WO2020048157A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2020048157A1
WO2020048157A1 PCT/CN2019/087375 CN2019087375W WO2020048157A1 WO 2020048157 A1 WO2020048157 A1 WO 2020048157A1 CN 2019087375 W CN2019087375 W CN 2019087375W WO 2020048157 A1 WO2020048157 A1 WO 2020048157A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
object side
optical axis
imaging lens
Prior art date
Application number
PCT/CN2019/087375
Other languages
English (en)
French (fr)
Inventor
贾远林
徐武超
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2020048157A1 publication Critical patent/WO2020048157A1/zh
Priority to US17/128,577 priority Critical patent/US20210109326A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to a camera lens, and more particularly, to a camera lens including six lenses.
  • CMOS complementary metal-oxide-semiconductor
  • CCD photosensitive-coupled-element
  • the present application provides a camera lens that is applicable to portable electronic products and that can at least partially or partially solve the above-mentioned at least one disadvantage in the prior art.
  • the present application provides such a camera lens, which includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and The sixth lens.
  • the first lens may have negative power; the second lens may have positive power; the third lens may have negative power; the fourth lens has power; the fifth lens has power; the sixth lens It may have a negative power; at least one of the first to sixth lenses may have an aspheric surface that is not rotationally symmetric.
  • the effective focal length fx in the X-axis direction of the camera lens and the effective focal length fy in the Y-axis direction of the camera lens may satisfy 0.5 ⁇ fx / fy ⁇ 1.5.
  • both the object side and the image side of the second lens may be convex.
  • the fourth lens may have a negative power.
  • the fifth lens may have a positive optical power.
  • both the object side and the image side of the fifth lens may be convex.
  • the effective focal length f5 of the fifth lens and the effective focal length f6 of the sixth lens may satisfy 0.5 ⁇
  • the effective focal length f1 of the first lens and the effective focal length f2 of the second lens may satisfy -0.6 ⁇ f2 / f1 ⁇ -0.4.
  • the first lens may have at least one non-rotationally symmetric aspheric surface.
  • the curvature radius R9 of the object side of the fifth lens and the curvature radius R8 of the image side of the fourth lens may satisfy 0 ⁇ R9 / R8 ⁇ 1.5.
  • the center thickness CT3 of the third lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 0.5 ⁇ CT3 / CT4 ⁇ 1.
  • the center thickness CT6 of the sixth lens on the optical axis and the edge thickness ET6 of the sixth lens may satisfy 0.2 ⁇ CT6 / ET6 ⁇ 1.
  • the distance from the intersection of the fifth lens object side surface and the optical axis to the effective radius vertex of the fifth lens object side on the optical axis SAG51 and the sixth lens object side and the optical axis to the sixth lens object side is effective.
  • the distance SAG61 of the radius vertex on the optical axis can satisfy -0.5 ⁇ SAG51 / SAG61 ⁇ 0.5.
  • the imaging lens may further include a diaphragm, and the distance SL between the diaphragm and the imaging surface of the imaging lens on the optical axis may satisfy SL ⁇ 4 mm.
  • the distance TTL on the optical axis from the center of the object side of the first lens to the imaging surface of the camera lens on the optical axis and half the diagonal length of the effective pixel area on the imaging surface of the camera lens ImgH can satisfy TTL / ImgH ⁇ 1.8.
  • the FOV of the camera lens can satisfy FOV> 90 °.
  • This application uses multiple lenses (for example, six lenses).
  • the above-mentioned imaging lenses are miniaturized by rationally distributing the power, surface shape, center thickness of each lens, and the axial distance between each lens. , Wide-angle and high image quality.
  • the off-axis meridional and sagittal aberrations of the camera lens are corrected to further improve the image quality.
  • FIG. 1 is a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • FIG. 4 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 2 is within the first quadrant
  • FIG. 5 is a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • FIG. 6 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 3 is within the first quadrant
  • FIG. 7 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • FIG. 11 is a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • FIG. 12 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 6 is within the first quadrant
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 7 of the present application.
  • FIG. 14 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 7 is within the first quadrant
  • FIG. 15 is a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • FIG. 17 is a schematic structural diagram of an imaging lens according to Embodiment 9 of the present application.
  • FIG. 19 is a schematic structural diagram of an imaging lens according to Embodiment 10 of the present application.
  • FIG. 20 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 10 is within the first quadrant
  • FIG. 21 is a schematic structural diagram of an imaging lens according to Embodiment 11 of the present application.
  • FIG. 22 schematically illustrates a case where the RMS spot diameter of the imaging lens of Embodiment 11 is within the first quadrant
  • FIG. 23 is a schematic structural diagram of an imaging lens according to Embodiment 12 of the present application.
  • FIG. 24 schematically shows a case where the RMS spot diameter of the imaging lens of Example 12 is within the first quadrant.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, a first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are only examples and are not drawn to scale.
  • the paraxial region refers to a region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave.
  • the surface closest to the subject in each lens is called the object side of the lens; the surface closest to the imaging plane in each lens is called the image side of the lens.
  • the direction parallel to the optical axis as the Z axis direction
  • the direction perpendicular to the Z axis and located in the meridian plane is the Y axis direction
  • the direction perpendicular to the Z axis and located in the sagittal plane is the X axis direction.
  • the data not indicated in the X and Y directions are presented as the values in the Y direction.
  • the imaging lens according to the exemplary embodiment of the present application may include, for example, six lenses having optical power, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged along the optical axis from the object side to the image side, and an air gap can be provided between each adjacent lens.
  • the first lens may have negative power; the second lens may have positive power; the third lens may have negative power; the fourth lens may have positive power or negative power; The five lenses have positive or negative power; the sixth lens has negative power.
  • the first lens has a negative power, which is beneficial to reduce the inclination of the incident light, so as to effectively share the large field of view of the object side and obtain a larger field of view angle range.
  • the second lens has a positive power In combination with the first lens, it is beneficial to correct aberrations in different fields of view; when the sixth lens is configured with a negative power, it is beneficial to correct the field curvature of the optical system and improve the imaging quality.
  • the object side and / or the image side of at least one of the first lens to the sixth lens may be set as a non-rotationally symmetric aspheric surface to further improve image quality.
  • the non-rotationally symmetric aspheric surface is a free-form surface.
  • the non-rotational symmetry component is added. Therefore, the introduction of the non-rotationally symmetric aspheric surface in the lens system is beneficial to the correction of Sagittal aberrations are effectively corrected to greatly improve the performance of the optical system.
  • the image side of the first lens may be concave.
  • the object side surface of the second lens may be a convex surface
  • the image side surface may be a convex surface
  • the fourth lens may have a negative power, and at least one of an object side and an image side thereof may be concave.
  • the image side of the fourth lens is concave.
  • the fifth lens may have a positive refractive power, an object side thereof may be convex, and an image side may be convex.
  • the image side of the sixth lens may be concave.
  • the imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ fx / fy ⁇ 1.5, where fx is an effective focal length in the X-axis direction of the imaging lens, and fy is an effective focal length in the Y-axis direction of the imaging lens. More specifically, fx and fy can further satisfy 0.86 ⁇ fx / fy ⁇ 1.24.
  • fx and fy can further satisfy 0.86 ⁇ fx / fy ⁇ 1.24.
  • Reasonably configuring the focal length ratios in the X-axis and Y-axis directions will help increase the freedom of the free-form surface in both directions and optimize the system's correction of off-axis aberrations. At the same time, it will help to reduce the aberrations and various aspects of the optical system. The parameters are controlled in a more suitable range, and finally a high-quality image is obtained.
  • the imaging lens of the present application may satisfy a conditional FOV> 90 °, where FOV is a full field of view angle of the imaging lens. More specifically, FOV can further satisfy FOV> 100 °, for example, 110.4 ° ⁇ FOV ⁇ 120.8 °. Satisfying the conditional FOV> 90 ° is conducive to obtaining a large field of view and improving the ability of the optical system to collect object-side information.
  • the camera lens of the present application can satisfy the conditional TTL / ImgH ⁇ 1.8, where TTL is the distance on the optical axis from the center of the object side of the first lens to the imaging surface of the camera lens, and ImgH is the camera The half of the diagonal of the effective pixel area on the imaging surface of the lens. More specifically, TTL and ImgH can further satisfy 1.62 ⁇ TTL / ImgH ⁇ 1.79. By constraining the ratio of TTL and ImgH, the ultra-thinning of the camera lens and high imaging quality are achieved.
  • the effective focal length of each lens can also be reasonably optimized.
  • the effective focal length f2 of the second lens and the effective focal length f1 of the first lens may satisfy -0.6 ⁇ f2 / f1 ⁇ -0.4. More specifically, f2 and f1 can further satisfy -0.58 ⁇ f2 / f1 ⁇ -0.46.
  • the effective focal length f5 of the fifth lens and the effective focal length f6 of the sixth lens may satisfy 0.5 ⁇
  • the rational configuration of the power of each lens is conducive to the correction of various aberrations, and at the same time it is helpful to improve the imaging quality of the camera lens.
  • the imaging lens of the present application can satisfy the conditional expression 0 ⁇ R9 / R8 ⁇ 1.5, where R9 is the curvature radius of the object side of the fifth lens and R8 is the curvature radius of the image side of the fourth lens. More specifically, R9 and R8 can further satisfy 0.36 ⁇ R9 / R8 ⁇ 1.28.
  • the curvature radius of the object side of the fifth lens and the image side of the fourth lens can be reasonably configured to effectively eliminate the system spherical aberration and obtain a high-definition image.
  • the imaging lens of the present application can satisfy the conditional expression 0.5 ⁇ CT3 / CT4 ⁇ 1, where CT3 is the center thickness of the third lens on the optical axis, and CT4 is the center of the fourth lens on the optical axis. thickness. More specifically, CT3 and CT4 can further satisfy 0.57 ⁇ CT3 / CT4 ⁇ 0.94. Reasonable configuration of the center thickness of the lens can effectively reduce the thickness sensitivity of the lens and correct the curvature of field.
  • the imaging lens of the present application can satisfy the conditional expression 0.2 ⁇ CT6 / ET6 ⁇ 1, where CT6 is the center thickness of the sixth lens on the optical axis and ET6 is the edge thickness of the sixth lens. More specifically, CT6 and ET6 can further satisfy 0.38 ⁇ CT6 / ET6 ⁇ 0.90. Reasonable configuration of the lens thickness ratio is conducive to meeting the processability and process requirements of the lens.
