WO2019218628A1 - 光学成像镜头 - Google Patents

光学成像镜头 Download PDF

Info

Publication number
WO2019218628A1
WO2019218628A1 PCT/CN2018/116309 CN2018116309W WO2019218628A1 WO 2019218628 A1 WO2019218628 A1 WO 2019218628A1 CN 2018116309 W CN2018116309 W CN 2018116309W WO 2019218628 A1 WO2019218628 A1 WO 2019218628A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
image side
imaging lens
satisfy
Prior art date
Application number
PCT/CN2018/116309
Other languages
English (en)
French (fr)
Inventor
黄林
周鑫
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019218628A1 publication Critical patent/WO2019218628A1/zh
Priority to US16/864,416 priority Critical patent/US11709349B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to a telephoto lens comprising six lenses.
  • the invention provides an aspherical six-piece telephoto optical imaging lens, which can achieve the zooming purpose by cooperating with the wide-angle lens while ensuring the processing characteristics and miniaturization characteristics of the lens, and can be obtained in the case of autofocus. Magnification and good imaging results, suitable for shooting distant objects, so that customers get different visual effects.
  • the present application provides an optical imaging lens that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application provides an optical imaging lens that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and The sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the effective focal length f3 of the third lens and the effective focal length f of the optical imaging lens can satisfy -3 ⁇ f3 / f ⁇ - 1.5.
  • the total effective focal length f of the optical imaging lens and the distance TTL of the object side of the first lens to the imaging surface of the optical imaging lens on the optical axis may satisfy TTL/f ⁇ 1.
  • the effective focal length f3 of the third lens and the effective focal length f1 of the first lens may satisfy -7 ⁇ f3/f1 ⁇ -4.
  • the image side of the second lens may be a concave surface; the effective focal length f2 of the second lens and the curvature radius R4 of the image side of the second lens may satisfy -2 ⁇ f2/R4 ⁇ -1.
  • the total effective focal length f of the optical imaging lens and the effective focal length f5 of the fifth lens may satisfy -1.5 ⁇ f / f5 ⁇ - 0.5.
  • the object side surface of the first lens may be convex; the effective focal length f1 of the first lens and the radius of curvature R1 of the object side surface of the first lens may satisfy 1 ⁇ f1/R1 ⁇ 2.
  • the image side of the first lens may be convex; the radius of curvature R2 of the image side of the first lens and the radius of curvature R8 of the image side of the fourth lens may satisfy 0 ⁇ R8/R2 ⁇ 1.
  • the combined focal length f12 of the first lens and the second lens and the center thickness CT1 of the first lens on the optical axis may satisfy 4 ⁇ f12/CT1 ⁇ 5.
  • the separation distance T56 of the fifth lens and the sixth lens on the optical axis and the separation distance T34 of the third lens and the fourth lens on the optical axis may satisfy 1.5 ⁇ T56/T34 ⁇ 2.5.
  • the image side surface of the sixth lens may be a convex surface; the radius of curvature R9 of the object side surface of the fifth lens and the curvature radius R12 of the image side surface of the sixth lens may satisfy 0 ⁇ R9/R12 ⁇ 1.
  • the center thickness CT6 of the sixth lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 1.5 ⁇ CT6/CT4 ⁇ 2.5.
  • the edge thickness ET5 of the fifth lens at the maximum effective radius and the center thickness CT5 of the fifth lens on the optical axis may satisfy 2 ⁇ ET5/CT5 ⁇ 3.
  • the image side of the third lens may be a concave surface; the radius of curvature R6 of the image side of the third lens and the radius of curvature R11 of the object side of the sixth lens may satisfy -1.8 ⁇ R6/R11 ⁇ -0.8.
  • the maximum half angle of view HFOV of the optical imaging lens can satisfy tan(HFOV) ⁇ 0.5.
  • the present application provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens. And a sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the effective focal length f3 of the third lens and the effective focal length f1 of the first lens can satisfy -7 ⁇ f3/f1 ⁇ -4.
  • the present application further provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the radius of curvature R9 of the object side surface of the fifth lens and the curvature radius R12 of the image side surface of the sixth lens may satisfy 0 ⁇ R9/R12 ⁇ 1.
  • the present application further provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the radius of curvature R6 of the image side surface of the third lens and the radius of curvature R11 of the object side surface of the sixth lens may satisfy ⁇ 1.8 ⁇ R6/R11 ⁇ 0.8.
  • the present application further provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the edge thickness ET5 of the fifth lens at the maximum effective radius and the center thickness CT5 of the fifth lens on the optical axis may satisfy 2 ⁇ ET5/CT5 ⁇ 3.
  • the present application further provides an optical imaging lens including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and a fifth Lens and sixth lens.
  • the first lens may have a positive power
  • the second lens may have a negative power
  • the third lens may have a negative power
  • the fourth lens may have a power
  • the image side may be a convex surface
  • the fifth lens There may be a negative power
  • the object side may be a concave surface
  • the sixth lens may have a power
  • the object side may be a concave surface.
  • the combined focal length f12 of the first lens and the second lens and the central thickness CT1 of the first lens on the optical axis may satisfy 4 ⁇ f12/CT1 ⁇ 5.
  • the present application employs six lenses, and the optical imaging lens has a long focal length, miniaturization, and high by rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect such as imaging quality.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 7.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface of each lens near the object side is referred to as the object side of the lens, and the surface of each lens near the image side is referred to as the image side of the lens.
  • the optical imaging lens may include, for example, six lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are sequentially arranged from the object side to the image side along the optical axis, and each adjacent lens has an air gap therebetween.
  • the first lens may have a positive power; the second lens may have a negative power; the third lens may have a negative power; and the fourth lens has a positive power or a negative power,
  • the image side may be a convex surface; the fifth lens may have a negative power, and the object side is a concave surface; the sixth lens has a positive power or a negative power, and the object side may be a concave surface.
  • the object side and the image side of the first lens may both be convex.
  • the image side of the third lens may be a concave surface.
  • the image side of the fifth lens may be convex.
  • the image side of the sixth lens may be convex.
  • the optical imaging lens of the present application can satisfy the conditional TTL/f ⁇ 1, where TTL is the distance from the side of the first lens to the imaging plane of the optical imaging lens on the optical axis, and f is optical imaging.
  • TTL and f can further satisfy 0.8 ⁇ TTL / f ⁇ 1, for example, 0.90 ⁇ TTL / f ⁇ 0.91. Satisfying the conditional TTL/f ⁇ 1 helps to shorten the overall length of the optical system and make the lens lighter and thinner.
  • the optical imaging lens of the present application may satisfy the conditional expression -3 ⁇ f3 / f ⁇ - 1.5, where f3 is the effective focal length of the third lens, and f is the effective focal length of the optical imaging lens. More specifically, f3 and f can further satisfy -2.66 ⁇ f3 / f ⁇ -1.74. Reasonable selection of the effective focal length of the third lens can satisfy the telephoto characteristics of the lens while correcting the aberration.
  • the optical imaging lens of the present application may satisfy the conditional expression -7 ⁇ f3/f1 ⁇ -4, where f3 is the effective focal length of the third lens, and f1 is the effective focal length of the first lens. More specifically, f3 and f1 may further satisfy -6.5 ⁇ f3 / f1 ⁇ - 4.0, for example, -6.31 ⁇ f3 / f1 ⁇ - 4.18.
