WO2020143252A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020143252A1
WO2020143252A1 PCT/CN2019/108448 CN2019108448W WO2020143252A1 WO 2020143252 A1 WO2020143252 A1 WO 2020143252A1 CN 2019108448 W CN2019108448 W CN 2019108448W WO 2020143252 A1 WO2020143252 A1 WO 2020143252A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
axis direction
imaging
object side
imaging lens
Prior art date
Application number
PCT/CN2019/108448
Other languages
English (en)
French (fr)
Inventor
戴付建
吕赛锋
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020143252A1 publication Critical patent/WO2020143252A1/zh
Priority to US17/037,021 priority Critical patent/US20210011260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an imaging lens, and more particularly, to an imaging lens including six lenses.
  • the wide-angle lenses currently carried on mainstream mobile phones mostly use a six-piece lens structure, and each lens mostly uses a rotationally symmetric (axisymmetric) aspheric surface as its surface structure.
  • This type of rotationally symmetric aspheric surface can be regarded as formed by a curve in the meridian plane rotating 360° around the optical axis, so it only has sufficient degrees of freedom in the meridian plane, and does not have good off-axis aberration Make corrections.
  • the rotationally symmetric aspheric face does not contribute substantially to the TV distortion correction of the wide-angle lens.
  • the present application provides a camera lens applicable to portable electronic products, which can at least solve or partially solve the above-mentioned at least one disadvantage in the prior art, such as a wide-angle small distortion camera lens.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the maximum value TDT of TV distortion in the imaging range of the camera lens can satisfy
  • the object side of the second lens may be convex and the image side may be concave; and the object side of the fourth lens may be concave.
  • the image height IHx of the camera lens in the X axis direction and the image height IHy of the camera lens in the Y axis direction can satisfy
  • the image side surface of the sixth lens is a non-rotationally symmetric aspheric surface; and the processing opening angle ⁇ of the image side surface of the sixth lens can satisfy ⁇ 72°.
  • the effective focal length fy2 of the second lens in the Y-axis direction and the effective focal length fy3 of the third lens in the Y-axis direction may satisfy 3.0 ⁇ fy2/fy3 ⁇ 5.0.
  • the effective focal length fx5 of the fifth lens in the X-axis direction and the effective focal length fx6 of the sixth lens in the X-axis direction may satisfy -0.5 ⁇ fx5/fx6 ⁇ 0.
  • the effective focal length fy1 of the first lens in the Y-axis direction and the effective focal length fy2 of the second lens in the Y-axis direction may satisfy -0.5 ⁇ fy1/fy2 ⁇ 0.
  • the object side surface of the first lens may be concave; and the effective focal length fy of the imaging lens in the Y-axis direction and the radius of curvature R1 of the object side surface of the first lens may satisfy -1.0 ⁇ fy/R1 ⁇ 0.
  • the full field angle FOVx of the imaging lens in the X axis direction and the full field angle FOVy of the imaging lens in the Y axis direction may satisfy tan(FOVx/2) ⁇ tan(FOVy/2) ⁇ 2.0.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the effective focal length fx5 in the X-axis direction of the fifth lens and the effective focal length fx6 in the X-axis direction of the sixth lens can satisfy -0.5 ⁇ fx5/fx6 ⁇ 0.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the object side surface of the second lens may be a convex surface, and the image side surface may be a concave surface; and the object side surface of the fourth lens may be a concave surface.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the image side surface of the sixth lens is a non-rotationally symmetric aspheric surface; and the processing opening angle ⁇ of the image side surface of the sixth lens can satisfy ⁇ 72°.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the image height IHx of the camera lens in the X axis direction and the image height IHy of the camera lens in the Y axis direction can satisfy
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the effective focal length fy2 of the second lens in the Y-axis direction and the effective focal length fy3 of the third lens in the Y-axis direction may satisfy 3.0 ⁇ fy2/fy3 ⁇ 5.0.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the effective focal length fy1 of the first lens in the Y-axis direction and the effective focal length fy2 of the second lens in the Y-axis direction may satisfy -0.5 ⁇ fy1/fy2 ⁇ 0.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the object side surface of the first lens may be concave; and the effective focal length fy of the imaging lens in the Y-axis direction and the radius of curvature R1 of the object side surface of the first lens may satisfy -1.0 ⁇ fy/R1 ⁇ 0.
  • the present application provides an imaging lens including a first lens, a second lens, a third lens, and a fourth lens with optical power in order from the object side to the image side along the optical axis , Fifth lens and sixth lens.
  • the first lens and the sixth lens may have negative power; the third lens and the fifth lens may have positive power; at least one of the first lens to the sixth lens may have a non-rotationally symmetric aspheric surface.
  • the full field angle FOVx of the imaging lens in the X-axis direction and the full field angle FOVy of the imaging lens in the Y-axis direction can satisfy tan(FOVx/2) ⁇ tan(FOVy/2) ⁇ 2.0.
  • This application uses multiple (for example, six) lenses.
  • the above-mentioned imaging lens has a wide angle, At least one beneficial effect such as small distortion, high image surface brightness, and high imaging quality.
  • the off-axis meridional and sagittal aberrations of the camera lens are corrected simultaneously, which reduces the TV distortion of the actual imaging of the camera lens, thereby further improving the image quality.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application
  • FIG. 2 schematically shows the case where the RMS spot diameter of the imaging lens of Embodiment 1 is within the first quadrant
  • FIG. 4 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • FIG. 5 schematically shows the case where the RMS spot diameter of the imaging lens of Example 2 is within the first quadrant
  • FIG. 6 shows a TV distortion diagram of the camera lens according to Embodiment 2 of the present application.
  • FIG. 7 is a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • FIG. 10 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • FIG. 16 is a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • FIG. 17 schematically shows a case where the RMS spot diameter of the imaging lens of Example 6 is within the first quadrant
  • FIG. 19 is a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • FIG. 20 schematically shows a case where the RMS spot diameter of the imaging lens of Example 7 is within the first quadrant
  • FIG. 21 shows a TV distortion diagram of an imaging lens according to Embodiment 7 of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the feature. Therefore, without departing from the teaching of this application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of explanation.
  • the shape of the spherical surface or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or aspherical surface is not limited to the shape of the spherical surface or aspherical surface shown in the drawings.
  • the drawings are only examples and are not strictly drawn to scale.
  • the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial area; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial area. Concave surface. In each lens, the surface closest to the subject is called the object side of the lens; in each lens, the surface closest to the imaging plane is called the image side of the lens.
  • the XYZ rectangular coordinate system where the X, Y, and Z axes are perpendicular to each other.
  • the origin is located on the optical axis of the camera lens, and the Z axis and the optical axis
  • the X axis is perpendicular to the Z axis and lies in the sagittal plane
  • the Y axis is perpendicular to the Z axis and lies in the meridian plane.
  • the wording “processing angle” is defined as the processing angle of the surface of the lens along the direction of the bisector of the angle between the X axis and the Y axis.
  • each parameter symbol in this article represents a characteristic parameter value along the Y-axis direction of the camera lens.
  • R1 in the conditional expression “fy/R1” represents the radius of curvature in the Y-axis direction of the object side surface of the first lens.
  • the imaging lens according to the exemplary embodiment of the present application may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in sequence along the optical axis from the object side to the image side, and each adjacent lens can have an air gap.
  • the first lens may have negative power; the second lens may have positive power or negative power; the third lens may have positive power; the fourth lens may have positive power or negative power Degrees; the fifth lens may have positive power; the sixth lens may have negative power. Satisfying the above-mentioned optical power distribution is helpful to slow down the deflection angle of light, so that the principle of reverse telephoto can be used to increase the angle of field of view, especially compared with the telephoto structure of the first lens using a positive lens.
  • the negative power of the lens makes it easier for the system to increase the angle of view.
  • the image quality can be further improved by setting the object side surface and/or the image side surface of at least one of the first lens to the sixth lens as a non-rotationally symmetric aspheric surface.
  • the non-rotationally symmetric aspherical surface is a freeform surface.
  • the nonrotationally symmetrical component is added. Therefore, the introduction of the nonrotationally symmetrical aspherical surface in the lens system is beneficial to the off-axis meridional aberration and Sagittal aberration is effectively corrected, which greatly improves the performance of the optical system.
  • the introduction of non-rotationally symmetric aspheric surface can also achieve the purpose of reducing TV distortion.
  • the image side of the sixth lens may be a non-rotationally symmetric aspheric surface.
  • the object side of the second lens may be convex and the image side may be concave; the object side of the fourth lens may be concave.
  • the configuration of the second lens and the fourth lens is reasonably configured to form a double-Gaussian structure, which helps to improve the aberration of the wide-angle lens and improve the imaging quality of the optical system; meanwhile, the change in the shape of the sixth lens is beneficial to match the chip main Light angle to prevent color deviation.
  • the second lens may have positive power; and the fourth lens may have negative power and its image side may be concave.
  • the object side of the third lens may be convex, and the image side may be convex.
  • the image side of the fifth lens may be convex.
  • the object side of the sixth lens may be convex, and the image side may be concave.
  • the imaging lens of the present application may satisfy the conditional expression
  • the imaging lens of the present application may satisfy the conditional expression ⁇ 72°, where ⁇ is the processing opening angle of the image side of the sixth lens. Limiting the processing opening angle of the image side of the sixth lens helps to ensure the processing feasibility and processing accuracy of the sixth lens, and can also ensure the detection accuracy to prevent the effective detection because the processing opening angle is too large.