  • the imaging lens of the present application can satisfy the conditional expression -0.5 ⁇ SAG51 / SAG61 ⁇ 0.5, where SAG51 is the intersection point of the fifth lens object side and the optical axis to the effective radius vertex of the fifth lens object side in the light The distance on the axis, SAG61 is the distance on the optical axis from the intersection of the object side of the sixth lens and the optical axis to the effective radius vertex of the object side of the sixth lens. More specifically, SAG51 and SAG61 can further satisfy -0.36 ⁇ SAG51 / SAG61 ⁇ 0.10. Reasonable configuration of surface shape can effectively eliminate system field curvature and ensure imaging quality.
  • the above-mentioned imaging lens may further include a diaphragm to improve the imaging quality of the lens.
  • the diaphragm may be disposed between the first lens and the second lens.
  • the distance SL on the optical axis from the diaphragm to the imaging surface of the imaging lens may satisfy SL ⁇ 4 mm. More specifically, SL can further satisfy 4.01 ⁇ SL ⁇ 4.24. Reasonable configuration of the diaphragm position can effectively reduce the sensitivity of the system tolerance and improve the design yield.
  • the above-mentioned imaging lens may further include a filter for correcting color deviation and / or a protective glass for protecting the photosensitive element on the imaging surface.
  • the imaging lens according to the above embodiment of the present application may employ multiple lenses, such as the six lenses described above.
  • the size of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the off-axis meridional aberration and sagittal aberration of the camera lens can be corrected to further improve the image quality.
  • the mirror surface of each lens is often an aspherical mirror surface.
  • Aspheric lenses are characterized by a curvature that varies continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the lens center to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatic aberrations. The use of aspheric lenses can eliminate as much aberrations as possible during imaging, thereby improving imaging quality.
  • the number of lenses constituting the imaging lens may be changed to obtain various results and advantages described in this specification.
  • the imaging lens is not limited to including six lenses. If necessary, the camera lens may include other numbers of lenses. Specific examples of the imaging lens applicable to the above-mentioned embodiments will be further described below with reference to the drawings.
  • FIG. 1 is a schematic structural diagram of an imaging lens according to Embodiment 1 of the present application.
  • an imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens along the optical axis in order from the object side to the image side.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 1 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 1, where the radius of curvature X, the radius of curvature Y, and the thickness
  • the unit is millimeter (mm).
  • each aspheric lens can be defined using, but not limited to, the following aspheric formula:
  • x is the distance vector from the vertex of the aspheric surface when the aspheric surface is at the height h along the optical axis;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the aspherical i-th order.
  • Table 2 shows the higher-order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 .
  • the image side S2 of the first lens E1 is a non-rotationally symmetric aspheric surface (that is, the AAS surface).
  • the non-rotationally symmetric aspheric surface type can be used but is not limited to the following non-rotationally symmetric non-spherical surfaces.
  • Spherical formula is qualified:
  • z is the sagittal height of the plane parallel to the Z-axis direction;
  • KX and KY are the conic coefficients in the X- and Y-axis directions, respectively;
  • AR, BR, CR, DR are 4th, 6th, 8th, and 10th order coefficients in aspheric rotationally symmetric components;
  • AP, BP, CP, and DP are 4th and 6th orders in aspheric non-rotational symmetrical components, respectively.
  • Table 3 shows the AR, BR, CR, DR coefficients, and AP, BP, CP, DP coefficients that can be used for the non-rotationally symmetric aspheric surface S1 in Example 1.
  • Table 4 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx in the X-axis direction of the camera lens, the effective focal length fy in the Y-axis direction of the camera lens, and the total optical length TTL of the camera lens in Example 1.
  • the distance from the center of the object side S1 of the lens E1 to the imaging plane S15 on the optical axis), the diagonal length of the effective pixel area on the imaging plane S15 is half ImgH, and the maximum half field angle HFOV.
  • FIG. 2 shows the size of the RMS spot diameter of the imaging lens of Example 1 at different image height positions in the first quadrant. It can be seen from FIG. 2 that the imaging lens provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a schematic structural diagram of an imaging lens according to Embodiment 2 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, an aperture STO, a second lens E2, a third lens E3, and a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative optical power, and an object side surface S1 thereof is a convex surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 5 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 2, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 6 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 2, where each aspheric surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 7 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S7 that can be used for the non-rotationally symmetric aspheric surface S7 in Embodiment 2.
  • the non-rotationally symmetric aspheric surface type can be given in the above Embodiment 1.
  • Table 8 shows the effective focal lengths f1 to f6 of the lenses in Example 2, the effective focal length fx of the camera lens X-axis direction, the effective focal length fy of the camera lens Y-axis direction, the total optical length TTL of the camera lens, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 4 shows the size of the RMS spot diameter of the imaging lens of Example 2 at different image height positions in the first quadrant. It can be seen from FIG. 4 that the imaging lens provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a schematic structural diagram of an imaging lens according to Embodiment 3 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 9 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 3. Among them, the radius of curvature X, the radius of curvature Y, and the thickness The unit is millimeter (mm).
  • Table 10 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 3, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 11 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S8 that can be used for the non-rotationally symmetric aspheric surface S8 in Example 3.
  • the aspheric surface type of the non-rotational symmetry can be given in the above Embodiment 1. (2).
  • Table 12 shows the effective focal lengths f1 to f6 of the lenses in Example 3, the effective focal length fx in the X-axis direction of the camera lens, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 6 shows the size of the RMS spot diameter of the imaging lens of Example 3 at different image height positions in the first quadrant. It can be seen from FIG. 6 that the imaging lens provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a schematic structural diagram of an imaging lens according to Embodiment 4 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 13 shows the surface type, curvature radius X, curvature radius Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 4, where The unit is millimeter (mm).
  • Table 14 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 4, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 15 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S9 that can be used for the non-rotationally symmetric aspheric surface S9 in Embodiment 4.
  • the aspheric surface type of the non-rotational symmetry can be given in the above Embodiment 1. (2).
  • Table 16 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx of the camera lens in the X-axis direction, the effective focal length fy of the camera lens in the Y-axis direction, the total optical length of the camera lens TTL, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 8 shows the size of the RMS spot diameter of the imaging lens of Example 4 at different image height positions in the first quadrant. It can be seen from FIG. 8 that the imaging lens provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a schematic structural diagram of an imaging lens according to Embodiment 5 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 17 shows the surface type, curvature radius X, curvature radius Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 5, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 18 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 5, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 19 shows the rotationally symmetric components and high-order coefficients of the non-rotationally symmetric components S10 that can be used for the non-rotationally symmetric aspheric surface S10 in Embodiment 5.
  • the non-rotationally symmetric aspheric surface type can be given in the above Embodiment 1.
  • Table 20 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx of the camera lens in the X axis direction, the effective focal length fy of the camera lens Y axis direction, the total optical length of the camera lens TTL, and the imaging surface S15
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 10 shows the size of the RMS spot diameter of the imaging lens of Example 5 at different image height positions in the first quadrant. It can be seen from FIG. 10 that the imaging lens provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a schematic structural diagram of an imaging lens according to Embodiment 6 of the present application.
  • an imaging lens includes: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens in order from the object side to the image side along the optical axis.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 21 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 6, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 22 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 6, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 23 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S11 that can be used for the non-rotationally symmetric aspheric surface S11 in Example 6, where the asymmetry of the non-rotationally symmetric aspheric surface can be given in the above Embodiment 1.
  • Table 24 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx of the camera lens in the X-axis direction, the effective focal length fy of the camera lens in the Y-axis direction, the total optical length of the camera lens TTL, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 12 shows the size of the RMS spot diameter of the imaging lens of Example 6 at different image height positions in the first quadrant. It can be seen from FIG. 12 that the imaging lens provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 25 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 7, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 26 shows the high-order term coefficients that can be used for each aspherical mirror surface in Embodiment 7, where each aspheric surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 27 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S12 that can be used for the non-rotationally symmetric aspheric surface S12 in Embodiment 7.
  • the non-rotationally symmetric aspheric surface type can be given in the above Embodiment 1.
  • Table 28 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx of the camera lens in the X-axis direction, the effective focal length fy of the camera lens in the Y-axis direction, the total optical length of the camera lens TTL, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 14 shows the size of the RMS spot diameter of the imaging lens of Example 7 at different image height positions in the first quadrant.
  • the imaging lens provided in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a schematic structural diagram of an imaging lens according to Embodiment 8 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and its object side surface S3 is convex and the image side surface S4 is convex.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 thereof is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 29 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 8, where the curvature radius X, curvature radius Y, and thickness The unit is millimeter (mm).
  • Table 30 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 8, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 31 shows the rotationally symmetric components and high-order coefficients of the non-rotationally symmetric components S1 that can be used for the non-rotationally symmetric aspheric surface S1 in Embodiment 8.
  • the aspheric surface type of the non-rotational symmetry can be given in the above Embodiment 1. (2).
  • Table 32 shows the effective focal lengths f1 to f6 of each lens, the effective focal length fx of the camera lens in the X-axis direction, the effective focal length fy of the camera lens in the Y-axis direction, the total optical length of the camera lens TTL, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 16 shows the size of the RMS spot diameter of the imaging lens of Example 8 at different image height positions in the first quadrant. It can be seen from FIG. 16 that the imaging lens provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a schematic structural diagram of an imaging lens according to Embodiment 9 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 thereof is a concave surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 33 shows the surface type, curvature radius X, curvature radius Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 9, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 34 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 9, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 35 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S1 that can be used for the non-rotationally symmetric aspheric surface S1 in Embodiment 9, where the asymmetry of the non-rotationally symmetric aspheric surface can be given in the above Embodiment 1.
  • Table 36 shows the effective focal lengths f1 to f6 of each lens in Example 9, the effective focal length fx of the camera lens X-axis direction, the effective focal length fy of the camera lens Y-axis direction, the total optical length TTL of the camera lens, and the imaging surface S15
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 18 shows the size of the RMS spot diameter of the imaging lens of Example 9 at different image height positions in the first quadrant. It can be seen from FIG. 18 that the imaging lens provided in Embodiment 9 can achieve good imaging quality.