  • f3 and f1 may further satisfy -6.5 ⁇ f3 / f1 ⁇ - 4.0, for example, -6.31 ⁇ f3 / f1 ⁇ - 4.18.
  • Reasonably setting the ratio between the effective focal length of the third lens and the effective focal length of the first lens helps to realize the telephoto characteristic of the system, and can improve the convergence ability of the optical system to light, adjust the focus position of the light, and shorten the total length of the system.
  • the image side of the second lens may be a concave surface.
  • the radius of curvature R4 of the image side of the second lens and the effective focal length f2 of the second lens may satisfy -2 ⁇ f2 / R4 ⁇ -1. More specifically, f2 and R4 may further satisfy -1.8 ⁇ f2 / R4 ⁇ -1.4, for example, -1.72 ⁇ f2 / R4 ⁇ - 1.48.
  • the ratio between the effective focal length of the second lens and the radius of curvature of the second lens image side is reasonably selected, and further, for example, in the case where the second lens power is negative, the radius of curvature of the second lens image side is ensured to be positive (That is, the image side is concave, which effectively balances the astigmatism of the system and further ensures the miniaturization of the optical system.
  • the optical imaging lens of the present application may satisfy the conditional expression -1.5 ⁇ f / f5 ⁇ -0.5, where f is the total effective focal length of the optical imaging lens and f5 is the effective focal length of the fifth lens. More specifically, f and f5 can further satisfy -1.38 ⁇ f / f5 ⁇ -0.61. Reasonably set the effective focal length of the fifth lens to ensure that the power of the fifth lens is negative, which helps to increase the focal length of the optical system, realizes the telephoto characteristics of the system, and enables the system to have the function of adjusting the position of the light, and can further Balance the field music well.
  • the optical imaging lens of the present application may satisfy Conditional Formula ⁇ ⁇ 1 / R1 ⁇ 2, where f1 is the effective focal length of the first lens, and R1 is the radius of curvature of the object side of the first lens. More specifically, f1 and R1 may further satisfy 1.5 ⁇ f1/R1 ⁇ 1.7, for example, 1.55 ⁇ f1/R1 ⁇ 1.63.
  • the optical imaging lens of the present application may satisfy the conditional expression 0 ⁇ R8/R2 ⁇ 1, where R8 is the radius of curvature of the image side of the fourth lens, and R2 is the radius of curvature of the image side of the first lens. . More specifically, R8 and R2 may further satisfy 0.2 ⁇ R8 / R2 ⁇ 0.9, for example, 0.38 ⁇ R8 / R2 ⁇ 0.79.
  • the radius of curvature of the side surface of the fourth lens image and the radius of curvature of the side surface of the first lens image are reasonably distributed, and further, for example, when the side of the fourth lens image is convex, the first lens image side surface is convex, which can effectively balance the system.
  • the astigmatism further ensures the miniaturization of the optical system.
  • the optical imaging lens of the present application may satisfy the conditional expression 0 ⁇ R9/R12 ⁇ 1, where R9 is the radius of curvature of the object side of the fifth lens, and R12 is the radius of curvature of the image side of the sixth lens. . More specifically, R9 and R12 may further satisfy 0.1 ⁇ R9 / R12 ⁇ 0.5, for example, 0.16 ⁇ R9 / R12 ⁇ 0.40.
  • the radius of curvature of the side surface of the fifth lens object and the radius of curvature of the side surface of the sixth lens image are reasonably distributed, and further, for example, when the side surface of the fifth lens object is concave, the side surface of the sixth lens image is convex, which can effectively balance the system. distortion.
  • the optical imaging lens of the present application may satisfy a conditional formula tan (HFOV) ⁇ 0.5, where HFOV is the maximum half angle of view of the optical imaging lens. More specifically, HFOV can further satisfy 0.4 ⁇ tan (HFOV) ⁇ 0.5, for example, 0.43 ⁇ tan (HFOV) ⁇ 0.45.
  • HFOV tan
  • Reasonable control of the maximum half-angle of the optical imaging lens enables the optical system to meet the telephoto characteristics and has a good balance of aberrations. At the same time, it can also reasonably control the chief beam deflection angle and improve the matching degree with the chip. Conducive to adjusting the structure of the optical system.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ CT6/CT4 ⁇ 2.5, where CT6 is the center thickness of the sixth lens on the optical axis, and CT4 is the fourth lens on the optical axis. Center thickness. More specifically, CT6 and CT4 can further satisfy 1.56 ⁇ CT6 / CT4 ⁇ 2.27. Reasonably distributing the ratio of the center thickness of the sixth lens and the fourth lens on the optical axis can effectively reduce the size of the optical system to avoid excessive volume of the optical imaging lens, and can also reduce the difficulty of assembling the lens and achieve a higher space. Utilization rate.
  • the optical imaging lens of the present application may satisfy Condition 2 ⁇ ET5/CT5 ⁇ 3, where ET5 is the edge thickness of the fifth lens at the maximum effective radius, and CT5 is the fifth lens on the optical axis.
  • ET5 and CT5 can further satisfy 2.13 ⁇ ET5 / CT5 ⁇ 2.71.
  • Reasonably controlling the thickness of the edge of the fifth lens and the center thickness of the fifth lens on the optical axis can effectively reduce the system size and satisfy the telephoto characteristics of the system; at the same time, it can also help to adjust the system structure and reduce lens processing and assembly. Difficulty.
  • the optical imaging lens of the present application may satisfy conditional expression 4 ⁇ f12/CT1 ⁇ 5, where f12 is a combined focal length of the first lens and the second lens, and CT1 is the first lens on the optical axis. Center thickness. More specifically, f12 and CT1 can further satisfy 4.0 ⁇ f12 / CT1 ⁇ 4.5, for example, 4.01 ⁇ f12 / CT1 ⁇ 4.36. Reasonably distributing the ratio between the combined focal length of the first lens and the second lens and the center thickness of the first lens enables the optical system to satisfy the telephoto characteristic and has a good balance aberration capability; at the same time, the main control can be controlled reasonably The angle of light deflection helps to adjust the structure of the optical system.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ T56/T34 ⁇ 2.5, where T56 is the separation distance of the fifth lens and the sixth lens on the optical axis, and T34 is the third lens and The separation distance of the fourth lens on the optical axis. More specifically, T56 and T34 can further satisfy 1.55 ⁇ T56 / T34 ⁇ 2.23. Reasonably controlling the ratio between the distance between the fifth lens and the sixth lens on the optical axis and the distance between the third lens and the fourth lens on the optical axis, so that there is sufficient space between the lenses, thereby making the lens The degree of freedom of surface change is higher to enhance the system's ability to correct astigmatism and field curvature.
  • the optical imaging lens of the present application may satisfy the conditional expression -1.8 ⁇ R6/R11 ⁇ -0.8, where R6 is the radius of curvature of the image side of the third lens, and R11 is the object side of the sixth lens. Radius of curvature. More specifically, R6 and R11 may further satisfy -1.69 ⁇ R6 / R11 ⁇ -0.90.
  • the radius of curvature of the third lens image side surface and the sixth lens object side surface are reasonably distributed, and further, for example, when the third lens object side surface is concave while ensuring that the third lens image side surface is concave, the light deflection angle can be adjusted.
  • the optical system can better match the chief ray angle of the chip.
  • the optical imaging lens described above may further include at least one aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the object side and the first lens.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive member located on the image forming surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the six described above.
