CN208752296U - 摄像镜头 - Google Patents
摄像镜头 Download PDFInfo
- Publication number
- CN208752296U CN208752296U CN201821449063.5U CN201821449063U CN208752296U CN 208752296 U CN208752296 U CN 208752296U CN 201821449063 U CN201821449063 U CN 201821449063U CN 208752296 U CN208752296 U CN 208752296U
- Authority
- CN
- China
- Prior art keywords
- lens
- pick
- object side
- optical axis
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Lenses (AREA)
Abstract
本申请公开了一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。第一透镜具有负光焦度;第二透镜具有正光焦度;第三透镜具有负光焦度;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜具有负光焦度;第一透镜至第六透镜中至少一个透镜具有非旋转对称的非球面;以及摄像镜头X轴方向的有效焦距fx与摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。
Description
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括六片透镜的摄像镜头。
背景技术
近年来,随着手机摄像领域的快速发展,以及大尺寸、高像素的互补性氧化金属半导体元件(CMOS)或感光耦合元件(CCD)的芯片的普及,各大手机厂商在追求镜头轻薄化与小型化的同时,更是对镜头的成像质量提出了严苛的要求。当前应用于手机等便携式电子产品的镜头多采用六片式结构,其镜片面型均为旋转对称(轴对称)的非球面。这类旋转对称的非球面可以看成是子午平面内的一条曲线绕光轴旋转360°而形成的,因此其只在子午平面内具有充分的自由度,并不能很好地对轴外像差进行矫正。
实用新型内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的摄影镜头。
一方面,本申请提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜可具有负光焦度;第一透镜至第六透镜中至少一个透镜可具有非旋转对称的非球面;以及摄像镜头X轴方向的有效焦距fx与摄像镜头Y轴方向的有效焦距fy可满足0.5<fx/fy <1.5。
在一个实施方式中,第二透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第四透镜可具有负光焦度。
在一个实施方式中,第五透镜可具有正光焦度。
在一个实施方式中,第五透镜的物侧面和像侧面均可为凸面。
在一个实施方式中,第五透镜的有效焦距f5与第六透镜的有效焦距f6可满足0.5<|1/f5-1/f6|<2.5。
在一个实施方式中,第一透镜的有效焦距f1与第二透镜的有效焦距f2可满足-0.6<f2/f1<-0.4。
在一个实施方式中,第一透镜可具有至少一个非旋转对称的非球面。
在一个实施方式中,第五透镜物侧面的曲率半径R9与第四透镜像侧面的曲率半径R8可满足0<R9/R8<1.5。
在一个实施方式中,第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4可满足0.5<CT3/CT4<1。
在一个实施方式中,第六透镜在光轴上的中心厚度CT6与第六透镜的边缘厚度ET6可满足0.2<CT6/ET6<1。
在一个实施方式中,第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半径顶点在光轴上的距离SAG51与第六透镜物侧面和光轴的交点至第六透镜物侧面的有效半径顶点在光轴上的距离SAG61 可满足-0.5<SAG51/SAG61<0.5。
在一个实施方式中,摄像镜头还可包括光阑,光阑至摄像镜头的成像面在光轴上的距离SL可满足SL≥4mm。
在一个实施方式中,第一透镜的物侧面的中心至摄像镜头的成像面在光轴上的距离TTL与摄像镜头的成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH<1.8。
在一个实施方式中,摄像镜头的全视场角FOV可满足FOV> 90°。
另一方面,本申请还提供了这样一种摄像镜头,该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有负光焦度;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有光焦度;第五透镜具有光焦度;第六透镜可具有负光焦度;以及第一透镜至第六透镜中至少一个透镜可具有非旋转对称的非球面。其中,第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4 可满足0.5<CT3/CT4<1。
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述摄影镜头具有小型化、大广角和高成像品质等至少一个有益效果。同时,通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,进一步获得像质的提升。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的摄像镜头的结构示意图;
图2示意性示出了实施例1的摄像镜头的RMS光斑直径在第一象限内的情况;
图3示出了根据本申请实施例2的摄像镜头的结构示意图;
图4示意性示出了实施例2的摄像镜头的RMS光斑直径在第一象限内的情况;
图5示出了根据本申请实施例3的摄像镜头的结构示意图;
图6示意性示出了实施例3的摄像镜头的RMS光斑直径在第一象限内的情况;
图7示出了根据本申请实施例4的摄像镜头的结构示意图;
图8示意性示出了实施例4的摄像镜头的RMS光斑直径在第一象限内的情况;
图9示出了根据本申请实施例5的摄像镜头的结构示意图;
图10示意性示出了实施例5的摄像镜头的RMS光斑直径在第一象限内的情况;
图11示出了根据本申请实施例6的摄像镜头的结构示意图;
图12示意性示出了实施例6的摄像镜头的RMS光斑直径在第一象限内的情况;
图13示出了根据本申请实施例7的摄像镜头的结构示意图;
图14示意性示出了实施例7的摄像镜头的RMS光斑直径在第一象限内的情况;
图15示出了根据本申请实施例8的摄像镜头的结构示意图;
图16示意性示出了实施例8的摄像镜头的RMS光斑直径在第一象限内的情况;
图17示出了根据本申请实施例9的摄像镜头的结构示意图;
图18示意性示出了实施例9的摄像镜头的RMS光斑直径在第一象限内的情况;
图19示出了根据本申请实施例10的摄像镜头的结构示意图;
图20示意性示出了实施例10的摄像镜头的RMS光斑直径在第一象限内的情况;
图21示出了根据本申请实施例11的摄像镜头的结构示意图;
图22示意性示出了实施例11的摄像镜头的RMS光斑直径在第一象限内的情况;
图23示出了根据本申请实施例12的摄像镜头的结构示意图;
图24示意性示出了实施例12的摄像镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中,最靠近被摄物的表面称为该透镜的物侧面;每个透镜中,最靠近成像面的表面称为该透镜的像侧面。
在本文中,我们定义平行于光轴的方向为Z轴方向,与Z轴垂直且位于子午平面内的方向为Y轴方向,与Z轴垂直且位于弧矢平面内的方向为X轴方向。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/ 或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和 /或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/ 或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的摄影镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,各相邻透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜可具有正光焦度;第三透镜可具有负光焦度;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有负光焦度。第一透镜为负光焦度,有利于减小入射光线的倾角,从而对物方大视场实现有效分担,获得更大的视场角范围;在此基础上,第二透镜为正光焦度,同第一透镜进行组合,有利于对不同视场像差的矫正;当配置第六透镜光焦度为负时,有利于矫正光学系统场曲,提高成像质量。
此外,可以将第一透镜至第六透镜中的至少一个透镜的物侧面和/ 或像侧面设置为非旋转对称的非球面,来进一步提升像质。非旋转对称的非球面是一种自由曲面,在旋转对称的非球面基础上,增加了非旋转对称分量,因而在透镜系统中引入非旋转对称的非球面有利于通过对轴外子午像差和弧矢像差进行有效矫正,极大地提升光学系统的性能。
在示例性实施方式中,第一透镜的像侧面可为凹面。
在示例性实施方式中,第二透镜的物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第四透镜可具有负光焦度,其物侧面和像侧面中的至少一个可为凹面。可选地,第四透镜的像侧面为凹面。