  • FIG. 19 is a schematic structural diagram of an imaging lens according to Embodiment 10 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 37 shows the surface type, the radius of curvature X, the radius of curvature Y, the thickness, the material, the conic coefficient X, and the conic coefficient Y of each lens of the imaging lens of Example 10, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 38 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 10, where each aspheric surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 39 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S2 that can be used for the non-rotationally symmetric aspheric surface S2 in Embodiment 10.
  • the non-rotationally symmetric aspheric surface type can be given in the above Embodiment 1.
  • Table 40 shows the effective focal lengths f1 to f6 of the lenses in Example 10, the effective focal length fx of the camera lens in the X axis direction, the effective focal length fy of the camera lens in the Y axis direction, the total optical length of the camera lens TTL, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 20 shows the size of the RMS spot diameter of the imaging lens of Example 10 at different image height positions in the first quadrant. It can be seen from FIG. 20 that the imaging lens provided in Embodiment 10 can achieve good imaging quality.
  • FIG. 22 is a schematic structural diagram of an imaging lens according to Embodiment 11 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, and a fourth lens.
  • the lens E4 the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 41 shows the surface type, curvature radius X, curvature radius Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 11, where The unit is millimeter (mm).
  • Table 42 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 11, where each aspheric surface type can be defined by the formula (1) given in Embodiment 1 above.
  • Table 43 shows the rotationally symmetric components and the higher-order coefficients of the non-rotationally symmetric components S9 that can be used for the non-rotationally symmetric aspheric surface S9 in Embodiment 11, where the non-rotationally symmetric aspheric surface type can be given in Embodiment 1 (2).
  • Table 44 shows the effective focal lengths f1 to f6 of the lenses in Example 11, the effective focal length fx in the X-axis direction of the camera lens, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 22 shows the size of the RMS spot diameter of the imaging lens of Example 11 at different image height positions in the first quadrant. It can be seen from FIG. 22 that the imaging lens provided in Embodiment 11 can achieve good imaging quality.
  • FIG. 23 is a schematic structural diagram of an imaging lens according to Embodiment 12 of the present application.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth The lens E4, the fifth lens E5, the sixth lens E6, the filter E7, and the imaging surface S15.
  • the first lens E1 has a negative refractive power, and an object side surface S1 thereof is a concave surface, and an image side surface S2 is a concave surface.
  • the second lens E2 has a positive power, and the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens E3 has a negative power, and the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative power, and the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a concave surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • Table 45 shows the surface type, curvature radius X, curvature radius Y, thickness, material, conic coefficient X, and conic coefficient Y of each lens of the imaging lens of Example 12, where the curvature radius X, the curvature radius Y, and the thickness The unit is millimeter (mm).
  • Table 46 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Embodiment 12, where each aspherical surface type can be defined by the formula (1) given in the above-mentioned Embodiment 1.
  • Table 47 shows the rotationally symmetric components and high-order coefficients of the non-rotationally symmetric components S12 that can be used for the non-rotationally symmetric aspheric surface S12 in Example 12.
  • the aspheric surface type of the non-rotational symmetry can be given in the above Embodiment 1. (2).
  • Table 48 shows the effective focal lengths f1 to f6 of the lenses in Example 12, the effective focal length fx in the X-axis direction of the camera lens, the effective focal length fy in the Y-axis direction of the camera lens, the total optical length TTL of the camera lens, and the imaging surface S15.
  • the diagonal of the effective pixel area is half ImgH and the maximum half field angle HFOV.
  • FIG. 24 shows the size of the RMS spot diameter of the imaging lens of Example 12 at different image height positions in the first quadrant. It can be seen from FIG. 24 that the imaging lens provided in Embodiment 12 can achieve good imaging quality.
  • Examples 1 to 12 satisfy the relationships shown in Table 49 respectively.
  • the present application also provides an imaging device, whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera or a camera module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。第一透镜具有负光焦度;第二透镜具有正光焦度;第三透镜具有负光焦度;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜具有负光焦度;第一透镜至第六透镜中至少一个透镜具有非旋转对称的非球面;以及摄像镜头X轴方向的有效焦距fx与摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2018年09月05日提交于中国国家知识产权局(CNIPA)的、专利申请号为201811032313.X的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括六片透镜的摄像镜头。
背景技术
近年来,随着手机摄像领域的快速发展,以及大尺寸、高像素的互补性氧化金属半导体元件(CMOS)或感光耦合元件(CCD)的芯片的普及,各大手机厂商在追求镜头轻薄化与小型化的同时,更是对镜头的成像质量提出了严苛的要求。当前应用于手机等便携式电子产品的镜头多采用六片式结构,其镜片面型均为旋转对称(轴对称)的非球面。这类旋转对称的非球面可以看成是子午平面内的一条曲线绕光轴旋转360°而形成的,因此其只在子午平面内具有充分的自由度,并不能很好地对轴外像差进行矫正。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄像镜头。
一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜可具有负光焦度;第一透镜至第六透镜中至少一个透镜可具有非旋转对称的非球面。
在一个实施方式中,摄像镜头X轴方向的有效焦距fx与摄像镜头Y轴方向的有效焦距fy可满足0.5<fx/fy<1.5。
在一个实施方式中,第二透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第四透镜可具有负光焦度。
在一个实施方式中,第五透镜可具有正光焦度。
在一个实施方式中,第五透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的有效焦距f5与第六透镜的有效焦距f6可满足0.5<|1/f5-1/f6|<2.5。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-0.6<f2/f1<-0.4。
在一个实施方式中,第一透镜可具有至少一个非旋转对称的非球面。
在一个实施方式中,第五透镜物侧面的曲率半径R9与第四透镜像侧面的曲率半径R8可满足0<R9/R8<1.5。
在一个实施方式中,第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4可满足0.5<CT3/CT4<1。
在一个实施方式中,第六透镜在光轴上的中心厚度CT6与第六透镜的边缘厚度ET6可满足0.2<CT6/ET6<1。
在一个实施方式中,第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半径顶点在光轴上的距离SAG51与第六透镜物侧面和光轴的交点至第六透镜物侧面的有效半径顶点在光轴上的距离SAG61可满足-0.5<SAG51/SAG61<0.5。
在一个实施方式中,摄像镜头还可包括光阑,光阑至摄像镜头的成像面在光轴上的距离SL可满足SL≥4mm。
在一个实施方式中,第一透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离TTL与摄像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.8。