  • a plurality of lenses such as the six described above.
  • the optical imaging lens is more advantageous for production processing and can be applied to portable electronic products such as smart phones.
  • the optical imaging lens configured by the above configuration can also have a long focal length, a high image quality, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including six lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 which can be used for the respective aspherical mirror faces S1 - S12 in the embodiment 1.
  • Table 3 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging lens, and the optical total length TTL (i.e., from the object side S1 of the first lens E1 to the imaging plane S15 on the optical axis). Distance) and the maximum half angle of view HFOV.
  • the optical imaging lens of Embodiment 1 satisfies the following relationship:
  • TTL / f 0.90, wherein TTL is the distance from the object side S1 of the first lens E1 to the imaging plane S15 on the optical axis, and f is the total effective focal length of the optical imaging lens;
  • F3/f -2.06, where f3 is the effective focal length of the third lens E3, and f is the total effective focal length of the optical imaging lens;
  • F3/f1 -4.91, where f3 is the effective focal length of the third lens E3, and f1 is the effective focal length of the first lens E1;
  • F2 / R4 -1.54, where f2 is the effective focal length of the second lens E2, and R4 is the radius of curvature of the image side S4 of the second lens E2;
  • f/f5 -1.00, where f is the total effective focal length of the optical imaging lens, and f5 is the effective focal length of the fifth lens E5;
  • F1/R1 1.63, where f1 is the effective focal length of the first lens E1, and R1 is the radius of curvature of the object side surface S1 of the first lens E1;
  • R8 / R2 0.38, wherein R8 is the radius of curvature of the image side surface S8 of the fourth lens E4, and R2 is the radius of curvature of the image side surface S2 of the first lens E1;
  • R9 / R12 0.31, wherein R9 is the radius of curvature of the object side surface S9 of the fifth lens E5, and R12 is the radius of curvature of the image side surface S12 of the sixth lens E6;
  • Tan(HFOV) 0.45, where HFOV is the maximum half angle of view of the optical imaging lens
  • CT6/CT4 2.27, where CT6 is the center thickness of the sixth lens E6 on the optical axis, and CT4 is the center thickness of the fourth lens E4 on the optical axis;
  • ET5/CT5 2.13, wherein ET5 is the edge thickness of the fifth lens at the maximum effective radius, and CT5 is the center thickness of the fifth lens on the optical axis;
  • F12/CT1 4.01, wherein f12 is a combined focal length of the first lens E1 and the second lens E2, and CT1 is a central thickness of the first lens E1 on the optical axis;
  • T56/T34 2.23, wherein T56 is a separation distance of the fifth lens E5 and the sixth lens E6 on the optical axis, and T34 is a separation distance of the third lens E3 and the fourth lens E4 on the optical axis;
  • R6/R11 -1.11, where R6 is the radius of curvature of the image side surface S6 of the third lens E3, and R11 is the radius of curvature of the object side surface S11 of the sixth lens E6.
  • 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which represents distortion magnitude values corresponding to different image heights.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which represents distortion magnitude values corresponding to different image heights.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values corresponding to different image heights.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values corresponding to different image heights.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a stop STO, a first lens E1, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, filter E7, and imaging surface S15.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a concave surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows distortion magnitude values corresponding to different image heights.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows distortion magnitude values corresponding to different image heights.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a positive refractive power, and the object side surface S1 is a convex surface, and the image side surface S2 is a convex surface.
  • the second lens E2 has a negative refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power, the object side surface S5 is a convex surface, and the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a negative refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the filter E7 has an object side surface S13 and an image side surface S14. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging plane S15.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the sixth lens E6 are aspherical.