在示例性实施方式中,第五透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凸面。
在示例性实施方式中,第六透镜的像侧面可为凹面。
在示例性实施方式中,本申请的摄影镜头可满足条件式0.5<fx/fy <1.5,其中,fx为摄像镜头X轴方向的有效焦距,fy为摄像镜头Y 轴方向的有效焦距。更具体地,fx和fy进一步可满足0.86≤fx/fy≤ 1.24。合理配置X轴、Y轴方向的焦距比值,有利于提升自由曲面在两个方向上的自由度,优化系统对于轴外像差的矫正作用;同时,有利于将光学系统的像差和各项参数控制在一个较合适的范围内,最终获得高质量的图像。
在示例性实施方式中,本申请的摄影镜头可满足条件式FOV> 90°,其中,FOV为摄像镜头的全视场角。更具体地,FOV进一步可满足FOV>100°,例如,110.4°≤FOV≤120.8°。满足条件式FOV >90°,有利于获得较大的视场角,提高光学系统对物方信息的收集能力。
在示例性实施方式中,本申请的摄影镜头可满足条件式TTL/ImgH <1.8,其中,TTL为第一透镜的物侧面的中心至摄影镜头的成像面在光轴上的距离,ImgH为摄影镜头的成像面上有效像素区域对角线长的一半。更具体地,TTL和ImgH进一步可满足1.62≤TTL/ImgH≤1.79。通过约束TTL和ImgH的比值,实现摄影镜头的超薄化和高成像质量。
在应用中,还可以对各透镜的有效焦距进行合理优化。例如,第二透镜的有效焦距f2与第一透镜的有效焦距f1可满足-0.6<f2/f1< -0.4。更具体地,f2和f1进一步可满足-0.58≤f2/f1≤-0.46。又例如,第五透镜的有效焦距f5与第六透镜的有效焦距f6可满足0.5< |1/f5-1/f6|<2.5。更具体地,f5和f6进一步可满足0.60≤|1/f5-1/f6|≤ 2.29。合理配置各透镜的光焦度,有利于各类像差的矫正,同时有利于提升摄像镜头的成像质量。
在示例性实施方式中,本申请的摄影镜头可满足条件式0<R9/R8 <1.5,其中,R9为第五透镜物侧面的曲率半径,R8为第四透镜像侧面的曲率半径。更具体地,R9和R8进一步可满足0.36≤R9/R8≤1.28。合理配置第五透镜物侧面和第四透镜像侧面的曲率半径,可以有效消除系统球差,获得高清晰度的图像。
在示例性实施方式中,本申请的摄影镜头可满足条件式0.5< CT3/CT4<1,其中,CT3为第三透镜在光轴上的中心厚度,CT4为第四透镜在光轴上的中心厚度。更具体地,CT3和CT4进一步可满足0.57 ≤CT3/CT4≤0.94。合理配置透镜中心厚度,可以有效降低镜头的厚度敏感性,矫正场曲。
在示例性实施方式中,本申请的摄影镜头可满足条件式0.2<CT6/ET6<1,其中,CT6为第六透镜在光轴上的中心厚度,ET6为第六透镜的边缘厚度。更具体地,CT6和ET6进一步可满足0.38≤ CT6/ET6≤0.90。合理配置透镜的厚薄比,有利于满足镜头的可加工性和工艺性要求。
在示例性实施方式中,本申请的摄影镜头可满足条件式-0.5< SAG51/SAG61<0.5,其中,SAG51为第五透镜物侧面和光轴的交点至第五透镜物侧面的有效半径顶点在光轴上的距离,SAG61为第六透镜物侧面和光轴的交点至第六透镜物侧面的有效半径顶点在光轴上的距离。更具体地,SAG51和SAG61进一步可满足-0.36≤SAG51/SAG61 ≤0.10。合理配置面型,可以有效消除系统场曲,确保成像质量。
在示例性实施方式中,上述摄影镜头还可包括光阑,以提升镜头的成像质量。可选地,光阑可设置在第一透镜与第二透镜之间。可选地,光阑至摄影镜头的成像面在光轴上的距离SL可满足SL≥4mm。更具体地,SL进一步可满足4.01≤SL≤4.24。合理配置光阑位置,可以有效降低系统公差敏感性,提高设计良率。
可选地,上述摄影镜头还可包括用于校正色彩偏差的滤光片和/ 或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的摄影镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得摄影镜头更有利于生产加工并且可适用于便携式电子产品。通过引入非旋转对称的非球面,对摄像镜头的轴外子午像差和弧矢像差进行矫正,可以获得进一步的像质提升。
在本申请的实施方式中,各透镜的镜面多为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄影镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该摄影镜头不限于包括六个透镜。如果需要,该摄影镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄影镜头的具体实施例。
实施例1
以下参照图1和图2描述根据本申请实施例1的摄影镜头。图1 示出了根据本申请实施例1的摄影镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表1
由表1可知,第一透镜E1的物侧面S1以及第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6中任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1、S3-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、 A18和A20。
表2
由表1还可以看出,第一透镜E1的像侧面S2为非旋转对称的非球面(即,AAS面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:
其中,z为平行于Z轴方向的面的矢高;CUX、CUY分别为X、 Y轴方向面顶点的曲率(=1/曲率半径);KX、KY分别为X、Y轴方向的圆锥系数;AR、BR、CR、DR分别为非球面旋转对称分量中的4 阶、6阶、8阶、10阶系数;AP、BP、CP、DP分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶系数。下表3给出了可用于实施例1中的非旋转对称的非球面S1的AR、BR、CR、DR系数以及 AP、BP、CP、DP系数。
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S2 | 7.0410E-01 | -1.2685E+00 | 3.4479E+00 | -2.9618E+00 | -1.6275E-04 | -5.6552E-04 | 3.2717E-03 | 4.0997E-03 |
表3
表4给出了实施例1中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL(即,从第一透镜E1的物侧面S1的中心至成像面S15 在光轴上的距离)、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
表4
实施例1中的摄影镜头满足:
fx/fy=1.00,其中,fx为摄像镜头X轴方向的有效焦距,fy为摄像镜头Y轴方向的有效焦距;
FOV=120.4°,其中,FOV为摄像镜头的全视场角;
TTL/ImgH=1.71,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S15在光轴上的距离,ImgH为成像面S15上有效像素区域对角线长的一半;
f2/f1=-0.48,其中,f2为第二透镜E2的有效焦距,f1为第一透镜 E1的有效焦距;
|1/f5-1/f6|=0.73,其中,f5为第五透镜E5的有效焦距,f6为第六透镜E6的有效焦距;
R9/R8=0.81,其中,R9为第五透镜E5的物侧面S9的曲率半径, R8为第四透镜E4的像侧面S8的曲率半径;
CT3/CT4=0.57,其中,CT3为第三透镜E3在光轴上的中心厚度, CT4为第四透镜E4在光轴上的中心厚度;
CT6/ET6=0.60,其中,CT6为第六透镜E6在光轴上的中心厚度, ET6为第六透镜E6的边缘厚度;
SAG51/SAG61=-0.17,其中,SAG51为第五透镜E5物侧面S9和光轴的交点至第五透镜E5物侧面S9的有效半径顶点在光轴上的距离,SAG61为第六透镜E6物侧面S11和光轴的交点至第六透镜E6物侧面S11的有效半径顶点在光轴上的距离;
SL=4.24mm,其中,SL为光阑STO至成像面S15在光轴上的距离。
图2示出了实施例1的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图2可知,实施例1所给出的摄影镜头能够实现良好的成像品质。
实施例2
以下参照图3和图4描述根据本申请实施例2的摄影镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄影镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表5示出了实施例2的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表5
由表5可知,在实施例2中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中任意一个透镜的物侧面和像侧面以及第四透镜E4的像侧面S8均为非球面;第四透镜E4的物侧面 S7为非旋转对称的非球面。
表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7示出了可用于实施例2中非旋转对称的非球面S7的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.5873E-01 | -4.2986E-01 | 5.2217E-01 | -4.7761E-01 | 3.0327E-01 | -1.2200E-01 | 2.1848E-02 | 0.0000E+00 | 0.0000E+00 |