在一个实施方式中,摄像镜头的全视场角FOV可满足FOV>90°。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄像镜头具有小型化、大广角和高成像品质等至少一个有益效果。同时,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,进一步获得像质的提升。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2示意性示出了实施例1的摄像镜头的RMS光斑直径在第一象限内的情况;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4示意性示出了实施例2的摄像镜头的RMS光斑直径在第一象限内的情况;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6示意性示出了实施例3的摄像镜头的RMS光斑直径在第一象限内的情况;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8示意性示出了实施例4的摄像镜头的RMS光斑直径在第一象限内的情况;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10示意性示出了实施例5的摄像镜头的RMS光斑直径在第一象限内的情况;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12示意性示出了实施例6的摄像镜头的RMS光斑直径在第一象限内的情况;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14示意性示出了实施例7的摄像镜头的RMS光斑直径在第一象限内的情况;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;
图16示意性示出了实施例8的摄像镜头的RMS光斑直径在第一象限内的情况;
图17示出了根据本申请实施例9的摄像镜头的结构示意图;
图18示意性示出了实施例9的摄像镜头的RMS光斑直径在第一象限内的情况;
图19示出了根据本申请实施例10的摄像镜头的结构示意图;
图20示意性示出了实施例10的摄像镜头的RMS光斑直径在第一象限内的情况;
图21示出了根据本申请实施例11的摄像镜头的结构示意图;
图22示意性示出了实施例11的摄像镜头的RMS光斑直径在第一象限内的情况;
图23示出了根据本申请实施例12的摄像镜头的结构示意图;
图24示意性示出了实施例12的摄像镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。
在本文中,我们定义平行于光轴的方向为Z轴方向,与Z轴垂直且位于子午平面内的方向为Y轴方向,与Z轴垂直且位于弧矢平面内的方向为X轴方向。除与视场相关的数据以外,未标明X、Y方向的数据,均按Y方向的数值呈现。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示 “本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。以下将参考附图并结合实施例对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有负光焦度。第一透镜为负光焦度,有利于减小入射光线的倾角,从而对物方大视场实现有效分担,获得更大的视场角范围;在此基础上,第二透镜为正光焦度,同第一透镜进行组合,有利于对不同视场像差的矫正;当配置第六透镜光焦度为负时,有利于矫正光学系统场曲,提高成像质量。
此外,可以将第一透镜至第六透镜中的至少一个透镜的物侧面和/或像侧面设置为非旋转对称的非球面,来进一步提升像质。非旋转对称的非球面是一种自由曲面,在旋转对称的非球面基础上,增加了非旋转对称分量,因而在透镜系统中引入非旋转对称的非球面有利于通过对轴外子午像差和弧矢像差进行有效矫正,极大地提升光学系统的性能。
在示例性实施方式中,第一透镜的像侧面可为凹面。
在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第四透镜可具有负光焦度,其物侧面和像侧面中的至少一个可为凹面。可选地,第四透镜的像侧面为凹面。
在示例性实施方式中,第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第六透镜的像侧面可为凹面。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<fx/fy<1.5,其中,fx为摄像镜头X轴方向的有效焦距,fy为摄像镜头Y轴方向的有效焦距。更具体地,fx和fy进一步可满足0.86≤fx/fy≤1.24。合理配置X轴、Y轴方向的焦距比值,有利于提升自由曲面在两个方向上的自由度,优化系统对于轴外像差的矫正作用;同时,有利于将光学系统的像差和各项参数控制在一个较合适的范围内,最终获得高质量的图像。
在示例性实施方式中,本申请的摄像镜头可满足条件式FOV>90°,其中,FOV为摄像镜头的全视场角。更具体地,FOV进一步可满足FOV>100°,例如,110.4°≤FOV≤120.8°。满足条件式FOV>90°,有利于获得较大的视场角,提高光学系统对物方信息的收集能力。
在示例性实施方式中,本申请的摄像镜头可满足条件式TTL/ImgH<1.8,其中,TTL为第一 透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离,ImgH为摄像镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.62≤TTL/ImgH≤1.79。通过约束TTL和ImgH的比值,实现摄像镜头的超薄化和高成像质量。
在应用中,还可以对各透镜的有效焦距进行合理优化。例如,第二透镜的有效焦距f2与第一透镜的有效焦距f1可满足-0.6<f2/f1<-0.4。更具体地,f2和f1进一步可满足-0.58≤f2/f1≤-0.46。又例如,第五透镜的有效焦距f5与第六透镜的有效焦距f6可满足0.5<|1/f5-1/f6|<2.5。更具体地,f5和f6进一步可满足0.60≤|1/f5-1/f6|≤2.29。合理配置各透镜的光焦度,有利于各类像差的矫正,同时有利于提升摄像镜头的成像质量。
在示例性实施方式中,本申请的摄像镜头可满足条件式0<R9/R8<1.5,其中,R9为第五透镜物侧面的曲率半径,R8为第四透镜像侧面的曲率半径。更具体地,R9和R8进一步可满足0.36≤R9/R8≤1.28。合理配置第五透镜物侧面和第四透镜像侧面的曲率半径,可以有效消除系统球差,获得高清晰度的图像。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.5<CT3/CT4<1,其中,CT3为第三透镜在光轴上的中心厚度,CT4为第四透镜在光轴上的中心厚度。更具体地,CT3和CT4进一步可满足0.57≤CT3/CT4≤0.94。合理配置透镜中心厚度,可以有效降低镜头的厚度敏感性,矫正场曲。
在示例性实施方式中,本申请的摄像镜头可满足条件式0.2<CT6/ET6<1,其中,CT6为第六透镜在光轴上的中心厚度,ET6为第六透镜的边缘厚度。更具体地,CT6和ET6进一步可满足0.38≤CT6/ET6≤0.90。合理配置透镜的厚薄比,有利于满足镜头的可加工性和工艺性要求。
在示例性实施方式中,本申请的摄像镜头可满足条件式-0.5<SAG51/SAG61<0.5,其中,SAG51为第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半径顶点在光轴上的距离,SAG61为第六透镜物侧面和光轴的交点至第六透镜物侧面的有效半径顶点在光轴上的距离。更具体地,SAG51和SAG61进一步可满足-0.36≤SAG51/SAG61≤0.10。合理配置面型,可以有效消除系统场曲,确保成像质量。
在示例性实施方式中,上述摄像镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第一透镜与第二透镜之间。可选地,光阑至摄像镜头的成像面在光轴上的距离SL可满足SL≥4mm。更具体地,SL进一步可满足4.01≤SL≤4.24。合理配置光阑位置,可以有效降低系统公差敏感性,提高设计良率。
可选地,上述摄像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄像镜头更有利于生产加工并且可适用于便携式电子产品。通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,可以获得进一步的像质提升。
在本申请的实施方式中,各透镜的镜面多为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄像镜头不限于包括六个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1和图2描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
Figure PCTCN2019087375-appb-000001
Figure PCTCN2019087375-appb-000002
表1
由表1可知,第一透镜E1的物侧面S1以及第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6中任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2019087375-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1、S3-S12的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.4883E-01 -3.7400E-01 4.5140E-01 -4.0373E-01 2.4357E-01 -9.4157E-02 1.6349E-02 0.0000E+00 0.0000E+00
S3 6.0759E-02 -2.0199E-01 7.0650E-01 -5.0820E+00 1.1610E+01 6.1210E+00 -1.0204E+02 2.1548E+02 -1.6517E+02
S4 -3.7730E-01 2.0663E+00 -1.0925E+01 4.7761E+01 -1.6386E+02 3.9380E+02 -6.0415E+02 5.2717E+02 -1.9802E+02
S5 -5.0076E-01 1.8857E+00 -8.2996E+00 3.1387E+01 -9.6578E+01 2.1400E+02 -3.0702E+02 2.5495E+02 -9.2901E+01
S6 -2.0905E-01 6.1077E-01 -2.1467E+00 8.4274E+00 -2.7426E+01 6.0314E+01 -8.1636E+01 6.1633E+01 -1.9776E+01
S7 -8.3871E-02 1.3327E-01 2.0923E-01 -1.0249E+00 1.5948E+00 -1.1903E+00 3.0132E-01 8.9813E-02 -4.5562E-02
S8 2.9171E-02 -1.0173E+00 2.6141E+00 -3.9895E+00 3.8222E+00 -2.0433E+00 4.7039E-01 1.4816E-02 -1.7250E-02
S9 1.84E-01 -6.61E-01 1.09E+00 -1.28E+00 8.70E-01 -2.69E-01 -1.98E-03 2.10E-02 -3.61E-03
S10 3.9914E-01 -3.6763E-01 3.6349E-01 -5.7446E-01 6.1681E-01 -3.8244E-01 1.3649E-01 -2.6187E-02 2.0904E-03
S11 -1.2745E-01 -1.2989E-01 8.2787E-02 -2.3859E-02 -4.1156E-03 7.1269E-03 -1.5148E-03 -2.1396E-04 6.8112E-05
S12 -2.1299E-01 1.2118E-01 -7.0156E-02 3.5489E-02 -1.3322E-02 3.3866E-03 -5.4738E-04 5.0630E-05 -2.0304E-06
表2
由表1还可以看出,第一透镜E1的像侧面S2为非旋转对称的非球面(即,AAS面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:
Figure PCTCN2019087375-appb-000004
其中,z为平行于Z轴方向的面的矢高;CUX、CUY分别为X、Y轴方向面顶点的曲率(=1/曲率半径);KX、KY分别为X、Y轴方向的圆锥系数;AR、BR、CR、DR分别为非球面旋转对称分量中的4阶、6阶、8阶、10阶系数;AP、BP、CP、DP分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶系数。下表3给出了可用于实施例1中的非旋转对称的非球面S1的AR、BR、CR、DR系数以及AP、BP、CP、DP系数。
AAS面 AR BR CR DR AP BP CP DP
S2 7.0410E-01 -1.2685E+00 3.4479E+00 -2.9618E+00 -1.6275E-04 -5.6552E-04 3.2717E-03 4.0997E-03
表3
表4给出了实施例1中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离)、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
f1(mm) -4.28 fx(mm) 2.20
f2(mm) 2.06 fy(mm) 2.20
f3(mm) -5.32 TTL(mm) 5.19
f4(mm) -11.25 ImgH(mm) 3.03
f5(mm) 2.07 HFOV(°) 60.2
f6(mm) -4.12    
表4
图2示出了实施例1的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图2可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3和图4描述根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表5示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7示出了可用于实施例2中非旋转对称的非球面S7的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表8给出了实施例2中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000005
Figure PCTCN2019087375-appb-000006
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.5873E-01 -4.2986E-01 5.2217E-01 -4.7761E-01 3.0327E-01 -1.2200E-01 2.1848E-02 0.0000E+00 0.0000E+00
S2 7.2038E-01 -1.2648E+00 5.3068E+00 -1.6336E+01 3.4257E+01 -3.9424E+01 1.7353E+01 0.0000E+00 0.0000E+00
S3 4.0313E-02 -3.1199E-01 1.1589E+00 -7.5418E+00 1.4448E+01 7.9257E+00 -1.3749E+02 3.0211E+02 -2.4095E+02
S4 -4.8803E-01 2.2466E+00 -1.2296E+01 5.6690E+01 -2.0391E+02 5.0991E+02 -8.1400E+02 7.3908E+02 -2.8888E+02
S5 -5.4768E-01 2.1388E+00 -9.4758E+00 3.7596E+01 -1.2018E+02 2.7709E+02 -4.1367E+02 3.5744E+02 -1.3553E+02
S6 -2.0496E-01 7.0137E-01 -2.4269E+00 1.0050E+01 -3.4129E+01 7.8098E+01 -1.0999E+02 8.6409E+01 -2.8849E+01
S8 -8.5553E-03 -1.1182E+00 3.0071E+00 -4.7691E+00 4.7563E+00 -2.6457E+00 6.3382E-01 2.0794E-02 -2.5159E-02
S9 1.84E-01 -7.27E-01 1.26E+00 -1.53E+00 1.08E+00 -3.48E-01 -2.67E-03 2.95E-02 -5.26E-03