  • Table 20 shows the high order coefficient of each aspherical mirror which can be used in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f6 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging lens, the optical total length TTL, and the maximum half angle of view HFOV.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which indicates distortion magnitude values corresponding to different image heights.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • Embodiments 1 to 7 respectively satisfy the relationship shown in Table 22.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Abstract

一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)和第六透镜(E6)。其中,第一透镜(E1)具有正光焦度;第二透镜(E2)具有负光焦度;第三透镜(E3)具有负光焦度;第四透镜(E4)具有光焦度,其像侧面(S8)为凸面;第五透镜(E5)具有负光焦度,其物侧面(S9)为凹面;以及第六透镜(E6)具有光焦度,其物侧面(S11)为凹面。其中,第三透镜(E3)的有效焦距f3与光学成像镜头的有效焦距f满足-3<f3/f<-1.5。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2018年5月15日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810460752.4的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括六片透镜的长焦镜头。
背景技术
随着半导体工艺技术不断精进,智能手机的功能越来越全面,在摄像功能方面,人们希望手机能够具有相机一样强大的成像功能,例如,能够拍摄更远距离外的景物,并能够突出主体,虚化背景。这就要求手机需要进一步配有焦距长、成像质量良好、尺寸小的成像镜头。
本发明提出了一种采用非球面的六片式长焦光学成像镜头,可在保证镜头的加工特性和小型化特点的同时,通过与广角镜头配合实现变焦目的,在自动对焦情况下可得到较高放大倍率和良好的成像效果,适合于拍摄远处的对象,使得顾客得到不同的视觉效果感受。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头。
一方面,本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第三透镜的 有效焦距f3与光学成像镜头的有效焦距f可满足-3<f3/f<-1.5。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的物侧面至光学成像镜头的成像面在光轴上的距离TTL可满足TTL/f<1。
在一个实施方式中,第三透镜的有效焦距f3与第一透镜的有效焦距f1可满足-7<f3/f1<-4。
在一个实施方式中,第二透镜的像侧面可为凹面;第二透镜的有效焦距f2与第二透镜的像侧面的曲率半径R4可满足-2<f2/R4<-1。
在一个实施方式中,光学成像镜头的总有效焦距f与第五透镜的有效焦距f5可满足-1.5<f/f5<-0.5。
在一个实施方式中,第一透镜的物侧面可为凸面;第一透镜的有效焦距f1与第一透镜的物侧面的曲率半径R1可满足1<f1/R1<2。
在一个实施方式中,第一透镜的像侧面可为凸面;第一透镜的像侧面的曲率半径R2与第四透镜的像侧面的曲率半径R8可满足0<R8/R2<1。
在一个实施方式中,第一透镜和第二透镜的组合焦距f12与第一透镜于光轴上的中心厚度CT1可满足4<f12/CT1<5。
在一个实施方式中,第五透镜和第六透镜在光轴上的间隔距离T56与第三透镜和第四透镜在光轴上的间隔距离T34可满足1.5<T56/T34<2.5。
在一个实施方式中,第六透镜的像侧面可为凸面;第五透镜的物侧面的曲率半径R9与第六透镜的像侧面的曲率半径R12可满足0<R9/R12<1。
在一个实施方式中,第六透镜于光轴上的中心厚度CT6与第四透镜于光轴上的中心厚度CT4可满足1.5<CT6/CT4<2.5。
在一个实施方式中,第五透镜在最大有效半径处的边缘厚度ET5与第五透镜于光轴上的中心厚度CT5可满足2<ET5/CT5<3。
在一个实施方式中,第三透镜的像侧面可为凹面;第三透镜的像侧面的曲率半径R6与第六透镜的物侧面的曲率半径R11可满足-1.8<R6/R11<-0.8。
在一个实施方式中,光学成像镜头的最大半视场角HFOV可满足tan(HFOV)<0.5。
另一方面,本申请提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第三透镜的有效焦距f3与第一透镜的有效焦距f1可满足-7<f3/f1<-4。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第五透镜的物侧面的曲率半径R9与第六透镜的像侧面的曲率半径R12可满足0<R9/R12<1。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第三透镜的像侧面的曲率半径R6与第六透镜的物侧面的曲率半径R11可满足-1.8<R6/R11<-0.8。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为 凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第五透镜在最大有效半径处的边缘厚度ET5与第五透镜于光轴上的中心厚度CT5可满足2<ET5/CT5<3。
又一方面,本申请还提供了这样一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。其中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜可具有光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有光焦度,其物侧面可为凹面。其中,第一透镜和第二透镜的组合焦距f12与第一透镜于光轴上的中心厚度CT1可满足4<f12/CT1<5。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有长焦距、小型化、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面称为该透镜的物侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/ 或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列,且各相邻透镜之间均具有空气间隔。
在示例性实施方式中,第一透镜可具有正光焦度;第二透镜可具有负光焦度;第三透镜可具有负光焦度;第四透镜具有正光焦度或负光焦度,其像侧面可为凸面;第五透镜可具有负光焦度,其物侧面为凹面;第六透镜具有正光焦度或负光焦度,其物侧面可为凹面。
在示例性实施方式中,第一透镜的物侧面和像侧面均可为凸面。
在示例性实施方式中,第三透镜的像侧面可为凹面。
在示例性实施方式中,第五透镜的像侧面可为凸面。
在示例性实施方式中,第六透镜的像侧面可为凸面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/f<1,其中,TTL为第一透镜物侧面至光学成像镜头的成像面在光轴上 的距离,f为光学成像镜头的有效焦距。更具体地,TTL和f进一步可满足0.8<TTL/f<1,例如0.90≤TTL/f≤0.91。满足条件式TTL/f<1,有助于适当缩短光学系统的总长,使镜头更加轻薄。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-3<f3/f<-1.5,其中,f3为第三透镜的有效焦距,f为光学成像镜头的有效焦距。更具体地,f3和f进一步可满足-2.66≤f3/f≤-1.74。合理选择第三透镜的有效焦距,可在校正像差的同时满足镜头的长焦特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-7<f3/f1<-4,其中,f3为第三透镜的有效焦距,f1为第一透镜的有效焦距。更具体地,f3和f1进一步可满足-6.5<f3/f1<-4.0,例如-6.31≤f3/f1≤-4.18。合理设置第三透镜的有效焦距与第一透镜的有效焦距之间的比值,有助于实现系统的长焦特性,并可提升光学系统对光线的会聚能力,调整光线聚焦位置,缩短系统总长。
在示例性实施方式中,第二透镜的像侧面可为凹面。第二透镜的像侧面的曲率半径R4与第二透镜的有效焦距f2可满足-2<f2/R4<-1。更具体地,f2和R4进一步可满足-1.8<f2/R4<-1.4,例如-1.72≤f2/R4≤-1.48。合理选择第二透镜的有效焦距和第二透镜像侧面的曲率半径之间的比值,进一步地,例如在第二透镜光焦度为负的情况下确保第二透镜像侧面的曲率半径为正(即像侧面为凹面),可有效平衡系统的像散,并进一步确保光学系统的小型化。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1.5<f/f5<-0.5,其中,f为光学成像镜头的总有效焦距,f5为第五透镜的有效焦距。更具体地,f和f5进一步可满足-1.38≤f/f5≤-0.61。合理设置第五透镜的有效焦距以确保第五透镜的光焦度为负,有助于增大光学系统的焦距,实现系统的长焦特性,同时可使系统具备调整光线位置的功能,能更好地平衡场曲。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1<f1/R1<2,其中,f1为第一透镜的有效焦距,R1为第一透镜的物侧面的曲率半径。更具体地,f1和R1进一步可满足1.5<f1/R1<1.7,例如1.55≤f1/R1≤1.63。合理选择第一透镜的有效焦距和第一透镜的物 侧面的曲率半径之间的比值,进一步地,例如在第一透镜光焦度为正的前提下确保第一透镜的物侧面的曲率半径为正(即物侧面为凸面),可有效调整光线的角度,平衡系统的像散,并实现系统的长焦特性。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<R8/R2<1,其中,R8为第四透镜的像侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R8和R2进一步可满足0.2<R8/R2<0.9,例如0.38≤R8/R2≤0.79。合理分配第四透镜像侧面的曲率半径和第一透镜像侧面的曲率半径,进一步地,例如在第四透镜像侧面为凸面的情况下保证第一透镜像侧面同为凸面,可有效平衡系统的像散,并进一步确保光学系统的小型化。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0<R9/R12<1,其中,R9为第五透镜的物侧面的曲率半径,R12为第六透镜的像侧面的曲率半径。更具体地,R9和R12进一步可满足0.1<R9/R12<0.5,例如0.16≤R9/R12≤0.40。合理分配第五透镜物侧面的曲率半径和第六透镜像侧面的曲率半径,进一步地,例如在第五透镜物侧面为凹面的情况下保证第六透镜像侧面同为凸面,可有效平衡系统的畸变。