  • the camera lens of the present application can satisfy the conditional expression Among them, IHx is the image height of the imaging lens in the X-axis direction, and IHy is the image height of the imaging lens in the Y-axis direction. More specifically, IHx and IHy can further satisfy Conditional It can ensure that the camera lens has an ultra-large image surface and achieves ultra-high pixels; at the same time, it is designed to match the shape of the chip, and it is also beneficial to achieve deviation correction in the AA process (ie, active alignment).
  • the imaging lens of the present application may satisfy the conditional expression 3.0 ⁇ fy2/fy3 ⁇ 5.0, where fy2 is the effective focal length of the second lens in the Y-axis direction, and fy3 is the effective focal length of the third lens in the Y-axis direction focal length. More specifically, fy2 and fy3 can further satisfy 2.77 ⁇ fy2/fy3 ⁇ 4.60.
  • the imaging lens of the present application may satisfy the conditional expression -0.5 ⁇ fx5/fx6 ⁇ 0, where fx5 is the effective focal length in the X-axis direction of the fifth lens and fx6 is the X-axis direction of the sixth lens Effective focal length. More specifically, fx5 and fx6 may further satisfy -0.4 ⁇ fx5/fx6 ⁇ -0.1, for example -0.35 ⁇ fx5/fx6 ⁇ -0.21. Since the fifth lens and/or the sixth lens adopt a free-form design, they are non-rotationally symmetrical in the X-axis direction and the Y-axis direction, which is beneficial to the purpose of reducing TV distortion.
  • the imaging lens of the present application may satisfy the conditional expression -0.5 ⁇ fy1/fy2 ⁇ 0, where fy1 is the effective focal length in the Y-axis direction of the first lens and fy2 is the Y-axis direction of the second lens Effective focal length. More specifically, fy1 and fy2 may further satisfy -0.5 ⁇ fy1/fy2 ⁇ -0.2, for example, -0.46 ⁇ fy1/fy2 ⁇ -0.39.
  • the object side surface of the first lens is concave; and the imaging lens of the present application may satisfy the conditional expression -1.0 ⁇ fy/R1 ⁇ 0, where fy is the effective focal length in the Y-axis direction of the imaging lens, R1 Is the radius of curvature of the object side of the first lens. More specifically, fy and R1 may further satisfy -1.0 ⁇ fy/R1 ⁇ -0.5, for example, -0.90 ⁇ fy/R1 ⁇ -0.55.
  • the image side of the first lens may be concave.
  • the imaging lens of the present application may satisfy the conditional expression tan(FOVx/2) ⁇ tan(FOVy/2) ⁇ 2.0, where FOVx is the full field angle of the imaging lens in the X-axis direction, and FOVy is The full angle of view of the camera lens in the Y-axis direction. More specifically, FOVx and FOVy may further satisfy 0 ⁇ tan(FOVx/2) ⁇ tan(FOVy/2) ⁇ 1.5, for example, 0.14 ⁇ tan(FOVx/2) ⁇ tan(FOVy/2) ⁇ 1.45.
  • the above-mentioned camera lens may further include an aperture to improve the imaging quality of the lens.
  • the diaphragm may be disposed between the second lens and the third lens.
  • the above camera lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiments of the present application may use multiple lenses, such as the six described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the camera lens is more conducive to production and processing and can be applied to portable electronic products.
  • the off-axis meridional and sagittal aberrations of the camera lens are corrected to ensure the brightness of the image surface to further improve the image quality, and at the same time achieve the purpose of reducing TV distortion, thereby making
  • the camera lens has the characteristics of wide-angle small distortion.
  • the aspheric mirror surface is often used as the mirror surface of each lens.
  • the characteristics of aspheric lenses are: from the lens center to the lens periphery, the curvature is continuously changing. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion aberrations and improving astigmatic aberrations. With the use of aspheric lenses, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving imaging quality.
  • At least one of the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens may be aspherical.
  • the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens may be aspherical.
  • the number of lenses constituting the imaging lens can be changed to obtain various results and advantages described in this specification.
  • the imaging lens is not limited to include six lenses. If necessary, the camera lens may also include other numbers of lenses.
  • FIG. 1 shows a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • an imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is convex, and its image side surface S10 is convex.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 1, where the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • each aspheric lens can be defined by, but not limited to, the following aspheric formula:
  • x is the distance from the apex of the aspheric surface to the height of the aspheric surface at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient for the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspherical mirror surface S1-S11 in Example 1. .
  • the image side surface S12 of the sixth lens E6 is a non-rotationally symmetric aspheric surface (ie, AAS surface).
  • the surface type of the non-rotationally symmetric aspheric surface can be used but is not limited to the following non-rotationally symmetric
  • the spherical formula is limited:
  • z is the vector height of the plane parallel to the Z-axis direction;
  • Kx and Ky are the conic coefficients in the X and Y directions;
  • AR and BR , CR, DR, ER, FR, GR, HR, JR are the 4th order, 6th order, 8th order, 10th order, 12th order, 14th order, 16th order, 18th order, 20th order coefficients in the asymmetrical rotationally symmetric component ;
  • AP, BP, CP, DP, EP, FP, GP, HP, JP are the 4th order, 6th order, 8th order, 10th order, 12th order, 14th order, 16th order, 18th in the aspherical non-rotationally symmetric component Order, 20th order coefficient.
  • Table 3 shows the AR, BR, CR, DR, ER, FR, GR, HR, JR coefficients and AP, BP, CP, DP, EP, which can be used for the non-rotationally symmetric aspheric surface S12 in Example 1.
  • Table 4 shows the effective focal lengths fy1 to fy6 in the Y-axis direction of the lenses in Example 1, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, and the total optical length TTL of the camera lens (that is, the distance from the object side S1 of the first lens E1 to the imaging plane S15 on the optical axis)
  • FIG. 2 shows the size of the RMS spot diameter of the imaging lens of Embodiment 1 at different image height positions in the first quadrant.
  • FIG. 3 shows a TV distortion diagram of the imaging lens of Embodiment 1, which represents the distortion difference between actual light rays and paraxial light rays in the vertical region and the horizontal region. It can be seen from FIGS. 2 to 3 that the imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIGS. 4 to 6 are schematic structural diagrams of an imaging lens according to Embodiment 2 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging plane S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 5 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 2, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 2 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, and the fifth lens E5 are aspherical;
  • the object side surface S11 and the image side surface S12 of the sixth lens E6 are non-rotationally symmetric aspheric surfaces.
  • Table 6 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 7 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S11 and S12 in Embodiment 2, where the non-rotationally symmetric aspheric surface type can be used in the above Embodiment 1
  • the given formula (2) is limited.
  • Table 8 shows the effective focal lengths fy1 to fy6 in the Y-axis direction of the lenses in Example 2, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The FOVx and FOVy of the FOV in the direction and the Y axis direction.
  • FIG. 5 shows the size of the RMS spot diameter of the imaging lens of Embodiment 2 at different angles of view in the first quadrant.
  • FIG. 6 shows a TV distortion diagram of the imaging lens of Example 2, which represents the distortion difference between the actual light rays and the paraxial light rays in the vertical region and the horizontal region. It can be seen from FIGS. 5 to 6 that the imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIGS. 7 to 9. 7 shows a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side S3 is convex, and its image side S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 9 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X and conic coefficient Y of each lens of the imaging lens of Example 3, where the radius of curvature X, the radius of curvature Y and the thickness of The units are all in millimeters (mm).
  • Example 3 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, and the fifth lens E5 are aspherical;
  • the object side surface S11 and the image side surface S12 of the sixth lens E6 are non-rotationally symmetric aspheric surfaces.
  • Table 10 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 11 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S11 and S12 in Example 3, where the non-rotationally symmetric aspheric surface type can be described in Embodiment 1 above
  • the given formula (2) is limited.
  • Table 12 shows the effective focal lengths fy1 to fy6 of each lens in Example 3 in the Y-axis direction, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The full field angles FOVx and FOVy in the direction and Y axis direction.
  • FIGS. 8 to 9 show the size of the RMS spot diameter of the imaging lens of Example 3 at different angles of view in the first quadrant.
  • 9 shows a TV distortion diagram of the imaging lens of Example 3, which represents the distortion difference between the actual light beam and the paraxial light beam in the vertical area and the horizontal area. It can be seen from FIGS. 8 to 9 that the imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIGS. 10 to 12 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • an imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging plane S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 13 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 4, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 4 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, and the fifth lens E5 are aspherical;
  • the object side surfaces S11 and S12 of the sixth lens E6 are non-rotationally symmetric aspheric surfaces.
  • Table 14 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 15 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S11 and S12 in Example 4, wherein the non-rotationally symmetric aspheric surface type can be used in the above Embodiment 1
  • the given formula (2) is limited.
  • Table 16 shows the effective focal lengths fy1 to fy6 in the Y-axis direction of the lenses in Example 4, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The FOVx and FOVy of the FOV in the direction and the Y axis direction.
  • FIG. 11 shows the size of the RMS spot diameter of the imaging lens of Example 4 at different angles of view in the first quadrant.