S10 4.2477E-01 -4.0236E-01 4.1891E-01 -6.8656E-01 7.6766E-01 -4.9519E-01 1.8390E-01 -3.6715E-02 3.0494E-03
S11 -1.6094E-01 -1.6876E-01 3.6216E-01 -5.6187E-01 5.3226E-01 -2.8698E-01 8.6804E-02 -1.3706E-02 8.7573E-04
S12 -2.4004E-01 1.3475E-01 -8.0451E-02 4.2458E-02 -1.6577E-02 4.3849E-03 -7.3758E-04 7.0968E-05 -2.9647E-06
表6
AAS面 AR BR CR DR AP BP CP DP
S7 -1.2581E-01 1.8827E-01 -1.2542E-01 3.0459E-02 -3.0550E-02 -2.7875E-02 -3.0029E-02 -3.6723E-02
表7
f1(mm) -3.49 fx(mm) 1.83
f2(mm) 1.87 fy(mm) 1.82
f3(mm) -3.63 TTL(mm) 5.08
f4(mm) -10.89 ImgH(mm) 3.03
f5(mm) 1.69 HFOV(°) 60.1
f6(mm) -4.90    
表8
图4示出了实施例2的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图4可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5和图6描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例 3的摄像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表9示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11示出了可用于实施例3中非旋转对称的非球面S8的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表12给出了实施例3中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000007
表9
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.8477E-01 -4.1643E-01 5.1159E-01 -4.8184E-01 3.0713E-01 -1.1982E-01 2.0513E-02 0.0000E+00 0.0000E+00
S2 1.4136E+00 -1.0804E+01 7.3594E+01 -2.7713E+02 5.8414E+02 -6.3789E+02 2.7754E+02 0.0000E+00 0.0000E+00
S3 3.6927E-02 -3.1880E-01 1.1277E+00 -7.9376E+00 1.4448E+01 7.9257E+00 -1.3749E+02 3.0211E+02 -2.4095E+02
S4 -4.5931E-01 2.2611E+00 -1.2505E+01 5.7004E+01 -2.0391E+02 5.0991E+02 -8.1400E+02 7.3908E+02 -2.8888E+02
S5 -5.5511E-01 2.0732E+00 -9.5429E+00 3.7575E+01 -1.2018E+02 2.7709E+02 -4.1367E+02 3.5744E+02 -1.3553E+02
S6 -2.1595E-01 6.8449E-01 -2.4626E+00 1.0075E+01 -3.4117E+01 7.8098E+01 -1.0999E+02 8.6409E+01 -2.8849E+01
S7 -9.6479E-02 1.4307E-01 2.4643E-01 -1.2190E+00 1.9854E+00 -1.5444E+00 4.0431E-01 1.2610E-01 -6.6469E-02
S9 1.98E-01 -7.33E-01 1.25E+00 -1.53E+00 1.08E+00 -3.48E-01 -2.63E-03 2.95E-02 -5.25E-03
S10 4.0254E-01 -4.0458E-01 4.1893E-01 -6.8650E-01 7.6769E-01 -4.9516E-01 1.8390E-01 -3.6716E-02 3.0486E-03
S11 -3.8830E-01 6.3798E-01 -1.0904E+00 9.8650E-01 -4.8769E-01 1.2195E-01 -7.7232E-03 -2.5363E-03 3.8858E-04
S12 -2.2594E-01 1.3230E-01 -8.0654E-02 4.2465E-02 -1.6572E-02 4.3860E-03 -7.3743E-04 7.0975E-05 -2.9673E-06
表10
AAS面 AR BR CR DR AP BP CP DP
S8 -4.0350E-02 -4.3873E-01 5.3746E-01 -1.7878E-01 1.1170E-01 -1.3690E-02 -6.9713E-03 -4.8171E-03
表11
f1(mm) -3.55 fx(mm) 1.92
f2(mm) 1.91 fy(mm) 1.87
f3(mm) -4.33 TTL(mm) 5.02
f4(mm) -7.05 ImgH(mm) 3.03
f5(mm) 1.96 HFOV(°) 60.3
f6(mm) -10.85    
表12
图6示出了实施例3的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图6可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7和图8描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了可用于实施例4中非旋转对称的非球面S9的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的 公式(2)限定。表16给出了实施例4中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000008
表13
面号 A4 A6 A8 A10 A12 A4 A16 A18 A20
S1 3.7269E-01 -4.1708E-01 5.1966E-01 -4.8110E-01 3.0387E-01 -1.2178E-01 2.1788E-02 0.0000E+00 0.0000E+00
S2 6.9648E-01 -1.1003E+00 6.1048E+00 -2.1696E+01 5.0318E+01 -6.2236E+01 2.9412E+01 0.0000E+00 0.0000E+00
S3 4.5656E-02 -1.9353E-01 7.1694E-01 -6.2249E+00 1.4448E+01 7.9257E+00 -1.3749E+02 3.0211E+02 -2.4095E+02
S4 -3.75E-01 2.22E+00 -1.26E+01 5.70E+01 -2.04E+02 5.10E+02 -8.14E+02 7.39E+02 -2.89E+02
S5 -5.5980E-01 2.0738E+00 -9.5973E+00 3.7510E+01 -1.2018E+02 2.7709E+02 -4.1367E+02 3.5744E+02 -1.3553E+02
S6 -2.2296E-01 6.7624E-01 -2.4555E+00 1.0086E+01 -3.4129E+01 7.8098E+01 -1.0999E+02 8.6409E+01 -2.8849E+01
S7 -1.0074E-01 1.3459E-01 2.3539E-01 -1.2232E+00 1.9900E+00 -1.5412E+00 4.0599E-01 1.2593E-01 -6.6469E-02
S8 1.02E-02 -1.13E+00 3.01E+00 -4.77E+00 4.76E+00 -2.65E+00 6.33E-01 2.01E-02 -2.52E-02
S10 4.2946E-01 -4.0067E-01 4.1989E-01 -6.8636E-01 7.6768E-01 -4.9518E-01 1.8390E-01 -3.6720E-02 3.0464E-03
S11 5.5255E-03 -4.0549E-01 4.8396E-01 -5.4100E-01 5.3751E-01 -3.7258E-01 1.5605E-01 -3.4804E-02 3.1499E-03
S12 -2.2673E-01 1.3364E-01 -8.0634E-02 4.2445E-02 -1.6576E-02 4.3853E-03 -7.3752E-04 7.0979E-05 -2.9638E-06
表14
AAS面 AR BR CR DR AP BP CP DP
S9 1.8478E-01 -4.3361E-01 2.4818E-01 -4.7002E-02 1.2351E-02 3.5735E-03 1.9619E-03 1.0519E-03
表15
f1(mm) -3.45 fx(mm) 1.89
f2(mm) 1.91 fy(mm) 1.88
f3(mm) -4.41 TTL(mm) 5.14
f4(mm) -10.86 ImgH(mm) 3.03
f5(mm) 1.64 HFOV(°) 60.3
f6(mm) -3.14    
表16
图8示出了实施例4的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图8可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9和图10描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表17示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19示出了可用于实施例5中非旋转对称的非球面S10的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表20给出了实施例5中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000009
Figure PCTCN2019087375-appb-000010
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.6917E-01 -4.1662E-01 5.2075E-01 -4.8061E-01 3.0411E-01 -1.2184E-01 2.1695E-02 0.0000E+00 0.0000E+00
S2 1.0764E+00 -3.3247E+00 1.4473E+01 -4.1091E+01 7.4640E+01 -7.4959E+01 3.0436E+01 0.0000E+00 0.0000E+00
S3 5.97E-02 -1.58E-01 7.42E-01 -5.81E+00 1.44E+01 7.93E+00 -1.37E+02 3.02E+02 -2.41E+02
S4 -3.60E-01 2.24E+00 -1.26E+01 5.68E+01 -2.04E+02 5.10E+02 -8.14E+02 7.39E+02 -2.89E+02
S5 -5.6459E-01 2.0651E+00 -9.6098E+00 3.7374E+01 -1.2018E+02 2.7709E+02 -4.1367E+02 3.5744E+02 -1.3553E+02
S6 -2.2764E-01 6.6204E-01 -2.4817E+00 1.0081E+01 -3.4129E+01 7.8098E+01 -1.0999E+02 8.6409E+01 -2.8849E+01
S7 -9.1233E-02 1.4038E-01 2.3939E-01 -1.2233E+00 1.9854E+00 -1.5405E+00 4.0599E-01 1.2593E-01 -6.6469E-02
S8 1.72E-02 -1.12E+00 3.00E+00 -4.77E+00 4.76E+00 -2.65E+00 6.33E-01 2.06E-02 -2.52E-02
S9 1.9626E-01 -7.3201E-01 1.2511E+00 -1.5293E+00 1.0820E+00 -3.4836E-01 -2.6627E-03 2.9498E-02 -5.2647E-03
S11 -6.5667E-02 -2.7029E-01 2.2570E-01 -2.4439E-01 3.5195E-01 -2.9930E-01 1.3433E-01 -3.0166E-02 2.6776E-03
S12 -2.2695E-01 1.3378E-01 -8.0634E-02 4.2441E-02 -1.6577E-02 4.3852E-03 -7.3750E-04 7.0988E-05 -2.9607E-06
表18
AAS面 AR BR CR DR AP BP CP DP
S10 4.5123E-01 -3.9840E-01 1.4940E-01 -1.9945E-02 1.2049E-03 2.5884E-03 2.2162E-03 2.5535E-03
表19
f1(mm) -3.83 fx(mm) 1.89
f2(mm) 2.06 fy(mm) 1.88
f3(mm) -4.79 TTL(mm) 5.14
f4(mm) -15.40 ImgH(mm) 3.03
f5(mm) 1.59 HFOV(°) 60.3
f6(mm) -2.74    
表20
图10示出了实施例5的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图10可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11和图12描述了根据本申请实施例6的摄像镜头。图11示出了根据本申请实施例6的摄像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表21示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表22示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23示出了可用于实施例6中非旋转对称的非球面S11的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表24给出了实施例6中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000011
表21
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.7275E-01 -2.5625E-01 2.6921E-01 -2.1223E-01 1.1373E-01 -3.8279E-02 5.7357E-03 0.0000E+00 0.0000E+00
S2 4.8026E-01 -2.2332E-01 -5.7046E-01 6.4174E+00 -1.8057E+01 2.5768E+01 -1.7469E+01 0.0000E+00 0.0000E+00
S3 5.25E-02 -2.20E-01 7.01E-01 -3.96E+00 5.42E+00 2.49E+00 -3.61E+01 6.64E+01 -4.43E+01
S4 -3.32E-01 1.27E+00 -6.51E+00 2.55E+01 -7.65E+01 1.60E+02 -2.14E+02 1.62E+02 -5.31E+01
S5 -4.7238E-01 1.3298E+00 -5.2341E+00 1.6882E+01 -4.5070E+01 8.6944E+01 -1.0860E+02 7.8510E+01 -2.4907E+01
S6 -1.7787E-01 4.2997E-01 -1.2990E+00 4.5217E+00 -1.2799E+01 2.4505E+01 -2.8876E+01 1.8980E+01 -5.3017E+00
S7 -9.6571E-02 9.5814E-02 1.2838E-01 -5.4277E-01 7.4396E-01 -4.8360E-01 1.0658E-01 2.7660E-02 -1.2215E-02
S8 1.36E-02 -7.30E-01 1.60E+00 -2.14E+00 1.78E+00 -8.30E-01 1.66E-01 4.57E-03 -4.62E-03
S9 1.3499E-01 -4.7448E-01 6.7031E-01 -6.8434E-01 4.0601E-01 -1.0932E-01 -7.0010E-04 6.4791E-03 -9.6707E-04
S10 3.4469E-01 -2.5945E-01 2.2266E-01 -3.0829E-01 2.8796E-01 -1.5531E-01 4.8293E-02 -8.0610E-03 5.5985E-04
S12 -1.76E-01 7.80E-02 -1.50E-02 -6.65E-03 5.76E-03 -1.91E-03 3.46E-04 -3.35E-05 1.36E-06
表22
AAS面 AR BR CR DR AP BP CP DP
S11 -2.4439E-01 5.9712E-02 -1.4973E-02 2.4034E-03 -2.1593E-02 -2.7068E-02 -1.2341E-02 2.4572E-03
表23
f1(mm) -3.40 fx(mm) 1.94
f2(mm) 1.97 fy(mm) 1.92
f3(mm) -4.80 TTL(mm) 5.41
f4(mm) -14.62 ImgH(mm) 3.03
f5(mm) 1.67 HFOV(°) 60.3
f6(mm) -3.25    
表24
图12示出了实施例6的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图12可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13和图14描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例8的摄像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表26示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了可用于实施例7中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表28给出了实施例7中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000012
Figure PCTCN2019087375-appb-000013
表25
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.7066E-01 -2.4224E-01 2.3018E-01 -1.5024E-01 6.1609E-02 -1.2551E-02 4.2755E-04 0.0000E+00 0.0000E+00
S2 4.1080E-01 -5.7630E-02 -1.6514E+00 8.8154E+00 -2.1173E+01 2.7288E+01 -1.5420E+01 0.0000E+00 0.0000E+00
S3 -3.9269E-03 8.2628E-01 -2.5878E+01 3.1857E+02 -2.4775E+03 1.1962E+04 -3.5079E+04 5.6943E+04 -3.9556E+04
S4 -2.2683E-01 -6.6392E-01 6.6695E+00 -3.6372E+01 1.2408E+02 -2.7378E+02 3.6959E+02 -2.7164E+02 7.6668E+01
S5 -3.3774E-01 1.8181E-01 -2.4925E+00 2.1758E+01 -8.9482E+01 2.1125E+02 -2.9026E+02 2.1604E+02 -6.6020E+01
S6 -1.0118E-01 1.2460E-01 -8.5446E-01 4.3409E+00 -1.1355E+01 1.7189E+01 -1.5126E+01 7.1742E+00 -1.3946E+00
S7 -1.2754E-01 6.0585E-01 -2.2133E+00 5.7286E+00 -9.8783E+00 1.1213E+01 -8.0627E+00 3.3260E+00 -6.0021E-01
S8 -1.6978E-01 -2.4679E-01 4.4070E-01 1.9723E-01 -1.5513E+00 2.5614E+00 -2.0773E+00 8.4008E-01 -1.3649E-01
S9 1.8914E-01 -7.1893E-01 1.2424E+00 -1.4858E+00 1.1443E+00 -5.3877E-01 1.4719E-01 -2.0583E-02 1.0090E-03
S10 4.1533E-01 -3.2792E-01 3.1703E-01 -4.8074E-01 4.9661E-01 -2.9588E-01 1.0153E-01 -1.8727E-02 1.4355E-03
S11 7.4039E-02 -7.0743E-01 1.1675E+00 -1.3187E+00 9.7666E-01 -4.4793E-01 1.2088E-01 -1.7351E-02 1.0038E-03
表26
AAS面 AR BR CR DR AP BP CP DP
S12 -1.9070E-01 5.4126E-02 -8.3663E-03 5.0522E-04 2.0437E-04 -2.5015E-03 -4.9508E-03 -7.3218E-03
表27
f1(mm) -3.93 fx(mm) 1.83
f2(mm) 1.97 fy(mm) 1.82
f3(mm) -4.02 TTL(mm) 5.16
f4(mm) -27.95 ImgH(mm) 3.03
f5(mm) 1.79 HFOV(°) 60.4
f6(mm) -3.64    
表28
图14示出了实施例7的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图14可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15和图16描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光 焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表29示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表30示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表31示出了可用于实施例8中非旋转对称的非球面S1的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表32给出了实施例8中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000014
表29
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 9.4879E-01 -4.9852E+00 3.3811E+01 -1.3318E+02 3.0747E+02 -3.7861E+02 1.9600E+02 0.0000E+00 0.0000E+00
S3 -2.0485E-01 7.8302E+00 -1.3142E+02 1.2603E+03 -7.3979E+03 2.6929E+04 -5.9334E+04 7.2498E+04 -3.7733E+04
S4 3.0090E-02 -5.8006E+00 6.3038E+01 -3.7970E+02 1.3962E+03 -3.1890E+03 4.4198E+03 -3.4069E+03 1.1228E+03
S5 -4.5210E-01 2.0750E+00 -1.1342E+01 4.4210E+01 -1.2400E+02 2.4552E+02 -3.1804E+02 2.3698E+02 -7.6008E+01
S6 -2.4953E-01 5.8506E-01 7.8958E-01 -9.3078E+00 2.5718E+01 -3.5604E+01 2.6442E+01 -9.5235E+00 1.1296E+00
S7 7.9761E-02 -1.1352E+00 3.5033E+00 -1.3381E+00 -1.4767E+01 3.7062E+01 -4.0707E+01 2.2216E+01 -4.9249E+00
S8 6.1325E-02 -1.0781E+00 1.6138E+00 6.3128E-01 -4.3113E+00 4.6878E+00 -1.7764E+00 -8.4808E-02 1.4119E-01
S9 7.9671E-02 -2.1546E-01 -3.5538E-01 9.1280E-01 -3.3313E-01 -9.8330E-01 1.2950E+00 -6.0349E-01 9.9660E-02
S10 2.3336E-02 6.6835E-01 -1.3151E+00 9.5653E-01 -9.6497E-02 -3.0232E-01 2.0788E-01 -5.7200E-02 5.9381E-03
S11 -2.3603E+00 1.0038E+01 -2.6440E+01 4.4211E+01 -4.8283E+01 3.4047E+01 -1.4828E+01 3.6102E+00 -3.7480E-01
S12 -3.4432E-01 5.4629E-01 -5.3916E-01 3.3067E-01 -1.3071E-01 3.3270E-02 -5.2387E-03 4.6203E-04 -1.7397E-05
表30
AAS面 AR BR CR DR AP BP CP DP
S1 3.6282E-01 -2.4664E-01 1.6923E-01 -4.6418E-02 4.5730E-02 7.2397E-02 5.3409E-02 3.8719E-02
表31
f1(mm) -4.39 fx(mm) 2.12
f2(mm) 2.07 fy(mm) 2.37
f3(mm) -7.53 TTL(mm) 4.90
f4(mm) -12.04 ImgH(mm) 3.03
f5(mm) 1.61 HFOV(°) 60.0
f6(mm) -0.60    
表32
图16示出了实施例8的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图16可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
实施例9
以下参照图17和图18描述了根据本申请实施例9的摄像镜头。图17示出了根据本申请实施例9的摄像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表33示出了实施例9的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表34示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表35示出了可用于实施例9中非旋转对称的非球面S1的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表36给出了实施例9中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000015
Figure PCTCN2019087375-appb-000016
表33
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S2 9.8003E-01 -6.5933E+00 5.0620E+01 -2.1909E+02 5.4123E+02 -7.0364E+02 3.7878E+02 0.0000E+00 0.0000E+00
S3 -1.6807E-01 7.1327E+00 -1.2484E+02 1.2505E+03 -7.7269E+03 2.9854E+04 -7.0292E+04 9.2204E+04 -5.1633E+04
S4 -3.8977E-02 -4.4648E+00 5.2515E+01 -3.4558E+02 1.3984E+03 -3.5257E+03 5.3923E+03 -4.5735E+03 1.6502E+03
S5 -5.1007E-01 3.0525E+00 -1.9584E+01 8.2570E+01 -2.3010E+02 4.2033E+02 -4.8324E+02 3.1794E+02 -9.1414E+01
S6 -2.2858E-01 2.6859E-02 6.2811E+00 -3.7351E+01 1.0996E+02 -1.9012E+02 1.9658E+02 -1.1278E+02 2.7686E+01
S7 9.3589E-02 -1.7181E+00 8.4157E+00 -2.0305E+01 2.5891E+01 -1.4597E+01 -1.9335E+00 6.3453E+00 -2.2040E+00
S8 9.2269E-02 -1.6149E+00 4.5299E+00 -6.9180E+00 6.3628E+00 -3.9026E+00 2.0420E+00 -9.0144E-01 1.9314E-01
S9 9.9198E-02 -2.2146E-01 -9.9766E-01 4.3534E+00 -8.2379E+00 8.7747E+00 -5.4298E+00 1.8306E+00 -2.6066E-01
S10 4.1056E-02 5.2717E-01 -1.1383E+00 1.1098E+00 -6.7881E-01 2.9413E-01 -8.8512E-02 1.5986E-02 -1.2558E-03
S11 -2.1396E+00 8.1176E+00 -1.9303E+01 2.9785E+01 -3.0691E+01 2.0737E+01 -8.7337E+00 2.0683E+00 -2.0985E-01
S12 -3.7931E-01 5.7375E-01 -4.9881E-01 2.6790E-01 -9.3912E-02 2.1524E-02 -3.0895E-03 2.5049E-04 -8.7200E-06
表34
AAS面 AR BR CR DR AP BP CP DP
S1 3.5097E-01 -2.4458E-01 1.6889E-01 -4.7168E-02 -2.0028E-02 -3.4925E-04 3.5476E-02 6.2928E-02
表35
f1(mm) -4.44 fx(mm) 2.38
f2(mm) 2.06 fy(mm) 2.18
f3(mm) -7.68 TTL(mm) 4.93
f4(mm) -16.31 ImgH(mm) 3.03
f5(mm) 1.68 HFOV(°) 59.1
f6(mm) -0.65    
表36
图18示出了实施例9的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图18可知,实施例9所给出的摄像镜头能够实现良好的成像品质。
实施例10