在示例性实施方式中,本申请的光学成像镜头可满足条件式tan(HFOV)<0.5,其中,HFOV为光学成像镜头的最大半视场角。更具体地,HFOV进一步可满足0.4<tan(HFOV)<0.5,例如0.43≤tan(HFOV)≤0.45。合理控制光学成像镜头的最大半视场角,可使光学系统满足长焦特性并具有较好的平衡像差的能力,同时,还可合理控制主光线偏转角度,提高与芯片的匹配程度,有利于调整光学系统的结构。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<CT6/CT4<2.5,其中,CT6为第六透镜于光轴上的中心厚度,CT4为第四透镜于光轴上的中心厚度。更具体地,CT6和CT4进一步可满足1.56≤CT6/CT4≤2.27。合理分配第六透镜和第四透镜于光轴上的中心厚度的比值,可有效减小光学系统尺寸以避免光学成像镜头的体积过大,并且还可降低镜片的组装难度并实现较高的空间利用率。
在示例性实施方式中,本申请的光学成像镜头可满足条件式2<ET5/CT5<3,其中,ET5为第五透镜在最大有效半径处的边缘厚度,CT5为第五透镜于光轴上的中心厚度。更具体地,ET5和CT5进一步可满足2.13≤ET5/CT5≤2.71。合理控制第五透镜的边缘厚度和第五透镜于光轴上的中心厚度,可有效减小系统尺寸,并满足系统的长焦特性;同时,还可有利于调整系统结构,降低镜片加工和组装的难度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式4<f12/CT1<5,其中,f12为第一透镜和第二透镜的组合焦距,CT1为第一透镜于光轴上的中心厚度。更具体地,f12和CT1进一步可满足4.0<f12/CT1<4.5,例如4.01≤f12/CT1≤4.36。合理分配第一透镜和第二透镜的组合焦距与第一透镜的中心厚度之间的比值,可使光学系统满足长焦特性并具有较好的平衡像差的能力;同时,还可合理控制主光线偏转角度,有利于调整光学系统的结构。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<T56/T34<2.5,其中,T56为第五透镜和第六透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离。更具体地,T56和T34进一步可满足1.55≤T56/T34≤2.23。合理控制第五透镜和第六透镜在光轴上的间隔距离与第三透镜和第四透镜在光轴上的间隔距离之间的比值,可使得透镜之间具有足够的间隔空间,从而使透镜表面变化自由度更高,以此来提升系统校正像散和场曲的能力。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1.8<R6/R11<-0.8,其中,R6为第三透镜的像侧面的曲率半径,R11为第六透镜的物侧面的曲率半径。更具体地,R6和R11进一步可满足-1.69≤R6/R11≤-0.90。合理分配第三透镜像侧面和第六透镜物侧面的曲率半径,进一步地,例如在在满足第六透镜物侧面为凹面的同时保证第三透镜像侧面为凹面,则可调整光线偏转角度,使光学系统可以更好地匹配芯片的主光线角度。
在示例性实施方式中,上述光学成像镜头还可包括至少一个光阑,以提升镜头的成像质量。可选地,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片 和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于智能手机等便携式电子产品。通过上述配置的光学成像镜头还可具有长焦距、高成像质量等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像镜头不限于包括六个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4 为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000001
表1
由表1可知,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018116309-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A 4、A 6、A 8、A 10和A 12
面号 A4 A6 A8 A10 A12
S1 -7.1400E-03 -5.6300E-03 8.5500E-04 -2.0900E-03 -3.4000E-04
S2 4.4009E-02 -2.4390E-02 4.6520E-03 7.8540E-03 -3.9800E-03
S3 4.8091E-02 2.4530E-03 -3.8060E-02 5.5701E-02 -2.5820E-02
S4 3.3611E-02 6.9284E-02 -1.6039E-01 2.5321E-01 -1.5056E-01
S5 9.3483E-02 2.6805E-02 1.4567E-02 5.0120E-02 7.6680E-03
S6 4.3082E-02 2.6508E-02 -9.8690E-02 1.6095E-01 -5.1000E-11
S7 -1.8306E-01 -1.4385E-01 -1.3446E-01 -5.3200E-02 1.4800E-09
S8 -1.3237E-01 -8.0280E-02 2.0739E-02 -3.4920E-02 4.3565E-02
S9 5.9025E-02 1.8840E-02 -7.2500E-03 7.2300E-04 -2.1000E-05
S10 4.9976E-02 4.5438E-02 -8.5500E-02 4.0896E-02 -7.1800E-03
S11 -8.0210E-02 3.7500E-02 -5.9400E-03 2.6800E-04 1.7800E-05
S12 -4.6260E-02 -4.8500E-03 6.5060E-03 -2.0100E-03 2.1400E-04
表2
表3给出实施例1中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL(即,从第一透镜E1的物侧面S1至成像面S15在光轴上的距离)以及最大半视场角HFOV。
f1(mm) 2.52 f6(mm) -11.29
f2(mm) -5.44 f(mm) 6.01
f3(mm) -12.36 TTL(mm) 5.41
f4(mm) 9.81 HFOV(°) 24.2
f5(mm) -6.01    
表3
实施例1中的光学成像镜头满足以下关系:
TTL/f=0.90,其中,TTL为第一透镜E1的物侧面S1至成像面S15在光轴上的距离,f为光学成像镜头的总有效焦距;
f3/f=-2.06,其中,f3为第三透镜E3的有效焦距,f为光学成像镜头的总有效焦距;
f3/f1=-4.91,其中,f3为第三透镜E3的有效焦距,f1为第一透镜E1的有效焦距;
f2/R4=-1.54,其中,f2为第二透镜E2的有效焦距,R4为第二透镜E2的像侧面S4的曲率半径;
f/f5=-1.00,其中,f为光学成像镜头的总有效焦距,f5为第五透镜E5的有效焦距;
f1/R1=1.63,其中,f1为第一透镜E1的有效焦距,R1为第一透镜E1的物侧面S1的曲率半径;
R8/R2=0.38,其中,R8为第四透镜E4的像侧面S8的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
R9/R12=0.31,其中,R9为第五透镜E5的物侧面S9的曲率半径,R12为第六透镜E6的像侧面S12的曲率半径;
tan(HFOV)=0.45,其中,HFOV为光学成像镜头的最大半视场角;
CT6/CT4=2.27,其中,CT6为第六透镜E6于光轴上的中心厚度,CT4为第四透镜E4于光轴上的中心厚度;
ET5/CT5=2.13,其中,ET5为第五透镜在最大有效半径处的边缘厚度,CT5为第五透镜于光轴上的中心厚度;
f12/CT1=4.01,其中,f12为第一透镜E1和第二透镜E2的组合焦距,CT1为第一透镜E1于光轴上的中心厚度;
T56/T34=2.23,其中,T56为第五透镜E5和第六透镜E6在光轴上的间隔距离,T34为第三透镜E3和第四透镜E4在光轴上的间隔距离;
R6/R11=-1.11,其中,R6为第三透镜E3的像侧面S6的曲率半径,R11为第六透镜E6的物侧面S11的曲率半径。
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。 根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000003
Figure PCTCN2018116309-appb-000004
表4
由表4可知,在实施例2中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -9.1900E-03 4.5550E-03 -4.2900E-02 1.0885E-01 -1.8016E-01 1.8490E-01 -1.1529E-01 3.9512E-02 -5.6800E-03
S2 4.8469E-02 -6.7460E-02 8.4566E-02 1.3737E-01 -6.6071E-01 1.0128E+00 -8.0084E-01 3.3167E-01 -5.7260E-02
S3 5.3242E-02 -4.7640E-02 -2.8000E-04 6.2066E-01 -1.9816E+00 2.9363E+00 -2.3869E+00 1.0403E+00 -1.9229E-01
S4 2.9198E-02 1.1306E-01 -7.3877E-01 3.5116E+00 -9.3700E+00 1.4816E+01 -1.4024E+01 7.3973E+00 -1.6871E+00
S5 9.2101E-02 -7.4230E-02 9.4100E-01 -4.0718E+00 1.1694E+01 -2.1313E+01 2.3720E+01 -1.4623E+01 3.8514E+00
S6 4.4875E-02 -1.5691E-01 1.4580E+00 -7.6674E+00 2.5977E+01 -5.5209E+01 7.1191E+01 -5.0833E+01 1.5510E+01
S7 -1.6322E-01 -4.1522E-01 1.8788E+00 -8.9533E+00 2.6315E+01 -5.0536E+01 6.0769E+01 -4.2190E+01 1.3002E+01
S8 -1.1062E-01 -3.2477E-01 1.3244E+00 -4.5917E+00 1.0255E+01 -1.4096E+01 1.1601E+01 -5.2997E+00 1.0527E+00
S9 5.7390E-02 -1.3901E-01 7.0088E-01 -2.2748E+00 4.7617E+00 -5.9745E+00 4.3081E+00 -1.6439E+00 2.5712E-01
S10 5.2428E-02 3.3294E-02 -6.5760E-02 4.9124E-02 -4.9590E-02 4.3830E-02 -2.2290E-02 5.7950E-03 -6.1000E-04