S2 | 7.2038E-01 | -1.2648E+00 | 5.3068E+00 | -1.6336E+01 | 3.4257E+01 | -3.9424E+01 | 1.7353E+01 | 0.0000E+00 | 0.0000E+00 |
S3 | 4.0313E-02 | -3.1199E-01 | 1.1589E+00 | -7.5418E+00 | 1.4448E+01 | 7.9257E+00 | -1.3749E+02 | 3.0211E+02 | -2.4095E+02 |
S4 | -4.8803E-01 | 2.2466E+00 | -1.2296E+01 | 5.6690E+01 | -2.0391E+02 | 5.0991E+02 | -8.1400E+02 | 7.3908E+02 | -2.8888E+02 |
S5 | -5.4768E-01 | 2.1388E+00 | -9.4758E+00 | 3.7596E+01 | -1.2018E+02 | 2.7709E+02 | -4.1367E+02 | 3.5744E+02 | -1.3553E+02 |
S6 | -2.0496E-01 | 7.0137E-01 | -2.4269E+00 | 1.0050E+01 | -3.4129E+01 | 7.8098E+01 | -1.0999E+02 | 8.6409E+01 | -2.8849E+01 |
S8 | -8.5553E-03 | -1.1182E+00 | 3.0071E+00 | -4.7691E+00 | 4.7563E+00 | -2.6457E+00 | 6.3382E-01 | 2.0794E-02 | -2.5159E-02 |
S9 | 1.84E-01 | -7.27E-01 | 1.26E+00 | -1.53E+00 | 1.08E+00 | -3.48E-01 | -2.67E-03 | 2.95E-02 | -5.26E-03 |
S10 | 4.2477E-01 | -4.0236E-01 | 4.1891E-01 | -6.8656E-01 | 7.6766E-01 | -4.9519E-01 | 1.8390E-01 | -3.6715E-02 | 3.0494E-03 |
S11 | -1.6094E-01 | -1.6876E-01 | 3.6216E-01 | -5.6187E-01 | 5.3226E-01 | -2.8698E-01 | 8.6804E-02 | -1.3706E-02 | 8.7573E-04 |
S12 | -2.4004E-01 | 1.3475E-01 | -8.0451E-02 | 4.2458E-02 | -1.6577E-02 | 4.3849E-03 | -7.3758E-04 | 7.0968E-05 | -2.9647E-06 |
表6
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S7 | -1.2581E-01 | 1.8827E-01 | -1.2542E-01 | 3.0459E-02 | -3.0550E-02 | -2.7875E-02 | -3.0029E-02 | -3.6723E-02 |
表7
表8给出了实施例2中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
表8
图4示出了实施例2的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图4可知,实施例2所给出的摄影镜头能够实现良好的成像品质。
实施例3
以下参照图5和图6描述了根据本申请实施例3的摄影镜头。图 5示出了根据本申请实施例3的摄影镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表9示出了实施例3的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表9
由表9可知,在实施例3中,第一透镜E1、第二透镜E2、第三透镜E3、第五透镜E5和第六透镜E6中任意一个透镜的物侧面和像侧面以及第四透镜E4的物侧面S7均为非球面;第四透镜E4的像侧面 S8为非旋转对称的非球面。
表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11示出了可用于实施例3中非旋转对称的非球面S8的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.8477E-01 | -4.1643E-01 | 5.1159E-01 | -4.8184E-01 | 3.0713E-01 | -1.1982E-01 | 2.0513E-02 | 0.0000E+00 | 0.0000E+00 |
S2 | 1.4136E+00 | -1.0804E+01 | 7.3594E+01 | -2.7713E+02 | 5.8414E+02 | -6.3789E+02 | 2.7754E+02 | 0.0000E+00 | 0.0000E+00 |
S3 | 3.6927E-02 | -3.1880E-01 | 1.1277E+00 | -7.9376E+00 | 1.4448E+01 | 7.9257E+00 | -1.3749E+02 | 3.0211E+02 | -2.4095E+02 |
S4 | -4.5931E-01 | 2.2611E+00 | -1.2505E+01 | 5.7004E+01 | -2.0391E+02 | 5.0991E+02 | -8.1400E+02 | 7.3908E+02 | -2.8888E+02 |
S5 | -5.5511E-01 | 2.0732E+00 | -9.5429E+00 | 3.7575E+01 | -1.2018E+02 | 2.7709E+02 | -4.1367E+02 | 3.5744E+02 | -1.3553E+02 |
S6 | -2.1595E-01 | 6.8449E-01 | -2.4626E+00 | 1.0075E+01 | -3.4117E+01 | 7.8098E+01 | -1.0999E+02 | 8.6409E+01 | -2.8849E+01 |
S7 | -9.6479E-02 | 1.4307E-01 | 2.4643E-01 | -1.2190E+00 | 1.9854E+00 | -1.5444E+00 | 4.0431E-01 | 1.2610E-01 | -6.6469E-02 |
S9 | 1.98E-01 | -7.33E-01 | 1.25E+00 | -1.53E+00 | 1.08E+00 | -3.48E-01 | -2.63E-03 | 2.95E-02 | -5.25E-03 |
S10 | 4.0254E-01 | -4.0458E-01 | 4.1893E-01 | -6.8650E-01 | 7.6769E-01 | -4.9516E-01 | 1.8390E-01 | -3.6716E-02 | 3.0486E-03 |
S11 | -3.8830E-01 | 6.3798E-01 | -1.0904E+00 | 9.8650E-01 | -4.8769E-01 | 1.2195E-01 | -7.7232E-03 | -2.5363E-03 | 3.8858E-04 |
S12 | -2.2594E-01 | 1.3230E-01 | -8.0654E-02 | 4.2465E-02 | -1.6572E-02 | 4.3860E-03 | -7.3743E-04 | 7.0975E-05 | -2.9673E-06 |
表10
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S8 | -4.0350E-02 | -4.3873E-01 | 5.3746E-01 | -1.7878E-01 | 1.1170E-01 | -1.3690E-02 | -6.9713E-03 | -4.8171E-03 |
表11
表12给出了实施例3中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -3.55 | fx(mm) | 1.92 |
f2(mm) | 1.91 | fy(mm) | 1.87 |
f3(mm) | -4.33 | TTL(mm) | 5.02 |
f4(mm) | -7.05 | ImgH(mm) | 3.03 |
f5(mm) | 1.96 | HFOV(°) | 60.3 |
f6(mm) | -10.85 |
表12
图6示出了实施例3的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图6可知,实施例3所给出的摄影镜头能够实现良好的成像品质。
实施例4
以下参照图7和图8描述了根据本申请实施例4的摄影镜头。图 7示出了根据本申请实施例4的摄影镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例4的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表13
由表13可知,在实施例4中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第六透镜E6中任意一个透镜的物侧面和像侧面以及第五透镜E5的像侧面S10均为非球面;第五透镜E5的物侧面 S9为非旋转对称的非球面。
表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15示出了可用于实施例4中非旋转对称的非球面S9的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
