WO2021042992A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2021042992A1
WO2021042992A1 PCT/CN2020/110042 CN2020110042W WO2021042992A1 WO 2021042992 A1 WO2021042992 A1 WO 2021042992A1 CN 2020110042 W CN2020110042 W CN 2020110042W WO 2021042992 A1 WO2021042992 A1 WO 2021042992A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical
Prior art date
Application number
PCT/CN2020/110042
Other languages
English (en)
French (fr)
Inventor
张战飞
黄林
周鑫
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910835468.5A external-priority patent/CN110412750B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2021042992A1 publication Critical patent/WO2021042992A1/zh
Priority to US17/685,878 priority Critical patent/US20220187577A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • This application relates to the field of optical elements, and more specifically, to an optical imaging system including five lenses.
  • TOF Time of Flight
  • TOF is a depth information measurement program. Its equipment is mainly composed of an infrared light projector and a receiving module.
  • the infrared light projector projects infrared light outwards.
  • the infrared light is reflected after encountering the measured object and is received by the receiving module.
  • This program calculates the depth information of the illuminated object by recording the time from emission to reception of infrared light, and completes three-dimensional modeling.
  • TOF lenses Compared with traditional two-dimensional imaging lenses, TOF lenses have more advantages in face recognition, stereo imaging, and somatosensory interaction.
  • the present application provides such an optical imaging system, which includes in order from the object side to the image side along the optical axis: a first lens with positive refractive power, the object side of which may be a convex surface; and a second lens with refractive power; The third lens with refractive power; the fourth lens with positive refractive power, the object side can be concave, and the image side can be convex; the fifth lens with negative refractive power.
  • the on-axis distance SAG42 from the intersection of the image side surface of the fourth lens and the optical axis to the vertex of the effective radius of the image side of the fourth lens, the intersection of the object side surface of the fifth lens and the optical axis to the object side surface of the fifth lens The on-axis distance between the vertices of the effective radius of SAG51 and the distance Tr7r10 from the object side of the fourth lens to the image side of the fifth lens on the optical axis satisfy -1 ⁇ (SAG42+SAG51)/Tr7r10 ⁇ -0.3.
  • the total effective focal length f of the optical imaging system, the entrance pupil diameter EPD of the optical imaging system, and the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis TTL may satisfy f ⁇ TTL/ EPD ⁇ 6mm.
  • the effective focal length f4 of the fourth lens and the total effective focal length f of the optical imaging system may satisfy 0.8 ⁇ f4/f ⁇ 1.5.
  • the distance TTL from the object side surface of the first lens to the imaging surface of the optical imaging system on the optical axis may satisfy TTL ⁇ 4.5 mm.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system may satisfy f/EPD ⁇ 1.5.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging system may satisfy 1.5 ⁇ f1/f ⁇ 2.1.
  • the radius of curvature R7 of the object side surface of the fourth lens and the total effective focal length f of the optical imaging system may satisfy -0.8 ⁇ R7/f ⁇ -0.3.
  • the maximum distortion DISTmax of the optical imaging system may satisfy DISTmax ⁇ 3%.
  • the separation distance T12 between the first lens and the second lens on the optical axis, the separation distance T23 between the second lens and the third lens on the optical axis, and the distance between the third lens and the fourth lens on the optical axis can satisfy 0.35 ⁇ T34/(T12+T23) ⁇ 0.7.
  • the separation distance T45 between the fourth lens and the fifth lens on the optical axis and the separation distance TD from the object side of the first lens to the image side of the fifth lens on the optical axis may satisfy 10 ⁇ T45/TD ⁇ 0.5.
  • the central thickness CT2 of the second lens on the optical axis and the central thickness CT4 of the fourth lens on the optical axis may satisfy 0.2 ⁇ CT2/CT4 ⁇ 0.5.
  • the central thickness CT2 of the second lens on the optical axis and the edge thickness ET2 of the second lens may satisfy 0.9 ⁇ CT2/ET2 ⁇ 1.65.
  • the effective half-aperture DT12 of the image side surface of the first lens and the effective half-aperture DT21 of the object side surface of the second lens may satisfy 0.9 ⁇ DT12/DT21 ⁇ 1.2.
  • the effective half-aperture DT21 of the object side of the second lens and the effective half-aperture DT31 of the object side of the third lens may satisfy 0.8 ⁇ DT21/DT31 ⁇ 1.2.
  • the on-axis distance SAG21 from the intersection of the object side surface of the second lens and the optical axis to the vertex of the effective radius of the object side surface of the second lens and the central thickness CT2 of the second lens on the optical axis may satisfy -0.7 ⁇ SAG21 /CT2 ⁇ 0.
  • the on-axis distance SAG31 from the intersection of the object side surface of the third lens and the optical axis to the apex of the effective radius of the object side surface of the third lens and the central thickness CT3 of the third lens on the optical axis may satisfy -0.9 ⁇ SAG31 /CT3 ⁇ -0.2.
  • the effective half-aperture DT52 of the image side surface of the fifth lens and the half diagonal length ImgH of the effective pixel area on the imaging surface of the optical imaging system may satisfy 0.8 ⁇ DT52/ImgH ⁇ 1.
  • This application uses five lenses. By reasonably distributing the refractive power, surface shape, center thickness of each lens, and on-axis distance between each lens, the above-mentioned optical imaging system has low distortion, high brightness, and small size. At least one beneficial effect such as chemical, large pore size, etc.
  • FIG. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application
  • FIGS. 2A to 2C respectively show an astigmatism curve, a distortion curve and a relative illuminance curve of the optical imaging system of Embodiment 1;
  • FIG 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application
  • FIGS. 4A to 4C respectively show an astigmatism curve, a distortion curve, and a relative illuminance curve of the optical imaging system of Embodiment 2;
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application
  • FIGS. 6A to 6C respectively show astigmatism curves, distortion curves, and relative illuminance curves of the optical imaging system of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application
  • FIGS. 8A to 8C show the astigmatism curve, distortion curve, and relative illuminance curve of the optical imaging system of Embodiment 4, respectively;
  • FIGS. 10A to 10C show the astigmatism curve, distortion curve, and relative illuminance curve of the optical imaging system according to Embodiment 5, respectively;
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application
  • FIGS. 12A to 12C show the astigmatism curve, distortion curve and relative illuminance curve of the optical imaging system of Embodiment 6 respectively;
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application
  • FIGS. 14A to 14C respectively show an astigmatism curve, a distortion curve and a relative illuminance curve of the optical imaging system of Embodiment 7;
  • Fig. 15 shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application
  • Figs. 16A to 16C respectively show an astigmatism curve, a distortion curve, and a relative illuminance curve of the optical imaging system of Embodiment 8.
  • Fig. 17 shows a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application
  • Figs. 18A to 18C show the astigmatism curve, distortion curve and relative contrast curve of the optical imaging system of Embodiment 9 respectively.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the optical imaging system may include, for example, five lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are arranged in order from the object side to the image side along the optical axis.
  • the first lens may have positive refractive power, and its object side may be convex; the second lens may have positive refractive power or negative refractive power; the third lens may have positive refractive power or negative refractive power;
  • the four lens can have positive refractive power, the object side can be concave, and the image side can be convex; the fifth lens can have negative refractive power.
  • the low-order aberrations of the control system can be effectively balanced by reasonably controlling the positive and negative distribution of the refractive power of each component of the system and the curvature of the lens surface.
  • the optical imaging system of the present application can satisfy the conditional expression -1 ⁇ (SAG42+SAG51)/Tr7r10 ⁇ -0.3, where SAG42 is the intersection of the image side surface of the fourth lens and the optical axis to the fourth lens The on-axis distance of the apex of the effective radius of the image side, SAG51 is the on-axis distance between the intersection of the object side of the fifth lens and the optical axis to the apex of the effective radius of the fifth lens, and Tr7r10 is the distance from the object side of the fourth lens to the The distance of the image side surface of the fifth lens on the optical axis.
  • SAG42, SAG51, and Tr7r10 may satisfy -0.68 ⁇ (SAG42+SAG51)/Tr7r10 ⁇ -0.36.
  • the sagittal height of the vertex of the effective radius of the image side of the fourth lens By controlling the sagittal height of the vertex of the effective radius of the image side of the fourth lens, the sagittal height of the vertex of the effective radius of the object side of the fifth lens, and the on-axis distance from the object side of the fourth lens to the image side of the fifth lens, it is beneficial to make the first There is enough space between the fourth lens and the fifth lens, so that the surface of the fourth lens and the surface of the fifth lens have a higher degree of freedom to change, which is beneficial to better correct the astigmatism and field of the optical imaging system Curve, improve the imaging quality of the optical imaging system.