  • 12 shows a TV distortion diagram of the imaging lens of Example 4, which represents the distortion difference between the actual light beam and the paraxial light beam in the vertical area and the horizontal area. It can be seen from FIGS. 11 to 12 that the imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIGS. 13 to 15. 13 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 17 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 5, where the radius of curvature X, the radius of curvature Y, and the thickness of The unit is millimeter (mm).
  • Example 5 the object side and the image side of any one of the first lens E1, the second lens E2, the third lens E3, and the fourth lens E4 are aspheric; the fifth lens E5 and The object side surface and the image side surface of any one of the sixth lenses E6 are non-rotationally symmetric aspheric surfaces.
  • Table 18 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 19 shows the rotationally symmetric components that can be used in the non-rotationally symmetric aspheric surfaces S9 to S12 in Example 5 and the higher-order coefficients of the non-rotationally symmetric components. The given formula (2) is limited.
  • Table 20 shows the effective focal lengths fy1 to fy6 in the Y-axis direction of each lens in Example 5, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The full field angles FOVx and FOVy in the direction and Y axis direction.
  • FIG. 14 shows the size of the RMS spot diameter of the imaging lens of Example 5 at different angles of view in the first quadrant.
  • FIG. 15 shows a TV distortion diagram of the imaging lens of Example 5, which represents the distortion difference between the actual light beam and the paraxial light beam in the vertical area and the horizontal area. It can be seen from FIGS. 14 to 15 that the imaging lens provided in Example 5 can achieve good imaging quality.
  • FIGS. 16 and 18 shows a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging plane S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 21 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 6, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The units are all in millimeters (mm).
  • Example 6 the object of any one of the object side surfaces S11 of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, the fifth lens E5, and the sixth lens E6 Both the side surface and the image side surface are aspherical; the image side surface S12 of the sixth lens E6 is a non-rotationally symmetric aspherical surface.
  • Table 22 shows the coefficients of higher order that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 23 shows the rotationally symmetric component and the higher-order coefficients of the non-rotationally symmetric component that can be used in the non-rotationally symmetric aspheric surface S12 in Example 6, where the non-rotationally symmetric aspheric surface type can be given in Embodiment 1 above
  • the formula (2) is limited.
  • Table 24 shows the effective focal lengths fy1 to fy6 in the Y-axis direction of the lenses in Example 6, the effective focal length fx5 in the X-axis direction of the fifth lens E5, the effective focal length fx6 in the X-axis direction of the sixth lens E6, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The FOVx and FOVy of the FOV in the direction and the Y axis direction.
  • FIG. 17 shows the size of the RMS spot diameter of the imaging lens of Example 6 at different image height positions in the first quadrant.
  • FIG. 18 shows a TV distortion diagram of the imaging lens of Example 6, which represents the distortion difference between the actual light rays and the paraxial light rays in the vertical region and the horizontal region. It can be seen from FIGS. 17 to 18 that the imaging lens provided in Example 6 can achieve good imaging quality.
  • FIGS. 19 to 21 are schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis: a first lens E1, a second lens E2, a diaphragm STO, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has negative refractive power, and its object side surface S1 is concave and the image side surface S2 is concave.
  • the second lens E2 has positive refractive power, and its object side surface S3 is convex, and its image side surface S4 is concave.
  • the third lens E3 has positive refractive power, and its object side surface S5 is convex, and its image side surface S6 is convex.
  • the fourth lens E4 has negative refractive power, and its object side surface S7 is concave and the image side surface S8 is concave.
  • the fifth lens E5 has positive refractive power, and its object side surface S9 is a concave surface, and its image side surface S10 is a convex surface.
  • the sixth lens E6 has negative refractive power, and its object side surface S11 is convex, and its image side surface S12 is concave.
  • the filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 25 shows the surface type, radius of curvature X, radius of curvature Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 7, wherein the radius of curvature X, the radius of curvature Y, and the thickness of The unit is millimeter (mm).
  • Example 7 the object side and image side of any one of the first lens E1, the second lens E2, the third lens E3, the fourth lens E4, and the fifth lens E5, and the sixth lens E6
  • the object side surfaces S11 are all aspherical; the image side surface S12 of the sixth lens E6 is a non-rotationally symmetric aspherical surface.
  • Table 26 shows the higher-order coefficients that can be used for each aspherical mirror surface in Example 7, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
  • Table 27 shows the rotationally symmetric component and the higher-order coefficients of the non-rotationally symmetric component that can be used in the non-rotationally symmetric aspheric surface S12 in Example 7, where the non-rotationally symmetric aspheric surface type can be given in Embodiment 1 above
  • the formula (2) is limited.
  • Table 28 shows the effective focal lengths fy1 to fy6 of each lens in Example 7 in the Y-axis direction, the effective focal length fx5 of the fifth lens E5 in the X-axis direction, the effective focal length fx6 of the sixth lens E6 in the X-axis direction, and the imaging lens