以下参照图19和图20描述了根据本申请实施例10的摄像镜头。图19示出了根据本申请实 施例10的摄像镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表37示出了实施例10的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表38示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表39示出了可用于实施例10中非旋转对称的非球面S2的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表40给出了实施例10中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000017
表37
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.5300E-01 -4.1118E-01 5.7136E-01 -5.6748E-01 3.6241E-01 -1.4225E-01 2.5013E-02 0.0000E+00 0.0000E+00
S3 2.5513E-02 6.4224E-01 -8.9674E+00 6.5925E+01 -3.5725E+02 1.3946E+03 -3.6617E+03 5.5775E+03 -3.6550E+03
S4 -3.5391E-01 1.4960E+00 -5.1846E+00 1.5238E+01 -4.8518E+01 1.2349E+02 -1.9354E+02 1.6234E+02 -5.5954E+01
S5 -5.0118E-01 1.7795E+00 -6.5905E+00 2.0561E+01 -5.2786E+01 9.3062E+01 -9.6034E+01 4.9814E+01 -9.0646E+00
S6 -1.7691E-01 1.6224E-01 4.0138E-01 1.6547E-01 -1.0459E+01 3.7135E+01 -5.9935E+01 4.8201E+01 -1.5588E+01
S7 -7.9403E-02 1.1137E-01 1.4397E-01 -2.7804E-01 -9.7346E-01 3.2398E+00 -3.8222E+00 2.0734E+00 -4.3371E-01
S8 3.3802E-02 -1.0702E+00 2.8843E+00 -4.6343E+00 4.7024E+00 -2.7888E+00 8.5892E-01 -9.8946E-02 -3.0003E-03
S9 1.7958E-01 -6.3266E-01 1.0313E+00 -1.2263E+00 8.3851E-01 -2.3817E-01 -2.9754E-02 3.3052E-02 -5.5056E-03
S10 3.7950E-01 -1.8883E-01 -1.7654E-01 3.0895E-01 -2.5512E-01 1.4791E-01 -5.7254E-02 1.2728E-02 -1.2100E-03
S11 -1.1782E-01 -2.0894E-01 2.2655E-01 -1.7390E-01 9.5022E-02 -3.5151E-02 9.9298E-03 -2.0213E-03 1.9515E-04
S12 -2.1617E-01 1.2684E-01 -6.2974E-02 2.0538E-02 -2.7611E-03 -5.3291E-04 2.6632E-04 -3.8655E-05 2.0019E-06
表38
AAS面 AR BR CR DR AP BP CP DP
S2 7.1048E-01 -1.2224E+00 3.4790E+00 -2.8886E+00 -5.0508E-02 -6.0255E-02 -2.4346E-04 1.2591E-02
表39
f1(mm) -4.19 fx(mm) 2.12
f2(mm) 2.05 fy(mm) 2.22
f3(mm) -5.39 TTL(mm) 4.97
f4(mm) -11.50 ImgH(mm) 3.03
f5(mm) 2.07 HFOV(°) 59.5
f6(mm) -3.38    
表40
图20示出了实施例10的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图20可知,实施例10所给出的摄像镜头能够实现良好的成像品质。
实施例11
以下参照图21和图22描述了根据本申请实施例11的摄像镜头。图22示出了根据本申请实施例11的摄像镜头的结构示意图。
如图21所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表41示出了实施例11的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表42示出了可用于实施例11中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表43示出了可用于实施例11中非旋转对称的非球面S9的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给 出的公式(2)限定。表44给出了实施例11中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000018
表41
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 3.5000E-01 -3.0867E-01 2.3707E-01 -8.0586E-02 -2.4437E-02 2.7777E-02 -7.5277E-03 0.0000E+00 0.0000E+00
S2 5.4015E-01 7.2403E-01 -6.3506E+00 2.5100E+01 -5.2384E+01 5.9339E+01 -2.9017E+01 0.0000E+00 0.0000E+00
S3 -1.3182E-02 2.4967E+00 -7.9233E+01 1.4122E+03 -1.5619E+04 1.0779E+05 -4.5145E+05 1.0481E+06 -1.0338E+06
S4 -3.3361E-01 1.2538E+00 -2.9744E+00 -3.0012E+00 4.6808E+01 -1.8200E+02 4.0400E+02 -5.3162E+02 3.1602E+02
S5 -4.9625E-01 6.0347E-01 2.6865E+00 -2.2374E+01 7.8998E+01 -1.8939E+02 3.2345E+02 -3.5507E+02 1.7728E+02
S6 -1.0323E-01 -1.0678E+00 9.4912E+00 -4.1494E+01 1.1569E+02 -2.1130E+02 2.4442E+02 -1.6211E+02 4.6883E+01
S7 -1.4548E-01 6.3919E-01 -2.6341E+00 7.8126E+00 -1.5025E+01 1.8121E+01 -1.3159E+01 5.1882E+00 -8.3156E-01
S8 2.5509E-03 -1.1501E+00 4.5402E+00 -1.1898E+01 2.0263E+01 -2.1638E+01 1.4043E+01 -5.0839E+00 7.8869E-01
S10 1.9864E-01 1.2923E+00 -5.2537E+00 9.9471E+00 -1.1259E+01 7.9327E+00 -3.4095E+00 8.1921E-01 -8.4351E-02
S11 1.9935E-02 -3.7533E-01 7.3619E-02 3.3837E-01 -2.7234E-01 -1.7880E-02 1.0068E-01 -4.2347E-02 5.6846E-03
S12 -1.8817E-01 9.2854E-02 -1.9536E-02 -5.3019E-03 5.0185E-03 -1.6238E-03 2.8390E-04 -2.6505E-05 1.0345E-06
表42
AAS面 AR BR CR DR AP BP CP DP
S9 1.7712E-01 -4.3468E-01 2.4840E-01 -4.6824E-02 1.0985E-02 5.5078E-03 5.3552E-03 6.0722E-03
表43
f1(mm) -4.06 fx(mm) 2.10
f2(mm) 1.89 fy(mm) 1.70
f3(mm) -5.21 TTL(mm) 4.99
f4(mm) -0.98 ImgH(mm) 3.03
f5(mm) 0.73 HFOV(°) 55.4
f6(mm) -2.51    
表44
图22示出了实施例11的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图22可知,实施例11所给出的摄像镜头能够实现良好的成像品质。
实施例12
以下参照图23和图24描述了根据本申请实施例12的摄像镜头。图23示出了根据本申请实施例12的摄像镜头的结构示意图。
如图23所示,根据本申请示例性实施方式的摄像镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表45示出了实施例12的摄像镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。表46示出了可用于实施例12中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表47示出了可用于实施例12中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。表48给出了实施例12中各透镜的有效焦距f1至f6、摄像镜头X轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH以及最大半视场角HFOV。
Figure PCTCN2019087375-appb-000019
Figure PCTCN2019087375-appb-000020
表45
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.8663E-01 -2.7030E-01 2.9325E-01 -2.3588E-01 1.2922E-01 -4.0839E-02 5.2974E-03 0.0000E+00 0.0000E+00
S2 2.6575E-01 1.0051E+00 -6.5955E+00 2.1937E+01 -4.0519E+01 4.0489E+01 -1.7194E+01 0.0000E+00 0.0000E+00
S3 6.0938E-02 -1.3877E+00 8.7706E+00 2.9233E+01 -1.1738E+03 9.5561E+03 -3.7862E+04 7.5487E+04 -6.0862E+04
S4 -3.9680E-01 3.5883E+00 -3.7022E+01 2.4210E+02 -1.0150E+03 2.7070E+03 -4.4435E+03 4.0914E+03 -1.6212E+03
S5 -2.1207E-01 -2.2017E+00 2.1645E+01 -1.1974E+02 4.1922E+02 -9.3004E+02 1.2676E+03 -9.6739E+02 3.1619E+02
S6 -8.2534E-02 -1.6847E-01 1.0352E+00 -3.1945E+00 6.8652E+00 -9.0503E+00 6.5315E+00 -1.9390E+00 -2.3410E-02
S7 -1.4119E-01 8.1612E-01 -3.6774E+00 1.0770E+01 -2.0482E+01 2.5602E+01 -2.0244E+01 9.1199E+00 -1.7734E+00
S8 -1.9123E-01 2.5948E-02 -9.1478E-01 4.1279E+00 -8.6458E+00 1.0623E+01 -7.6467E+00 2.9571E+00 -4.7352E-01
S9 2.3560E-01 -8.8925E-01 1.6090E+00 -2.0192E+00 1.6144E+00 -7.7633E-01 2.1059E-01 -2.7490E-02 9.9526E-04
S10 4.1441E-01 -3.2832E-01 3.1700E-01 -4.8072E-01 4.9662E-01 -2.9587E-01 1.0153E-01 -1.8726E-02 1.4355E-03
S11 4.2930E-02 -8.9662E-01 1.7372E+00 -2.0753E+00 1.5753E+00 -7.4530E-01 2.1154E-01 -3.2838E-02 2.1379E-03
表46
AAS面 AR BR CR DR AP BP CP DP
S12 -1.8649E-01 5.4977E-02 -8.2957E-03 4.9410E-04 -3.7863E-02 -3.1762E-02 -2.3832E-02 -1.7681E-02
表47
f1(mm) -4.09 fx(mm) 1.63
f2(mm) 1.98 fy(mm) 1.90
f3(mm) -4.15 TTL(mm) 5.23
f4(mm) -18.09 ImgH(mm) 3.03
f5(mm) 1.73 HFOV(°) 55.2
f6(mm) -2.41    
表48
图24示出了实施例12的摄像镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图24可知,实施例12所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例12分别满足表49中所示的关系。
条件式\实施例 1 2 3 4 5 6
fx/fy 1.00 1.01 1.03 1.01 1.01 1.01
FOV(°) 120.4 120.2 120.6 120.6 120.6 120.6
TTL/ImgH 1.71 1.68 1.66 1.7 1.7 1.79
f2/f1 -0.48 -0.54 -0.54 -0.55 -0.54 -0.58
|1/f5-1/f6| 0.73 0.8 0.6 0.93 0.99 0.91
R9/R8 0.81 1.01 1.28 0.63 0.52 0.85
CT3/CT4 0.57 0.73 0.71 0.72 0.65 0.67
CT6/ET6 0.60 0.61 0.90 0.75 0.68 0.54
SAG51/SAG61 -0.17 -0.27 -0.36 -0.06 -0.10 -0.10
SL(mm) 4.24 4.12 4.08 4.14 4.16 4.14
条件式\实施例 7 8 9 10 11 12
fx/fy 1.00 0.89 1.09 0.95 1.24 0.86
FOV(°) 120.8 120 118.2 119 110.8 110.4
TTL/ImgH 1.7 1.62 1.63 1.64 1.65 1.73
f2/f1 -0.5 -0.47 -0.46 -0.49 -0.47 -0.48
|1/f5-1/f6| 0.83 2.29 2.13 0.78 1.77 0.99
R9/R8 0.36 1.00 0.87 0.94 0.95 0.63
CT3/CT4 0.65 0.94 0.94 0.61 0.74 0.70
CT6/ET6 0.57 0.46 0.43 0.61 0.54 0.38
SAG51/SAG61 -0.34 0.00 -0.02 -0.23 0.10 -0.22
SL(mm) 4.07 4.01 4.07 4.08 4.03 4.03
表49
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;所述第二透镜具有正光焦度;所述第三透镜具有负光焦度;所述第四透镜具有光焦度;所述第五透镜具有光焦度;所述第六透镜具有负光焦度;
    所述第一透镜至所述第六透镜中至少一个透镜具有非旋转对称的非球面;以及