  • the optical imaging system of the present application can satisfy the conditional formula f ⁇ TTL/EPD ⁇ 6mm, where f is the total effective focal length of the optical imaging system, EPD is the entrance pupil diameter of the optical imaging system, and TTL is the first The distance on the optical axis from the object side of a lens to the imaging surface of the optical imaging system. More specifically, f, EPD, and TTL may satisfy 5.0 mm ⁇ f ⁇ TTL/EPD ⁇ 5.7 mm.
  • the optical imaging system can be used in portable electronic products with a small installation space.
  • the optical imaging system of the present application may satisfy the conditional expression 0.8 ⁇ f4/f ⁇ 1.5, where f4 is the effective focal length of the fourth lens, and f is the total effective focal length of the optical imaging system. More specifically, f4 and f may satisfy 0.81 ⁇ f4/f ⁇ 1.5.
  • the optical imaging system of the present application may satisfy the conditional expression TTL ⁇ 4.5mm, where TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis. More specifically, TTL can satisfy 4mm ⁇ TTL ⁇ 4.21mm. By controlling the total optical length of the optical imaging system, it is beneficial to miniaturize the optical imaging system.
  • the optical imaging system of the present application may satisfy the conditional formula f/EPD ⁇ 1.5, where f is the total effective focal length of the optical imaging system, and EPD is the entrance pupil diameter of the optical imaging system. More specifically, f and EPD can satisfy 1.21 ⁇ f/EPD ⁇ 1.39.
  • the optical imaging system can be made to have a larger aperture and higher light flux, thereby increasing the imaging effect of the optical imaging system when working in a dark environment.
  • the optical imaging system of the present application may satisfy the conditional formula 1.5 ⁇ f1/f ⁇ 2.1, where f1 is the effective focal length of the first lens, and f is the total effective focal length of the optical imaging system. More specifically, f1 and f may satisfy 1.53 ⁇ f1/f ⁇ 2.03.
  • the chromatic aberration of the optical imaging system can be improved, and the focus position of the light can be adjusted, thereby improving the light convergence ability of the optical imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression -0.8 ⁇ R7/f ⁇ -0.3, where R7 is the radius of curvature of the object side surface of the fourth lens, and f is the total effective focal length of the optical imaging system . More specifically, R7 and f may satisfy -0.65 ⁇ R7/f ⁇ -0.45.
  • R7 and f may satisfy -0.65 ⁇ R7/f ⁇ -0.45.
  • the optical imaging system of the present application may satisfy the conditional formula DISTmax ⁇ 3%, where DISTmax is the maximum distortion of the optical imaging system. More specifically, DISTmax can satisfy DISTmax ⁇ 2.6%.
  • DISTmax is the maximum distortion of the optical imaging system. More specifically, DISTmax can satisfy DISTmax ⁇ 2.6%.
  • the optical imaging system of the present application may satisfy the conditional expression 0.35 ⁇ T34/(T12+T23) ⁇ 0.7, where T12 is the separation distance between the first lens and the second lens on the optical axis, and T23 is The separation distance between the second lens and the third lens on the optical axis, T34 is the separation distance between the third lens and the fourth lens on the optical axis. More specifically, T12, T23, and T34 may satisfy 0.36 ⁇ T34/(T12+T23) ⁇ 0.66. By controlling the air space between the adjacent lenses of the first lens to the fourth lens, the total optical length of the optical imaging system can be effectively controlled, which is beneficial to the miniaturization of the optical imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression 10 ⁇ T45/TD ⁇ 0.5, where T45 is the separation distance between the fourth lens and the fifth lens on the optical axis, and TD is the distance of the first lens. The distance from the object side to the image side of the fifth lens on the optical axis. More specifically, T45 and TD can satisfy 0.09 ⁇ 10 ⁇ T45/TD ⁇ 0.45.
  • the overall length of the optical imaging system can be shortened, and the optical imaging system has a light and thin Characteristics, while also adjusting the structure of the optical imaging system, which helps to reduce the difficulty of processing and assembly of each lens.
  • the optical imaging system of the present application may satisfy the conditional expression 0.2 ⁇ CT2/CT4 ⁇ 0.5, where CT2 is the central thickness of the second lens on the optical axis, and CT4 is the thickness of the fourth lens on the optical axis. Center thickness. More specifically, CT2 and CT4 can satisfy 0.26 ⁇ CT2/CT4 ⁇ 0.42.
  • CT2 and CT4 can satisfy 0.26 ⁇ CT2/CT4 ⁇ 0.42.
  • the optical imaging system of the present application may satisfy the conditional expression 0.9 ⁇ CT2/ET2 ⁇ 1.65, where CT2 is the central thickness of the second lens on the optical axis, and ET2 is the edge thickness of the second lens. More specifically, CT2 and ET2 can satisfy 0.93 ⁇ CT2/ET2 ⁇ 1.64. By controlling the ratio of the thickness of the center of the second lens to the thickness of its edge, it is beneficial to reduce the difficulty of processing and assembly of the second lens.
  • the optical imaging system of the present application may satisfy the conditional expression 0.9 ⁇ DT12/DT21 ⁇ 1.2, where DT12 is the effective half-aperture of the image side surface of the first lens, and DT21 is the effective half-aperture of the object side surface of the second lens.
  • the optical imaging system of the present application may satisfy the conditional expression 0.8 ⁇ DT21/DT31 ⁇ 1.2, where DT21 is the effective half-aperture of the object side of the second lens, and DT31 is the effective half of the object side of the third lens.
  • Matching the effective half-aperture of the object side of the second lens with the effective half-aperture of the object side of the third lens helps reduce the difficulty of assembling the second lens and the third lens, and helps to make the optical imaging system smaller Aberration.
  • the optical imaging system of the present application may satisfy the conditional expression -0.7 ⁇ SAG21/CT2 ⁇ 0, where SAG21 is the effective radius from the intersection of the object side surface of the second lens and the optical axis to the object side surface of the second lens
  • the on-axis distance of the apex, CT2 is the center thickness of the second lens on the optical axis.
  • SAG21 and CT2 can satisfy -0.7 ⁇ SAG21/CT2 ⁇ -0.1.
  • the optical imaging system of the present application may satisfy the conditional expression -0.9 ⁇ SAG31/CT3 ⁇ -0.2, where SAG31 is the effective value from the intersection of the object side surface of the third lens and the optical axis to the object side surface of the third lens.
  • the on-axis distance of the apex of the radius, CT3 is the center thickness of the third lens on the optical axis.
  • SAG31 and CT3 satisfy -0.89 ⁇ SAG31/CT3 ⁇ -0.41.
  • the optical imaging system of the present application may satisfy the conditional expression 0.8 ⁇ DT52/ImgH ⁇ 1, where DT52 is the effective half-aperture of the image side surface of the fifth lens, and ImgH is the effective half-aperture of the imaging surface of the optical imaging system. Half of the diagonal of the pixel area. More specifically, DT52 and ImgH can satisfy 0.87 ⁇ DT52/ImgH ⁇ 0.93. By controlling the ratio of the effective half-aperture of the object side surface of the fifth lens to the image height, it is beneficial for the optical imaging system to have a good ability to balance aberrations.
  • the above-mentioned optical imaging system may further include at least one diaphragm.
  • the diaphragm can be arranged at an appropriate position as required, for example, between the object side and the first lens.
  • the above-mentioned optical imaging system may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging system according to the above-mentioned embodiment of the present application may use multiple lenses, such as the five lenses described above.
  • the volume of the imaging system can be effectively reduced, the sensitivity of the imaging system is reduced, and the reliability of the imaging system is improved.
  • Processability makes the optical imaging system more conducive to production and processing and can be applied to portable electronic products.
  • the optical imaging system of the present application also has excellent optical performance such as low distortion, high brightness, large aperture, and the characteristics of miniaturization, lightness and thinness.
  • the optical imaging system according to the present application can be applied to infrared bands and TOF technology, and can provide better imaging effects in aspects such as face recognition, stereo imaging, and somatosensory interaction.
  • At least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one of the object side surface of the first lens to the image side surface of the fifth lens is an aspheric mirror surface.
  • the characteristic of an aspheric lens is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike a spherical lens with a constant curvature from the center of the lens to the periphery of the lens, an aspheric lens has better curvature radius characteristics, and has the advantages of improving distortion and astigmatism. After the aspheric lens is used, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • At least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens is an aspheric mirror surface.
  • the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens are aspheric mirror surfaces.
  • the number of lenses constituting the optical imaging system can be changed to obtain the various results and advantages described in this specification.