  • the effective focal length fx in the X-axis direction, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, the image heights IHx and IHy in the X-axis and Y-axis directions of the camera lens, and the X-axis of the camera lens The FOVx and FOVy of the FOV in the direction and the Y axis direction.
  • Example 7 shows the size of the RMS spot diameter of the imaging lens of Example 7 at different image height positions in the first quadrant.
  • 21 shows a TV distortion diagram of the imaging lens of Example 7, which represents the distortion difference between the actual light beam and the paraxial light beam in the vertical area and the horizontal area. It can be seen from FIGS. 20 to 21 that the imaging lens provided in Example 7 can achieve good imaging quality.
  • Examples 1 to 7 satisfy the relationships shown in Table 29, respectively.
  • the present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the camera device is equipped with the camera lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)和第六透镜(E6)具有负光焦度;第三透镜(E3)和第五透镜(E5)具有正光焦度;第一透镜(E1)至第六透镜(E6)中的至少一个透镜具有非旋转对称的非球面(S9, S10, S11, S12);以及摄像镜头的成像范围内的TV畸变的最大值TDT满足|TDT|≤2.5%。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2019年01月07日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910011564.8的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括六片透镜的摄像镜头。
背景技术
随着诸如如手机、电脑和平板等智能电子设备的快速更新换代,市场对这些产品的摄像镜头要求也越来越高。除了要求镜头成像具备高分辨率和大孔径之外,还要求在较广的视场范围内都具有优良的成像品质。然而,摄像镜头的视场角度越大,所撷取的影像的TV畸变(TV distortion)通常越严重。
同时,当前主流手机上所携带的广角镜头多采用六片式透镜结构,且各个透镜大多采用旋转对称(轴对称)的非球面作为其面型结构。这类旋转对称的非球面可以看成是子午平面内的一条曲线绕光轴旋转360°而形成的,因此其只在子午平面内具有充分的自由度,并不能很好地对轴外像差进行矫正。此外,旋转对称的非球面对广角镜头的TV畸变矫正并无实质性贡献。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头,例如广角小畸变摄像镜头。
一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的成像范围内的TV畸变的最大值TDT可满足|TDT|≤2.5%。
在一个实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面;以及第四透镜的物侧面可为凹面。
在一个实施方式中,摄像镜头的X轴方向的像高IHx与摄像镜头的Y轴方向的像高IHy可满足
Figure PCTCN2019108448-appb-000001
在一个实施方式中,第六透镜的像侧面是非旋转对称的非球面;以及第六透镜的像侧面的加工张角θ可满足θ<72°。
在一个实施方式中,第二透镜的Y轴方向的有效焦距fy2与第三透镜的Y轴方向的有效焦距fy3可满足3.0<fy2/fy3<5.0。
在一个实施方式中,第五透镜的X轴方向的有效焦距fx5与第六透镜的X轴方向的有效焦距fx6可满足-0.5<fx5/fx6<0。
在一个实施方式中,第一透镜的Y轴方向的有效焦距fy1与第二透镜的Y轴方向的有效焦距fy2可满足-0.5<fy1/fy2<0。
在一个实施方式中,第一透镜的物侧面可为凹面;以及摄像镜头的Y轴方向的有效焦距 fy与第一透镜的物侧面的曲率半径R1可满足-1.0<fy/R1<0。
在一个实施方式中,摄像镜头的X轴方向的全视场角FOVx与摄像镜头的Y轴方向的全视场角FOVy可满足tan(FOVx/2)×tan(FOVy/2)<2.0。
另一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第五透镜的X轴方向的有效焦距fx5与第六透镜的X轴方向的有效焦距fx6可满足-0.5<fx5/fx6<0。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第二透镜的物侧面可为凸面,像侧面可为凹面;以及第四透镜的物侧面可为凹面。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第六透镜的像侧面是非旋转对称的非球面;以及第六透镜的像侧面的加工张角θ可满足θ<72°。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的X轴方向的像高IHx与摄像镜头的Y轴方向的像高IHy可满足
Figure PCTCN2019108448-appb-000002
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第二透镜的Y轴方向的有效焦距fy2与第三透镜的Y轴方向的有效焦距fy3可满足3.0<fy2/fy3<5.0。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第一透镜的Y轴方向的有效焦距fy1与第二透镜的Y轴方向的有效焦距fy2可满足-0.5<fy1/fy2<0。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,第一透镜的物侧面可为凹面;以及摄像镜头的Y轴方向的有效焦距fy与第一透镜的物侧面的曲率半径R1可满足-1.0<fy/R1<0。
又一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中, 第一透镜和第六透镜可具有负光焦度;第三透镜和第五透镜可具有正光焦度;第一透镜至第六透镜中的至少一个透镜可具有非旋转对称的非球面。其中,摄像镜头的X轴方向的全视场角FOVx与摄像镜头的Y轴方向的全视场角FOVy可满足tan(FOVx/2)×tan(FOVy/2)<2.0。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有广角、小畸变、高像面亮度以及高成像质量等至少一个有益效果。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差同时进行矫正,减小了摄像镜头实际成像的TV畸变,从而进一步获得像质的提升。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2示意性示出了实施例1的摄像镜头的RMS光斑直径在第一象限内的情况;
图3示出了根据本申请实施例1的摄像镜头的TV畸变图;
图4示出了根据本申请实施例2的摄像镜头的结构示意图;
图5示意性示出了实施例2的摄像镜头的RMS光斑直径在第一象限内的情况;
图6示出了根据本申请实施例2的摄像镜头的TV畸变图;
图7示出了根据本申请实施例3的摄像镜头的结构示意图;
图8示意性示出了实施例3的摄像镜头的RMS光斑直径在第一象限内的情况;
图9示出了根据本申请实施例3的摄像镜头的TV畸变图;
图10示出了根据本申请实施例4的摄像镜头的结构示意图;
图11示意性示出了实施例4的摄像镜头的RMS光斑直径在第一象限内的情况;
图12示出了根据本申请实施例4的摄像镜头的TV畸变图;
图13示出了根据本申请实施例5的摄像镜头的结构示意图;
图14示意性示出了实施例5的摄像镜头的RMS光斑直径在第一象限内的情况;
图15示出了根据本申请实施例5的摄像镜头的TV畸变图;
图16示出了根据本申请实施例6的摄像镜头的结构示意图;
图17示意性示出了实施例6的摄像镜头的RMS光斑直径在第一象限内的情况;
图18示出了根据本申请实施例6的摄像镜头的TV畸变图;
图19示出了根据本申请实施例7的摄像镜头的结构示意图;
图20示意性示出了实施例7的摄像镜头的RMS光斑直径在第一象限内的情况;
图21示出了根据本申请实施例7的摄像镜头的TV畸变图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。
在本文中,出于描述的便利,我们定义X轴、Y轴和Z轴彼此垂直的X-Y-Z直角坐标系,在该直角坐标系中,其原点位于摄像镜头的光轴上,Z轴与光轴重合,X轴与Z轴垂直且位于弧矢平面内,Y轴与Z轴垂直且位于子午平面内。此外,措辞“加工张角”定义为透镜的表面沿着X轴与Y轴的角平分线方向的加工角度。
然而,应理解的是,本文中所提及的“X轴方向”、“Y轴方向”和“Z轴方向”仅表示分别与直角坐标系的X轴、Y轴和Z轴平行的方向,而非限定为直角坐标系的三个轴。除非另有说明,否则本文中的各参量符号均表示沿摄像镜头的Y轴方向的特征参量值。例如,在没有特别说明的情况下,条件式“fy/R1”中的R1表示第一透镜的物侧面的Y轴方向的曲率半径。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜可具有正光焦度;第四透镜具有正光焦度或负光焦度;第五透镜可具有正光焦度;第六透镜可具有负光焦度。满足上述光焦度分配,有利于减缓光线的偏折角度,从而利用反摄远原理达到增大视场角度的目的,尤其是与第一透镜采用正透镜的摄远结构相比,使第一透镜具有负光焦度可使得系统更容易增大视场角度。
此外,可以通过将第一透镜至第六透镜中的至少一个透镜的物侧面和/或像侧面设置为非旋转对称的非球面,来进一步提升像质。非旋转对称的非球面是一种自由曲面,在旋转对称的非球面基础上,增加了非旋转对称分量,因而在透镜系统中引入非旋转对称的非球面有利于通过对轴外子午像差和弧矢像差进行有效矫正,极大地提升光学系统的性能。同时,引入非旋转对称的非球面,还可达到减小TV畸变的目的。可选地,第六透镜的像侧面可为非旋转 对称的非球面。
在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凹面;第四透镜的物侧面可为凹面。合理配置第二透镜和第四透镜的面型以形成类双高斯结构,有助于改善广角镜头的像差,并可提升光学系统的成像品质;同时,第六透镜形状的变化有利于匹配芯片主光线角度,防止产生色彩偏差。可选地,第二透镜可具有正光焦度;以及第四透镜可具有负光焦度且其像侧面可为凹面。
在示例性实施方式中,第三透镜的物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第五透镜的像侧面可为凸面。
在示例性实施方式中,第六透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,本申请的摄像镜头可满足条件式|TDT|≤2.5%,其中,TDT为摄像镜头的成像范围内TV畸变的最大值。满足条件式|TDT|≤2.5%,有利于减弱大视场角镜头实际成像的变形情况。
在示例性实施方式中,本申请的摄像镜头可满足条件式θ<72°,其中,θ为第六透镜的像侧面的加工张角。限制第六透镜的像侧面的加工张角,有助于保证第六透镜的加工可行性以及加工精度,另外也可保证检测精度,防止因加工张角过大而导致无法有效检测。
在示例性实施方式中,本申请的摄像镜头可满足条件式
Figure PCTCN2019108448-appb-000003
其中,IHx为摄像镜头的X轴方向的像高,IHy为摄像镜头的Y轴方向的像高。更具体地,IHx和IHy进一步可满足
Figure PCTCN2019108448-appb-000004
条件式
Figure PCTCN2019108448-appb-000005
可保证摄像镜头具有超大像面并实现超高像素;同时匹配芯片形状进行设计,还有利于在AA制程(即,主动对准(Active Alignment))中实现偏差矫正。
在示例性实施方式中,本申请的摄像镜头可满足条件式3.0<fy2/fy3<5.0,其中,fy2为第二透镜的Y轴方向的有效焦距,fy3为第三透镜的Y轴方向的有效焦距。更具体地,fy2和fy3进一步可满足2.77≤fy2/fy3≤4.60。控制第二透镜和第三透镜在Y轴方向的有效焦距,形成类双高斯对称结构,有利于消除光学系统的像差,并与第一透镜以及第四透镜配合,组合光焦度较为接近,从而可以有效消除像差,并可提高光学调制传递函数(MTF)等性能。
在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<fx5/fx6<0,其中,fx5为第五透镜的X轴方向的有效焦距,fx6为第六透镜的X轴方向的有效焦距。更具体地,fx5和fx6进一步可满足-0.4≤fx5/fx6≤-0.1,例如-0.35≤fx5/fx6≤-0.21。由于第五透镜和/或第六透镜采用自由曲面设计,使其在X轴方向和Y轴方向非旋转对称,有利于达到减小TV畸变的目的。