S11 -7.8480E-02 3.5531E-02 -5.2000E-03 -9.7000E-06 1.6600E-04 -5.7000E-05 1.2300E-05 -1.5000E-06 7.5200E-08
S12 -4.7070E-02 -3.4900E-03 5.9180E-03 -1.7600E-03 1.0200E-04 4.7600E-05 -1.4000E-05 2.0900E-06 -1.2000E-07
表5
表6给出实施例2中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.51 f6(mm) -13.00
f2(mm) -5.41 f(mm) 5.99
f3(mm) -13.27 TTL(mm) 5.41
f4(mm) 10.86 HFOV(°) 24.2
f5(mm) -5.80    
表6
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示 不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000005
Figure PCTCN2018116309-appb-000006
表7
由表7可知,在实施例3中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.8900E-03 -9.3900E-03 2.2714E-02 -8.0740E-02 1.5731E-01 -1.8540E-01 1.2786E-01 -4.8050E-02 7.6880E-03
S2 4.0850E-02 -5.2260E-02 2.2297E-01 -5.5308E-01 7.5609E-01 -6.2332E-01 3.2248E-01 -1.0028E-01 1.4875E-02
S3 4.0257E-02 -1.8600E-03 1.6968E-01 -4.5423E-01 4.2654E-01 -3.5810E-02 -2.0727E-01 1.3563E-01 -2.6930E-02
S4 1.7871E-02 1.2372E-01 -3.9922E-01 1.6645E+00 -4.6298E+00 7.5827E+00 -7.1526E+00 3.5979E+00 -7.5197E-01
S5 8.0248E-02 -2.4080E-02 1.0651E+00 -5.0884E+00 1.4299E+01 -2.4911E+01 2.6657E+01 -1.5982E+01 4.1252E+00
S6 2.6427E-02 -1.2950E-02 4.3982E-01 -1.5877E+00 2.8924E+00 -2.4251E+00 2.0637E-02 1.5711E+00 -8.1328E-01
S7 -1.9911E-01 -3.3891E-01 1.4257E+00 -5.9431E+00 1.4200E+01 -2.1758E+01 1.9862E+01 -9.9666E+00 2.2340E+00
S8 -1.6327E-01 -6.6520E-02 -3.3278E-01 1.1004E+00 -4.0662E-01 -2.1895E+00 3.5682E+00 -2.2026E+00 5.0635E-01
S9 1.0836E-02 -7.8120E-02 -6.1719E-01 3.0383E+00 -5.0823E+00 4.0846E+00 -1.4796E+00 7.7786E-02 5.8527E-02
S10 5.7407E-02 -1.3480E-01 4.1236E-01 -6.0217E-01 5.0046E-01 -2.5642E-01 8.0323E-02 -1.4100E-02 1.0600E-03
S11 -6.1730E-02 3.5997E-02 -2.4080E-02 1.0972E-02 -3.0700E-03 8.4200E-04 -2.4000E-04 3.9800E-05 -2.7000E-06
S12 -9.8690E-02 5.4252E-02 -3.3050E-02 1.4718E-02 -4.6900E-03 9.5100E-04 -1.0000E-04 2.4800E-06 2.9300E-07
表8
表9给出实施例3中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.53 f6(mm) -8.54
f2(mm) -6.12 f(mm) 5.99
f3(mm) -15.94 TTL(mm) 5.41
f4(mm) -2457.82 HFOV(°) 24.0
f5(mm) -9.76    
表9
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000007
表10
由表10可知,在实施例4中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -8.2600E-03 -7.2300E-03 1.8650E-02 -7.1540E-02 1.3834E-01 -1.5986E-01 1.0853E-01 -4.0270E-02 6.3580E-03
S2 3.8506E-02 -1.9760E-02 4.2270E-02 -1.0074E-01 1.5118E-01 -1.4841E-01 9.8168E-02 -3.9660E-02 7.4400E-03
S3 3.8733E-02 2.4105E-02 -1.8250E-02 4.6095E-02 -1.8342E-01 3.1543E-01 -2.7580E-01 1.2181E-01 -2.1390E-02
S4 2.1464E-02 7.1804E-02 -1.2249E-01 5.5432E-01 -1.5938E+00 2.6295E+00 -2.4974E+00 1.2361E+00 -2.4367E-01
S5 7.0721E-02 4.1158E-02 5.0016E-01 -2.5150E+00 7.4701E+00 -1.3451E+01 1.4596E+01 -8.7722E+00 2.2617E+00
S6 6.3050E-03 9.4084E-02 -3.5465E-01 1.9084E+00 -6.4284E+00 1.3364E+01 -1.6528E+01 1.1211E+01 -3.1960E+00
S7 -2.0482E-01 -2.4814E-01 9.4713E-01 -5.3329E+00 1.6104E+01 -2.9998E+01 3.3258E+01 -2.0584E+01 5.5986E+00
S8 -1.4742E-01 -9.1590E-02 4.8681E-01 -1.8368E+00 4.3864E+00 -6.6431E+00 6.0187E+00 -2.9582E+00 6.1108E-01
S9 -7.6300E-03 5.4016E-02 2.0964E-01 -7.4217E-01 1.4996E+00 -2.2486E+00 2.1350E+00 -1.0883E+00 2.2507E-01
S10 2.9443E-02 3.0790E-03 3.3628E-02 -1.1276E-01 1.2086E-01 -6.8210E-02 2.1891E-02 -3.7800E-03 2.7300E-04
S11 -4.4870E-02 1.6698E-02 -4.2400E-03 1.8390E-03 -5.7000E-04 7.3600E-05 1.0600E-06 -1.1000E-06 7.1700E-08
S12 -4.2040E-02 -4.7600E-03 4.1460E-03 -1.2900E-03 5.3200E-05 7.9100E-05 -2.6000E-05 3.8800E-06 -2.2000E-07
表11
表12给出实施例4中各透镜的有效焦距f1至f6、光学成像镜头 的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.51 f6(mm) 500.98
f2(mm) -5.43 f(mm) 6.17
f3(mm) -10.92 TTL(mm) 5.61
f4(mm) 9.55 HFOV(°) 23.3
f5(mm) -4.47    
表12
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凹面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面 S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2018116309-appb-000009
Figure PCTCN2018116309-appb-000010
表14
表15给出实施例5中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.48 f6(mm) -15.01
f2(mm) -5.30 f(mm) 5.99
f3(mm) -10.54 TTL(mm) 5.41
f4(mm) 9.45 HFOV(°) 24.0
f5(mm) -5.50    
表15
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4 为凹面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000011
表16
由表16可知,在实施例6中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2018116309-appb-000012
Figure PCTCN2018116309-appb-000013
表17
表18给出实施例6中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.49 f6(mm) -14.53
f2(mm) -5.35 f(mm) 5.99
f3(mm) -10.80 TTL(mm) 5.41
f4(mm) 9.64 HFOV(°) 24.0
f5(mm) -5.59    
表18
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第 三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。
第一透镜E1具有正光焦度,其物侧面S1为凸面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。
表19示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018116309-appb-000014
表19
由表19可知,在实施例7中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实 施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -7.6800E-03 -9.8900E-03 2.9621E-02 -9.9080E-02 1.8096E-01 -2.0051E-01 1.3209E-01 -4.7910E-02 7.4230E-03
S2 3.8499E-02 -2.8790E-02 8.2788E-02 -1.7719E-01 2.3175E-01 -1.9922E-01 1.1545E-01 -4.1450E-02 7.0580E-03