  • the optical imaging system is not limited to including five lenses. If necessary, the optical imaging system may also include other numbers of lenses.
  • Fig. 1 shows a schematic structural diagram of an optical imaging system according to Embodiment 1 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Table 1 shows the basic parameter table of the optical imaging system of Embodiment 1, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • the value of the total effective focal length f of the optical imaging system is 2.54 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.06 mm.
  • the object and image sides of any one of the first lens L1 to the fifth lens L5 are aspherical surfaces, and the surface shape x of each aspherical lens can be defined by but not limited to the following aspherical formula :
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the correction coefficient of the i-th order of the aspheric surface.
  • Table 2 shows the high-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 that can be used for each aspheric mirror surface S1 to S10 in Example 1. .
  • FIGS. 2A to 2C it can be seen that the optical imaging system provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging system according to Embodiment 2 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.60 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.20 mm.
  • Table 3 shows the basic parameter table of the optical imaging system of Embodiment 2, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 4 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 4A shows the astigmatism curve of the optical imaging system of Example 2, which represents meridional field curvature and sagittal field curvature.
  • FIG. 4B shows the distortion curve of the optical imaging system of Embodiment 2, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 4C shows the relative illuminance curve of the optical imaging system of Embodiment 2, which represents the relative illuminance corresponding to different image heights on the imaging surface. According to Figs. 4A to 4C, it can be seen that the optical imaging system given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging system according to Embodiment 3 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.61 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.16 mm.
  • Table 5 shows the basic parameter table of the optical imaging system of Embodiment 3, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 6 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 6A shows the astigmatism curve of the optical imaging system of Example 3, which represents meridional field curvature and sagittal field curvature.
  • FIG. 6B shows the distortion curve of the optical imaging system of Embodiment 3, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 6C shows the relative illuminance curve of the optical imaging system of Embodiment 3, which represents the relative illuminance corresponding to different image heights on the imaging surface. It can be seen from FIGS. 6A to 6C that the optical imaging system provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging system according to Embodiment 4 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a convex surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.33 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.18 mm.
  • Table 7 shows the basic parameter table of the optical imaging system of Embodiment 4, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 8 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 8A shows the astigmatism curve of the optical imaging system of Example 4, which represents meridional field curvature and sagittal field curvature.
  • FIG. 8B shows the distortion curve of the optical imaging system of Embodiment 4, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 8C shows the relative illuminance curve of the optical imaging system of Embodiment 4, which represents the relative illuminance corresponding to different image heights on the imaging surface. It can be seen from FIGS. 8A to 8C that the optical imaging system provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.35 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 3.99 mm.
  • Table 9 shows the basic parameter table of the optical imaging system of Embodiment 5, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 10 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 10A shows the astigmatism curve of the optical imaging system of Example 5, which represents meridional field curvature and sagittal field curvature.
  • FIG. 10B shows the distortion curve of the optical imaging system of Embodiment 5, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 10C shows the relative illuminance curve of the optical imaging system of Embodiment 5, which represents the relative illuminance corresponding to different image heights on the imaging surface. According to FIGS. 10A to 10C, it can be seen that the optical imaging system provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging system according to Embodiment 6 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a concave surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.50 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.04 mm.
  • Table 11 shows the basic parameter table of the optical imaging system of Embodiment 6, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 12 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 12A shows the astigmatism curve of the optical imaging system of Example 6, which represents meridional field curvature and sagittal field curvature.
  • FIG. 12B shows the distortion curve of the optical imaging system of Embodiment 6, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 12C shows the relative illuminance curve of the optical imaging system of Example 6, which represents the relative illuminance corresponding to different image heights on the imaging surface. According to FIGS. 12A to 12C, it can be seen that the optical imaging system provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a concave surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.34 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.01 mm.
  • Table 13 shows the basic parameter table of the optical imaging system of Embodiment 7, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 14 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 14A shows the astigmatism curve of the optical imaging system of Example 7, which represents meridional field curvature and sagittal field curvature.
  • FIG. 14B shows the distortion curve of the optical imaging system of Embodiment 7, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 14C shows the relative illuminance curve of the optical imaging system of Example 7, which represents the relative illuminance corresponding to different image heights on the imaging surface. It can be seen from FIGS. 14A to 14C that the optical imaging system provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 shows a schematic structural diagram of an optical imaging system according to Embodiment 8 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and finally forms an image on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.44 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 3.90 mm.
  • Table 15 shows the basic parameter table of the optical imaging system of Embodiment 8, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 16 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 16A shows the astigmatism curve of the optical imaging system of Example 8, which represents meridional field curvature and sagittal field curvature.
  • FIG. 16B shows the distortion curve of the optical imaging system of Embodiment 8, which represents the distortion magnitude values corresponding to different image heights.
  • FIG. 16C shows the relative illuminance curve of the optical imaging system of Example 8, which represents the relative illuminance corresponding to different image heights on the imaging surface. According to FIGS. 16A to 16C, it can be seen that the optical imaging system provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of an optical imaging system according to Embodiment 9 of the present application.
  • the optical imaging system includes in order from the object side to the image side along the optical axis: a stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. And filter L6.
  • the first lens L1 has a positive refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 is a concave surface
  • the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the filter L6 has an object side surface S11 and an image side surface S12.
  • the optical imaging system has an imaging surface S13, and the light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the value of the total effective focal length f of the optical imaging system is 2.72 mm, and the value of the on-axis distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 is 4.10 mm.
  • Table 17 shows the basic parameter table of the optical imaging system of Embodiment 9, wherein the units of the radius of curvature, thickness/distance, and focal length are all millimeters (mm).
  • Table 18 shows the coefficients of higher-order terms that can be used for each aspheric mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • FIG. 18A shows the astigmatism curve of the optical imaging system of Example 9, which represents meridional field curvature and sagittal field curvature.
  • FIG. 18B shows the distortion curve of the optical imaging system of Example 9, which represents the distortion magnitude values corresponding to different image heights.
  • Fig. 18C shows the relative illuminance curve of the optical imaging system of Example 9, which represents the relative illuminance corresponding to different image heights on the imaging surface. According to FIGS. 18A to 18C, it can be seen that the optical imaging system provided in Embodiment 9 can achieve good imaging quality.
  • Examples 1 to 9 satisfy the relationships shown in Table 19, respectively.
  • the present application also provides an imaging device, which is provided with an electronic photosensitive element for imaging.
