E-02 9.3299E-02 -3.9386E-01 -3.3044E-04
AAS面 DR DP ER EP FR FP
S6 1.9600E+00 -7.2975E-04 -6.0207E+00 2.4582E-04 1.1690E+01 -6.9084E-05
AAS面 GR GP HR HP JR JP
S6 -1.3730E+01 -9.3598E-06 8.7280E+00 1.2682E-04 -2.2970E+00 -9.1660E-04
表27
表28给出了实施例7中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -2.87 f7(mm) -2.64
f2(mm) 7.08 fx(mm) 1.37
f3(mm) -16.76 fy(mm) 1.39
f4(mm) 2.20 TTL(mm) 7.75
f5(mm) -7.55 ImgH(mm) 2.32
f6(mm) 2.78
表28
图14示出了实施例7的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图14可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15和图16描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
本实施例的摄像镜头还可包括设置在第三透镜E3与第四透镜E4之间的光阑STO(未示出),以提升成像质量。
表29示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019099393-appb-000010
Figure PCTCN2019099393-appb-000011
表29
由表29可知,在实施例8中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第七透镜E7中的任意一个透镜的物侧面和像侧面以及第六透镜E6的物侧面S11均为非球面;第六透镜E6的像侧面S12为非旋转对称的非球面。
表30示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表31示出了可用于实施例8中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -1.5350E-01 8.6270E-03 1.0007E-03 -1.7487E-03 9.6858E-04 -4.9523E-05 -4.8923E-04 3.6445E-04 -1.6119E-04
S2 -3.0366E-01 8.0580E-02 -4.2319E-03 7.9313E-03 -9.4417E-04 3.1871E-04 -1.9192E-04 9.5962E-05 6.5008E-05
S3 -1.4055E-02 -4.9697E-03 6.5035E-04 4.6306E-04 1.4598E-04 3.4094E-05 7.7084E-06 2.1298E-06 2.8692E-06
S4 -2.4290E-02 -5.2311E-03 1.2597E-03 3.1718E-04 -1.2511E-05 1.3226E-05 -3.8483E-06 7.1398E-06 -1.8264E-06
S5 -4.6957E-02 -2.3230E-04 7.4626E-04 -1.1433E-04 -1.6486E-05 -1.0420E-06 1.7239E-06 -2.5528E-06 1.9346E-06
S6 -9.0792E-03 -4.0989E-04 -6.8554E-05 -2.4691E-04 1.0502E-05 4.4176E-06 2.8706E-06 1.7228E-06 -6.7661E-07
S7 1.1799E-03 5.6883E-04 -3.8272E-04 -9.8112E-05 2.6215E-04 -1.9092E-05 -8.4784E-05 -1.0685E-04 -2.5259E-05
S8 -1.7911E-02 5.2118E-03 -1.0409E-05 -1.6831E-04 -1.7697E-04 -1.0583E-04 -6.7810E-05 -3.0458E-05 -1.2941E-05
S9 -1.5414E-01 6.7610E-03 -2.5399E-04 1.5509E-04 1.7940E-05 1.8358E-05 2.0318E-06 3.2338E-06 5.4920E-07
S10 -7.7720E-02 1.3785E-02 -5.3054E-04 1.0376E-04 4.7703E-05 8.9078E-07 -5.8704E-06 5.0013E-06 -1.8955E-06
S11 1.3297E-02 -5.9096E-03 -1.2253E-04 -6.0527E-06 1.6017E-04 -4.3261E-05 2.1815E-05 -6.8024E-06 -2.7528E-06
S13 -8.4754E-01 1.0274E-01 -1.1610E-02 5.7552E-03 -1.0599E-04 -4.5340E-05 -1.3822E-04 -5.6682E-05 7.7182E-05
S14 -8.2276E-01 1.4889E-01 -3.5502E-02 1.4634E-02 -4.6493E-03 1.6843E-03 -3.8769E-04 3.5317E-04 1.7231E-04
表30
AAS面 AR AP BR BP CR CP
S12 -1.1491E-01 -9.5343E-02 5.8298E-02 -1.1481E-01 7.5428E-02 2.7319E-02
AAS面 DR DP ER EP FR FP
S12 -4.2250E-01 -1.2502E-03 8.4753E-01 -1.1230E-04 -9.8713E-01 1.2194E-04
AAS面 GR GP HR HP JR JP
S12 6.8050E-01 -7.2970E-05 -2.5804E-01 5.0040E-06 4.1404E-02 4.6245E-04
表31
表32给出了实施例8中各透镜的有效焦距f1至f7、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离TTL以及成像面S15上有效像素区域对角线长的一半ImgH。
f1(mm) -2.86 f7(mm) -2.38
f2(mm) 7.05 fx(mm) 1.39
f3(mm) -17.18 fy(mm) 1.36
f4(mm) 2.28 TTL(mm) 7.73
f5(mm) -3.29 ImgH(mm) 2.32
f6(mm) 1.99
表32
图16示出了实施例8的摄像镜头的RMS光斑直径在第一象限内不同物空间中视场角所对应的大小情况。根据图16可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例8分别满足表33中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8
fx/fy 0.83 1.05 1.09 0.92 1.11 0.89 0.99 1.02
FOV(°) 172.0 176.0 170.0 164.0 175.0 175.0 172.0 172.0
fi/EPDi(i为x或y) 1.98 1.89 1.84 1.83 1.88 1.88 1.79 1.82
f7/f1 1.02 0.51 0.83 0.51 0.77 0.90 0.92 0.83
f4/f6 1.21 1.12 1.20 1.23 1.15 1.23 0.79 1.14
R10/f5 -0.59 -0.36 -0.38 -0.36 -0.45 -0.69 -0.59 -0.72
(R1-R2)/(R1+R2) 0.41 0.48 0.52 0.44 0.46 0.50 0.40 0.40
(R7-R8)/(R3+R4) 1.11 0.76 0.72 0.79 0.75 0.39 0.99 1.09
T12/(CT4+CT6+CT7) 1.59 0.95 0.98 0.93 1.15 1.31 1.78 1.54
SL/TTL 0.45 0.50 0.49 0.49 0.47 0.46 0.43 0.44
DT12/(DT22+DT32) 0.93 0.91 0.98 0.98 0.99 0.99 0.92 0.96
ET6/CT6*5 1.12 0.69 0.59 0.68 0.69 0.71 1.32 1.09
表33
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 摄像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第四透镜具有正光焦度;
    所述第七透镜具有负光焦度;
    所述第一透镜至所述第七透镜中的至少一个透镜具有非旋转对称的非球面;以及
    所述摄像镜头的X轴方向的有效焦距fx与所述摄像镜头的Y轴方向的有效焦距fy满足0.8<fx/fy<1.2。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的全视场角FOV满足150°<FOV<190°。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的有效焦距fx与所述摄像镜头的X轴方向的入瞳直径EPDx满足fx/EPDx<2.0;以及
    所述摄像镜头的Y轴方向的有效焦距fy与所述摄像镜头的Y轴方向的入瞳直径EPDy满足fy/EPDy<2.0。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第一透镜的有效焦距f1满足0.3<f7/f1<1.3。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第六透镜的有效焦距f6满足0.5<f4/f6<1.5。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜的像侧面的曲率半径R10与所述第五透镜的有效焦距f5满足-1<R10/f5<0。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.2<(R1-R2)/(R1+R2)<0.7。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7、所述第四透镜的像侧面的曲率半径R8、所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.3<(R7-R8)/(R3+R4)<1.3。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第四透镜在所述光轴上的中心厚度CT4、所述第六透镜在所述光轴上的中心厚度CT6以及所述第七透镜在所述光轴上的中心厚度CT7满足0.8<T12/(CT4+CT6+CT7)<1.8。
  10. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT12、所述第二透镜的像侧面的有效半口径DT22以及所述第三透镜的像侧面的有效半口径DT32满足0.8<DT12/(DT22+DT32)<1.2。
  11. 根据权利要求1所述的摄像镜头,其特征在于,所述第六透镜的边缘厚度ET6与所述第 六透镜的中心厚度CT6满足0.5<ET6/CT6*5<1.5。
  12. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL与所述第一透镜的物侧面的中心至所述摄像镜头的成像面在光轴上的距离TTL满足0.3<SL/TTL<0.6。
  13. 根据权利要求1至11中任一项所述的摄像镜头,其特征在于,所述第六透镜的像侧面为凸面。
  14. 根据权利要求13所述的摄像镜头,其特征在于,所述第七透镜的物侧面为凹面,像侧面为凹面。
  15. 摄像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第四透镜具有正光焦度;
    所述第七透镜具有负光焦度;
    所述第一透镜至所述第七透镜中的至少一个透镜具有非旋转对称的非球面;以及
    所述摄像镜头的全视场角FOV满足150°<FOV<190°。
  16. 根据权利要求15所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的有效焦距fx与所述摄像镜头的X轴方向的入瞳直径EPDx满足fx/EPDx<2.0;以及
    所述摄像镜头的Y轴方向的有效焦距fy与所述摄像镜头的Y轴方向的入瞳直径EPDy满足fy/EPDy<2.0。
  17. 根据权利要求16所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的有效焦距fx与所述摄像镜头的Y轴方向的有效焦距fy满足0.8<fx/fy<1.2。
  18. 根据权利要求15所述的摄像镜头,其特征在于,所述第七透镜的有效焦距f7与所述第一透镜的有效焦距f1满足0.3<f7/f1<1.3。
  19. 根据权利要求15所述的摄像镜头,其特征在于,所述第四透镜的有效焦距f4与所述第六透镜的有效焦距f6满足0.5<f4/f6<1.5。
  20. 根据权利要求15所述的摄像镜头,其特征在于,所述第五透镜的像侧面的曲率半径R10与所述第五透镜的有效焦距f5满足-1<R10/f5<0。
  21. 根据权利要求15所述的摄像镜头,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足0.2<(R1-R2)/(R1+R2)<0.7。
  22. 根据权利要求15所述的摄像镜头,其特征在于,所述第四透镜的物侧面的曲率半径R7、所述第四透镜的像侧面的曲率半径R8、所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足0.3<(R7-R8)/(R3+R4)<1.3。
  23. 根据权利要求15所述的摄像镜头,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第四透镜在所述光轴上的中心厚度CT4、所述第六透镜在所述光轴上的中心厚度CT6以及所述第七透镜在所述光轴上的中心厚度CT7满足0.8<T12/(CT4+CT6+CT7) <1.8。
  24. 根据权利要求15所述的摄像镜头,其特征在于,所述第一透镜的像侧面的有效半口径DT12、所述第二透镜的像侧面的有效半口径DT22以及所述第三透镜的像侧面的有效半口径DT32满足0.8<DT12/(DT22+DT32)<1.2。
  25. 根据权利要求15所述的摄像镜头,其特征在于,所述第六透镜的边缘厚度ET6与所述第六透镜的中心厚度CT6满足0.5<ET6/CT6*5<1.5。
  26. 根据权利要求15至25中任一项所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL与所述第一透镜的物侧面的中心至所述摄像镜头的成像面在光轴上的距离TTL满足0.3<SL/TTL<0.6。
  27. 根据权利要求15至25中任一项所述的摄像镜头,其特征在于,所述第六透镜的像侧面为凸面。
  28. 根据权利要求27所述的摄像镜头,其特征在于,所述第七透镜的物侧面为凹面,像侧面为凹面。
PCT/CN2019/099393 2018-12-11 2019-08-06 摄像镜头 WO2020119145A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811507963.5 2018-12-11
CN201811507963.5A CN109298515B (zh) 2018-12-11 2018-12-11 摄像镜头

Publications (1)

Publication Number Publication Date
WO2020119145A1 true WO2020119145A1 (zh) 2020-06-18

Family

ID=65142926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099393 WO2020119145A1 (zh) 2018-12-11 2019-08-06 摄像镜头

Country Status (2)

Country Link
CN (2) CN109298515B (zh)
WO (1) WO2020119145A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514933A (zh) * 2021-04-21 2021-10-19 浙江舜宇光学有限公司 摄像镜头
CN116880043A (zh) * 2023-09-08 2023-10-13 江西联益光学有限公司 光学镜头
WO2024002107A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 激光接收系统、激光雷达、镜头组件、电子设备及车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298515B (zh) * 2018-12-11 2023-11-21 浙江舜宇光学有限公司 摄像镜头
TWI712830B (zh) 2019-12-25 2020-12-11 大立光電股份有限公司 攝影用光學鏡頭組、取像裝置及電子裝置
TWI721904B (zh) 2020-06-10 2021-03-11 大立光電股份有限公司 影像擷取鏡片組、取像裝置及電子裝置
CN111538137B (zh) * 2020-07-09 2020-10-16 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN112147765B (zh) * 2020-09-28 2022-10-28 维沃移动通信有限公司 光学镜头、光学模组及电子设备
CN112526723A (zh) * 2020-12-18 2021-03-19 辽宁中蓝光电科技有限公司 一种使用自由曲面的tof镜头
CN112731629B (zh) * 2021-01-25 2022-05-03 浙江舜宇光学有限公司 光学成像镜头
CN114035303B (zh) * 2021-10-23 2024-05-03 广东弘景光电科技股份有限公司 小体积超广角日夜两用型摄像模组
CN114035302B (zh) * 2021-10-23 2024-05-03 广东弘景光电科技股份有限公司 小体积超广角日夜两用型光学系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158121A (ja) * 2006-12-22 2008-07-10 Casio Comput Co Ltd ズームレンズ及びカメラ
CN101713862A (zh) * 2008-10-01 2010-05-26 株式会社拓普康 像变光学系统、摄像装置、车载型照相机和监视照相机
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像系统
KR20180071015A (ko) * 2016-12-19 2018-06-27 엘지이노텍 주식회사 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头
CN109298515A (zh) * 2018-12-11 2019-02-01 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455491A (zh) * 2010-10-22 2012-05-16 鸿富锦精密工业(深圳)有限公司 变焦镜头系统
JP6265334B2 (ja) * 2014-03-20 2018-01-24 株式会社オプトロジック 撮像レンズ
CN107037568B (zh) * 2016-02-04 2019-09-13 大立光电股份有限公司 摄像用光学镜头组、取像装置及电子装置
CN107678138B (zh) * 2017-10-19 2020-01-17 瑞声科技(新加坡)有限公司 摄像光学镜头
JP7032226B2 (ja) * 2018-04-27 2022-03-08 株式会社タムロン ズームレンズ及び撮像装置
CN115437120A (zh) * 2018-05-29 2022-12-06 三星电机株式会社 光学成像系统
CN112987244A (zh) * 2019-12-13 2021-06-18 天津欧菲光电有限公司 光学成像系统、取像装置及电子设备
CN113759498A (zh) * 2020-06-02 2021-12-07 华为技术有限公司 一种光学镜头及光学系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158121A (ja) * 2006-12-22 2008-07-10 Casio Comput Co Ltd ズームレンズ及びカメラ
CN101713862A (zh) * 2008-10-01 2010-05-26 株式会社拓普康 像变光学系统、摄像装置、车载型照相机和监视照相机
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
KR20180071015A (ko) * 2016-12-19 2018-06-27 엘지이노텍 주식회사 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기
CN107728290A (zh) * 2017-11-02 2018-02-23 浙江舜宇光学有限公司 光学成像系统
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头
CN109298515A (zh) * 2018-12-11 2019-02-01 浙江舜宇光学有限公司 摄像镜头

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514933A (zh) * 2021-04-21 2021-10-19 浙江舜宇光学有限公司 摄像镜头
CN113514933B (zh) * 2021-04-21 2023-05-02 浙江舜宇光学有限公司 摄像镜头
WO2024002107A1 (zh) * 2022-06-30 2024-01-04 华为技术有限公司 激光接收系统、激光雷达、镜头组件、电子设备及车辆
CN116880043A (zh) * 2023-09-08 2023-10-13 江西联益光学有限公司 光学镜头
CN116880043B (zh) * 2023-09-08 2024-01-05 江西联益光学有限公司 光学镜头

Also Published As

Publication number Publication date
CN113960765A (zh) 2022-01-21
CN109298515B (zh) 2023-11-21
CN113960765B (zh) 2024-03-29
CN109298515A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2020119145A1 (zh) 摄像镜头
WO2020119172A1 (zh) 光学成像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2020093725A1 (zh) 摄像光学系统
WO2020007080A1 (zh) 摄像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2020024633A1 (zh) 光学成像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019223263A1 (zh) 摄像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
CN109283665B (zh) 成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
WO2020073702A1 (zh) 光学成像镜片组
WO2020186759A1 (zh) 光学成像镜头
WO2020048157A1 (zh) 摄像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020143252A1 (zh) 摄像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020042765A1 (zh) 影像镜头
WO2020134130A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894566

Country of ref document: EP

Kind code of ref document: A1