表14
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S9 | 1.8478E-01 | -4.3361E-01 | 2.4818E-01 | -4.7002E-02 | 1.2351E-02 | 3.5735E-03 | 1.9619E-03 | 1.0519E-03 |
表15
表16给出了实施例4中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -3.45 | fx(mm) | 1.89 |
f2(mm) | 1.91 | fy(mm) | 1.88 |
f3(mm) | -4.41 | TTL(mm) | 5.14 |
f4(mm) | -10.86 | ImgH(mm) | 3.03 |
f5(mm) | 1.64 | HFOV(°) | 60.3 |
f6(mm) | -3.14 |
表16
图8示出了实施例4的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图8可知,实施例4所给出的摄影镜头能够实现良好的成像品质。
实施例5
以下参照图9和图10描述了根据本申请实施例5的摄影镜头。图 9示出了根据本申请实施例5的摄影镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表17示出了实施例5的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表17
由表17可知,在实施例5中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第六透镜E6中任意一个透镜的物侧面和像侧面以及第五透镜E5的物侧面S9均为非球面;第五透镜E5的像侧面S10为非旋转对称的非球面。
表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19示出了可用于实施例5中非旋转对称的非球面S10的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.6917E-01 | -4.1662E-01 | 5.2075E-01 | -4.8061E-01 | 3.0411E-01 | -1.2184E-01 | 2.1695E-02 | 0.0000E+00 | 0.0000E+00 |
S2 | 1.0764E+00 | -3.3247E+00 | 1.4473E+01 | -4.1091E+01 | 7.4640E+01 | -7.4959E+01 | 3.0436E+01 | 0.0000E+00 | 0.0000E+00 |
S3 | 5.97E-02 | -1.58E-01 | 7.42E-01 | -5.81E+00 | 1.44E+01 | 7.93E+00 | -1.37E+02 | 3.02E+02 | -2.41E+02 |
S4 | -3.60E-01 | 2.24E+00 | -1.26E+01 | 5.68E+01 | -2.04E+02 | 5.10E+02 | -8.14E+02 | 7.39E+02 | -2.89E+02 |
S5 | -5.6459E-01 | 2.0651E+00 | -9.6098E+00 | 3.7374E+01 | -1.2018E+02 | 2.7709E+02 | -4.1367E+02 | 3.5744E+02 | -1.3553E+02 |
S6 | -2.2764E-01 | 6.6204E-01 | -2.4817E+00 | 1.0081E+01 | -3.4129E+01 | 7.8098E+01 | -1.0999E+02 | 8.6409E+01 | -2.8849E+01 |
S7 | -9.1233E-02 | 1.4038E-01 | 2.3939E-01 | -1.2233E+00 | 1.9854E+00 | -1.5405E+00 | 4.0599E-01 | 1.2593E-01 | -6.6469E-02 |
S8 | 1.72E-02 | -1.12E+00 | 3.00E+00 | -4.77E+00 | 4.76E+00 | -2.65E+00 | 6.33E-01 | 2.06E-02 | -2.52E-02 |
S9 | 1.9626E-01 | -7.3201E-01 | 1.2511E+00 | -1.5293E+00 | 1.0820E+00 | -3.4836E-01 | -2.6627E-03 | 2.9498E-02 | -5.2647E-03 |
S11 | -6.5667E-02 | -2.7029E-01 | 2.2570E-01 | -2.4439E-01 | 3.5195E-01 | -2.9930E-01 | 1.3433E-01 | -3.0166E-02 | 2.6776E-03 |
S12 | -2.2695E-01 | 1.3378E-01 | -8.0634E-02 | 4.2441E-02 | -1.6577E-02 | 4.3852E-03 | -7.3750E-04 | 7.0988E-05 | -2.9607E-06 |
表18
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S10 | 4.5123E-01 | -3.9840E-01 | 1.4940E-01 | -1.9945E-02 | 1.2049E-03 | 2.5884E-03 | 2.2162E-03 | 2.5535E-03 |
表19
表20给出了实施例5中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -3.83 | fx(mm) | 1.89 |
f2(mm) | 2.06 | fy(mm) | 1.88 |
f3(mm) | -4.79 | TTL(mm) | 5.14 |
f4(mm) | -15.40 | ImgH(mm) | 3.03 |
f5(mm) | 1.59 | HFOV(°) | 60.3 |
f6(mm) | -2.74 |
表20
图10示出了实施例5的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图10可知,实施例5所给出的摄影镜头能够实现良好的成像品质。
实施例6
以下参照图11和图12描述了根据本申请实施例6的摄影镜头。
图11示出了根据本申请实施例6的摄影镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表21示出了实施例6的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表21
由表21可知,在实施例6中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面以及第六透镜E6的像侧面S12均为非球面;第六透镜E6的物侧面 S11为非旋转对称的非球面。
表22示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表23示出了可用于实施例6中非旋转对称的非球面S11的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.7275E-01 | -2.5625E-01 | 2.6921E-01 | -2.1223E-01 | 1.1373E-01 | -3.8279E-02 | 5.7357E-03 | 0.0000E+00 | 0.0000E+00 |
S2 | 4.8026E-01 | -2.2332E-01 | -5.7046E-01 | 6.4174E+00 | -1.8057E+01 | 2.5768E+01 | -1.7469E+01 | 0.0000E+00 | 0.0000E+00 |
S3 | 5.25E-02 | -2.20E-01 | 7.01E-01 | -3.96E+00 | 5.42E+00 | 2.49E+00 | -3.61E+01 | 6.64E+01 | -4.43E+01 |
S4 | -3.32E-01 | 1.27E+00 | -6.51E+00 | 2.55E+01 | -7.65E+01 | 1.60E+02 | -2.14E+02 | 1.62E+02 | -5.31E+01 |
S5 | -4.7238E-01 | 1.3298E+00 | -5.2341E+00 | 1.6882E+01 | -4.5070E+01 | 8.6944E+01 | -1.0860E+02 | 7.8510E+01 | -2.4907E+01 |
S6 | -1.7787E-01 | 4.2997E-01 | -1.2990E+00 | 4.5217E+00 | -1.2799E+01 | 2.4505E+01 | -2.8876E+01 | 1.8980E+01 | -5.3017E+00 |
S7 | -9.6571E-02 | 9.5814E-02 | 1.2838E-01 | -5.4277E-01 | 7.4396E-01 | -4.8360E-01 | 1.0658E-01 | 2.7660E-02 | -1.2215E-02 |
S8 | 1.36E-02 | -7.30E-01 | 1.60E+00 | -2.14E+00 | 1.78E+00 | -8.30E-01 | 1.66E-01 | 4.57E-03 | -4.62E-03 |
S9 | 1.3499E-01 | -4.7448E-01 | 6.7031E-01 | -6.8434E-01 | 4.0601E-01 | -1.0932E-01 | -7.0010E-04 | 6.4791E-03 | -9.6707E-04 |