在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<fy1/fy2<0,其中,fy1为第一透镜的Y轴方向的有效焦距,fy2为第二透镜的Y轴方向的有效焦距。更具体地,fy1和fy2进一步可满足-0.5<fy1/fy2<-0.2,例如-0.46≤fy1/fy2≤-0.39。满足条件式-0.5<fy1/fy2<0,有利于减缓光线偏折,降低第一透镜的敏感度;另一方面,还有利于保证镜头结构的紧凑性,并可提升边缘视场的成像品质。
在示例性实施方式中,第一透镜的物侧面为凹面;并且本申请的摄像镜头可满足条件式-1.0<fy/R1<0,其中,fy为摄像镜头的Y轴方向的有效焦距,R1为第一透镜的物侧面的曲率半径。更具体地,fy和R1进一步可满足-1.0<fy/R1<-0.5,例如-0.90≤fy/R1≤-0.55。满足条件式-1.0<fy/R1<0,有利于减小广角镜头的第一透镜口径,另一方面还可增大镜头的视场角度,同时还可兼顾多摄镜头的外观美观以及一致性效果。可选地,第一透镜的像侧面可为凹面。
在示例性实施方式中,本申请的摄像镜头可满足条件式tan(FOVx/2)×tan(FOVy/2)<2.0,其中,FOVx为摄像镜头的X轴方向的全视场角,FOVy为摄像镜头的Y轴方向的全视场角。更具体地,FOVx和FOVy进一步可满足0<tan(FOVx/2)×tan(FOVy/2)<1.5,例如0.14≤tan(FOVx/2)×tan(FOVy/2)≤1.45。满足条件式tan(FOVx/2)×tan(FOVy/2)<2.0,可保证摄像镜头的拍摄范围足够广,并有助于在小畸变状态下实现“鱼眼”镜头功效。
在示例性实施方式中,上述摄像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第二透镜与第三透镜之间。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。另外,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,可保证像面亮度以进一步提高像质,同时达到减小TV畸变的目的,从而使得摄像镜头具有广角小畸变的特性。
在本申请的实施方式中,各透镜的镜面多采用非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个可为非球面。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均可为非球面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像镜头不限于包括六个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图3描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000006
表1
应当理解的是,上表中没有特别标示(空白处)的“曲率半径X”和“圆锥系数X”与对应的“曲率半径Y”和“圆锥系数Y”数值保持一致。以下各实施例中均与此类似。
由表1可知,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面以及第六透镜E6的物侧面S11均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019108448-appb-000007
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S11的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.7873E-01 -6.5704E-02 1.6266E-02 -5.0014E-03 1.3326E-03 -3.7291E-04 7.3216E-05 0 0
S2 2.7162E-01 -4.4550E-02 3.1551E-03 -1.5594E-03 3.0317E-04 4.9628E-05 3.2704E-05 0 0
S3 -3.2474E-03 -1.3683E-02 6.6793E-04 -1.6358E-04 1.4671E-04 1.4723E-05 -6.5201E-06 0 0
S4 1.6209E-02 2.1782E-03 8.7444E-04 2.2928E-04 9.0479E-05 1.4412E-05 8.4236E-06 0 0
S5 4.1975E-04 -3.9445E-04 -5.6657E-05 3.0201E-06 -7.1351E-06 3.1489E-06 -2.8700E-06 2.3177E-06 -5.1660E-07
S6 -5.5444E-02 -9.9131E-04 -3.6195E-04 4.0684E-05 2.5237E-06 7.1976E-06 1.7505E-05 4.2050E-06 9.6352E-06
S7 -1.6191E-01 2.1206E-02 -5.9565E-04 1.0877E-03 1.6857E-04 9.5538E-05 1.2582E-05 7.2058E-06 -3.5971E-07
S8 -1.2269E-01 2.8370E-02 3.2517E-04 -1.5529E-03 1.1545E-03 -3.4359E-04 1.4233E-04 -4.0626E-05 1.1866E-05
S9 1.1339E-02 1.5853E-03 5.5950E-03 -5.3417E-03 2.5751E-03 -1.0459E-03 3.4745E-04 -9.5820E-05 1.6100E-05
S10 5.5174E-01 9.6116E-02 8.7529E-03 -1.7412E-03 -2.3852E-03 1.2928E-03 -1.8206E-05 2.2242E-04 -7.5715E-05
S11 -1.2202E+00 2.3608E-01 -1.6147E-02 5.3917E-03 8.2289E-04 -2.7027E-03 7.9405E-04 3.5427E-05 -3.5938E-05
表2
由表1还可以看出,第六透镜E6的像侧面S12为非旋转对称的非球面(即,AAS面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:
Figure PCTCN2019108448-appb-000008
其中,z为平行于Z轴方向的面的矢高;Cx、Cy分别为X、Y方向面顶点的曲率(=1/曲率半径);Kx、Ky分别为X、Y方向圆锥系数;AR、BR、CR、DR、ER、FR、GR、HR、JR分别为非球面旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数;AP、BP、CP、DP、EP、FP、GP、HP、JP分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数。下表3给出了可用于实施例1中的非旋转对称的非球面S12的AR、BR、CR、DR、ER、FR、GR、HR、JR系数以及AP、BP、CP、DP、EP、FP、GP、HP、JP系数。
AAS AR AP BR BP CR CP DR DP ER
S12 -2.9973E-01 7.8449E-04 2.5725E-01 2.1962E-04 -1.9359E-01 4.7099E-05 1.0637E-01 6.4734E-06 -3.9962E-02
AAS EP FR FP GR GP HR HP JR JP
S12 0.0000E+00 9.8295E-03 0.0000E+00 -1.4964E-03 0.0000E+00 1.2635E-04 0.0000E+00 -4.4520E-06 0.0000E+00
表3
表4给出了实施例1中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S15在光轴上的距离)、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -2.50 fx(mm) 1.74
fy2(mm) 6.47 fy(mm) 1.74
fy3(mm) 1.87 TTL(mm) 5.11
fy4(mm) -2.44 IHx(mm) 1.75
fy5(mm) 1.77 IHy(mm) 2.44
fy6(mm) -8.45 FOVx(°) 91.7
fx5(mm) 1.77 FOVy(°) 109.4
fx6(mm) -8.42    
表4
图2示出了实施例1的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。图3示出了实施例1的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图2至图3可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图4至图6描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中, 为简洁起见,将省略部分与实施例1相似的描述。图4示出了根据本申请实施例2的摄像镜头的结构示意图。
如图4所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表5示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000009
表5
由表5可知,在实施例2中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜E6的物侧面S11和像侧面S12为非旋转对称的非球面。
表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7示出了可用于实施例2中非旋转对称的非球面S11和S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.9329E-01 -4.5775E-01 4.3955E-01 -3.0845E-01 1.4959E-01 -4.3661E-02 5.5538E-03 0 0
S2 9.5166E-01 -1.5194E+00 2.3626E+00 -3.5960E+00 3.9957E+00 -2.7632E+00 8.8592E-01 0 0
S3 2.4032E-01 -9.9176E-01 2.8803E+00 -8.6319E+00 1.5669E+01 -1.4012E+01 5.0792E+00 0 0
S4 2.1587E-01 -5.2152E-01 3.2606E+00 -2.4924E+01 1.1209E+02 -2.3642E+02 2.0538E+02 0 0
S5 1.4415E-01 -1.8166E+00 2.3354E+01 -2.2250E+02 1.3329E+03 -5.0166E+03 1.1437E+04 -1.4393E+04 7.6911E+03
S6 -5.3454E-01 -3.2002E-01 5.5726E+00 -3.9891E+01 1.6071E+02 -4.0520E+02 6.3369E+02 -5.6771E+02 2.2420E+02
S7 -6.7701E-01 1.6556E+00 -1.3999E+01 7.2848E+01 -2.2761E+02 4.4672E+02 -5.3851E+02 3.6615E+02 -1.0828E+02
S8 -2.7382E-01 3.6958E-01 -1.0115E+00 4.4101E+00 -1.2404E+01 2.0006E+01 -1.7888E+01 8.2660E+00 -1.5493E+00
S9 1.5632E-01 -4.5216E-01 3.0244E+00 -9.3515E+00 1.5132E+01 -1.3972E+01 7.4505E+00 -2.1468E+00 2.6187E-01
S10 -7.8445E-01 3.5894E+00 -8.7897E+00 1.4540E+01 -1.5802E+01 1.1011E+01 -4.6843E+00 1.0922E+00 -1.0437E-01
表6
AAS AR AP BR BP CR CP DR DP ER
S11 -3.7571E-01 8.6863E-03 8.3675E-01 4.2528E-03 -1.2788E+00 1.2756E-03 1.2783E+00 -8.4634E-05 -8.7167E-01
S12 -1.9604E-01 2.3319E-02 2.3409E-01 1.6014E-02 -1.9669E-01 8.8118E-03 1.0887E-01 4.0787E-03 -4.0094E-02
AAS EP FR FP GR GP HR HP JR JP
S11 -1.9256E-04 4.0671E-01 6.4195E-04 -1.2565E-01 1.6441E-03 2.3435E-02 1.6661E-03 -2.0092E-03 0.0000E+00
S12 1.0510E-03 9.7189E-03 -5.6484E-04 -1.4905E-03 -9.6241E-04 1.3132E-04 -6.0535E-04 -5.0771E-06 0.0000E+00
表7
表8给出了实施例2中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -4.18 fx(mm) 2.18
fy2(mm) 9.54 fy(mm) 2.19
fy3(mm) 2.32 TTL(mm) 4.91
fy4(mm) -5.87 IHx(mm) 1.73
fy5(mm) 3.10 IHy(mm) 2.48
fy6(mm) -8.78 FOVx(°) 76.5
fx5(mm) 3.10 FOVy(°) 97.0
fx6(mm) -8.92    
表8