  • the electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • CMOS complementary metal oxide semiconductor element
  • the imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜(L1),其物侧面(S1)为凸面;具有光焦度的第二透镜(L2);具有光焦度的第三透镜(L3);具有正光焦度的第四透镜(L4),其物侧面(S7)为凹面,像侧面(S8)为凸面;具有负光焦度的第五透镜(L5);第四透镜(L4)的像侧面(S8)和光轴的交点至第四透镜(L4)的像侧面(S8)的有效半径顶点的轴上距离SAG42、第五透镜(L5)的物侧面(S9)和光轴的交点至第五透镜(L5)的物侧面(S9)的有效半径顶点之间的轴上距离SAG51以及第四透镜(L4)的物侧面(S7)至第五透镜(L5)的像侧面(S10)在光轴上的距离Tr7r10满足-1<(SAG42+SAG51)/Tr7r10<-0.3。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2019年9月5日提交于中国国家知识产权局(CNIPA)的、专利申请号为201910835468.5的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学元件领域,更具体地,涉及一种包括五片透镜的光学成像系统。
背景技术
近年来,随着科学技术的发展,光学成像系统在许多领域(如手机摄影、机器视觉、安防监控、医学成像、汽车驾驶等)发挥的作用都越来越重要。随着体感游戏设备及智能手机相机技术的发展,使得飞行时间(Time of Flight,以下简称TOF)的应用越来越普及。
TOF是一种深度信息测量方案,其设备主要由红外光投射器和接收模组构成,红外光投射器向外投射红外光,红外光遇到被测物体后反射,并被接收模组接收。该方案通过记录红外光从发射到被接收的时间,计算出被照物体深度信息,并完成三维建模。相比传统的二维成像镜头,TOF镜头在人脸识别、立体成像、体感交互等方面都更具优势。
发明内容
本申请提供了这样一种光学成像系统,其沿光轴由物侧至像侧依序包括:具有正光焦度的第一透镜,其物侧面可为凸面;具有光焦度的第二透镜;具有光焦度的第三透镜;具有正光焦度的第四透镜,其物侧面可为凹面,像侧面可为凸面;具有负光焦度的第五透镜。
在一个实施方式中,第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点的轴上距离SAG42、第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点之间的轴上距离SAG51以及第四透镜的物侧面至第五透镜的像侧面在光轴上的距离Tr7r10可满足-1<(SAG42+SAG51)/Tr7r10<-0.3。
在一个实施方式中,光学成像系统的总有效焦距f、光学成像系统的入瞳直径EPD以及第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL可满足f×TTL/EPD<6mm。
在一个实施方式中,第四透镜的有效焦距f4与光学成像系统的总有效焦距f可满足0.8<f4/f≤1.5。
在一个实施方式中,第一透镜的物侧面至光学成像系统的成像面在光轴上的距离TTL可满足TTL<4.5mm。
在一个实施方式中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD可满足f/EPD<1.5。
在一个实施方式中,第一透镜的有效焦距f1与光学成像系统的总有效焦距f可满足1.5<f1/f<2.1。
在一个实施方式中,第四透镜的物侧面的曲率半径R7与光学成像系统的总有效焦距f可满足-0.8<R7/f<-0.3。
在一个实施方式中,光学成像系统的最大畸变DISTmax可满足DISTmax<3%。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12、第二透镜和第三透镜在光轴上的间隔距离T23以及第三透镜和第四透镜在光轴上的间隔距离T34可满足0.35< T34/(T12+T23)<0.7。
在一个实施方式中,第四透镜和第五透镜在光轴上的间隔距离T45与第一透镜的物侧面至第五透镜的像侧面在光轴上的间隔距离TD可满足10×T45/TD<0.5。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第四透镜在光轴上的中心厚度CT4可满足0.2<CT2/CT4<0.5。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第二透镜的边缘厚度ET2可满足0.9<CT2/ET2<1.65。
在一个实施方式中,第一透镜的像侧面的有效半口径DT12与第二透镜的物侧面的有效半口径DT21可满足0.9<DT12/DT21<1.2。
在一个实施方式中,第二透镜的物侧面的有效半口径DT21与第三透镜的物侧面的有效半口径DT31可满足0.8<DT21/DT31<1.2。
在一个实施方式中,第二透镜的物侧面和光轴的交点至第二透镜的物侧面的有效半径顶点的轴上距离SAG21与第二透镜在光轴上的中心厚度CT2可满足-0.7<SAG21/CT2<0。
在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离SAG31与第三透镜在光轴上的中心厚度CT3可满足-0.9<SAG31/CT3<-0.2。
在一个实施方式中,第五透镜的像侧面的有效半口径DT52与光学成像系统的成像面上有效像素区域的对角线长的一半ImgH可满足0.8<DT52/ImgH<1。
本申请采用了五片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有低畸变、高亮度、小型化、大孔径等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;图2A至图2C分别示出了实施例1的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;图4A至图4C分别示出了实施例2的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;图6A至图6C分别示出了实施例3的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;图8A至图8C分别示出了实施例4的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;图10A至图10C分别示出了实施例5的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;图12A至图12C分别示出了实施例6的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;图14A至图14C分别示出了实施例7的光学成像系统的象散曲线、畸变曲线以及相对照度曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;图16A至图16C分别示出了实施例8的光学成像系统的象散曲线、畸变曲线以及相对照度曲线。
图17示出了根据本申请实施例9的光学成像系统的结构示意图;图18A至图18C分别 示出了实施例9的光学成像系统的象散曲线、畸变曲线以及相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如五片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第五透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度;第四透镜可具有正光焦度,其物侧面可为凹面,像侧面可为凸面;第五透镜可具有负光焦度。通过合理的控制系统的各个组元的光焦度的正负分配和镜片面型曲率,来有效的平衡控制系统的低阶像差。
在示例性实施方式中,本申请的光学成像系统可满足条件式-1<(SAG42+SAG51)/Tr7r10<-0.3,其中,SAG42是第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点的轴上距离,SAG51是第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点之间的轴上距离,Tr7r10是第四透镜的物侧面至第五透镜的像侧面在光轴上的距离。更具体地, SAG42、SAG51以及Tr7r10可满足-0.68<(SAG42+SAG51)/Tr7r10<-0.36。通过控制第四透镜的像侧面的有效半径顶点的矢高、第五透镜的物侧面的有效半径顶点的矢高以及第四透镜的物侧面至第五透镜的像侧面的轴上距离,有利于使第四透镜和第五透镜之间具有足够的间隔空间,进而使第四透镜的表面和第五透镜的表面具有自由度较高的变化,进而有利于更好地校正光学成像系统的像散和场曲,提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式f×TTL/EPD<6mm,其中,f是光学成像系统的总有效焦距,EPD是光学成像系统的入瞳直径,TTL是第一透镜的物侧面至光学成像系统的成像面在光轴上的距离。更具体地,f、EPD以及TTL可满足5.0mm<f×TTL/EPD<5.7mm。通过使光学成像系统的总有效焦距、入瞳直径及光学总长匹配,有利于使光学成像系统小型化的同时具有大孔径,进而具有较大的通光量和较好的相对照度。该光学成像系统可以用在安装空间较小的便携式电子产品。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.8<f4/f≤1.5,其中,f4是第四透镜的有效焦距,f是光学成像系统的总有效焦距。更具体地,f4与f可满足0.81<f4/f≤1.5。通过控制第四透镜的有效焦距与总有效焦距的比值,有利于避免第四透镜处的光线偏折过大,此外还有利于更好的校正光学成像系统的场曲。
在示例性实施方式中,本申请的光学成像系统可满足条件式TTL<4.5mm,其中,TTL是第一透镜的物侧面至光学成像系统的成像面在光轴上的距离。更具体地,TTL可满足4mm<TTL<4.21mm。通过控制光学成像系统的光学总长,有利于使光学成像系统小型化。
在示例性实施方式中,本申请的光学成像系统可满足条件式f/EPD<1.5,其中,f是光学成像系统的总有效焦距,EPD是光学成像系统的入瞳直径。更具体地,f与EPD可满足1.21<f/EPD<1.39。通过控制光学成像系统的总有效焦距与入瞳直径的比值,可以使光学成像系统具有较大的孔径、较高的通光量,进而增加光学成像系统在暗环境下工作时的成像效果,此外还有利于减小边缘视场的像差。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<f1/f<2.1,其中,f1是第一透镜的有效焦距,f是光学成像系统的总有效焦距。更具体地,f1与f可满足1.53<f1/f<2.03。通过控制第一透镜的有效焦距与总有效焦距的比值,有助于改善光学成像系统的色差,并且有助于调整光线的聚焦位置,进而提升光学成像系统对光线的汇聚能力。
在示例性实施方式中,本申请的光学成像系统可满足条件式-0.8<R7/f<-0.3,其中,R7是第四透镜的物侧面的曲率半径,f是光学成像系统的总有效焦距。更具体地,R7与f可满足-0.65<R7/f<-0.45。通过控制第四透镜的物测面的曲率半径与总有效焦距的比值,有利于使光学成像系统的成像面处的光线角度与感光芯片的主光线角度(Chief Ray Angle,CRA)匹配,进而提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式DISTmax<3%,其中,DISTmax是光学成像系统的最大畸变。更具体地,DISTmax可满足DISTmax<2.6%。通过控制光学成像系统的畸变,有利于降低光学成像系统的像散并提升相对照度,同时还有利于提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.35<T34/(T12+T23)<0.7,其中,T12是第一透镜和第二透镜在光轴上的间隔距离,T23是第二透镜和第三透镜在光轴上的间隔距离,T34是第三透镜和第四透镜在光轴上的间隔距离。更具体地,T12、T23以及T34可满足0.36<T34/(T12+T23)<0.66。通过控制第一透镜至第四透镜中相邻透镜之间的空气间隔,可以有效控制光学成像系统的光学总长,有利于使光学成像系统具有小型化的特性。
在示例性实施方式中,本申请的光学成像系统可满足条件式10×T45/TD<0.5,其中,T45是第四透镜和第五透镜在光轴上的间隔距离,TD是第一透镜的物侧面至第五透镜的像侧面在光轴上的间隔距离。更具体地,T45与TD可满足0.09<10×T45/TD<0.45。通过控制第四透镜和第五透镜的轴上距离与第一透镜的物侧面至第五透镜的像侧面的轴上距离的比值,有利于缩短光学成像系统的总长,使光学成像系统具有轻薄的特性,同时还调整了光学成像系统的结构,进而有利于降低各透镜的加工难度和组装难度。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.2<CT2/CT4<0.5,其中,CT2是第二透镜在光轴上的中心厚度,CT4是第四透镜在光轴上的中心厚度。更具体地,CT2与CT4可满足0.26<CT2/CT4<0.42。通过控制第二透镜的中心厚度与第四透镜的中心厚度的比值,有利于使光学成像系统的各透镜间具有足够的间隔空间,进而使各透镜的表面具有更高的自由度,同时还有利于更好地校正光学成像系统的场曲和像散。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.9<CT2/ET2<1.65,其中,CT2是第二透镜在光轴上的中心厚度,ET2是第二透镜的边缘厚度。更具体地,CT2与ET2可满足0.93<CT2/ET2<1.64。通过控制第二透镜的中心厚度及其边缘厚度的比值,有利于降低第二透镜的加工难度和组装难度。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.9<DT12/DT21<1.2,其中,DT12是第一透镜的像侧面的有效半口径,DT21是第二透镜的物侧面的有效半口径。更具体地,DT12与DT21可满足0.95<DT12/DT21<1.15。通过使第一透镜的像侧面的有效半口径与第二透镜的物侧面的有效半口径匹配,有利于使光学成像系统更好地矫正轴外像差,进而使光学成像系统具有更高的像质。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.8<DT21/DT31<1.2,其中,DT21是第二透镜的物侧面的有效半口径,DT31是第三透镜的物侧面的有效半口径。更具体地,DT21与DT31可满足0.85<DT21/DT31<1.08。通过使第二透镜的物侧面的有效半口径与第三透镜的物侧面的有效半口径匹配,有利于降低第二透镜和第三透镜的组装难度,并有利于使光学成像系统具有较小的像差。
在示例性实施方式中,本申请的光学成像系统可满足条件式-0.7<SAG21/CT2<0,其中,SAG21是第二透镜的物侧面和光轴的交点至第二透镜的物侧面的有效半径顶点的轴上距离,CT2是第二透镜在光轴上的中心厚度。更具体地,SAG21与CT2可满足-0.7<SAG21/CT2<-0.1。通过控制第二透镜的物侧面的有效半径顶点的矢高与第二透镜的中心厚度的比值,能够有效地提升光学成像系统的相对亮度。
在示例性实施方式中,本申请的光学成像系统可满足条件式-0.9<SAG31/CT3<-0.2,其中,SAG31是第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点的轴上距离,CT3是第三透镜在光轴上的中心厚度。更具体地,SAG31与CT3满足-0.89<SAG31/CT3<-0.41。通过控制第三透镜的物侧面的有效半径顶点的矢高与第三透镜的中心厚度的比值,能够有效地调整光学成像系统的主光线角度,并且有利于提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.8<DT52/ImgH<1,其中,DT52是第五透镜的像侧面的有效半口径,ImgH是光学成像系统的成像面上有效像素区域的对角线长的一半。更具体地,DT52与ImgH可满足0.87<DT52/ImgH<0.93。通过控制第五透镜的物侧面的有效半口径与像高的比值,有利于使光学成像系统具备良好的平衡像差的能力。
在示例性实施方式中,上述光学成像系统还可包括至少一个光阑。光阑可根据需要设置在适当位置处,例如,设置在物侧与第一透镜之间。可选地,上述光学成像系统还可包括用 于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像系统的体积、降低成像系统的敏感度并提高成像系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。同时,本申请的光学成像系统还具备低畸变、高亮度、大孔径等优良光学性能以及小型化、轻薄的特性。根据本申请的光学成像系统可应用于红外波段和TOF技术,并可在诸如人脸识别、立体成像、体感交互等方面提供较佳的成像效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第五透镜的像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像系统不限于包括五个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
表1示出了实施例1的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
Figure PCTCN2020110042-appb-000001
Figure PCTCN2020110042-appb-000002
表1
在实施例1中,光学成像系统的总有效焦距f的值是2.54mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.06mm。
在实施例1中,第一透镜L1至第五透镜L5中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2020110042-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1至S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.4473E-02 -3.1426E-01 2.5283E+00 -1.1557E+01 3.1356E+01 -5.1886E+01 5.1156E+01 -2.7614E+01 6.2691E+00
S2 2.1374E-02 5.4529E-01 -4.7141E+00 1.8564E+01 -4.4004E+01 6.3926E+01 -5.5909E+01 2.7103E+01 -5.6024E+00
S3 -9.2178E-02 5.2659E-01 -3.8330E+00 1.4834E+01 -3.4267E+01 4.7966E+01 -3.9401E+01 1.7434E+01 -3.2020E+00
S4 -6.1528E-02 -3.3140E-01 1.3818E+00 -3.0617E+00 3.1364E+00 -3.8090E-01 -1.6234E+00 9.1151E-01 -7.0614E-02
S5 -2.3438E-01 8.0369E-01 -5.7540E+00 2.0011E+01 -4.3381E+01 5.7879E+01 -4.6540E+01 2.0959E+01 -4.0656E+00
S6 -1.0462E-01 -1.0184E-01 3.3624E-01 -2.4924E+00 7.6637E+00 -1.2941E+01 1.2746E+01 -6.6665E+00 1.4141E+00
S7 1.6606E-01 -3.9444E-01 5.8771E-01 2.5262E-01 -2.9280E+00 6.0086E+00 -5.7571E+00 2.6961E+00 -5.0242E-01
S8 6.4442E-02 -3.7366E-01 7.8553E-01 -1.1443E+00 1.1185E+00 -6.4441E-01 1.7353E-01 -1.3786E-03 -6.0262E-03
S9 -2.1409E-01 -3.9701E-03 1.8514E-01 -2.8377E-01 2.3472E-01 -1.1870E-01 3.6618E-02 -6.3049E-03 4.6238E-04
S10 -8.3102E-02 5.2644E-02 -2.9775E-02 8.5152E-03 3.6063E-04 -1.0498E-03 2.9357E-04 -3.0251E-05 6.9955E-07
表2
图2A示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图2C示出了实施例1的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图2A至图2C可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例2中,光学成像系统的总有效焦距f的值是2.60mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.20mm。
表3示出了实施例2的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000004
表3
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.6690E-02 -1.9950E-01 1.5932E+00 -7.2355E+00 1.9517E+01 -3.2229E+01 3.1771E+01 -1.7181E+01 3.9112E+00
S2 2.0062E-02 5.1289E-01 -4.4304E+00 1.7372E+01 -4.0978E+01 5.9363E+01 -5.1866E+01 2.5123E+01 -5.1818E+00
S3 -1.0532E-01 5.0246E-01 -3.5704E+00 1.3503E+01 -3.0322E+01 4.1126E+01 -3.2543E+01 1.3753E+01 -2.3873E+00
S4 -4.6663E-02 -3.2859E-01 1.2859E+00 -2.7585E+00 2.7354E+00 -2.3251E-01 -1.4786E+00 7.8063E-01 -4.9992E-02
S5 -2.3931E-01 7.7869E-01 -5.6314E+00 1.9731E+01 -4.2992E+01 5.7650E+01 -4.6671E+01 2.1225E+01 -4.1772E+00
S6 -1.5013E-01 3.9380E-01 -2.6207E+00 8.2488E+00 -1.5834E+01 1.8397E+01 -1.2232E+01 4.2604E+00 -6.0171E-01
S7 1.5669E-01 -2.3563E-02 -1.4311E+00 6.7565E+00 -1.5859E+01 2.1575E+01 -1.6782E+01 6.9193E+00 -1.1759E+00
S8 2.5291E-02 -1.2275E-01 -5.3661E-02 6.1437E-01 -1.2135E+00 1.2690E+00 -7.5993E-01 2.4534E-01 -3.3096E-02
S9 -1.9955E-01 1.1378E-02 1.2383E-01 -1.9082E-01 1.5140E-01 -7.1516E-02 2.0090E-02 -3.0699E-03 1.9335E-04
S10 -7.6999E-02 4.8611E-02 -2.8744E-02 8.4978E-03 3.3614E-04 -1.0544E-03 2.9296E-04 -3.0220E-05 7.3266E-07
表4
图4A示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图4C示出了实施例2的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图4A至图4C可知,实施例2所给出的光学成像系统能够实现良好的成像品 质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例3中,光学成像系统的总有效焦距f的值是2.61mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.16mm。
表5示出了实施例3的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000005
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.6093E-02 -3.5419E-01 2.7798E+00 -1.2273E+01 3.2231E+01 -5.1857E+01 4.9969E+01 -2.6485E+01 5.9290E+00
S2 3.1317E-02 4.1884E-01 -3.9624E+00 1.5848E+01 -3.7915E+01 5.5455E+01 -4.8689E+01 2.3594E+01 -4.8455E+00
S3 -9.4165E-02 4.7996E-01 -3.5372E+00 1.3487E+01 -3.0709E+01 4.2412E+01 -3.4334E+01 1.4964E+01 -2.7176E+00
S4 -3.7674E-02 -2.8190E-01 1.0834E+00 -2.3241E+00 2.1304E+00 3.9024E-01 -1.9988E+00 1.1038E+00 -1.4483E-01
S5 -2.6254E-01 7.8284E-01 -5.8167E+00 2.0991E+01 -4.6874E+01 6.4397E+01 -5.3592E+01 2.5185E+01 -5.1504E+00
S6 -1.5646E-01 4.0423E-01 -1.8217E+00 4.0887E+00 -5.2753E+00 3.3384E+00 -1.5279E-01 -8.4598E-01 2.8896E-01
S7 4.9181E-02 3.7281E-01 -2.6160E+00 8.4178E+00 -1.5766E+01 1.7873E+01 -1.1879E+01 4.2470E+00 -6.3130E-01
S8 3.1757E-02 -1.4795E-01 -1.1409E-01 9.0013E-01 -1.7498E+00 1.8266E+00 -1.0823E+00 3.4403E-01 -4.5953E-02