S10 | 3.4469E-01 | -2.5945E-01 | 2.2266E-01 | -3.0829E-01 | 2.8796E-01 | -1.5531E-01 | 4.8293E-02 | -8.0610E-03 | 5.5985E-04 |
S12 | -1.76E-01 | 7.80E-02 | -1.50E-02 | -6.65E-03 | 5.76E-03 | -1.91E-03 | 3.46E-04 | -3.35E-05 | 1.36E-06 |
表22
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S11 | -2.4439E-01 | 5.9712E-02 | -1.4973E-02 | 2.4034E-03 | -2.1593E-02 | -2.7068E-02 | -1.2341E-02 | 2.4572E-03 |
表23
表24给出了实施例6中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -3.40 | fx(mm) | 1.94 |
f2(mm) | 1.97 | fy(mm) | 1.92 |
f3(mm) | -4.80 | TTL(mm) | 5.41 |
f4(mm) | -14.62 | ImgH(mm) | 3.03 |
f5(mm) | 1.67 | HFOV(°) | 60.3 |
f6(mm) | -3.25 |
表24
图12示出了实施例6的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图12可知,实施例6所给出的摄影镜头能够实现良好的成像品质。
实施例7
以下参照图13和图14描述了根据本申请实施例7的摄影镜头。
图13示出了根据本申请实施例8的摄影镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表25示出了实施例7的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表25
由表25可知,在实施例7中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面以及第六透镜E6的物侧面S11均为非球面;第六透镜E6的像侧面 S12为非旋转对称的非球面。
表26示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表27示出了可用于实施例7中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
表26
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S12 | -1.9070E-01 | 5.4126E-02 | -8.3663E-03 | 5.0522E-04 | 2.0437E-04 | -2.5015E-03 | -4.9508E-03 | -7.3218E-03 |
表27
表28给出了实施例7中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -3.93 | fx(mm) | 1.83 |
f2(mm) | 1.97 | fy(mm) | 1.82 |
f3(mm) | -4.02 | TTL(mm) | 5.16 |
f4(mm) | -27.95 | ImgH(mm) | 3.03 |
f5(mm) | 1.79 | HFOV(°) | 60.4 |
f6(mm) | -3.64 |
表28
图14示出了实施例7的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图14可知,实施例7所给出的摄影镜头能够实现良好的成像品质。
实施例8
以下参照图15和图16描述了根据本申请实施例8的摄影镜头。
图15示出了根据本申请实施例8的摄影镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表29示出了实施例8的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表29
由表29可知,在实施例8中,第一透镜E1的像侧面S2以及第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6 中任意一个透镜的物侧面和像侧面均为非球面;第一透镜E1的物侧面S1为非旋转对称的非球面。
表30示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表31示出了可用于实施例8中非旋转对称的非球面S1的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S2 | 9.4879E-01 | -4.9852E+00 | 3.3811E+01 | -1.3318E+02 | 3.0747E+02 | -3.7861E+02 | 1.9600E+02 | 0.0000E+00 | 0.0000E+00 |
S3 | -2.0485E-01 | 7.8302E+00 | -1.3142E+02 | 1.2603E+03 | -7.3979E+03 | 2.6929E+04 | -5.9334E+04 | 7.2498E+04 | -3.7733E+04 |
S4 | 3.0090E-02 | -5.8006E+00 | 6.3038E+01 | -3.7970E+02 | 1.3962E+03 | -3.1890E+03 | 4.4198E+03 | -3.4069E+03 | 1.1228E+03 |
S5 | -4.5210E-01 | 2.0750E+00 | -1.1342E+01 | 4.4210E+01 | -1.2400E+02 | 2.4552E+02 | -3.1804E+02 | 2.3698E+02 | -7.6008E+01 |
S6 | -2.4953E-01 | 5.8506E-01 | 7.8958E-01 | -9.3078E+00 | 2.5718E+01 | -3.5604E+01 | 2.6442E+01 | -9.5235E+00 | 1.1296E+00 |
S7 | 7.9761E-02 | -1.1352E+00 | 3.5033E+00 | -1.3381E+00 | -1.4767E+01 | 3.7062E+01 | -4.0707E+01 | 2.2216E+01 | -4.9249E+00 |
S8 | 6.1325E-02 | -1.0781E+00 | 1.6138E+00 | 6.3128E-01 | -4.3113E+00 | 4.6878E+00 | -1.7764E+00 | -8.4808E-02 | 1.4119E-01 |
S9 | 7.9671E-02 | -2.1546E-01 | -3.5538E-01 | 9.1280E-01 | -3.3313E-01 | -9.8330E-01 | 1.2950E+00 | -6.0349E-01 | 9.9660E-02 |
S10 | 2.3336E-02 | 6.6835E-01 | -1.3151E+00 | 9.5653E-01 | -9.6497E-02 | -3.0232E-01 | 2.0788E-01 | -5.7200E-02 | 5.9381E-03 |
S11 | -2.3603E+00 | 1.0038E+01 | -2.6440E+01 | 4.4211E+01 | -4.8283E+01 | 3.4047E+01 | -1.4828E+01 | 3.6102E+00 | -3.7480E-01 |
S12 | -3.4432E-01 | 5.4629E-01 | -5.3916E-01 | 3.3067E-01 | -1.3071E-01 | 3.3270E-02 | -5.2387E-03 | 4.6203E-04 | -1.7397E-05 |
表30
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S1 | 3.6282E-01 | -2.4664E-01 | 1.6923E-01 | -4.6418E-02 | 4.5730E-02 | 7.2397E-02 | 5.3409E-02 | 3.8719E-02 |
表31
表32给出了实施例8中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -4.39 | fx(mm) | 2.12 |
f2(mm) | 2.07 | fy(mm) | 2.37 |
f3(mm) | -7.53 | TTL(mm) | 4.90 |
f4(mm) | -12.04 | ImgH(mm) | 3.03 |
f5(mm) | 1.61 | HFOV(°) | 60.0 |
f6(mm) | -0.60 |
表32
图16示出了实施例8的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图16可知,实施例8所给出的摄影镜头能够实现良好的成像品质。
实施例9
以下参照图17和图18描述了根据本申请实施例9的摄影镜头。
图17示出了根据本申请实施例9的摄影镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表33示出了实施例9的摄影镜头的各透镜的表面类型、曲率半径 X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表33