图5示出了实施例2的摄像镜头的RMS光斑直径在第一象限内不同视场角处的大小情况。图6示出了实施例2的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图5至图6可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图7至图9描述了根据本申请实施例3的摄像镜头。图7示出了根据本申请实施例3的摄像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有 正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表9示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000010
表9
由表9可知,在实施例3中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜E6的物侧面S11和像侧面S12为非旋转对称的非球面。
表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11示出了可用于实施例3中非旋转对称的非球面S11和S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.9549E-01 -4.5712E-01 4.3952E-01 -3.0861E-01 1.4951E-01 -4.3503E-02 5.7494E-03 0 0
S2 9.5066E-01 -1.5148E+00 2.3632E+00 -3.5943E+00 4.0005E+00 -2.7542E+00 8.8786E-01 0 0
S3 2.3550E-01 -1.0004E+00 2.8781E+00 -8.6213E+00 1.5700E+01 -1.3994E+01 4.9288E+00 0 0
S4 2.1636E-01 -5.3153E-01 3.2455E+00 -2.4833E+01 1.1233E+02 -2.3752E+02 1.9836E+02 0 0
S5 1.4835E-01 -1.8156E+00 2.3351E+01 -2.2255E+02 1.3327E+03 -5.0174E+03 1.1435E+04 -1.4394E+04 7.7059E+03
S6 -5.3217E-01 -3.2292E-01 5.5595E+00 -3.9920E+01 1.6069E+02 -4.0518E+02 6.3377E+02 -5.6787E+02 2.2257E+02
S7 -6.8081E-01 1.6582E+00 -1.4007E+01 7.2813E+01 -2.2768E+02 4.4664E+02 -5.3859E+02 3.6617E+02 -1.0804E+02
S8 -2.7301E-01 3.7033E-01 -1.0132E+00 4.4067E+00 -1.2407E+01 2.0002E+01 -1.7890E+01 8.2666E+00 -1.5463E+00
S9 1.5671E-01 -4.5259E-01 3.0253E+00 -9.3508E+00 1.5132E+01 -1.3972E+01 7.4501E+00 -2.1469E+00 2.6186E-01
S10 -7.8828E-01 3.5872E+00 -8.7889E+00 1.4540E+01 -1.5802E+01 1.1011E+01 -4.6840E+00 1.0923E+00 -1.0435E-01
表10
AAS AR AP BR BP CR CP DR DP ER
S11 -3.8752E-01 1.0224E-02 8.4023E-01 5.2062E-03 -1.2772E+00 1.6588E-03 1.2785E+00 -6.7452E-06 -8.7171E-01
S12 -1.9949E-01 2.1607E-02 2.3536E-01 1.5271E-02 -1.9665E-01 8.9244E-03 1.0886E-01 4.1601E-03 -4.0098E-02
AAS EP FR FP GR GP HR HP JR JP
S11 -2.0844E-04 4.0659E-01 6.0493E-04 -1.2569E-01 1.5956E-03 2.3434E-02 1.6554E-03 -1.9997E-03 0.0000E+00
S12 1.0472E-03 9.7179E-03 -5.7725E-04 -1.4906E-03 -9.5681E-04 1.3132E-04 -5.6960E-04 -5.0668E-06 0.0000E+00
表11
表12给出了实施例3中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -4.29 fx(mm) 2.19
fy2(mm) 10.56 fy(mm) 2.20
fy3(mm) 2.29 TTL(mm) 4.91
fy4(mm) -5.63 IHx(mm) 1.81
fy5(mm) 3.12 IHy(mm) 2.42
fy6(mm) -8.70 FOVx(°) 78.8
fx5(mm) 3.12 FOVy(°) 95.6
fx6(mm) -8.84    
表12
图8示出了实施例3的摄像镜头的RMS光斑直径在第一象限内不同视场角处的大小情况。图9示出了实施例3的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图8至图9可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图10至图12描述了根据本申请实施例4的摄像镜头。图10示出了根据本申请实施例4的摄像镜头的结构示意图。
如图10所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米 (mm)。
Figure PCTCN2019108448-appb-000011
表13
由表13可知,在实施例4中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面均为非球面;第六透镜E6的物侧面S11和S12为非旋转对称的非球面。
表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了可用于实施例4中非旋转对称的非球面S11和S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.9630E-01 -4.5717E-01 4.3939E-01 -3.0876E-01 1.4944E-01 -4.3467E-02 5.8275E-03 0 0
S2 9.4685E-01 -1.5154E+00 2.3615E+00 -3.5972E+00 4.0016E+00 -2.7496E+00 8.9034E-01 0 0
S3 2.3534E-01 -9.9961E-01 2.8745E+00 -8.6251E+00 1.5701E+01 -1.3973E+01 4.9228E+00 0 0
S4 2.1676E-01 -5.3631E-01 3.2335E+00 -2.4860E+01 1.1214E+02 -2.3762E+02 2.0032E+02 0 0
S5 1.4768E-01 -1.8135E+00 2.3342E+01 -2.2252E+02 1.3329E+03 -5.0171E+03 1.1435E+04 -1.4396E+04 7.7041E+03
S6 -5.2971E-01 -3.1378E-01 5.5590E+00 -3.9935E+01 1.6068E+02 -4.0515E+02 6.3396E+02 -5.6764E+02 2.2226E+02
S7 -6.8244E-01 1.6652E+00 -1.4007E+01 7.2812E+01 -2.2768E+02 4.4664E+02 -5.3857E+02 3.6619E+02 -1.0791E+02
S8 -2.7476E-01 3.7025E-01 -1.0140E+00 4.4058E+00 -1.2407E+01 2.0003E+01 -1.7889E+01 8.2679E+00 -1.5439E+00
S9 1.5579E-01 -4.5523E-01 3.0246E+00 -9.3504E+00 1.5133E+01 -1.3971E+01 7.4505E+00 -2.1467E+00 2.6169E-01
S10 -7.9338E-01 3.5858E+00 -8.7887E+00 1.4540E+01 -1.5802E+01 1.1011E+01 -4.6840E+00 1.0923E+00 -1.0439E-01
表14
AAS AR AP BR BP CR CP DR DP ER
S11 -3.8716E-01 9.2575E-03 8.4117E-01 5.4370E-03 -1.2780E+00 1.8465E-03 1.2782E+00 3.9427E-05 -8.7169E-01
S12 -2.0078E-01 1.8918E-02 2.3575E-01 1.4585E-02 -1.9680E-01 8.8292E-03 1.0886E-01 4.1797E-03 -4.0100E-02
AAS EP FR FP GR GP HR HP JR JP
S11 -2.1865E-04 4.0662E-01 5.8891E-04 -1.2573E-01 1.5593E-03 2.3427E-02 1.6204E-03 -1.9958E-03 0.0000E+00
S12 1.0343E-03 9.7182E-03 -5.9066E-04 -1.4905E-03 -9.5644E-04 1.3132E-04 -5.5408E-04 -5.0693E-06 0.0000E+00
表15
表16给出了实施例4中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -4.35 fx(mm) 2.19
fy2(mm) 10.64 fy(mm) 2.19
fy3(mm) 2.33 TTL(mm) 4.95
fy4(mm) -5.64 IHx(mm) 1.81
fy5(mm) 3.12 IHy(mm) 2.41
fy6(mm) -9.09 FOVx(°) 78.8
fx5(mm) 3.12 FOVy(°) 95.6
fx6(mm) -9.06    
表16
图11示出了实施例4的摄像镜头的RMS光斑直径在第一象限内不同视场角处的大小情况。图12示出了实施例4的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图11至图12可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图13至图15描述了根据本申请实施例5的摄像镜头。图13示出了根据本申请实施例5的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表17示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000012
Figure PCTCN2019108448-appb-000013
表17
由表17可知,在实施例5中,第一透镜E1、第二透镜E2、第三透镜E3和第四透镜E4中任意一个透镜的物侧面和像侧面均为非球面;第五透镜E5和第六透镜E6中任意一个透镜的物侧面和像侧面为非旋转对称的非球面。
表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19示出了可用于实施例5中非旋转对称的非球面S9至S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.8493E-01 -4.5837E-01 4.3922E-01 -3.0865E-01 1.4944E-01 -4.3732E-02 5.5327E-03 0 0
S2 9.6073E-01 -1.5298E+00 2.3494E+00 -3.6079E+00 3.9892E+00 -2.7608E+00 9.0076E-01 0 0
S3 2.5079E-01 -9.8086E-01 2.8828E+00 -8.6540E+00 1.5603E+01 -1.4073E+01 5.2402E+00 0 0
S4 2.1164E-01 -5.1115E-01 3.2822E+00 -2.4996E+01 1.1170E+02 -2.3674E+02 2.0801E+02 0 0
S5 1.3701E-01 -1.8349E+00 2.3312E+01 -2.2258E+02 1.3329E+03 -5.0167E+03 1.1437E+04 -1.4391E+04 7.6858E+03
S6 -5.3065E-01 -3.2324E-01 5.5509E+00 -3.9903E+01 1.6068E+02 -4.0526E+02 6.3351E+02 -5.6778E+02 2.2546E+02
S7 -6.6931E-01 1.6563E+00 -1.3999E+01 7.2866E+01 -2.2756E+02 4.4680E+02 -5.3843E+02 3.6616E+02 -1.0850E+02
S8 -2.7552E-01 3.6856E-01 -1.0079E+00 4.4172E+00 -1.2400E+01 2.0007E+01 -1.7888E+01 8.2644E+00 -1.5516E+00
表18
AAS AR AP BR BP CR CP DR DP ER
S9 1.6420E-01 -7.3230E-03 -4.4615E-01 -6.3023E-03 3.0252E+00 2.9757E-04 -9.3510E+00 3.5932E-04 1.5134E+01
S10 -7.7466E-01 7.7569E-03 3.5942E+00 1.8165E-03 -8.7907E+00 2.0892E-05 1.4540E+01 -7.6584E-05 -1.5802E+01
S11 -3.5690E-01 9.8727E-03 8.3797E-01 5.3988E-03 -1.2809E+00 1.0870E-03 1.2775E+00 -2.5604E-04 -8.7173E-01