S9 -1.7593E-01 -1.9445E-02 1.7443E-01 -2.3495E-01 1.7604E-01 -8.0747E-02 2.2412E-02 -3.4516E-03 2.2602E-04
S10 -7.2011E-02 5.0193E-02 -2.8958E-02 8.5451E-03 3.4313E-04 -1.0539E-03 2.9278E-04 -3.0322E-05 7.5774E-07
表6
图6A示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图6C示出了实施例3的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图6A至图6C可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例4中,光学成像系统的总有效焦距f的值是2.33mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.18mm。
表7示出了实施例4的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000006
表7
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.6593E-02 -7.4332E-01 5.7552E+00 -2.7691E+01 8.1290E+01 -1.4770E+02 1.6172E+02 -9.7735E+01 2.5026E+01
S2 -6.2022E-02 5.2281E-01 -4.4474E+00 2.0717E+01 -5.9686E+01 1.0726E+02 -1.1748E+02 7.1768E+01 -1.8699E+01
S3 -4.1646E-02 2.1431E-01 -1.1894E+00 4.1481E+00 -1.0135E+01 1.7337E+01 -2.0493E+01 1.4819E+01 -4.7254E+00
S4 -8.9171E-02 -4.4849E-01 3.2634E+00 -1.3944E+01 3.6181E+01 -5.8531E+01 5.7130E+01 -3.0577E+01 6.8487E+00
S5 -2.4663E-01 4.7787E-01 -4.0558E+00 1.6749E+01 -4.5057E+01 7.7991E+01 -8.4629E+01 5.2602E+01 -1.4242E+01
S6 -1.0805E-01 -1.5675E-01 4.4364E-01 -2.0422E+00 4.8753E+00 -6.4150E+00 5.0964E+00 -2.2677E+00 4.2491E-01
S7 1.9817E-01 -4.3558E-01 1.1819E+00 -3.1520E+00 5.5369E+00 -5.3899E+00 2.9706E+00 -8.9687E-01 1.1902E-01
S8 3.3678E-03 -3.6689E-02 -1.3527E-01 4.2789E-01 -6.1919E-01 5.5572E-01 -3.0935E-01 9.5585E-02 -1.2201E-02
S9 -2.1519E-01 1.7110E-01 -3.9064E-01 6.8089E-01 -7.5794E-01 5.2325E-01 -2.1833E-01 5.0575E-02 -5.0023E-03
S10 -7.6872E-02 4.5844E-02 -2.8616E-02 8.6360E-03 3.4213E-04 -1.0574E-03 2.9205E-04 -3.0420E-05 7.4825E-07
表8
图8A示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图8C示出了实施例4的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图8A至图8C可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例5中,光学成像系统的总有效焦距f的值是2.35mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是3.99mm。
表9示出了实施例5的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000007
Figure PCTCN2020110042-appb-000008
表9
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.9851E-02 -7.0479E-01 5.7686E+00 -2.7470E+01 7.9015E+01 -1.4017E+02 1.4942E+02 -8.7733E+01 2.1779E+01
S2 3.7716E-02 5.0394E-01 -5.0649E+00 2.1123E+01 -5.1587E+01 7.5244E+01 -6.4472E+01 2.9909E+01 -5.7657E+00
S3 -1.2362E-01 7.9240E-01 -5.9320E+00 2.5578E+01 -6.6270E+01 1.0354E+02 -9.5116E+01 4.7314E+01 -9.8188E+00
S4 -5.5454E-02 -8.3256E-01 5.9608E+00 -2.3680E+01 5.7470E+01 -8.7820E+01 8.3109E+01 -4.4712E+01 1.0459E+01
S5 -2.2886E-01 9.3304E-01 -8.0095E+00 3.2577E+01 -8.1555E+01 1.2632E+02 -1.1843E+02 6.1718E+01 -1.3653E+01
S6 -1.2989E-01 4.0960E-01 -3.4247E+00 1.1639E+01 -2.4001E+01 3.0829E+01 -2.3558E+01 9.8144E+00 -1.7237E+00
S7 1.9227E-01 -3.0555E-01 -1.4794E-01 2.1951E+00 -6.1837E+00 9.9330E+00 -8.9361E+00 4.1665E+00 -7.8627E-01
S8 7.3110E-02 -3.9518E-01 8.7593E-01 -1.3922E+00 1.4837E+00 -9.9229E-01 3.9087E-01 -8.1132E-02 6.7247E-03
S9 -2.0159E-01 -2.7562E-02 2.0459E-01 -2.9431E-01 2.3511E-01 -1.1527E-01 3.4234E-02 -5.6078E-03 3.8490E-04
S10 -7.9671E-02 4.9427E-02 -2.9175E-02 8.5525E-03 3.4531E-04 -1.0553E-03 2.9250E-04 -3.0323E-05 7.5544E-07
表10
图10A示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图10C示出了实施例5的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图10A至图10C可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例6中,光学成像系统的总有效焦距f的值是2.50mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.04mm。
表11示出了实施例6的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000009
Figure PCTCN2020110042-appb-000010
表11
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.1061E-02 -2.5621E-01 2.0239E+00 -9.2190E+00 2.4631E+01 -3.9996E+01 3.8618E+01 -2.0412E+01 4.5424E+00
S2 3.4697E-02 3.7156E-01 -3.6748E+00 1.4138E+01 -3.2089E+01 4.4005E+01 -3.5894E+01 1.6097E+01 -3.0656E+00
S3 -9.1559E-02 5.7087E-01 -3.9621E+00 1.5382E+01 -3.6080E+01 5.1473E+01 -4.3229E+01 1.9637E+01 -3.7242E+00
S4 -9.1800E-02 -2.5479E-01 1.1683E+00 -2.5535E+00 2.3456E+00 3.3636E-01 -2.0111E+00 1.0673E+00 -1.1254E-01
S5 -2.1010E-01 7.2648E-01 -5.1208E+00 1.7308E+01 -3.6495E+01 4.7308E+01 -3.6874E+01 1.6054E+01 -3.0034E+00
S6 -9.6868E-02 4.3989E-02 -2.8715E-01 -8.7429E-01 4.6909E+00 -9.1605E+00 9.5739E+00 -5.1298E+00 1.0976E+00
S7 1.8734E-01 -6.0262E-01 1.7435E+00 -3.6337E+00 4.9597E+00 -3.9132E+00 1.7862E+00 -4.7044E-01 6.1436E-02
S8 9.5921E-02 -5.9518E-01 1.6396E+00 -3.1203E+00 3.9182E+00 -3.1119E+00 1.4979E+00 -3.9840E-01 4.4999E-02
S9 -2.3376E-01 -3.6319E-03 2.0139E-01 -3.1532E-01 2.6587E-01 -1.3716E-01 4.3294E-02 -7.6447E-03 5.7547E-04
S10 -9.1279E-02 5.5566E-02 -3.0332E-02 8.4819E-03 3.7151E-04 -1.0438E-03 2.9525E-04 -3.0123E-05 5.4678E-07
表12
图12A示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图12C示出了实施例6的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图12A至图12C可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例7中,光学成像系统的总有效焦距f的值是2.34mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.01mm。
表13示出了实施例7的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表14示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000011
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 6.3810E-02 -5.0186E-01 3.5583E+00 -1.4580E+01 3.6168E+01 -5.5496E+01 5.1257E+01 -2.6133E+01 5.6023E+00
S2 -1.4946E-02 7.4954E-01 -6.0460E+00 2.4772E+01 -6.2402E+01 9.7506E+01 -9.2512E+01 4.8816E+01 -1.0977E+01
S3 -1.1762E-01 4.7711E-01 -3.1673E+00 1.1841E+01 -2.7009E+01 3.7582E+01 -3.0880E+01 1.3819E+01 -2.6132E+00
S4 -5.0663E-02 -3.2597E-01 1.3805E+00 -3.1322E+00 3.2243E+00 -2.7714E-01 -1.9131E+00 1.0957E+00 -1.0438E-01
S5 -2.2851E-01 7.6642E-01 -5.4522E+00 1.8755E+01 -4.0152E+01 5.2860E+01 -4.1921E+01 1.8621E+01 -3.5669E+00
S6 -1.5510E-01 4.4468E-01 -2.4518E+00 6.5114E+00 -1.0924E+01 1.1610E+01 -7.2558E+00 2.4170E+00 -3.3342E-01
S7 1.0469E-01 2.6204E-01 -2.2898E+00 7.4549E+00 -1.4360E+01 1.7630E+01 -1.3058E+01 5.2637E+00 -8.8508E-01
S8 5.0380E-02 -3.1717E-01 7.2094E-01 -1.2259E+00 1.4376E+00 -1.0797E+00 4.9284E-01 -1.2428E-01 1.3290E-02
S9 -1.7869E-01 -1.3746E-02 7.2001E-02 -4.1776E-02 -2.0072E-02 3.9738E-02 -2.2380E-02 5.8335E-03 -6.0026E-04
S10 -8.7415E-02 4.9909E-02 -2.8851E-02 8.5420E-03 3.2987E-04 -1.0571E-03 2.9255E-04 -3.0379E-05 7.4919E-07
表14
图14A示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14B示出了实施例7的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图14C示出了实施例7的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图14A至图14C可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16C描述了根据本申请实施例8的光学成像系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿 过各表面S1至S12并最终成像在成像面S13上。
在实施例8中,光学成像系统的总有效焦距f的值是2.44mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是3.90mm。
表15示出了实施例8的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表16示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000012
表15
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 4.1807E-02 -1.7420E-01 1.4739E+00 -7.9201E+00 2.4550E+01 -4.6021E+01 5.0992E+01 -3.0801E+01 7.8096E+00
S2 8.3557E-02 -1.0861E-01 -8.8599E-01 3.9136E+00 -9.0083E+00 1.1649E+01 -8.4240E+00 3.1614E+00 -4.7336E-01
S3 -8.8237E-02 2.8567E-01 -1.8629E+00 6.6710E+00 -1.4156E+01 1.7163E+01 -1.0355E+01 1.9415E+00 3.6647E-01
S4 -1.0270E-01 -3.1769E-01 2.2082E+00 -8.1708E+00 1.8599E+01 -2.7081E+01 2.5023E+01 -1.3444E+01 3.1745E+00
S5 -1.9392E-01 2.6257E-01 -1.7946E+00 3.2506E+00 -2.2397E-01 -1.0697E+01 1.8981E+01 -1.3501E+01 3.6013E+00
S6 -8.9316E-02 -1.0940E-01 2.3223E-02 -8.2737E-01 3.3257E+00 -6.4237E+00 7.0423E+00 -3.9764E+00 8.8828E-01
S7 1.8882E-01 -4.2578E-01 6.5587E-01 -2.9415E-01 -1.1617E+00 3.1387E+00 -3.1921E+00 1.4851E+00 -2.6454E-01
S8 3.6555E-02 -1.6761E-01 -1.2263E-01 1.0845E+00 -2.2584E+00 2.5792E+00 -1.7006E+00 6.0135E-01 -8.7623E-02
S9 -2.4852E-01 2.5324E-02 1.3625E-01 -2.2415E-01 1.9181E-01 -1.0287E-01 3.4777E-02 -6.6921E-03 5.5184E-04
S10 -9.1897E-02 5.6253E-02 -3.0310E-02 8.4717E-03 3.6420E-04 -1.0467E-03 2.9426E-04 -3.0191E-05 6.7302E-07
表16
图16A示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16B示出了实施例8的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图16C示出了实施例8的光学成像系统的相对照度曲线,其表示成像面上不同像高对应的相对照度。根据图16A至图16C可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
实施例9
以下参照图17至图18C描述了根据本申请实施例9的光学成像系统。图17示出了根据本申请实施例9的光学成像系统的结构示意图。
如图17所示,光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜L1、 第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和滤光片L6。
第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜L2具有负光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜L3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片L6具有物侧面S11和像侧面S12。光学成像系统具有成像面S13,来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。
在实施例9中,光学成像系统的总有效焦距f的值是2.72mm,第一透镜L1的物侧面S1至成像面S13的轴上距离TTL的值是4.10mm。
表17示出了实施例9的光学成像系统的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表18示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2020110042-appb-000013
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.3515E-02 -1.3496E-01 1.0344E+00 -4.6665E+00 1.2295E+01 -1.9793E+01 1.9021E+01 -1.0053E+01 2.2464E+00
S2 6.8748E-02 1.0533E-02 -1.2830E+00 5.0304E+00 -1.1148E+01 1.4362E+01 -1.0541E+01 4.0465E+00 -6.1154E-01
S3 -6.5808E-02 1.4124E-01 -1.1196E+00 4.2754E+00 -9.6897E+00 1.2754E+01 -8.8351E+00 2.6353E+00 -1.2329E-01
S4 -8.7968E-02 -1.8733E-01 8.4501E-01 -2.0418E+00 2.5427E+00 -1.4413E+00 4.8103E-01 -4.7206E-01 2.5968E-01
S5 -1.8425E-01 1.1686E-01 -1.1895E+00 2.7016E+00 -3.3127E+00 5.5505E-02 4.1848E+00 -3.6948E+00 1.0036E+00
S6 -1.1945E-01 2.4789E-02 -1.4415E-01 -9.3056E-01 3.9794E+00 -7.2512E+00 7.3398E+00 -3.8651E+00 8.1989E-01
S7 4.5695E-02 5.0535E-02 -5.1097E-02 -1.0897E-01 2.1916E-01 3.5354E-01 -7.3176E-01 4.2109E-01 -8.0765E-02
S8 2.6163E-01 -1.3026E+00 3.2006E+00 -5.3286E+00 6.0371E+00 -4.4150E+00 1.9473E+00 -4.6057E-01 4.3406E-02
S9 3.7527E-01 -1.3561E+00 2.5635E+00 -3.2508E+00 2.7666E+00 -1.5504E+00 5.4698E-01 -1.0963E-01 9.4761E-03
S10 -9.1244E-02 5.7211E-02 -3.0159E-02 8.4017E-03 3.5135E-04 -1.0458E-03 2.9475E-04 -3.0063E-05 6.2041E-07
表18
图18A示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18B示出了实施例9的光学成像系统的畸变曲线,其表示不同像高对应的畸变大小值。图18C示出了实施例9的光学成像系统的相对照度曲线,其表示成像面上不同像高 对应的相对照度。根据图18A至图18C可知,实施例9所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表19中所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
(SAG42+SAG51)/Tr7r10 -0.46 -0.45 -0.39 -0.49 -0.48 -0.50 -0.47 -0.49 -0.66
f×TTL/EPD(mm) 5.25 5.54 5.53 5.37 5.08 5.09 5.23 5.11 5.66
f4/f 1.22 1.24 1.00 1.34 1.33 1.30 1.50 1.25 0.83
TTL(mm) 4.06 4.20 4.16 4.18 3.99 4.04 4.01 3.90 4.10
f/EPD 1.29 1.32 1.33 1.28 1.27 1.26 1.30 1.31 1.38
f1/f 1.68 1.65 1.63 1.92 2.01 1.73 1.88 1.77 1.55
R7/f -0.51 -0.51 -0.63 -0.56 -0.55 -0.51 -0.54 -0.55 -0.48
DISTmax(%) 2.37 2.46 2.54 2.56 2.49 2.50 2.50 2.45 2.49
T34/(T12+T23) 0.47 0.37 0.46 0.45 0.56 0.65 0.46 0.53 0.58
10×T45/TD 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.42
CT2/CT4 0.30 0.28 0.32 0.28 0.28 0.31 0.28 0.33 0.41
CT2/ET2 0.94 1.41 1.63 1.32 1.37 1.05 1.48 1.17 1.19
DT12/DT21 1.13 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00
DT21/DT31 0.87 1.00 1.02 1.05 1.01 0.99 0.97 1.02 1.06
SAG21/CT2 -0.42 -0.56 -0.56 -0.44 -0.14 -0.45 -0.69 -0.46 -0.45
SAG31/CT3 -0.75 -0.87 -0.89 -0.27 -0.72 -0.54 -0.88 -0.51 -0.42
DT52/ImgH 0.90 0.91 0.92 0.90 0.90 0.88 0.91 0.88 0.88
表19
本申请还提供一种成像装置,其设置有电子感光元件以成像,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (33)

  1. 光学成像系统,其特征在于,沿光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜,其物侧面为凸面;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有正光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;
    具有负光焦度的第五透镜;