由表33可知,在实施例9中,第一透镜E1的像侧面S2以及第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6 中任意一个透镜的物侧面和像侧面均为非球面;第一透镜E1的物侧面S1为非旋转对称的非球面。
表34示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表35示出了可用于实施例9中非旋转对称的非球面S1的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S2 | 9.8003E-01 | -6.5933E+00 | 5.0620E+01 | -2.1909E+02 | 5.4123E+02 | -7.0364E+02 | 3.7878E+02 | 0.0000E+00 | 0.0000E+00 |
S3 | -1.6807E-01 | 7.1327E+00 | -1.2484E+02 | 1.2505E+03 | -7.7269E+03 | 2.9854E+04 | -7.0292E+04 | 9.2204E+04 | -5.1633E+04 |
S4 | -3.8977E-02 | -4.4648E+00 | 5.2515E+01 | -3.4558E+02 | 1.3984E+03 | -3.5257E+03 | 5.3923E+03 | -4.5735E+03 | 1.6502E+03 |
S5 | -5.1007E-01 | 3.0525E+00 | -1.9584E+01 | 8.2570E+01 | -2.3010E+02 | 4.2033E+02 | -4.8324E+02 | 3.1794E+02 | -9.1414E+01 |
S6 | -2.2858E-01 | 2.6859E-02 | 6.2811E+00 | -3.7351E+01 | 1.0996E+02 | -1.9012E+02 | 1.9658E+02 | -1.1278E+02 | 2.7686E+01 |
S7 | 9.3589E-02 | -1.7181E+00 | 8.4157E+00 | -2.0305E+01 | 2.5891E+01 | -1.4597E+01 | -1.9335E+00 | 6.3453E+00 | -2.2040E+00 |
S8 | 9.2269E-02 | -1.6149E+00 | 4.5299E+00 | -6.9180E+00 | 6.3628E+00 | -3.9026E+00 | 2.0420E+00 | -9.0144E-01 | 1.9314E-01 |
S9 | 9.9198E-02 | -2.2146E-01 | -9.9766E-01 | 4.3534E+00 | -8.2379E+00 | 8.7747E+00 | -5.4298E+00 | 1.8306E+00 | -2.6066E-01 |
S10 | 4.1056E-02 | 5.2717E-01 | -1.1383E+00 | 1.1098E+00 | -6.7881E-01 | 2.9413E-01 | -8.8512E-02 | 1.5986E-02 | -1.2558E-03 |
S11 | -2.1396E+00 | 8.1176E+00 | -1.9303E+01 | 2.9785E+01 | -3.0691E+01 | 2.0737E+01 | -8.7337E+00 | 2.0683E+00 | -2.0985E-01 |
S12 | -3.7931E-01 | 5.7375E-01 | -4.9881E-01 | 2.6790E-01 | -9.3912E-02 | 2.1524E-02 | -3.0895E-03 | 2.5049E-04 | -8.7200E-06 |
表34
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S1 | 3.5097E-01 | -2.4458E-01 | 1.6889E-01 | -4.7168E-02 | -2.0028E-02 | -3.4925E-04 | 3.5476E-02 | 6.2928E-02 |
表35
表36给出了实施例9中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
表36
图18示出了实施例9的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图18可知,实施例9所给出的摄影镜头能够实现良好的成像品质。
实施例10
以下参照图19和图20描述了根据本申请实施例10的摄影镜头。
图19示出了根据本申请实施例10的摄影镜头的结构示意图。
如图19所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表37示出了实施例10的摄影镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表37
由表37可知,在实施例10中,第一透镜E1的物侧面S1以及第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5和第六透镜E6 中任意一个透镜的物侧面和像侧面均为非球面;第一透镜E1的像侧面S2为非旋转对称的非球面。
表38示出了可用于实施例10中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表39 示出了可用于实施例10中非旋转对称的非球面S2的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.5300E-01 | -4.1118E-01 | 5.7136E-01 | -5.6748E-01 | 3.6241E-01 | -1.4225E-01 | 2.5013E-02 | 0.0000E+00 | 0.0000E+00 |
S3 | 2.5513E-02 | 6.4224E-01 | -8.9674E+00 | 6.5925E+01 | -3.5725E+02 | 1.3946E+03 | -3.6617E+03 | 5.5775E+03 | -3.6550E+03 |
S4 | -3.5391E-01 | 1.4960E+00 | -5.1846E+00 | 1.5238E+01 | -4.8518E+01 | 1.2349E+02 | -1.9354E+02 | 1.6234E+02 | -5.5954E+01 |
S5 | -5.0118E-01 | 1.7795E+00 | -6.5905E+00 | 2.0561E+01 | -5.2786E+01 | 9.3062E+01 | -9.6034E+01 | 4.9814E+01 | -9.0646E+00 |
S6 | -1.7691E-01 | 1.6224E-01 | 4.0138E-01 | 1.6547E-01 | -1.0459E+01 | 3.7135E+01 | -5.9935E+01 | 4.8201E+01 | -1.5588E+01 |
S7 | -7.9403E-02 | 1.1137E-01 | 1.4397E-01 | -2.7804E-01 | -9.7346E-01 | 3.2398E+00 | -3.8222E+00 | 2.0734E+00 | -4.3371E-01 |
S8 | 3.3802E-02 | -1.0702E+00 | 2.8843E+00 | -4.6343E+00 | 4.7024E+00 | -2.7888E+00 | 8.5892E-01 | -9.8946E-02 | -3.0003E-03 |
S9 | 1.7958E-01 | -6.3266E-01 | 1.0313E+00 | -1.2263E+00 | 8.3851E-01 | -2.3817E-01 | -2.9754E-02 | 3.3052E-02 | -5.5056E-03 |
S10 | 3.7950E-01 | -1.8883E-01 | -1.7654E-01 | 3.0895E-01 | -2.5512E-01 | 1.4791E-01 | -5.7254E-02 | 1.2728E-02 | -1.2100E-03 |
S11 | -1.1782E-01 | -2.0894E-01 | 2.2655E-01 | -1.7390E-01 | 9.5022E-02 | -3.5151E-02 | 9.9298E-03 | -2.0213E-03 | 1.9515E-04 |
S12 | -2.1617E-01 | 1.2684E-01 | -6.2974E-02 | 2.0538E-02 | -2.7611E-03 | -5.3291E-04 | 2.6632E-04 | -3.8655E-05 | 2.0019E-06 |
表38
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S2 | 7.1048E-01 | -1.2224E+00 | 3.4790E+00 | -2.8886E+00 | -5.0508E-02 | -6.0255E-02 | -2.4346E-04 | 1.2591E-02 |
表39
表40给出了实施例10中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -4.19 | fx(mm) | 2.12 |
f2(mm) | 2.05 | fy(mm) | 2.22 |
f3(mm) | -5.39 | TTL(mm) | 4.97 |
f4(mm) | -11.50 | ImgH(mm) | 3.03 |
f5(mm) | 2.07 | HFOV(°) | 59.5 |
f6(mm) | -3.38 |
表40