    所述摄像镜头X轴方向的有效焦距fx与所述摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的物侧面和像侧面均为凸面。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜具有负光焦度。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜具有正光焦度。
  5. 根据权利要求4所述的摄像镜头,其特征在于,所述第五透镜的物侧面和像侧面均为凸面。
  6. 根据权利要求4所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第六透镜的有效焦距f6满足0.5<|1/f5-1/f6|<2.5。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f2/f1<-0.4。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜具有非旋转对称的非球面。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜物侧面的曲率半径R9与所述第四透镜像侧面的曲率半径R8满足0<R9/R8<1.5。
  10. 根据权利要求9所述的摄像镜头,其特征在于,所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<CT3/CT4<1。
  11. 根据权利要求1所述的摄像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第六透镜的边缘厚度ET6满足0.2<CT6/ET6<1。
  12. 根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜物侧面和所述光轴的交点至所述第五透镜物侧面的有效半径顶点在所述光轴上的距离SAG51与所述第六透镜物侧面和所述光轴的交点至所述第六透镜物侧面的有效半径顶点在所述光轴上的距离SAG61满足-0.5<SAG51/SAG61<0.5。
  13. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL满足SL≥4mm。
  14. 根据权利要求1至13中任一项所述的摄像镜头,其特征在于,所述第一透镜的物侧面的中心至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.8。
  15. 根据权利要求1至13中任一项所述的摄像镜头,其特征在于,所述摄像镜头的全视场 角FOV满足FOV>90°。
  16. 摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有负光焦度;所述第二透镜具有正光焦度;所述第三透镜具有负光焦度;所述第四透镜具有光焦度;所述第五透镜具有光焦度;所述第六透镜具有负光焦度;
    所述第一透镜至所述第六透镜中至少一个透镜具有非旋转对称的非球面;以及
    所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<CT3/CT4<1。
  17. 根据权利要求16所述的摄像镜头,其特征在于,所述摄像镜头X轴方向的有效焦距fx与所述摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。
  18. 根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第六透镜的有效焦距f6满足0.5<|1/f5-1/f6|<2.5。
  19. 根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f2/f1<-0.4。
  20. 根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜物侧面的曲率半径R9与所述第四透镜像侧面的曲率半径R8满足0<R9/R8<1.5。
  21. 根据权利要求16所述的摄像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第六透镜的边缘厚度ET6满足0.2<CT6/ET6<1。
  22. 根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜物侧面和所述光轴的交点至所述第五透镜物侧面的有效半径顶点在所述光轴上的距离SAG51与所述第六透镜物侧面和所述光轴的交点至所述第六透镜物侧面的有效半径顶点在所述光轴上的距离SAG61满足-0.5<SAG51/SAG61<0.5。
  23. 根据权利要求16所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL满足SL≥4mm。
  24. 根据权利要求16至23中任一项所述的摄像镜头,其特征在于,所述第一透镜的物侧面的中心至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.8。
  25. 根据权利要求16至23中任一项所述的摄像镜头,其特征在于,所述摄像镜头的全视场角FOV满足FOV>90°。
PCT/CN2019/087375 2018-09-05 2019-05-17 摄像镜头 WO2020048157A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/128,577 US20210109326A1 (en) 2018-09-05 2020-12-21 Camera lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811032313.XA CN109100854B (zh) 2018-09-05 2018-09-05 摄像镜头
CN201811032313.X 2018-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/128,577 Continuation US20210109326A1 (en) 2018-09-05 2020-12-21 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2020048157A1 true WO2020048157A1 (zh) 2020-03-12

Family

ID=64865109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087375 WO2020048157A1 (zh) 2018-09-05 2019-05-17 摄像镜头

Country Status (3)

Country Link
US (1) US20210109326A1 (zh)
CN (1) CN109100854B (zh)
WO (1) WO2020048157A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596448A (zh) * 2020-06-05 2020-08-28 玉晶光电(厦门)有限公司 光学成像镜头
TWI720870B (zh) * 2020-03-31 2021-03-01 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100854B (zh) * 2018-09-05 2024-04-09 浙江舜宇光学有限公司 摄像镜头
CN109541783B (zh) * 2019-01-07 2024-04-19 浙江舜宇光学有限公司 摄像镜头
CN109521554B (zh) * 2019-01-15 2024-05-10 浙江舜宇光学有限公司 摄像镜头组
CN109471247B (zh) * 2019-01-16 2024-04-19 浙江舜宇光学有限公司 摄像镜头
TWI706185B (zh) 2019-11-01 2020-10-01 大立光電股份有限公司 成像用光學系統、取像裝置及電子裝置
CN111025583B (zh) * 2019-12-27 2022-03-29 浙江舜宇光学有限公司 光学成像镜头
WO2021134286A1 (zh) * 2019-12-30 2021-07-08 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN114428388A (zh) * 2020-05-20 2022-05-03 浙江舜宇光学有限公司 光学成像透镜组
EP4134723A4 (en) * 2020-05-30 2023-10-18 Huawei Technologies Co., Ltd. OPTICAL LENS, CAMERA MODULE AND ELECTRONIC DEVICE
CN113740998B (zh) * 2020-05-30 2022-11-22 华为技术有限公司 光学镜头、摄像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456915A (zh) * 2002-05-07 2003-11-19 佳能株式会社 光学成像系统及应用此系统的图像读出装置
CN105143948A (zh) * 2013-03-27 2015-12-09 富士胶片株式会社 摄像透镜及摄像装置
CN206039010U (zh) * 2016-08-31 2017-03-22 浙江舜宇光学有限公司 光学成像系统
CN107664819A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN207516627U (zh) * 2017-11-08 2018-06-19 湖南戴斯光电有限公司 一种机器人非对称视觉镜头
CN109100854A (zh) * 2018-09-05 2018-12-28 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2018877A1 (en) * 2007-07-27 2009-01-28 The Procter and Gamble Company Absorbent article comprising water-absorbing polymeric particles and method for the production thereof
KR100930167B1 (ko) * 2007-09-19 2009-12-07 삼성전기주식회사 초광각 광학계
US20170139183A1 (en) * 2014-07-28 2017-05-18 Han's Laser Technology Industry Group Co., Ltd. Photographic Objective Lens And Photographic Equipment
JP2016062020A (ja) * 2014-09-19 2016-04-25 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2016062021A (ja) * 2014-09-19 2016-04-25 富士フイルム株式会社 撮像レンズおよび撮像装置
KR102009431B1 (ko) * 2014-12-05 2019-10-21 삼성전기주식회사 촬상 광학계
CN105717609B (zh) * 2014-12-05 2018-05-25 大立光电股份有限公司 光学取像透镜组、取像装置以及电子装置
JP2016114633A (ja) * 2014-12-11 2016-06-23 ソニー株式会社 撮像レンズおよび撮像装置
TWI585450B (zh) * 2015-05-22 2017-06-01 先進光電科技股份有限公司 光學成像系統
CN108627953B (zh) * 2018-04-28 2020-06-02 玉晶光电(厦门)有限公司 光学成像镜头
CN208752296U (zh) * 2018-09-05 2019-04-16 浙江舜宇光学有限公司 摄像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456915A (zh) * 2002-05-07 2003-11-19 佳能株式会社 光学成像系统及应用此系统的图像读出装置
CN105143948A (zh) * 2013-03-27 2015-12-09 富士胶片株式会社 摄像透镜及摄像装置
CN206039010U (zh) * 2016-08-31 2017-03-22 浙江舜宇光学有限公司 光学成像系统
CN107664819A (zh) * 2017-10-19 2018-02-06 瑞声科技(新加坡)有限公司 摄像光学镜头
CN207516627U (zh) * 2017-11-08 2018-06-19 湖南戴斯光电有限公司 一种机器人非对称视觉镜头
CN109100854A (zh) * 2018-09-05 2018-12-28 浙江舜宇光学有限公司 摄像镜头

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720870B (zh) * 2020-03-31 2021-03-01 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭
US11747593B2 (en) 2020-03-31 2023-09-05 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
CN111596448A (zh) * 2020-06-05 2020-08-28 玉晶光电(厦门)有限公司 光学成像镜头
CN111596448B (zh) * 2020-06-05 2023-02-10 玉晶光电(厦门)有限公司 光学成像镜头
US11835684B2 (en) 2020-06-05 2023-12-05 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens

Also Published As

Publication number Publication date
CN109100854A (zh) 2018-12-28
US20210109326A1 (en) 2021-04-15
CN109100854B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020048157A1 (zh) 摄像镜头
WO2019223263A1 (zh) 摄像镜头
WO2020024634A1 (zh) 光学成像镜片组
WO2019228064A1 (zh) 成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2020119145A1 (zh) 摄像镜头
WO2020191951A1 (zh) 光学成像镜头
WO2020134129A1 (zh) 光学成像系统
CN109283665B (zh) 成像镜头
WO2020143252A1 (zh) 摄像镜头
WO2020134026A1 (zh) 光学成像系统
WO2020024635A1 (zh) 光学成像镜头
WO2020019796A1 (zh) 光学成像系统
WO2020186759A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2020073703A1 (zh) 光学透镜组
WO2020151251A1 (zh) 光学透镜组
WO2019233040A1 (zh) 摄像透镜组
CN113376808B (zh) 摄像镜头组
CN109445072B (zh) 摄像镜头组
CN110579863B (zh) 光学成像系统
WO2019233142A1 (zh) 光学成像镜头
WO2019233143A1 (zh) 光学成像镜片组
WO2019237776A1 (zh) 光学成像系统
CN110262015B (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858349

Country of ref document: EP

Kind code of ref document: A1