S3 3.7339E-02 1.2174E-02 6.4553E-02 -1.5710E-01 1.0184E-01 5.1506E-02 -1.1692E-01 6.6856E-02 -1.3400E-02
S4 1.9274E-02 7.4200E-02 -9.4040E-02 4.6794E-01 -1.4671E+00 2.4798E+00 -2.3880E+00 1.2205E+00 -2.5692E-01
S5 5.6174E-02 9.6560E-02 3.8259E-01 -2.1246E+00 6.1582E+00 -1.0740E+01 1.1292E+01 -6.5705E+00 1.6387E+00
S6 -1.3590E-02 1.7114E-01 -4.4088E-01 1.8177E+00 -5.4216E+00 1.0318E+01 -1.1865E+01 7.5596E+00 -2.0315E+00
S7 -2.0709E-01 -2.6925E-01 9.2728E-01 -4.1921E+00 1.0678E+01 -1.6849E+01 1.5528E+01 -8.0255E+00 1.9367E+00
S8 -1.3564E-01 -2.9697E-01 1.0032E+00 -3.1505E+00 7.7141E+00 -1.2495E+01 1.1976E+01 -6.1355E+00 1.3046E+00
S9 4.3101E-02 -1.6864E-01 6.8288E-01 -1.5895E+00 3.4512E+00 -5.9464E+00 6.1531E+00 -3.2934E+00 7.0283E-01
S10 5.0265E-02 -2.2460E-02 1.6186E-01 -3.8467E-01 4.0989E-01 -2.4285E-01 8.2984E-02 -1.5330E-02 1.1860E-03
S11 -7.4760E-02 2.8899E-02 -2.7200E-03 -9.0000E-04 6.1900E-04 -2.3000E-04 4.9100E-05 -5.3000E-06 2.2500E-07
S12 -5.9750E-02 3.4220E-03 2.3230E-03 -6.4000E-04 -3.9000E-04 2.9000E-04 -8.6000E-05 1.3100E-05 -8.0000E-07
表20
表21给出实施例7中各透镜的有效焦距f1至f6、光学成像镜头的总有效焦距f、光学总长度TTL以及最大半视场角HFOV。
f1(mm) 2.50 f6(mm) -18.15
f2(mm) -5.37 f(mm) 5.99
f3(mm) -10.44 TTL(mm) 5.41
f4(mm) 9.17 HFOV(°) 24.0
f5(mm) -5.23    
表21
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同像高所对应的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例7分别满足表22中所示的关系。
Figure PCTCN2018116309-appb-000015
表22
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第三透镜具有负光焦度;
    所述第四透镜具有光焦度,其像侧面为凸面;
    所述第五透镜具有负光焦度,其物侧面为凹面;以及
    所述第六透镜具有光焦度,其物侧面为凹面;
    其中,所述第三透镜的有效焦距f3与所述光学成像镜头的有效焦距f满足-3<f3/f<-1.5。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足TTL/f<1。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述第一透镜的有效焦距f1满足-7<f3/f1<-4。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜的像侧面为凹面;
    所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径R4满足-2<f2/R4<-1。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的有效焦距f5满足-1.5<f/f5<-0.5。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一 透镜的物侧面为凸面;
    所述第一透镜的有效焦距f1与所述第一透镜的物侧面的曲率半径R1满足1<f1/R1<2。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜的像侧面为凸面;
    所述第一透镜的像侧面的曲率半径R2与所述第四透镜的像侧面的曲率半径R8满足0<R8/R2<1。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述第一透镜于所述光轴上的中心厚度CT1满足4<f12/CT1<5。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足1.5<T56/T34<2.5。
  10. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜的像侧面为凸面;
    所述第五透镜的物侧面的曲率半径R9与所述第六透镜的像侧面的曲率半径R12满足0<R9/R12<1。
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第四透镜于所述光轴上的中心厚度CT4满足1.5<CT6/CT4<2.5。
  12. 根据权利要求5所述的光学成像镜头,其特征在于,所述第五透镜在最大有效半径处的边缘厚度ET5与所述第五透镜于所述光轴上的中心厚度CT5满足2<ET5/CT5<3。
  13. 根据权利要求1所述的光学成像镜头,其特征在于,所述第三透镜的像侧面为凹面;
    所述第三透镜的像侧面的曲率半径R6与所述第六透镜的物侧面的曲率半径R11满足-1.8<R6/R11<-0.8。
  14. 根据权利要求1至13中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足tan(HFOV)<0.5。
  15. 光学成像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,其特征在于,
    所述第一透镜具有正光焦度;
    所述第二透镜具有负光焦度;
    所述第三透镜具有负光焦度;
    所述第四透镜具有光焦度,其像侧面为凸面;
    所述第五透镜具有负光焦度,其物侧面为凹面;以及
    所述第六透镜具有光焦度,其物侧面为凹面;
    其中,所述第三透镜的有效焦距f3与所述第一透镜的有效焦距f1满足-7<f3/f1<-4。
  16. 根据权利要求15所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第一透镜的物侧面至所述光学成像镜头的成像面在所述光轴上的距离TTL满足TTL/f<1。
  17. 根据权利要求16所述的光学成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述光学成像镜头的有效焦距f满足-3<f3/f<-1.5。
  18. 根据权利要求15所述的光学成像镜头,其特征在于,所述第二透镜的像侧面为凹面;
    所述第二透镜的有效焦距f2与所述第二透镜的像侧面的曲率半径 R4满足-2<f2/R4<-1。
  19. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的物侧面为凸面;
    所述第一透镜的有效焦距f1与所述第一透镜的物侧面的曲率半径R1满足1<f1/R1<2。
  20. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜的像侧面为凸面;
    所述第一透镜的像侧面的曲率半径R2与所述第四透镜的像侧面的曲率半径R8满足0<R8/R2<1。
  21. 根据权利要求15所述的光学成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述第一透镜于所述光轴上的中心厚度CT1满足4<f12/CT1<5。
  22. 根据权利要求15所述的光学成像镜头,其特征在于,所述第五透镜和所述第六透镜在所述光轴上的间隔距离T56与所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34满足1.5<T56/T34<2.5。
  23. 根据权利要求22所述的光学成像镜头,其特征在于,所述第六透镜的像侧面为凸面;
    所述第五透镜的物侧面的曲率半径R9与所述第六透镜的像侧面的曲率半径R12满足0<R9/R12<1。
  24. 根据权利要求22所述的光学成像镜头,其特征在于,所述第六透镜于所述光轴上的中心厚度CT6与所述第四透镜于所述光轴上的中心厚度CT4满足1.5<CT6/CT4<2.5。
  25. 根据权利要求15所述的光学成像镜头,其特征在于,所述第五透镜在最大有效半径处的边缘厚度ET5与所述第五透镜于所述光轴上的中心厚度CT5满足2<ET5/CT5<3。
  26. 根据权利要求25所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述第五透镜的有效焦距f5满足-1.5<f/f5<-0.5。
  27. 根据权利要求15所述的光学成像镜头,其特征在于,所述第三透镜的像侧面为凹面;
    所述第三透镜的像侧面的曲率半径R6与所述第六透镜的物侧面的曲率半径R11满足-1.8<R6/R11<-0.8。
  28. 根据权利要求15至27所述的光学成像镜头,其特征在于,所述光学成像镜头的最大半视场角HFOV满足tan(HFOV)<0.5。
PCT/CN2018/116309 2018-05-15 2018-11-20 光学成像镜头 WO2019218628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/864,416 US11709349B2 (en) 2018-05-15 2020-05-01 Optical imaging lens assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810460752.4 2018-05-15
CN201810460752.4A CN108627955A (zh) 2018-05-15 2018-05-15 光学成像镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/864,416 Continuation US11709349B2 (en) 2018-05-15 2020-05-01 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019218628A1 true WO2019218628A1 (zh) 2019-11-21

Family

ID=63693315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116309 WO2019218628A1 (zh) 2018-05-15 2018-11-20 光学成像镜头

Country Status (3)

Country Link
US (1) US11709349B2 (zh)
CN (5) CN108627955A (zh)
WO (1) WO2019218628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748354B (zh) * 2019-12-20 2021-12-01 鴻海精密工業股份有限公司 望遠式成像鏡頭

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627955A (zh) * 2018-05-15 2018-10-09 浙江舜宇光学有限公司 光学成像镜头
TWI681229B (zh) 2019-03-06 2020-01-01 大立光電股份有限公司 取像光學透鏡組、取像裝置及電子裝置
CN112147755B (zh) * 2019-06-27 2022-01-14 华为技术有限公司 光学镜头组、摄像头及终端设备
CN110426826A (zh) 2019-08-12 2019-11-08 浙江舜宇光学有限公司 光学成像系统
WO2021072668A1 (zh) * 2019-10-16 2021-04-22 南昌欧菲光电技术有限公司 光学系统、摄像模组及终端设备
CN113625434B (zh) * 2021-09-18 2023-10-13 浙江舜宇光学有限公司 光学成像镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215520A1 (en) * 2012-02-17 2013-08-22 Shu-Tzu Lai Six-piece optical lens system
CN106842503A (zh) * 2016-07-19 2017-06-13 瑞声科技(新加坡)有限公司 摄像镜头
CN107065131A (zh) * 2016-07-26 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
CN107065129A (zh) * 2016-07-19 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
CN108627955A (zh) * 2018-05-15 2018-10-09 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288020A (en) * 1976-01-16 1977-07-22 Nippon Chemical Ind Deformed gauss type photographic lens
JPS61138225A (ja) * 1984-12-10 1986-06-25 Minolta Camera Co Ltd 非球面を有する写真レンズ
JP3235734B2 (ja) * 1992-03-05 2001-12-04 富士写真光機株式会社 大口径比対物レンズおよびこれを用いた暗視装置
JP5009571B2 (ja) 2006-08-28 2012-08-22 富士フイルム株式会社 ズームレンズ
JP2008203449A (ja) 2007-02-19 2008-09-04 Sony Corp ズームレンズ及び撮像装置
CN100568044C (zh) 2007-04-26 2009-12-09 亚洲光学股份有限公司 变焦镜头
CN101339290B (zh) 2007-07-02 2010-12-01 大立光电股份有限公司 变焦镜头
CN101354475B (zh) * 2007-07-26 2010-09-01 亚洲光学股份有限公司 定焦镜头
KR101136939B1 (ko) * 2010-07-15 2012-04-20 엘지이노텍 주식회사 초광각 광학 렌즈 시스템
TWI457591B (zh) * 2013-04-25 2014-10-21 Largan Precision Co Ltd 攝影系統鏡片組
CN106062611B (zh) * 2014-03-23 2018-10-23 浙江舜宇光学有限公司 摄像镜头及其模组和终端
JP6181019B2 (ja) * 2014-09-11 2017-08-16 富士フイルム株式会社 光学系および光学装置
KR101719880B1 (ko) * 2014-12-19 2017-03-24 삼성전기주식회사 렌즈 모듈
TWI541539B (zh) * 2014-12-30 2016-07-11 大立光電股份有限公司 成像光學鏡片組、取像裝置及電子裝置
JP6501635B2 (ja) * 2015-06-08 2019-04-17 カンタツ株式会社 撮像レンズ
CN105572848B (zh) * 2016-03-02 2018-03-27 浙江舜宇光学有限公司 摄远镜头
TWI618944B (zh) * 2016-04-29 2018-03-21 大立光電股份有限公司 光學影像系統、取像裝置及電子裝置
CN107515455A (zh) * 2016-06-18 2017-12-26 南昌欧菲光电技术有限公司 成像镜头及成像装置
TWI607238B (zh) * 2016-08-22 2017-12-01 大立光電股份有限公司 光學攝像系統組、取像裝置及電子裝置
CN106526790B (zh) 2016-08-26 2019-02-22 玉晶光电(厦门)有限公司 光学成像镜头
CN106526791B (zh) 2016-08-26 2019-05-03 玉晶光电(厦门)有限公司 光学成像镜头
US10302911B2 (en) * 2016-09-12 2019-05-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
JP6085060B1 (ja) * 2016-11-04 2017-02-22 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN106873129B (zh) * 2017-03-13 2022-04-05 浙江舜宇光学有限公司 摄像透镜组
CN107450157B (zh) 2017-06-02 2020-01-10 玉晶光电(厦门)有限公司 光学成像镜头
CN107390350B (zh) * 2017-09-18 2022-09-13 浙江舜宇光学有限公司 成像透镜组
CN107608058B (zh) * 2017-11-08 2023-04-28 广东弘景光电科技股份有限公司 低畸变广角光学系统
CN107843977B (zh) * 2017-12-14 2020-04-17 浙江舜宇光学有限公司 光学成像镜头
CN107991761B (zh) * 2017-12-29 2020-10-23 瑞声光学解决方案私人有限公司 摄像光学镜头
CN108375823A (zh) * 2018-04-03 2018-08-07 浙江舜宇光学有限公司 光学成像镜头
CN108333723B (zh) * 2018-04-28 2023-05-26 浙江舜宇光学有限公司 光学成像镜头
CN208367314U (zh) * 2018-05-15 2019-01-11 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130215520A1 (en) * 2012-02-17 2013-08-22 Shu-Tzu Lai Six-piece optical lens system
CN106842503A (zh) * 2016-07-19 2017-06-13 瑞声科技(新加坡)有限公司 摄像镜头
CN107065129A (zh) * 2016-07-19 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
CN107065131A (zh) * 2016-07-26 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
CN108627955A (zh) * 2018-05-15 2018-10-09 浙江舜宇光学有限公司 光学成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748354B (zh) * 2019-12-20 2021-12-01 鴻海精密工業股份有限公司 望遠式成像鏡頭

Also Published As

Publication number Publication date
CN108627955A (zh) 2018-10-09
CN109739012A (zh) 2019-05-10
CN109739012B (zh) 2021-05-25
CN109799598B (zh) 2021-07-30
CN109799599B (zh) 2021-09-03
US11709349B2 (en) 2023-07-25
US20200257091A1 (en) 2020-08-13
CN109799599A (zh) 2019-05-24
CN109765680B (zh) 2021-08-06
CN109799598A (zh) 2019-05-24
CN109765680A (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2019192180A1 (zh) 光学成像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2020082814A1 (zh) 成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2019210739A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
WO2019196572A1 (zh) 光学成像系统
WO2019091170A1 (zh) 摄像透镜组
WO2020029620A1 (zh) 光学成像镜片组
WO2020119146A1 (zh) 光学成像镜头
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2019218628A1 (zh) 光学成像镜头
WO2020007081A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019080554A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2020088024A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2020007069A1 (zh) 光学成像镜片组
WO2019056758A1 (zh) 摄像透镜组
WO2019052220A1 (zh) 光学成像镜头
WO2019233142A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919257

Country of ref document: EP

Kind code of ref document: A1