图20示出了实施例10的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图20可知,实施例10所给出的摄影镜头能够实现良好的成像品质。
实施例11
以下参照图21和图22描述了根据本申请实施例11的摄影镜头。图22示出了根据本申请实施例11的摄影镜头的结构示意图。
如图21所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表41示出了实施例11的摄影镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表41
由表41可知,在实施例11中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第六透镜E6中任意一个透镜的物侧面和像侧面以及第五透镜E5的像侧面S10均为非球面;第五透镜E5的物侧面S9为非旋转对称的非球面。
表42示出了可用于实施例11中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表43 示出了可用于实施例11中非旋转对称的非球面S9的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
表42
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S9 | 1.7712E-01 | -4.3468E-01 | 2.4840E-01 | -4.6824E-02 | 1.0985E-02 | 5.5078E-03 | 5.3552E-03 | 6.0722E-03 |
表43
表44给出了实施例11中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -4.06 | fx(mm) | 2.10 |
f2(mm) | 1.89 | fy(mm) | 1.70 |
f3(mm) | -5.21 | TTL(mm) | 4.99 |
f4(mm) | -0.98 | ImgH(mm) | 3.03 |
f5(mm) | 0.73 | HFOV(°) | 55.4 |
f6(mm) | -2.51 |
表44
图22示出了实施例11的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图22可知,实施例11所给出的摄影镜头能够实现良好的成像品质。
实施例12
以下参照图23和图24描述了根据本申请实施例12的摄影镜头。
图23示出了根据本申请实施例12的摄影镜头的结构示意图。
如图23所示,根据本申请示例性实施方式的摄影镜头沿光轴由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4 为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8 为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10 为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面 S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表45示出了实施例12的摄影镜头的各透镜的表面类型、曲率半径X、曲率半径Y、厚度、材料、圆锥系数X以及圆锥系数Y,其中,曲率半径X、曲率半径Y和厚度的单位均为毫米(mm)。
表45
由表45可知,在实施例12中,第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4和第五透镜E5中任意一个透镜的物侧面和像侧面以及第六透镜E6的物侧面S11均为非球面;第六透镜E6的像侧面S12为非旋转对称的非球面。
表46示出了可用于实施例12中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表47 示出了可用于实施例12中非旋转对称的非球面S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.8663E-01 | -2.7030E-01 | 2.9325E-01 | -2.3588E-01 | 1.2922E-01 | -4.0839E-02 | 5.2974E-03 | 0.0000E+00 | 0.0000E+00 |
S2 | 2.6575E-01 | 1.0051E+00 | -6.5955E+00 | 2.1937E+01 | -4.0519E+01 | 4.0489E+01 | -1.7194E+01 | 0.0000E+00 | 0.0000E+00 |
S3 | 6.0938E-02 | -1.3877E+00 | 8.7706E+00 | 2.9233E+01 | -1.1738E+03 | 9.5561E+03 | -3.7862E+04 | 7.5487E+04 | -6.0862E+04 |
S4 | -3.9680E-01 | 3.5883E+00 | -3.7022E+01 | 2.4210E+02 | -1.0150E+03 | 2.7070E+03 | -4.4435E+03 | 4.0914E+03 | -1.6212E+03 |
S5 | -2.1207E-01 | -2.2017E+00 | 2.1645E+01 | -1.1974E+02 | 4.1922E+02 | -9.3004E+02 | 1.2676E+03 | -9.6739E+02 | 3.1619E+02 |
S6 | -8.2534E-02 | -1.6847E-01 | 1.0352E+00 | -3.1945E+00 | 6.8652E+00 | -9.0503E+00 | 6.5315E+00 | -1.9390E+00 | -2.3410E-02 |
S7 | -1.4119E-01 | 8.1612E-01 | -3.6774E+00 | 1.0770E+01 | -2.0482E+01 | 2.5602E+01 | -2.0244E+01 | 9.1199E+00 | -1.7734E+00 |
S8 | -1.9123E-01 | 2.5948E-02 | -9.1478E-01 | 4.1279E+00 | -8.6458E+00 | 1.0623E+01 | -7.6467E+00 | 2.9571E+00 | -4.7352E-01 |
S9 | 2.3560E-01 | -8.8925E-01 | 1.6090E+00 | -2.0192E+00 | 1.6144E+00 | -7.7633E-01 | 2.1059E-01 | -2.7490E-02 | 9.9526E-04 |
S10 | 4.1441E-01 | -3.2832E-01 | 3.1700E-01 | -4.8072E-01 | 4.9662E-01 | -2.9587E-01 | 1.0153E-01 | -1.8726E-02 | 1.4355E-03 |
S11 | 4.2930E-02 | -8.9662E-01 | 1.7372E+00 | -2.0753E+00 | 1.5753E+00 | -7.4530E-01 | 2.1154E-01 | -3.2838E-02 | 2.1379E-03 |
表46
AAS面 | AR | BR | CR | DR | AP | BP | CP | DP |
S12 | -1.8649E-01 | 5.4977E-02 | -8.2957E-03 | 4.9410E-04 | -3.7863E-02 | -3.1762E-02 | -2.3832E-02 | -1.7681E-02 |
表47
表48给出了实施例12中各透镜的有效焦距f1至f6、摄像镜头X 轴方向的有效焦距fx、摄像镜头Y轴方向的有效焦距fy、摄像镜头的光学总长度TTL、成像面S15上有效像素区域对角线长的一半ImgH 以及最大半视场角HFOV。
f1(mm) | -4.09 | fx(mm) | 1.63 |
f2(mm) | 1.98 | fy(mm) | 1.90 |
f3(mm) | -4.15 | TTL(mm) | 5.23 |
f4(mm) | -18.09 | ImgH(mm) | 3.03 |
f5(mm) | 1.73 | HFOV(°) | 55.2 |
f6(mm) | -2.41 |
表48
图24示出了实施例12的摄影镜头的RMS光斑直径在第一象限内不同像高位置处的大小情况。根据图24可知,实施例12所给出的摄影镜头能够实现良好的成像品质。
综上,实施例1至实施例12分别满足表49中所示的关系。
表49
本申请还提供一种摄像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有以上描述的摄影镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于) 具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (25)
1.摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
所述第一透镜具有负光焦度;
所述第二透镜具有正光焦度;
所述第三透镜具有负光焦度;
所述第四透镜具有光焦度;
所述第五透镜具有光焦度;
所述第六透镜具有负光焦度;
所述第一透镜至所述第六透镜中至少一个透镜具有非旋转对称的非球面;以及
所述摄像镜头X轴方向的有效焦距fx与所述摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。
2.根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜的物侧面和像侧面均为凸面。