    所述第四透镜的像侧面和所述光轴的交点至所述第四透镜的像侧面的有效半径顶点的轴上距离SAG42、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点之间的轴上距离SAG51以及所述第四透镜的物侧面至所述第五透镜的像侧面在所述光轴上的距离Tr7r10满足-1<(SAG42+SAG51)/Tr7r10<-0.3。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f、所述光学成像系统的入瞳直径EPD以及所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL满足f×TTL/EPD<6mm。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足0.8<f4/f≤1.5。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL满足TTL<4.5mm。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD<1.5。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足1.5<f1/f<2.1。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足-0.8<R7/f<-0.3。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的最大畸变DISTmax满足DISTmax<3%。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23以及所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0.35<T34/(T12+T23)<0.7。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的间隔距离TD满足10×T45/TD<0.5。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第四透镜在所述光轴上的中心厚度CT4满足0.2<CT2/CT4<0.5。
  12. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足0.9<CT2/ET2<1.65。
  13. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的像侧面的有效半口径DT12与所述第二透镜的物侧面的有效半口径DT21满足0.9<DT12/DT21<1.2。
  14. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的物侧面的有效半口径DT21与所述第三透镜的物侧面的有效半口径DT31满足0.8<DT21/DT31<1.2。
  15. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的物侧面和所述光轴的交点至所述第二透镜的物侧面的有效半径顶点的轴上距离SAG21与所述第二透镜在所述光轴上的中心厚度CT2满足-0.7<SAG21/CT2<0。
  16. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31与所述第三透镜在所述光轴上的中心厚度CT3满足-0.9<SAG31/CT3<-0.2。
  17. 根据权利要求1至16中任一项所述的光学成像系统,其特征在于,所述第五透镜的像侧面的有效半口径DT52与所述光学成像系统的成像面上有效像素区域的对角线长的一半ImgH满足0.8<DT52/ImgH<1。
  18. 光学成像系统,其特征在于,沿光轴由物侧至像侧依序包括:
    具有正光焦度的第一透镜,其物侧面为凸面;
    具有光焦度的第二透镜;
    具有光焦度的第三透镜;
    具有正光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;
    具有负光焦度的第五透镜;
    光学成像系统的总有效焦距f、所述光学成像系统的入瞳直径EPD以及所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL满足f×TTL/EPD<6mm;
    所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD<1.5。
  19. 根据权利要求18所述的光学成像系统,其特征在于,所述第四透镜的像侧面和所述光轴的交点至所述第四透镜的像侧面的有效半径顶点的轴上距离SAG42、所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点之间的轴上距离SAG51以及所述第四透镜的物侧面至所述第五透镜的像侧面在所述光轴上的距离Tr7r10满足-1<(SAG42+SAG51)/Tr7r10<-0.3。
  20. 根据权利要求18所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述光学成像系统的总有效焦距f满足0.8<f4/f≤1.5。
  21. 根据权利要求18所述的光学成像系统,其特征在于,所述第一透镜的物侧面至所述光学成像系统的成像面在所述光轴上的距离TTL满足TTL<4.5mm。
  22. 根据权利要求18所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足1.5<f1/f<2.1。
  23. 根据权利要求18所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述光学成像系统的总有效焦距f满足-0.8<R7/f<-0.3。
  24. 根据权利要求18所述的光学成像系统,其特征在于,所述光学成像系统的最大畸变DISTmax满足DISTmax<3%。
  25. 根据权利要求18所述的光学成像系统,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23以及所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足0.35<T34/(T12+T23)<0.7。
  26. 根据权利要求18所述的光学成像系统,其特征在于,所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45与所述第一透镜的物侧面至所述第五透镜的像侧面在所述光轴上的间隔距离TD满足10×T45/TD<0.5。
  27. 根据权利要求18所述的光学成像系统,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第四透镜在所述光轴上的中心厚度CT4满足0.2<CT2/CT4<0.5。
  28. 根据权利要求18所述的光学成像系统,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第二透镜的边缘厚度ET2满足0.9<CT2/ET2<1.65。
  29. 根据权利要求18所述的光学成像系统,其特征在于,所述第一透镜的像侧面的有效半口径DT12与所述第二透镜的物侧面的有效半口径DT21满足0.9<DT12/DT21<1.2。
  30. 根据权利要求18所述的光学成像系统,其特征在于,所述第二透镜的物侧面的有效半口径DT21与所述第三透镜的物侧面的有效半口径DT31满足0.8<DT21/DT31<1.2。
  31. 根据权利要求18所述的光学成像系统,其特征在于,所述第二透镜的物侧面和所述光轴的交点至所述第二透镜的物侧面的有效半径顶点的轴上距离SAG21与所述第二透镜在所述光轴上的中心厚度CT2满足-0.7<SAG21/CT2<0。
  32. 根据权利要求18所述的光学成像系统,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点的轴上距离SAG31与所述第三透镜在所述光轴上的中心厚度CT3满足-0.9<SAG31/CT3<-0.2。
  33. 根据权利要求18至32中任一项所述的光学成像系统,其特征在于,所述第五透镜的像侧面的有效半口径DT52与所述光学成像系统的成像面上有效像素区域的对角线长的一半ImgH满足0.8<DT52/ImgH<1。
PCT/CN2020/110042 2019-09-05 2020-08-19 光学成像系统 WO2021042992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/685,878 US20220187577A1 (en) 2019-09-05 2022-03-03 Optical imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910835468.5 2019-09-05
CN201910835468.5A CN110412750B (zh) 2019-09-05 光学成像系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/685,878 Continuation US20220187577A1 (en) 2019-09-05 2022-03-03 Optical imaging system

Publications (1)

Publication Number Publication Date
WO2021042992A1 true WO2021042992A1 (zh) 2021-03-11

Family

ID=68370150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110042 WO2021042992A1 (zh) 2019-09-05 2020-08-19 光学成像系统

Country Status (2)

Country Link
US (1) US20220187577A1 (zh)
WO (1) WO2021042992A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710794B (zh) * 2020-03-30 2020-11-21 大立光電股份有限公司 成像用光學透鏡組、取像裝置及電子裝置
TWI710789B (zh) * 2020-04-15 2020-11-21 新鉅科技股份有限公司 五片式紅外線單焦點鏡片組

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215521A1 (en) * 2009-07-14 2013-08-22 Largan Precision Co., Ltd. Imaging lens system
CN103913822A (zh) * 2013-11-15 2014-07-09 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN108072968A (zh) * 2016-11-09 2018-05-25 大立光电股份有限公司 摄像光学镜片系统、取像装置及电子装置
CN108388006A (zh) * 2018-03-30 2018-08-10 浙江舜宇光学有限公司 光学系统
CN208172351U (zh) * 2018-03-30 2018-11-30 浙江舜宇光学有限公司 光学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215521A1 (en) * 2009-07-14 2013-08-22 Largan Precision Co., Ltd. Imaging lens system
CN103913822A (zh) * 2013-11-15 2014-07-09 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头之电子装置
CN108072968A (zh) * 2016-11-09 2018-05-25 大立光电股份有限公司 摄像光学镜片系统、取像装置及电子装置
CN108388006A (zh) * 2018-03-30 2018-08-10 浙江舜宇光学有限公司 光学系统
CN208172351U (zh) * 2018-03-30 2018-11-30 浙江舜宇光学有限公司 光学系统

Also Published As

Publication number Publication date
CN110412750A (zh) 2019-11-05
US20220187577A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
WO2020019794A1 (zh) 光学成像镜头
WO2021068753A1 (zh) 光学成像系统
WO2020001066A1 (zh) 摄像镜头
WO2020007080A1 (zh) 摄像镜头
WO2020029620A1 (zh) 光学成像镜片组
WO2020119172A1 (zh) 光学成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020088022A1 (zh) 光学成像镜片组
WO2019091170A1 (zh) 摄像透镜组
WO2020010878A1 (zh) 光学成像系统
WO2020010879A1 (zh) 光学成像系统
WO2020191951A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2020151251A1 (zh) 光学透镜组
WO2020119171A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020001119A1 (zh) 摄像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2020164236A1 (zh) 光学成像镜头
WO2020119145A1 (zh) 摄像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2020019796A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860086

Country of ref document: EP

Kind code of ref document: A1