S12 -1.9261E-01 2.3464E-02 2.3322E-01 1.6215E-02 -1.9668E-01 8.7079E-03 1.0887E-01 3.9832E-03 -4.0093E-02
AAS EP FR FP GR GP HR HP JR JP
S9 8.1605E-05 -1.3969E+01 1.4863E-06 7.4520E+00 4.8787E-05 -2.1470E+00 1.2053E-04 2.5976E-01 0.0000E+00
S10 1.9588E-05 1.1011E+01 8.0636E-06 -4.6840E+00 -4.1506E-05 1.0923E+00 -7.1926E-05 -1.0421E-01 0.0000E+00
S11 -1.4929E-04 4.0681E-01 6.9613E-04 -1.2561E-01 1.6075E-03 2.3443E-02 1.5549E-03 -2.0167E-03 0.0000E+00
S12 1.0570E-03 9.7195E-03 -5.5747E-04 -1.4903E-03 -9.9413E-04 1.3132E-04 -6.5273E-04 -5.0905E-06 0.0000E+00
表19
表20给出了实施例5中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx 和FOVy。
fy1(mm) -3.78 fx(mm) 2.20
fy2(mm) 8.65 fy(mm) 2.20
fy3(mm) 2.35 TTL(mm) 5.05
fy4(mm) -5.85 IHx(mm) 1.74
fy5(mm) 3.02 IHy(mm) 2.48
fy6(mm) -9.54 FOVx(°) 76.5
fx5(mm) 2.95 FOVy(°) 97.0
fx6(mm) -8.69    
表20
图14示出了实施例5的摄像镜头的RMS光斑直径在第一象限内不同视场角处的大小情况。图15示出了实施例5的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图14至图15可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图16和图18描述了根据本申请实施例6的摄像镜头。图16示出了根据本申请实施例6的摄像镜头的结构示意图。
如图16所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表21示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000014
Figure PCTCN2019108448-appb-000015
表21
由表21可知,在实施例6中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5以及第六透镜E6的物侧面S11中任意一个透镜的物侧面和像侧面均为非球面;第六透镜E6的像侧面S12为非旋转对称的非球面。
表22示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23示出了可用于实施例6中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 8.3566E-01 -1.3548E-01 3.1780E-02 -1.0435E-02 2.2621E-03 -8.6481E-04 1.4597E-04 0 0
S2 5.7062E-01 -1.0042E-01 4.1546E-03 -1.9245E-03 1.0616E-03 -3.4157E-05 -5.1508E-06 0 0
S3 -8.8987E-03 -2.8649E-02 2.1634E-03 6.1224E-04 3.4539E-04 -6.3430E-05 -2.2599E-05 0 0
S4 3.3821E-02 3.3303E-03 1.8001E-03 5.6898E-04 1.8015E-04 3.4437E-05 1.2439E-05 0 0
S5 2.3581E-03 -1.4452E-03 -1.2423E-05 -1.2546E-05 1.6067E-05 -6.0333E-06 2.6589E-06 -4.4048E-06 1.9527E-06
S6 -1.2040E-01 4.4852E-04 -2.3354E-04 1.4241E-04 -3.5107E-06 9.3998E-06 4.6970E-06 -9.6097E-06 4.9987E-06
S7 -3.2344E-01 4.2018E-02 -1.8017E-03 1.6433E-03 -2.5583E-04 1.9726E-04 -4.1376E-05 1.7598E-05 -1.8987E-05
S8 -2.1767E-01 5.9241E-02 -2.7553E-03 -1.0596E-03 6.1395E-04 -1.4120E-04 -1.1448E-05 -4.6140E-06 -2.3666E-05
S9 6.9480E-02 -1.7877E-03 8.8279E-03 -7.4453E-03 3.7928E-03 -1.5296E-03 3.6087E-04 -1.4680E-04 -3.7284E-06
S10 1.3246E+00 1.9865E-01 2.7868E-02 1.7331E-03 6.3908E-04 3.6729E-03 -5.2424E-04 2.9703E-04 -2.2269E-04
S11 -2.5409E+00 5.7712E-01 -4.2233E-02 8.2299E-03 -4.9451E-03 -3.7764E-03 2.1706E-03 9.0064E-04 -5.3571E-04
表22
AAS AR AP BR BP CR CP DR DP ER
S12 -3.7988E-02 7.8449E-04 8.0764E-03 2.3564E-04 -1.5124E-03 4.7099E-05 2.0779E-04 5.7960E-06 -1.9513E-05
AAS EP FR FP GR GP HR HP JR JP
S12 0.0000E+00 1.1999E-06 0.0000E+00 -4.5667E-08 0.0000E+00 9.6399E-10 0.0000E+00 -8.4915E-12 0.0000E+00
表23
表24给出了实施例6中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -5.28 fx(mm) 3.74
fy2(mm) 11.42 fy(mm) 3.73
fy3(mm) 4.12 TTL(mm) 10.22
fy4(mm) -5.35 IHx(mm) 3.50
fy5(mm) 3.65 IHy(mm) 4.89
fy6(mm) -14.98 FOVx(°) 87.5
fx5(mm) 3.65 FOVy(°) 106.4
fx6(mm) -14.88    
表24
图17示出了实施例6的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。图18示出了实施例6的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图17至图18可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图19至图21描述了根据本申请实施例7的摄像镜头。图19示出了根据本申请实施例7的摄像镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019108448-appb-000016
表25
由表25可知,在实施例7中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4 和第五透镜E5中任意一个透镜的物侧面和像侧面以及第六透镜E6的物侧面S11均为非球面;第六透镜E6的像侧面S12为非旋转对称的非球面。
表26示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了可用于实施例7中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.2535E+00 -2.0322E-01 4.7670E-02 -1.5653E-02 3.3932E-03 -1.2972E-03 2.1895E-04 0 0
S2 8.5593E-01 -1.5063E-01 6.2319E-03 -2.8867E-03 1.5924E-03 -5.1236E-05 -7.7262E-06 0 0
S3 -1.3348E-02 -4.2973E-02 3.2451E-03 9.1835E-04 5.1808E-04 -9.5144E-05 -3.3898E-05 0 0
S4 5.0732E-02 4.9954E-03 2.7002E-03 8.5347E-04 2.7022E-04 5.1656E-05 1.8658E-05 0 0
S5 3.5371E-03 -2.1679E-03 -1.8635E-05 -1.8818E-05 2.4101E-05 -9.0500E-06 3.9883E-06 -6.6072E-06 2.9291E-06
S6 -1.8060E-01 6.7278E-04 -3.5031E-04 2.1362E-04 -5.2660E-06 1.4100E-05 7.0455E-06 -1.4415E-05 7.4981E-06
S7 -4.8516E-01 6.3026E-02 -2.7025E-03 2.4649E-03 -3.8375E-04 2.9589E-04 -6.2064E-05 2.6398E-05 -2.8480E-05
S8 -3.2651E-01 8.8861E-02 -4.1330E-03 -1.5894E-03 9.2093E-04 -2.1180E-04 -1.7172E-05 -6.9210E-06 -3.5499E-05
S9 1.0422E-01 -2.6816E-03 1.3242E-02 -1.1168E-02 5.6893E-03 -2.2945E-03 5.4130E-04 -2.2020E-04 -5.5926E-06
S10 1.9869E+00 2.9798E-01 4.1802E-02 2.5996E-03 9.5863E-04 5.5093E-03 -7.8636E-04 4.4555E-04 -3.3404E-04
S11 -3.8114E+00 8.6569E-01 -6.3349E-02 1.2345E-02 -7.4176E-03 -5.6646E-03 3.2559E-03 1.3510E-03 -8.0356E-04
表26
AAS AR AP BR BP CR CP DR DP ER
S12 -1.1256E-02 7.8449E-04 1.0636E-03 2.3564E-04 -8.8517E-05 4.7099E-05 5.4050E-06 5.7960E-06 -2.2559E-07
AAS EP FR FP GR GP HR HP JR JP
S12 0.0000E+00 6.1653E-09 0.0000E+00 -1.0429E-10 0.0000E+00 9.7841E-13 0.0000E+00 -3.8305E-15 0.0000E+00
表27
表28给出了实施例7中各透镜的Y轴方向的有效焦距fy1至fy6、第五透镜E5的X轴方向的有效焦距fx5、第六透镜E6的X轴方向的有效焦距fx6、摄像镜头的X轴方向的有效焦距fx、摄像镜头的Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、摄像镜头的X轴方向和Y轴方向的像高IHx和IHy以及摄像镜头的X轴方向和Y轴方向的全视场角FOVx和FOVy。
fy1(mm) -7.93 fx(mm) 5.61
fy2(mm) 17.13 fy(mm) 5.60
fy3(mm) 6.18 TTL(mm) 15.33
fy4(mm) -8.03 IHx(mm) 1.75
fy5(mm) 5.47 IHy(mm) 2.44
fy6(mm) -22.47 FOVx(°) 34.9
fx5(mm) 5.47 FOVy(°) 47.3
fx6(mm) -22.32    
表28
图20示出了实施例7的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。图21示出了实施例7的摄像镜头的TV畸变图,其表示实际光线与近轴光线在竖直区域和水平区域上的畸变差异。根据图20至图21可知,实施例7所给出的摄像镜头能够实现 良好的成像品质。
综上,实施例1至实施例7分别满足表29中所示的关系。
Figure PCTCN2019108448-appb-000017
表29
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (18)

  1. 摄像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜和所述第六透镜具有负光焦度;
    所述第三透镜和所述第五透镜具有正光焦度;
    所述第一透镜至所述第六透镜中的至少一个透镜具有非旋转对称的非球面;以及
    所述摄像镜头的成像范围内的TV畸变的最大值TDT满足|TDT|≤2.5%。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面;以及
    所述第四透镜的物侧面为凹面。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的像高IHx与所述摄像镜头的Y轴方向的像高IHy满足
    Figure PCTCN2019108448-appb-100001
  4. 根据权利要求3所述的摄像镜头,其特征在于,所述第六透镜的像侧面是非旋转对称的非球面;以及
    所述第六透镜的像侧面的加工张角θ满足θ<72°。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的Y轴方向的有效焦距fy2与所述第三透镜的Y轴方向的有效焦距fy3满足3.0<fy2/fy3<5.0。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜的X轴方向的有效焦距fx5与所述第六透镜的X轴方向的有效焦距fx6满足-0.5<fx5/fx6<0。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的Y轴方向的有效焦距fy1与所述第二透镜的Y轴方向的有效焦距fy2满足-0.5<fy1/fy2<0。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凹面;以及
    所述摄像镜头的Y轴方向的有效焦距fy与所述第一透镜的物侧面的曲率半径R1满足-1.0<fy/R1<0。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的全视场角FOVx与所述摄像镜头的Y轴方向的全视场角FOVy满足tan(FOVx/2)×tan(FOVy/2)<2.0。
  10. 摄像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜和所述第六透镜具有负光焦度;
    所述第三透镜和所述第五透镜具有正光焦度;
    所述第一透镜至所述第六透镜中的至少一个透镜具有非旋转对称的非球面;以及
    所述第五透镜的X轴方向的有效焦距fx5与所述第六透镜的X轴方向的有效焦距fx6满足-0.5<fx5/fx6<0。
  11. 根据权利要求10所述的摄像镜头,其特征在于,所述第二透镜的物侧面为凸面,像侧面为凹面;以及
    所述第四透镜的物侧面为凹面。
  12. 根据权利要求11所述的摄像镜头,其特征在于,所述摄像镜头的成像范围内的TV畸变的最大值TDT满足|TDT|≤2.5%。
  13. 根据权利要求10所述的摄像镜头,其特征在于,所述第六透镜的像侧面是非旋转对称的非球面;以及
    所述第六透镜的像侧面的加工张角θ满足θ<72°。
  14. 根据权利要求10所述的摄像镜头,其特征在于,所述第二透镜的Y轴方向的有效焦距fy2与所述第三透镜的Y轴方向的有效焦距fy3满足3.0<fy2/fy3<5.0。
  15. 根据权利要求10所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的像高IHx与所述摄像镜头的Y轴方向的像高IHy满足
    Figure PCTCN2019108448-appb-100002
  16. 根据权利要求10所述的摄像镜头,其特征在于,所述第一透镜的Y轴方向的有效焦距fy1与所述第二透镜的Y轴方向的有效焦距fy2满足-0.5<fy1/fy2<0。
  17. 根据权利要求10所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凹面;以及
    所述摄像镜头的Y轴方向的有效焦距fy与所述第一透镜的物侧面的曲率半径R1满足-1.0<fy/R1<0。
  18. 根据权利要求10所述的摄像镜头,其特征在于,所述摄像镜头的X轴方向的全视场角FOVx与所述摄像镜头的Y轴方向的全视场角FOVy满足tan(FOVx/2)×tan(FOVy/2)<2.0。
PCT/CN2019/108448 2019-01-07 2019-09-27 摄像镜头 WO2020143252A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/037,021 US20210011260A1 (en) 2019-01-07 2020-09-29 Camera lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910011564.8 2019-01-07
CN201910011564.8A CN109541783B (zh) 2019-01-07 2019-01-07 摄像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,021 Continuation US20210011260A1 (en) 2019-01-07 2020-09-29 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2020143252A1 true WO2020143252A1 (zh) 2020-07-16

Family

ID=65834347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108448 WO2020143252A1 (zh) 2019-01-07 2019-09-27 摄像镜头

Country Status (3)

Country Link
US (1) US20210011260A1 (zh)
CN (1) CN109541783B (zh)
WO (1) WO2020143252A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541783B (zh) * 2019-01-07 2024-04-19 浙江舜宇光学有限公司 摄像镜头
CN110187479B (zh) * 2019-07-15 2024-05-28 浙江舜宇光学有限公司 光学成像镜头
CN112558269B (zh) * 2019-09-25 2022-04-15 比亚迪股份有限公司 用于光学镜头的透镜组和光学镜头
TWI706185B (zh) 2019-11-01 2020-10-01 大立光電股份有限公司 成像用光學系統、取像裝置及電子裝置
CN115220184A (zh) * 2019-12-28 2022-10-21 华为技术有限公司 光学镜头、摄像头模组和终端
CN115407485A (zh) * 2019-12-31 2022-11-29 华为技术有限公司 光学系统、取像装置及终端设备
CN111679409A (zh) * 2020-07-24 2020-09-18 浙江舜宇光学有限公司 光学成像镜头
CN112230382B (zh) * 2020-10-31 2022-04-29 诚瑞光学(苏州)有限公司 摄像光学镜头
KR102536605B1 (ko) * 2020-12-28 2023-05-26 삼성전기주식회사 렌즈 및 촬상 광학계
CN113281882B (zh) * 2021-05-20 2023-06-27 梅卡曼德(北京)机器人科技有限公司 光学镜头及图像采集部件
TWI768998B (zh) * 2021-06-21 2022-06-21 大立光電股份有限公司 光學影像擷取系統、取像裝置及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124990A (ja) * 1999-10-28 2001-05-11 Canon Inc ズームレンズ
JP2014134702A (ja) * 2013-01-11 2014-07-24 Canon Inc ズームレンズ及びそれを有する撮像装置
CN204556941U (zh) * 2015-05-06 2015-08-12 佳能企业股份有限公司 光学镜头
CN108614346A (zh) * 2016-12-13 2018-10-02 新巨科技股份有限公司 六片式广角镜片组
CN109031608A (zh) * 2018-08-14 2018-12-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109541783A (zh) * 2019-01-07 2019-03-29 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827680B1 (fr) * 2001-07-20 2003-10-10 Immervision Internat Pte Ltd Procede de capture d'une image panoramique au moyen d'un capteur d'image de forme rectangulaire
JP4537108B2 (ja) * 2004-04-12 2010-09-01 キヤノン株式会社 アナモフィックコンバータ
JP5085898B2 (ja) * 2006-07-31 2012-11-28 株式会社ニデック 眼鏡レンズ加工装置
KR100930167B1 (ko) * 2007-09-19 2009-12-07 삼성전기주식회사 초광각 광학계
JP2010276755A (ja) * 2009-05-27 2010-12-09 Konica Minolta Opto Inc 超広角アナモルフィックレンズ
CN202640578U (zh) * 2012-04-01 2013-01-02 北京华进创威电子有限公司 一种晶体偏角度加工的定向料台
TWI456249B (zh) * 2012-07-04 2014-10-11 Largan Precision Co Ltd 影像系統鏡組
JP6033658B2 (ja) * 2012-12-04 2016-11-30 三星電子株式会社Samsung Electronics Co.,Ltd. 撮像レンズ
KR102424361B1 (ko) * 2015-02-04 2022-07-25 삼성전자주식회사 촬영 렌즈계 및 이를 포함한 촬영 장치
TWI625566B (zh) * 2016-10-05 2018-06-01 大立光電股份有限公司 光學攝影系統組、取像裝置及電子裝置
CN106526801B (zh) * 2016-12-05 2019-01-08 浙江舜宇光学有限公司 摄像镜头及摄像装置
WO2018230033A1 (ja) * 2017-06-13 2018-12-20 パナソニックIpマネジメント株式会社 レンズ系、カメラシステム及び撮像システム
CN107121756B (zh) * 2017-06-28 2022-09-06 浙江舜宇光学有限公司 光学成像系统
KR102449876B1 (ko) * 2017-09-20 2022-09-30 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
CN207488602U (zh) * 2017-11-23 2018-06-12 江西联益光学有限公司 小型广角镜头
JP6680445B2 (ja) * 2017-12-12 2020-04-15 カンタツ株式会社 撮像レンズ
CN116449535A (zh) * 2018-05-25 2023-07-18 浙江舜宇光学有限公司 摄像镜头
CN109100854B (zh) * 2018-09-05 2024-04-09 浙江舜宇光学有限公司 摄像镜头
CN209343028U (zh) * 2019-01-07 2019-09-03 浙江舜宇光学有限公司 摄像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124990A (ja) * 1999-10-28 2001-05-11 Canon Inc ズームレンズ
JP2014134702A (ja) * 2013-01-11 2014-07-24 Canon Inc ズームレンズ及びそれを有する撮像装置
CN204556941U (zh) * 2015-05-06 2015-08-12 佳能企业股份有限公司 光学镜头
CN108614346A (zh) * 2016-12-13 2018-10-02 新巨科技股份有限公司 六片式广角镜片组
CN109031608A (zh) * 2018-08-14 2018-12-18 瑞声科技(新加坡)有限公司 摄像光学镜头
CN109541783A (zh) * 2019-01-07 2019-03-29 浙江舜宇光学有限公司 摄像镜头

Also Published As

Publication number Publication date
CN109541783A (zh) 2019-03-29
US20210011260A1 (en) 2021-01-14
CN109541783B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2020143252A1 (zh) 摄像镜头
WO2020007080A1 (zh) 摄像镜头
WO2020119145A1 (zh) 摄像镜头
WO2020113985A1 (zh) 光学成像镜片组
WO2020019794A1 (zh) 光学成像镜头
WO2019228064A1 (zh) 成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020048157A1 (zh) 摄像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020038134A1 (zh) 光学成像系统
WO2020191951A1 (zh) 光学成像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像系统
WO2020024635A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
WO2020007081A1 (zh) 光学成像镜头
CN109283665B (zh) 成像镜头
WO2020073703A1 (zh) 光学透镜组
WO2020019796A1 (zh) 光学成像系统
WO2020042799A1 (zh) 光学成像镜片组
WO2021042992A1 (zh) 光学成像系统
WO2019233040A1 (zh) 摄像透镜组
WO2020238495A1 (zh) 光学成像镜头
CN109445072B (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909294

Country of ref document: EP

Kind code of ref document: A1