3.根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜具有负光焦度。
4.根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜具有正光焦度。
5.根据权利要求4所述的摄像镜头,其特征在于,所述第五透镜的物侧面和像侧面均为凸面。
6.根据权利要求4所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第六透镜的有效焦距f6满足0.5<|1/f5-1/f6|<2.5。
7.根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f2/f1<-0.4。
8.根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜具有非旋转对称的非球面。
9.根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第四透镜的像侧面的曲率半径R8满足0<R9/R8<1.5。
10.根据权利要求9所述的摄像镜头,其特征在于,所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<CT3/CT4<1。
11.根据权利要求1所述的摄像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第六透镜的边缘厚度ET6满足0.2<CT6/ET6<1。
12.根据权利要求1所述的摄像镜头,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点在所述光轴上的距离SAG51与所述第六透镜的物侧面和所述光轴的交点至所述第六透镜的物侧面的有效半径顶点在所述光轴上的距离SAG61满足-0.5<SAG51/SAG61<0.5。
13.根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL满足SL≥4mm。
14.根据权利要求1至13中任一项所述的摄像镜头,其特征在于,所述第一透镜的物侧面的中心至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.8。
15.根据权利要求1至13中任一项所述的摄像镜头,其特征在于,所述摄像镜头的全视场角FOV满足FOV>90°。
16.摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
所述第一透镜具有负光焦度;
所述第二透镜具有正光焦度;
所述第三透镜具有负光焦度;
所述第四透镜具有光焦度;
所述第五透镜具有光焦度;
所述第六透镜具有负光焦度;
所述第一透镜至所述第六透镜中至少一个透镜具有非旋转对称的非球面;以及
所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<CT3/CT4<1。
17.根据权利要求16所述的摄像镜头,其特征在于,所述摄像镜头X轴方向的有效焦距fx与所述摄像镜头Y轴方向的有效焦距fy满足0.5<fx/fy<1.5。
18.根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜的有效焦距f5与所述第六透镜的有效焦距f6满足0.5<|1/f5-1/f6|<2.5。
19.根据权利要求16所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第二透镜的有效焦距f2满足-0.6<f2/f1<-0.4。
20.根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜的物侧面的曲率半径R9与所述第四透镜的像侧面的曲率半径R8满足0<R9/R8<1.5。
21.根据权利要求16所述的摄像镜头,其特征在于,所述第六透镜在所述光轴上的中心厚度CT6与所述第六透镜的边缘厚度ET6满足0.2<CT6/ET6<1。
22.根据权利要求16所述的摄像镜头,其特征在于,所述第五透镜的物侧面和所述光轴的交点至所述第五透镜的物侧面的有效半径顶点在所述光轴上的距离SAG51与所述第六透镜的物侧面和所述光轴的交点至所述第六透镜的物侧面的有效半径顶点在所述光轴上的距离SAG61满足-0.5<SAG51/SAG61<0.5。
23.根据权利要求16所述的摄像镜头,其特征在于,所述摄像镜头还包括光阑,所述光阑至所述摄像镜头的成像面在所述光轴上的距离SL满足SL≥4mm。
24.根据权利要求16至23中任一项所述的摄像镜头,其特征在于,所述第一透镜的物侧面的中心至所述摄像镜头的成像面在所述光轴上的距离TTL与所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH<1.8。
25.根据权利要求16至23中任一项所述的摄像镜头,其特征在于,所述摄像镜头的全视场角FOV满足FOV>90°。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821449063.5U CN208752296U (zh) | 2018-09-05 | 2018-09-05 | 摄像镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821449063.5U CN208752296U (zh) | 2018-09-05 | 2018-09-05 | 摄像镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN208752296U true CN208752296U (zh) | 2019-04-16 |
Family
ID=66081991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201821449063.5U Active CN208752296U (zh) | 2018-09-05 | 2018-09-05 | 摄像镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN208752296U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109100854A (zh) * | 2018-09-05 | 2018-12-28 | 浙江舜宇光学有限公司 | 摄像镜头 |
WO2021035758A1 (zh) * | 2019-08-31 | 2021-03-04 | 南昌欧菲精密光学制品有限公司 | 光学系统、镜头模组和电子设备 |
CN112799214A (zh) * | 2021-02-02 | 2021-05-14 | 浙江舜宇光学有限公司 | 一种摄像镜头 |
-
2018
- 2018-09-05 CN CN201821449063.5U patent/CN208752296U/zh active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109100854A (zh) * | 2018-09-05 | 2018-12-28 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN109100854B (zh) * | 2018-09-05 | 2024-04-09 | 浙江舜宇光学有限公司 | 摄像镜头 |
WO2021035758A1 (zh) * | 2019-08-31 | 2021-03-04 | 南昌欧菲精密光学制品有限公司 | 光学系统、镜头模组和电子设备 |
CN112799214A (zh) * | 2021-02-02 | 2021-05-14 | 浙江舜宇光学有限公司 | 一种摄像镜头 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109100854A (zh) | 摄像镜头 | |
CN108983401B (zh) | 光学透镜组 | |
CN108873253A (zh) | 摄像镜头 | |
CN109031629A (zh) | 摄像光学系统 | |
CN109752826A (zh) | 光学成像镜头 | |
CN208506350U (zh) | 摄像镜头 | |
CN109358414A (zh) | 光学成像系统 | |
CN109283665A (zh) | 成像镜头 | |
CN209044159U (zh) | 摄像光学系统 | |
CN209215716U (zh) | 光学成像透镜组 | |
CN109298515A (zh) | 摄像镜头 | |
CN209132500U (zh) | 摄像镜头组 | |
CN209102995U (zh) | 光学成像透镜组 | |
CN109239891A (zh) | 光学成像透镜组 | |
CN108279483A (zh) | 摄像镜头组 | |
CN108802972A (zh) | 光学成像系统 | |
CN109212721A (zh) | 摄像镜头组 | |
CN209297019U (zh) | 成像镜头 | |
CN209132499U (zh) | 摄像镜头组 | |
CN109270661A (zh) | 摄像镜头组 | |
CN209640581U (zh) | 光学成像镜头 | |
CN209327669U (zh) | 摄像镜头组 | |
CN108398770A (zh) | 光学成像镜头 | |
CN109828346A (zh) | 光学成像镜头 | |
CN208833990U (zh) | 光学透镜组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |