WO2018134871A1 - (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置 - Google Patents

(メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置 Download PDF

Info

Publication number
WO2018134871A1
WO2018134871A1 PCT/JP2017/001357 JP2017001357W WO2018134871A1 WO 2018134871 A1 WO2018134871 A1 WO 2018134871A1 JP 2017001357 W JP2017001357 W JP 2017001357W WO 2018134871 A1 WO2018134871 A1 WO 2018134871A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
optical element
optical resin
resin
meth
Prior art date
Application number
PCT/JP2017/001357
Other languages
English (en)
French (fr)
Inventor
昌克 春谷
祥佑 井口
志保 高橋
中村 徹
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/001357 priority Critical patent/WO2018134871A1/ja
Priority to CN202310093924.XA priority patent/CN116082563A/zh
Priority to JP2018562748A priority patent/JP6809540B2/ja
Priority to CN201780078969.2A priority patent/CN110088077A/zh
Priority to EP17892595.4A priority patent/EP3572396A4/en
Publication of WO2018134871A1 publication Critical patent/WO2018134871A1/ja
Priority to US16/459,923 priority patent/US11142636B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/06Copolymers with vinyl aromatic monomers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a compound used for optics.
  • a diffractive optical element that changes the traveling direction of light by using a diffraction phenomenon has attracted attention.
  • DOE diffractive optical element
  • a transmission blazed diffractive optical element has an excellent feature that all incident light can be concentrated only in a desired direction (specific diffraction order).
  • a close-contact multi-layer phase Fresnel lens that combines a diffractive optical element with a general glass lens has been developed utilizing the characteristic of generating strong chromatic aberration in the opposite direction to a refractive optical element having a refractive surface. Yes.
  • the diffractive optical element has a problem that diffracted light other than the diffracted light of the desired diffraction order becomes unnecessary light, resulting in a blurred image and increasing the amount of flare generated.
  • a diffractive optical element made of a relatively low refractive and high dispersion resin material and a high refractive and low dispersion resin material are used. It tends to be used in combination with a diffractive optical element.
  • a composite material in which inorganic fine particles are dispersed as a resin material of the diffractive optical element for example, Patent Document 1).
  • the present inventors searched for a compound that can be used as a material that imparts good processing characteristics to a resin raw material. As a result, when added to the resin raw material, a group of compounds that can improve the processing characteristics without impairing the optical characteristics after processing has been found, and the embodiment of the present invention has been completed.
  • An embodiment of the present invention is an optical resin additive containing a compound represented by the following general formula (1).
  • each X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom
  • m represents an integer of 0 to 5
  • R 1 represents the number of carbon atoms.
  • 1 represents an alkylene group or an oxyalkylene group of ⁇ 8
  • R 2 represents a hydrogen atom or a methyl group.
  • BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing of the imaging device carrying the adhesion multilayer type
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acrylate means acrylate and / or methacrylate
  • (oxy) alkylene means Means alkylene and / or oxyalkylene
  • the phenyl (oxy) alkylene (meth) acrylate compound (hereinafter simply referred to as (meth) acrylate compound) contained in the additive according to the embodiment of the present invention is at least one structural unit represented by the following general formula (1) including.
  • each X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom
  • m represents an integer of 0 to 5
  • R 1 represents 1 carbon atom.
  • R 2 represents a hydrogen atom or a methyl group.
  • the substituent represented by X is independently a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the methyl group in which at least one hydrogen atom is substituted with a fluorine atom include a monofluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. Among these, a fluorine atom and a trifluoromethyl group are preferable.
  • m represents an integer of 0 to 5
  • X is substituted at any position among five substitutable carbons on the aromatic ring, and the bonding position is not limited.
  • the alkylene group or oxyalkylene group represented by R 1 is preferably a linear, branched or cyclic alkylene group having 1 to 8 carbon atoms or an oxyalkylene group.
  • Specific examples of the alkylene group having 1 to 8 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and a t-butylene group.
  • the oxyalkylene group having 1 to 8 carbon atoms include an oxymethylene group, an oxyethylene group, an oxy n-propylene group, an oxyisopropylene group, an oxy n-butylene group, and an oxy t-butylene group. It is done. Among these, a methylene group and an oxyethylene group are particularly preferable.
  • R 2 represents a hydrogen atom or a methyl group.
  • the method for producing the (meth) acrylate compound represented by the general formula (1) is not particularly limited, but can be produced, for example, as follows.
  • the fluorine-containing phenylalkyl (meth) acrylate compound in which m is 1 to 5 and R 1 is an alkylene group includes, for example, the following general formula (2) It can be obtained using a fluorine-containing phenyl alcohol compound represented by
  • each X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom, and l represents an integer of 1 to 5.
  • R 10 represents an alkylene group having 1 to 8 carbon atoms.
  • each of the substituents represented by X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the methyl group in which at least one hydrogen atom is substituted with a fluorine atom include a monofluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. Among these, a fluorine atom and a trifluoromethyl group are preferable.
  • l represents an integer of 1 to 5
  • X is substituted at any position among five substitutable carbons on the aromatic ring, and the bonding position is not limited.
  • the alkylene group represented by R 1 is preferably a linear, branched or cyclic alkylene group having 1 to 8 carbon atoms.
  • the alkylene group having 1 to 8 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and a t-butylene group.
  • a methylene group is particularly preferable.
  • Such fluorine-containing phenyl alcohol compounds represented by the general formula (2) include, for example, 2-fluorobenzyl alcohol, 3-fluorobenzyl alcohol, 4-fluorobenzyl alcohol, 2,3-difluorobenzyl alcohol, 2,4 -Difluorobenzyl alcohol, 2,5-difluorobenzyl alcohol, 2,6-difluorobenzyl alcohol, 3,4-difluorobenzyl alcohol, 3,5-difluorobenzyl alcohol, 3,6-difluorobenzyl alcohol, 2,3,4 -Trifluorobenzyl alcohol, 2,3,5-trifluorobenzyl alcohol, 2,3,6-trifluorobenzyl alcohol, 2,4,5-trifluorobenzyl alcohol, 2,4,6-trifluorobenzyl alcohol, 2,5 6-trifluorobenzyl alcohol, 3,4,5-trifluorobenzyl alcohol, 2,3,4,5-tetrafluorobenzyl alcohol, 2,3,4,6-tetraflu
  • the fluorine-containing phenoxyalkyl (meth) acrylate compound in which m is 1 to 5 and R 1 is an oxyalkylene group includes, for example, the following general formula: It is obtained using the fluorine-containing phenol compound represented by (3) as a raw material.
  • each X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom, and l represents an integer of 1 to 5.
  • each of the substituents represented by X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the methyl group in which at least one hydrogen atom is substituted with a fluorine atom include a monofluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. Among these, a fluorine atom and a trifluoromethyl group are preferable.
  • l represents an integer of 1 to 5
  • X is substituted at an arbitrary position among five substitutable carbons on the aromatic ring, and the bonding position is not limited.
  • Examples of such a fluorine-containing phenol compound represented by the general formula (3) include 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,3-difluorophenol, 2,4-difluorophenol, 2 , 5-difluorophenol, 2,6-difluorophenol, 3,4-difluorophenol, 3,5-difluorophenol, 3,6-difluorophenol, 2,3,4-trifluorophenol, 2,3,5- Trifluorophenol, 2,3,6-trifluorophenol, 2,4,5-trifluorophenol, 2,4,6-trifluorophenol, 2,5,6-trifluorophenol, 3,4,5- Trifluorophenol, 2,3,4,5-tetrafluorophenol, 2,3,4,6-tetra Fluorophenol, 2,3,5,6-tetrafluorophenol, 2,4,5,6-tetrafluorophenol, 2,3,4,5,6-pentafluorophenol, 2- (trifluoromethyl) phenol, 3- (
  • a fluorine-containing phenoxide compound represented by the following general formula (4) is obtained by reacting the fluorine-containing phenol compound represented by the general formula (3) with a basic compound.
  • M represents an alkali metal atom or an alkaline earth metal atom
  • l represents an integer of 1 to 5.
  • suitable basic compounds include inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide. Of these, potassium hydroxide that is readily available and inexpensive is preferred. In addition, these may be used independently and may mix and use 2 or more types.
  • the solvent to be used is not particularly limited as long as it has an appropriate solubility in the raw material and is not reactive with the compound.
  • an alcohol having the same carbon number as a halogenated alkyl alcohol described below. Can be used.
  • the reaction temperature of this reaction can be appropriately adjusted depending on the temperature of the solvent and the like, but is in the range of 0 to 100 ° C., preferably 20 to 50 ° C., from the viewpoint of suppressing the reaction time and side reaction. It is desirable.
  • a fluorine-containing alcohol compound represented by the following general formula (5) is obtained by reacting a fluorine-containing phenoxide compound represented by the general formula (4) with a halogenated alkyl alcohol as a nucleophile.
  • R 3 represents an oxyalkylene group having 1 to 8 carbon atoms
  • l represents an integer of 1 to 5.
  • the oxyalkylene group represented by R 3 is preferably a linear or branched oxyalkylene group having 1 to 8 carbon atoms.
  • Specific examples of the oxyalkylene group having 1 to 8 carbon atoms include an oxymethylene group, an oxyethylene group, an oxy n-propylene group, an oxyisopropylene group, an oxy n-butylene group, and an oxy t-butylene group. It is done. Among these, an oxyethylene group is particularly preferable.
  • Suitable halogenated alkyl alcohols are linear or branched alkyl alcohols having 1 to 8 carbon atoms, such as bromomethanol, chloromethanol, iodomethanol, 2-bromoethanol, 2-chloroethanol, 2-iodoethanol, 3-bromo-1-propanol, 3-chloro-1-propanol, 3-iodo-1-propanol, 1-bromo-2-propanol, 1-chloro-2-propanol, 1-iodo-2-propanol, 4-bromo-1-butanol, 4-chloro-1-butanol, 4-iodo-1-butanol, bromo-t-butyl alcohol, chloro-t-butyl alcohol, iodo-t- Examples include butyl alcohol. Of these, 2-bromoethanol is particularly preferable. In addition, these may be used independently and may mix and use 2 or more types.
  • the reaction temperature of this reaction is desirably in the range of ⁇ 20 ° C. to 150 ° C., preferably 60 to 110 ° C., from the viewpoint of reaction time and suppression of side reactions.
  • the fluorine-containing alcohol compound represented by the general formulas (2) and (5) is (meth) acryloylated to form a fluorine-containing phenylalkyl (meth) acrylate compound represented by the above general formula (1), and A fluorine phenoxyalkyl (meth) acrylate compound can be obtained.
  • (Meth) acryloylation is performed by reacting with a (meth) acryloylating agent in the presence or absence of a base.
  • a (meth) acryloylating agent examples include (meth) acrylic acid chloride and (meth) acrylic anhydride. These may be used singly or in combination of two or more.
  • the amount of the (meth) acryloylating agent used is, for example, about 1.0 to 2.0 molar equivalents, preferably about 1.0 to 1.5 molar equivalents with respect to the fluorinated alcohol compound.
  • an organic base is preferable, and tertiary amines are particularly preferably used.
  • aliphatic amines such as triethylamine, diisopropylethylamine, N-methylmorpholine, N-methylpiperidine, and aromatic amines such as pyridine. These may be used singly or in combination of two or more.
  • the amount of the base used is, for example, about 1.0 to 2.0 molar equivalents, preferably about 1.0 to 1.5 molar equivalents with respect to the fluorine-containing alcohol compound.
  • the solvent is not particularly limited, but a solvent that is not reactive with a compound is desirable, and examples thereof include ethers such as THF, diethyl ether, and dimethoxyethane, and aromatic hydrocarbons such as benzene, toluene, and xylene. It is done.
  • ethers such as THF, diethyl ether, and dimethoxyethane
  • aromatic hydrocarbons such as benzene, toluene, and xylene. It is done.
  • examples of the phenylalkyl (meth) acrylate compound in which m is 0 and R 1 is an alkylene group include the following.
  • benzyl (meth) acrylate is particularly preferable.
  • examples of the phenoxyalkyl (meth) acrylate compound in which m is 0 and R 1 is an oxyalkylene group include the following.
  • Such a phenylalkyl (meth) acrylate compound and a phenoxyalkyl (meth) acrylate compound can be obtained by a conventionally known synthesis method.
  • the molecular weight of the (meth) acrylate compound represented by the general formula (1) is 800 or less. More preferably, it is 600 or less, More preferably, it is 400 or less.
  • optical resin compound to which the additive containing the (a) (meth) acrylate compound represented by the general formula (1) according to the embodiment of the present invention is added may be a general optical resin material. There is no particular limitation.
  • ABS acrylonitrile butadiene styrene
  • PS polystyrene
  • PC polycarbonate
  • AS acrylonitrile styrene
  • PMMA polymethyl methacrylate
  • EP Epoxy
  • PF phenol
  • olefin-based resins such as PE (polyethylene) and PP (polypropylene)
  • resin raw materials such as CYTOP resins, and these monomers and compositions containing monomers.
  • optical resin compound that can be used as an optical element on the high dispersion side is effective.
  • Specific examples include optical resin compounds represented by the following general formulas (6) and (7).
  • R each independently represents a hydrogen atom or a methyl group
  • p and q each independently represent an integer of 1 to 3.
  • R 4 and R 5 are each independently a hydrogen atom or an alkyl group having a carbon number of 1 ⁇ 2
  • R 6, R 7, R 8, R 9 are each independently hydrogen It represents any of an atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group in which some hydrogen atoms may be substituted with an alkyl group having 1 to 6 carbon atoms.
  • the optical resin precursor composition according to the embodiment of the present invention includes an additive containing (a) (meth) acrylate compound represented by the general formula (1) according to the embodiment of the present invention. It is obtained by adding to the resin compound. That is, such an optical resin composition is a mixture containing the (a) (meth) acrylate compound represented by the general formula (1) and the (b) optical resin compound.
  • An optical resin composition according to an embodiment of the present invention includes an additive containing the (a) (meth) acrylate compound represented by the general formula (1) according to the embodiment of the present invention, and the above (b) optical resin compound. It is obtained by polymerizing a resin precursor compound containing. That is, such an optical resin composition includes a structural unit represented by the general formula (8).
  • each R independently represents a hydrogen atom or a methyl group
  • each X independently represents a fluorine atom or a methyl group in which at least one hydrogen atom is substituted with a fluorine atom
  • m is 0
  • R 1 represents an alkylene or oxyalkylene group having 1 to 8 carbon atoms.
  • R each independently represents a hydrogen atom or a methyl group
  • p and q each independently represents an integer of 1 to 3
  • X each independently represents a fluorine atom or at least one hydrogen atom.
  • the atom represents a methyl group substituted with a fluorine atom
  • m represents an integer of 0 to 5
  • R 1 represents an alkylene group or an oxyalkylene group having 1 to 8 carbon atoms.
  • the polymerization method of the copolymer represented by the general formula (9) is not particularly limited, but a radical polymerization method is preferable from the viewpoint of ease of control and the like, and among the radical polymerizations, controlled radical polymerization is more preferable.
  • the controlled radical polymerization method include a chain transfer agent method, a living radical polymerization method that is a kind of living polymerization, and the like, and living radical polymerization that can easily control the molecular weight distribution is more preferable.
  • Examples of the living radical polymerization method include nitroxy radical polymerization method (NMP), atom transfer radical polymerization method (ATRP), and reversible addition-fragmentation chain transfer method (RAFT).
  • ⁇ (C) Polymerization initiator when using radical polymerization, a conventionally well-known polymerization initiator can be used suitably. Moreover, the polymerization initiator may be used alone or in combination of two or more thereof, and commercially available ones may be used as they are.
  • the refractive index variation due to the raw material manufacturing process can be suppressed, and a refractive index adjusting component for adjusting the refractive index of the cured resin precursor mixture to a desired value can be appropriately added. Thereby, the diffraction characteristic of a diffractive optical element can be stabilized.
  • the refractive index adjusting component those that exert an effect when added in a small amount are preferable, and a compound having a refractive index lower than that of the main component is desirable.
  • refractive index adjusting components examples include 2,2,2-trifluoroethyl (meth) acrylate, 1,6-bis (acryloyloxy) -2,2,3,3,4,4,5,5-octafluoro Examples include hexane (hereinafter referred to as Compound A).
  • Compound A hexane
  • the catalyst used for the polymerization reaction can be appropriately used according to the polymerization method. Moreover, it can use suitably also about the ligand according to a metal catalyst.
  • additives can be added to impart properties such as adhesion, coating uniformity, chemical resistance, and heat resistance.
  • the copolymer obtained by the living radical polymerization method can be converted into a functional group by a further chemical reaction.
  • the optical resin composition according to the embodiment of the present invention includes such a copolymer after conversion. Examples of functional group conversion include esterification of a carboxy group derived from (meth) acrylate.
  • the optical resin precursor composition according to the embodiment of the present invention may contain at least one (meth) acrylate compound containing a structural unit represented by the general formula (1).
  • One or more other arbitrary structural units may be included.
  • the optical resin precursor composition thus prepared is excellent in moldability.
  • an optical resin precursor composition having a low refractive index and high dispersion is known to have a high viscosity.
  • a viscosity suitable for molding can be obtained by preparing the optical resin precursor composition by mixing the above-described additives into the optical resin precursor composition at a predetermined ratio. Note that the viscosity range suitable for molding using a mold is approximately 500 to 5000 Mpa ⁇ s although it varies depending on the molding process to be applied.
  • the copolymer having the structural unit represented by the general formula (8) synthesized in this manner is excellent in transparency and thermal characteristics.
  • the optical resin composition is required to have high transparency, and it is desirable that the internal transmittance at a thickness of 100 ⁇ m is 95% or more in the entire wavelength band of 400 nm to 800 nm.
  • the resin composition obtained by curing the optical resin precursor composition described above has an internal transmittance of 96% or more at a thickness of 100 ⁇ m over the entire wavelength band of 400 nm to 800 nm (98.0% or more in the wavelength band of 430 nm to 650 nm). And satisfies the condition of this internal transmittance.
  • a lens formed with a contact multilayer diffractive optical element has a junction type in which the contact multilayer diffractive optical element is sandwiched between two lenses, and a contact multilayer diffractive optical element on one surface of one lens.
  • a non-joint type that is molded and does not join a lens on the diffractive optical element.
  • the non-joint type is advantageous in an optical system that requires a reduction in size and weight because the number of glass lenses is one less than that of the joined type.
  • the shape of the diffractive optical element when a diffractive optical element is molded, the shape of the diffractive optical element can be molded into a spherical surface or an aspherical surface by transferring a lens-shaped mold onto a resin surface.
  • the resin surface shape after molding may differ from the reversal shape of the mold due to the curing shrinkage of the resin.
  • the mold shape is modified so that the resin molding surface becomes the desired shape.
  • the shape can be corrected.
  • the uppermost surface of the diffractive optical element can be polished and corrected, so that the shape of the outermost surface can be freely selected and a highly accurate resin surface can be formed.
  • the resin molding surface is in contact with air in the non-bonding type, it is necessary to form an antireflection coating on the uppermost surface of the diffractive optical element in order to suppress surface reflection.
  • an antireflection coating made of an inorganic material is applied on a diffractive optical element made of a resin material, if the difference in linear expansion coefficient between the materials is large, the coating tends to crack.
  • the storage modulus of the resin material is low, when the resin is heated in a process such as an antireflection coating, the resin layer is deformed by the compressive stress of the antireflection coating layer, and fine wrinkles are formed on the surface after coating. The problem of occurring occurs.
  • the cured optical resin composition satisfy the predetermined conditions for the linear expansion coefficient and the storage elastic modulus.
  • the linear expansion coefficient of the material constituting the diffractive optical element is 2.0 ⁇ 10. -4 (1 / K, 25-70 ° C.) or less.
  • the diffractive optical element has a lens shape and a resin thickness difference of 1000 ⁇ m or more exists, it is preferably 1.2 ⁇ 10 ⁇ 4 (1 / K, 25-70 ° C.) or less.
  • the storage elastic modulus in 100 degreeC is 19 Mpa or more.
  • the above-mentioned optical resin composition satisfies these thermal characteristics. Conventionally, it has been considered difficult to achieve both diffractive optical characteristics and thermal characteristics. However, the optical resin composition obtained by curing the optical resin precursor composition described above achieves both diffractive optical characteristics and thermal characteristics. An optical resin composition can be obtained.
  • Such an optical resin precursor composition according to an embodiment of the present invention is suitable, for example, as a diffractive optical element included in many optical devices.
  • an optical element and an optical apparatus used in the embodiment of the present invention will be described.
  • FIG. 1 shows an example of a structure (cross-sectional shape) of a general contact multilayer type diffractive optical element (DOE).
  • DOE general contact multilayer type diffractive optical element
  • This diffractive optical element is composed of a first diffractive optical element 1 made of a resin having a low refractive index and a high dispersion, and a second diffractive optical element 2 made of a resin having a high refractive index and a low dispersion, and between the two diffractive optical elements.
  • a serrated relief pattern 5 (diffraction grating pattern) is formed.
  • FIG. 2 shows seven further structural examples of the contact multilayer type diffractive optical element (DOE).
  • the contact multilayer type diffractive optical element (DOE) is a so-called contact multilayer type in which a resin having a high refractive index and low dispersion is laminated with a resin having a lower refractive index and higher dispersion than the resin, and a diffraction grating is provided at the interface. This is an optical element.
  • the contact multilayer optical element may be formed on a single substrate or may be sandwiched between two substrates.
  • the substrate may be a parallel plate, or may have a plano-concave shape, a plano-convex shape, a meniscus shape, or a biconvex shape.
  • the contact multilayer optical element may be formed on a flat surface, or may be formed on a convex surface or a concave surface. Either the high refractive index low dispersion resin or the low refractive index high dispersion resin may be formed in the first layer. Further, an antireflection film may be formed on the upper surface of the contact multilayer optical element formed on one substrate. Furthermore, the convex surface and concave surface of the substrate may be aspherical. Further, the air layer side surface of the second layer of the optical element formed on one substrate may be an aspherical surface.
  • optical elements and optical elements according to the embodiments of the present invention are widely used in photographing optical systems, optical systems for microscopes, optical systems for observation optical systems, and the like, and an optimal configuration can be selected as appropriate depending on the application and the form of the optical system.
  • FIG. 3 shows an imaging device 51 on which a multi-layered diffractive optical element (DOE) having an optical resin composition according to an embodiment of the present invention as a base material is mounted.
  • DOE diffractive optical element
  • the imaging device 51 is a so-called digital single-lens reflex camera, and a lens barrel 53 is detachably attached to a lens mount (not shown) of the camera body 52. Then, light passing through the imaging lens 54 of the lens barrel 53 is imaged on a sensor chip (solid-state imaging device) 55 of a multichip module disposed on the back side of the camera body 52. At least one lens group 56 constituting the imaging lens 54 includes the above-described contact multilayer diffractive optical element (DOE).
  • DOE contact multilayer diffractive optical element
  • the optical apparatus is not limited to such an imaging apparatus, and examples thereof include a microscope, binoculars, a telescope, a security camera, and a projector.
  • Example 1 Synthesis of EA2> To the flask, 5.40 g (96.3 mmol) of potassium hydroxide, ethanol (100 mL), 12.5 g (96.3 mmol) of 3,4-difluorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred well at 23 ° C. The ethanol and by-product water were distilled off under reduced pressure to prepare potassium 3,4-difluorophenoxide.
  • the crude product was purified by column chromatography using silica gel as a filler and a mixed solvent of hexane-acetone as a developing solvent, and 10.1 g (57.7 mmol) of 2- (3,4-difluorophenoxy) ethanol as a yellow transparent liquid )
  • the organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to obtain 6.96 g of a crude product (light yellow transparent liquid).
  • the crude product is purified by column chromatography using silica gel as a filler and a mixed solvent of hexane-acetone as a developing solvent, and is obtained as a colorless and transparent liquid by 2- (3,4-) represented by the following general formula (10).
  • Difluorophenoxy) ethyl acrylate 5.15 g (22.6 mmol) was obtained.
  • Example 2 Synthesis of EA1> The same treatment was carried out by replacing 3,4-difluorophenol in Example 1 with 4-fluorophenol to obtain 2- (4-fluorophenoxy) ethyl acrylate represented by the following general formula (11).
  • Example 3 Synthesis of EA3> The same treatment was carried out by replacing 3,4-difluorophenol in Example 1 with 3,4,5-triolphenol, and 2- (3,4,5-trimethylphenol) represented by the following general formula (12) was obtained. Trifluorophenoxy) ethyl acrylate was obtained.
  • Example 4 Synthesis of EA4> The same treatment was performed by replacing 3,4-difluorophenol of Example 1 with 2,3,4,6-tetrafluorophenol, and 2- (2,3,3) represented by the following general formula (13) was obtained. 5,6-Tetrafluorophenoxy) ethyl acrylate was obtained.
  • Example 5 Synthesis of EA5> The same treatment was carried out by replacing 3,4-difluorophenol of Example 1 with 2,3,4,5,6-pentafluorophenol, and 2- (perfluorocarbon) represented by the following general formula (14) was used. Phenoxy) ethyl acrylate was obtained.
  • Example 6 Synthesis of EM2> The same treatment was carried out by replacing acryloyl chloride in Example 1 with methacryloyl chloride to obtain 2- (3,4-difluorophenoxy) ethyl methacrylate represented by the following general formula (15).
  • Example 7 Synthesis of EM1> The same treatment was carried out by replacing acryloyl chloride in Example 2 with methacryloyl chloride to obtain 2- (4-fluorophenoxy) ethyl methacrylate represented by the following general formula (16).
  • Example 8 Synthesis of EM3> The same treatment was carried out by changing 3,4-difluorophenol of Example 1 to 3-trifluoromethylphenol and acryloyl chloride to methacryloyl chloride, respectively. 3-Trifluoromethylphenoxy) ethyl methacrylate was obtained.
  • the organic phase was washed with hydrochloric acid (5 mM), saturated aqueous sodium hydrogen carbonate solution and saturated brine, and the solution was dried over sodium sulfate. Thereafter, the mixture was concentrated under reduced pressure to obtain 6.9 g of a crude product (light yellow transparent liquid).
  • 4.7 g (21 mmol) of 2,4,5-trifluorobenzyl acrylate was obtained.
  • Example 10 Synthesis of BA4 The same treatment was carried out by changing 2,4,5-trifluorobenzyl alcohol in Example 9 to 2,3,4,5-tetrafluorobenzyl alcohol, and 2,6,5-trifluorobenzyl alcohol represented by the following general formula (19) was used. 3,4,5-tetrafluorobenzyl acrylate was obtained.
  • Example 11 Synthesis of BA5 The same treatment was carried out by changing 2,4,5-trifluorobenzyl alcohol of Example 9 to pentatetrafluorobenzyl alcohol, to obtain perfluorobenzyl acrylate represented by the following general formula (20).
  • optical resin precursor composition An optical resin precursor composition was prepared by the method described below.
  • Example 12 Preparation of resin precursor of BAHF and EA2 (BAHF-EA2)> 10 parts by mass of 2- (3,4-difluorophenoxy) ethyl acrylate (EA2) obtained in Example 1 and 2,2-bis (((acryloyloxy) ethoxy) represented by the following general formula (21) (Phenyl) -1,1,1,3,3,3-hexafluoropropane (BAHF) (90 parts by mass) was mixed and stirred at 23 ° C. until uniform. BAHF was synthesized by a conventionally known synthesis method (Chemical Papers, 2014, vol. 68, # 11, p1561-1572).
  • HCPK 1-hydroxy-cyclohexyl-phenyl-ketone
  • BAHF photopolymerization initiator
  • EA2 80: 20 mass parts and 70:30 mass parts, and the optical resin precursor composition was prepared in each ratio.
  • Example 14 Preparation of resin precursor composition of BAHF and EA3 (BAHF-EA3)> An optical resin precursor composition was prepared by changing EA2 of Example 12 above to 2- (3,4,5-trifluorophenoxy) ethyl acrylate (EA3) obtained in Example 3 and performing the same treatment.
  • EA3 2- (3,4,5-trifluorophenoxy) ethyl acrylate
  • Example 17 Preparation of resin precursor composition of BAHF and EM2 (BAHF-EM2)>
  • An optical resin precursor composition was prepared by changing the EA2 of Example 12 to 2- (3,4-difluorophenoxy) ethyl methacrylate (EM2) obtained in Example 6 and performing the same treatment.
  • BAHF: EM2: HCPK 90: 10: 0.5).
  • This includes a structural unit represented by the following general formula (27) after photocuring. Further, the same treatment was performed at a ratio of BAHF: EM2: HCPK 80: 20: 0.5 part by mass to prepare an optical resin precursor composition.
  • Example 19 Preparation of resin precursor composition of BAHF and EA3 (BAHF-EA3)> An EA2 of Example 12 was replaced with 2- (3-trifluoromethylphenoxy) ethyl methacrylate (EM3) obtained in Example 8 above, and the same treatment was performed to prepare an optical resin precursor composition.
  • BAHF: EM3: HCPK 90: 10: 0.5).
  • Example 20 Preparation of resin precursor composition of BAHF and EA0 (BAHF-EA0)>
  • An optical resin precursor composition was prepared by changing EA2 in Example 12 to known 2-phenoxyethyl acrylate (EA0) (manufactured by Shin-Nakamura Chemical Co.) represented by the following general formula (30).
  • EA0 2-phenoxyethyl acrylate
  • Example 21 Preparation of resin precursor composition of BAHF and EM0 (BAHF-EM0)>
  • the 2- (3,4-difluorophenoxy) ethyl acrylate (EA2) obtained in Example 1 above was converted to a known 2-phenoxyethyl methacrylate (EM0) represented by the following general formula (31) (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • Example 22 Preparation of resin precursor composition of BAHF and EA2 (BAHF-EA2-compound A)> The same treatment as in Example 12 above was performed by adding 1,6-bis (acryloyloxy) -2,2,3,3,4,4,5,5-octafluorohexane (Compound A) as a refractive index adjusting component.
  • the viscosity of BAHF varies depending on the lot.
  • the numerical value in () is the measurement result of the mixture of BAHF lot 1: viscosity 16500 mPa ⁇ s, and the numerical value without () is the measurement result of the mixture of BAHF lot 2: viscosity 19800 mPa ⁇ s.
  • Resin composition BAHF-EA2 cured product was prepared.
  • Ultraviolet light irradiation uses an ultraviolet light irradiation machine (UL-250 manufactured by HOYA CANDEO OPTRONICS) equipped with a high-pressure mercury lamp that generates ultraviolet light of 365 nm, and is temporarily cured through ground glass at 8 mW / cm 2 at 150 m.
  • Irradiation was performed for 1 second (1200 mJ / cm 2 ). Further, the ground glass was removed and irradiation was performed at 8 mW / cm 2 for 75 seconds (600 mJ / cm 2 ).
  • a metal halide lamp, a high pressure mercury lamp, LED, etc. can be used if a light source contains 365 nm.
  • an ultraviolet light irradiation machine made by Eye Graphics Co., Ltd.
  • irradiation for 233 seconds about 7000 mJ / cm 2
  • 31 mW / cm 2 as the main curing. Went.
  • Example 26 Preparation of cured product (BAHF-EA0)>
  • Each of the optical resin precursors (BAHF-EA0-compound A) of Example 22 was irradiated with ultraviolet rays to prepare a cured product of the resin composition BAHF-EA0 having a thickness of 5 mm. Irradiation with ultraviolet light was performed for 75 seconds (600 mJ / cm 2 ) at 8 mW / cm 2 as temporary curing through the ground glass. Further, the ground glass was removed and irradiation was performed at 8 mW / cm 2 for 150 seconds (1200 mJ / cm 2 ).
  • Example 27 Preparation of cured product (BAHF-EM0)>
  • the optical resin precursor (BAHF-EM0-Compound A) of Example 23 was treated in the same manner as in Example 22 to prepare a cured product of the resin composition BAHF-EM0 having a thickness of 5 mm.
  • ⁇ Comparative Example 2 Preparation of cured product (BAHF)>
  • the optical resin precursor composition (BAHF) prepared in Comparative Example 1 was irradiated with ultraviolet rays to prepare a cured resin composition BAHF having a thickness of 5 mm. Irradiation with ultraviolet light was performed through ground glass at 8 mW / cm 2 for 150 seconds (1200 mJ / cm 2 ) as temporary curing. Further, the ground glass was removed and irradiation was performed at 8 mW / cm 2 for 75 seconds (600 mJ / cm 2 ).
  • FIG. 4 shows an optical resin precursor prepared in the same manner as described above by adding EA1, EA2, EA3, EA4, and EA5 synthesized in Examples 1 to 5 to BAHF or BMHF in the following composition.
  • cured material is shown.
  • FIG. 5 shows refractive index wavelengths of cured optical resin precursor compositions prepared in the same manner as described above by adding EM1, EM2, and EM3 synthesized in Examples 6 to 8 as additives to BAMF in the following composition. Show properties. Composition ratio Abbe number ⁇ d BMHF: EM1: HCPK (50: 50: 0.5 parts by mass) 37.9 BMHF: EM2: HCPK (50: 50: 0.5 parts by mass) 38.6 BMHF: EM3: HCPK (50: 50: 0.5 parts by mass) 38.5
  • Example 28 Creation of diffractive optical element 1>
  • an optical resin precursor composition BAHF: EA2: HCPK (90: 10: 0.5) as an optical resin precursor composition (low refractive index high dispersion resin) 1 prepared as the first optical element shown in FIG. ) was dropped on the glass substrate, a predetermined mold was brought close to the resin surface, the resin was spread close to the glass substrate to a position where the resin thickness became 200 ⁇ m, and ultraviolet rays were irradiated.
  • Ultraviolet light irradiation was performed using an ultraviolet light irradiation machine (UL-250 manufactured by HOYA CANDEO OPTRONICS) equipped with a high-pressure mercury lamp that generates ultraviolet light of 365 nm.
  • the first diffractive optical element was prepared by removing it from the mold.
  • the viscosity of the resin precursor used for the first optical element was sufficiently low, 3900 mPa ⁇ s.
  • the conditions of ultraviolet irradiation performed as temporary curing were the same as the conditions of temporary curing of the first optical element.
  • frosted glass was irradiated through a ground glass at 6 mW / cm 2 for 167 seconds (1000 mJ / cm 2 ).
  • irradiation was performed at 7 mW / cm 2 for 14 seconds (100 mJ / cm 2 ).
  • the mold is separated from the resin, and an ultraviolet light irradiation machine (manufactured by Eye Graphics Co., Ltd.) equipped with a metal halide lamp that generates 365 nm ultraviolet light is used for main curing at 20 mW / cm 2 for 500 seconds (10000 mJ).
  • the diffractive optical element was molded.
  • the grating height of the diffraction grating is 28.2 ⁇ m.
  • Example 29 Creation of diffractive optical element 2>
  • the grating height of the diffraction grating is 28.1 ⁇ m.
  • the viscosity of the resin precursor used for the first optical element was sufficiently low, 2160 mPa ⁇ s.
  • Example 30 Creation of diffractive optical element 3>
  • BAHF EA2: HCPK (90: 10: 0.5 part by mass) of Example 28
  • A-DCP tricyclodecane dimethanol diacrylate
  • DMDS di (2- Mercaptodiethyl) sulfide
  • Michael addition reactant: HCPK 100: 0.5 parts by mass
  • the grating height of the diffraction grating is 28.8 ⁇ m.
  • the viscosity of the resin precursor used for the first optical element was 1960 mPa ⁇ s, which was sufficiently low.
  • the additive of the present embodiment represented by the general formula (1) to BAHF which is an optical resin precursor composition having a low refractive index and high dispersion, the optical resin precursor composition of The viscosity was greatly reduced, and a precise relief pattern could be obtained without problems when processing the diffractive optical element.
  • the effects of reducing the viscosity of the additives of Examples 2 to 8 were the same as those of Example 1, and it was confirmed that a precise relief pattern could be obtained without problems when processing the diffractive optical element.
  • the resin precursor composition of Comparative Example 1 is represented by the general formula (1) in the step of spreading the resin with a mold. Compared with the molding process using the optical resin precursor composition to which the additive was added, bubbles were mixed unless the rate at which the mold was brought into contact with the resin was sufficiently low.
  • FIG. 6 shows a graph regarding the relationship between the wavelength of light and the amount of flare.
  • the horizontal axis of FIG. 6 indicates the wavelength (nm) of light, and the vertical axis indicates the ratio of the sum of zero-order diffracted light and second-order diffracted light to the first-order diffracted light in (%).
  • FIG. 6 indicate the flare amounts of diffractive optical elements prepared using the optical resin precursor compositions of Examples 12, 22, and 24, respectively. Moreover, the continuous line of FIG. 6 has shown the flare amount of the diffractive optical element produced using the optical resin precursor composition of the said Comparative Example 2.
  • FIG. 6 illustrates the flare amount of diffractive optical elements prepared using the optical resin precursor compositions of Examples 12, 22, and 24, respectively. Moreover, the continuous line of FIG. 6 has shown the flare amount of the diffractive optical element produced using the optical resin precursor composition of the said Comparative Example 2.
  • a copolymer of A-DCP and DMDS was used as the high refractive index and low dispersion resin, but the present invention is not limited to this.
  • the high refractive index and low dispersion resin for example, hexanediol di (meth) acrylate, decanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate and the like can be used. .
  • the resin on the high refractive index / low dispersion side can be appropriately selected and prepared according to the refractive index characteristics shown in FIGS. For example, for a resin having a high fluorine compounding ratio and a low refractive index as a whole, a material with a suppressed refractive index may be selected as the counterpart high refractive index low dispersion resin.
  • the (meth) acrylate compound of this embodiment not only the viscosity of the low refractive index and high dispersion resin is lowered to improve the processing characteristics, but also according to the behavior of the selected high refractive index and low dispersion resin,
  • the type of (meth) acrylate compound which is an additive according to an embodiment of the present invention, and adjusting the addition amount, the degree of freedom in adjusting the refractive index behavior with respect to the wavelength is increased, and the wavelength-refractive index behavior can be controlled with higher accuracy. Since it becomes possible, further flare light reduction effect can be expected.
  • ⁇ Evaluation of thermal characteristics of diffractive optical element> The physical properties of the low refractive index high dispersion resin and the high refractive index low dispersion resin used in Examples 28 to 30 and Comparative Example 3 are shown below. As described above, the thickness of the diffraction grating is 200 ⁇ m for the first diffractive optical element and 300 ⁇ m for the second diffractive optical element. The diffraction grating height is about 28 ⁇ m.
  • Example 28 ⁇ 1st diffractive optical element (low bending and high dispersion) -Hardened
  • cured material of BAHF: EA2: HCPK (90: 10: 0.5 mass part) Hardened
  • cured material storage elastic modulus: 110 (MPa, @ 100 degreeC) Cured product linear expansion coefficient: 1.0 ⁇ 10-4 (1 / K, 25-70 ° C.) -Second diffractive optical element (high bending and low dispersion) -Michael addition reaction product of A-DCP: DMDS (88:12 parts by mass): cured product of HCPK (100: 0.5 parts by mass) Cured product storage elastic modulus: 91 (MPa, @ 100 ° C.) Cured product linear expansion coefficient: 1.0 ⁇ 10-4 (1 / K, 25-70 ° C.)
  • An inorganic oxide composed of a multilayer film was formed on the surfaces of the four types of diffractive optical elements prepared in Examples 28 to 30 and Comparative Example 3 by a vacuum deposition method to form an antireflection film.
  • the diffractive optical element produced using the resins of Examples 28 to 30 having a linear expansion coefficient of 2.0 ⁇ 10 ⁇ 4 (1 / K, 25 ° C.-70 ° C.) or less the film was cracked Thus, a film having good antireflection characteristics could be formed.
  • the diffractive optical elements of Examples 28 to 30 in which a cured product having a storage elastic modulus at 100 ° C.
  • the second diffractive optical element are subjected to environmental tests such as a heat resistance test, a temperature cycle test, and a moisture resistance test.
  • environmental tests such as a heat resistance test, a temperature cycle test, and a moisture resistance test.
  • no wrinkles entered the membrane is because even in Examples 28 to 30, even when the storage elastic modulus slightly decreases due to heating or moisture absorption, the storage elastic modulus at 100 ° C. of the resin (second optical element) closest to the air layer is as high as 90 MPa or more. This means that the deformation of the resin surface due to the stress of the film can be suppressed.
  • the antireflection film can be formed if the storage elastic modulus at 100 ° C. of the second diffractive optical element resin is at least 19 Mpa or more.
  • the storage elastic modulus is preferably higher, and multiplied by a safety factor, 50 MPa The above is desirable.
  • the thickness of the second optical element is constant regardless of the place, that is, the same thickness, but the thickness of the second optical element is changed depending on the position in the radial direction.
  • a spherical shape is also possible.
  • the resin thickness difference of the second diffractive optical element may be about the same as the resin thickness difference in a normal composite aspheric lens. Specifically, the resin thickness difference between the thickest part and the thinnest part. May be 10 ⁇ m or more and 1500 ⁇ m or less.
  • the linear expansion coefficients of the first diffractive optical element and the second diffractive optical element of the present invention are both as low as 2.0 ⁇ 10 ⁇ 4 (1 / K, 25 ° C.-70 ° C.) or less, and the second diffractive optical element Since the storage elastic modulus at 100 ° C. is as high as 50 MPa or more, the second diffractive optical element has a non-spherical shape by changing the thickness of the second diffractive optical element. Can be produced.
  • a diffractive optical element having a spherical or aspherical lens shape having a resin thickness difference of 1000 ⁇ m or more can be stabilized. And can be molded.
  • first diffractive optical element 1: first diffractive optical element
  • 2 second diffractive optical element 1
  • 5 relief pattern
  • 52 camera body

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

下記一般式(1)で表される(メタ)アクリレート化合物を含む光学用樹脂添加剤。 〔一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。〕

Description

(メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置
 本発明は、光学用に用いられる化合物に関するものである。
 近年、回折現象を利用して光の進行方向を変える回折光学素子(DOE)が注目されている。例えば、透過ブレーズ型回折光学素子には、入射光の全てを所望の方向(特定の回折次数)にだけ集中できるという優れた特徴がある。さらに、屈折面を有する屈折光学素子とは逆方向に強力な色収差を発生させるという特性を利用し、回折光学素子を一般的なガラスレンズと組み合わせた密着複層型の位相フレネルレンズが開発されている。
 しかしながら回折光学素子には、所望の回折次数の回折光以外の回折光が不要光となり、ぼけ像となってフレアの発生量が増大させてしまうという問題点がある。従来、このようなフレアを抑制し、広い波長範囲で高い回折効率を有する構成を得るために、相対的に低屈折高分散の樹脂原料からなる回折光学素子と、高屈折低分散の樹脂原料からなる回折光学素子とを組み合わせて用いる傾向にある。さらに、回折光学素子の樹脂材料として無機微粒子を分散させた複合材料を用いることが試みられてきた(例えば、特許文献1)。
特開2008-203821号公報
 しかしながら、このような技術によっても十分なフレア抑制効果を得ることは難しく、また格子の形状が複雑になればなるほど、成形段階において別の問題が生ずる可能性が高い。即ち、一般的に低屈折高分散の樹脂原料は、粘度が高いことが多く、また、光学特性を良好なものとする為に微粒子等の添加を行うと、相対的に粘度が上昇してしまい、成形時に樹脂がレリーフパターンに対応できないという問題である。特に高粘度な樹脂原料は微細な型溝に入り込みづらいため、精緻なレリーフパターンを形成できない場合がある。
 本発明者らは、樹脂原料に対して良好な加工特性を付与する材料として利用可能な化合物を探索した。その結果、樹脂原料に添加すると、加工後の光学特性を損なわずに加工特性を向上し得る化合物群を見出し、本発明の実施様態を完成するに到った。
 本発明の実施態様は、下記一般式(1)で表される化合物を含む、光学用樹脂添加剤である。
Figure JPOXMLDOC01-appb-C000007
 〔一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。〕
密着複層型の回折光学素子(DOE)の構造例についての断面図。 密着複層型の回折光学素子(DOE)のさらなる構造例を示す断面図。 本発明の実施様態に係る光学用樹脂前駆体組成物を母材とする密着複層型の回折光学素子(DOE)を搭載した撮像装置の説明図。 本発明の実施様態に係る光学用樹脂前駆体組成硬化物の屈折率波長特性についての測定結果のグラフ。 本発明の実施様態に係る光学用樹脂前駆体組成硬化物の屈折率波長特性についての測定結果のグラフ。 本発明の実施様態に係る密着複層型回折光学素子(DOE)についての光の波長とフレア量との関係についての測定結果のグラフ。
 以下、本発明の実施様態について詳細に説明する。なお、この実施の形態により本発明の実施様態が限定されるものではない。また、本明細書中において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味し、(メタ)アクリル化とは、アクリル化および/またはメタクリル化を意味し、(オキシ)アルキレンとは、アルキレンおよび/またはオキシアルキレンを意味する。
 <(a)(メタ)アクリレート化合物>
 本発明の実施様態の添加剤に含まれるフェニル(オキシ)アルキレン(メタ)アクリレート化合物(以下、単に(メタ)アクリレート化合物と称する)は、少なくとも一種の下記一般式(1)で表される構成単位を含む。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。
 一般式(1)中、Xで表される置換基としては、それぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基である。少なくとも1つの水素原子がフッ素原子で置換されたメチル基とは、具体的には、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が挙げられる。これらの中でも、フッ素原子、トリフルオロメチル基が好適である。
 一般式(1)中、mは0~5の整数を表し、Xは芳香環上の置換可能な5箇所の炭素のうち任意の位置に置換し、その結合位置は問わない。
 一般式(1)中、Rで表されるアルキレン基又はオキシアルキレン基としては、直鎖状、分枝状又は環状の、炭素数1~8のアルキレン基又はオキシアルキレン基が好ましい。炭素数1~8のアルキレン基としては、具体的には、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、t-ブチレン基等が挙げられる。炭素数1~8のオキシアルキレン基としては、具体的には、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシイソプロピレン基、オキシn-ブチレン基、オキシt-ブチレン基等が挙げられる。これらの中でも特に、メチレン基、オキシエチレン基が好ましい。
 一般式(1)中、Rは、水素原子またはメチル基を表す。
 このような一般式(1)で表される(メタ)アクリレート化合物の製造方法は、特に制限されるものではないが、例えば、以下のようにして製造することができる。
 <(メタ)アクリレート化合物の製造方法>
 一般式(1)で表される(メタ)アクリレート化合物のうち、特にmが1~5、Rがアルキレン基である含フッ素フェニルアルキル(メタ)アクリレート化合物は、例えば、下記一般式(2)で表される含フッ素フェニルアルコール化合物を原料にして得られる。
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、lは1~5の整数を表す。R10は、炭素数1~8のアルキレン基を表す。
 一般式(2)中、Xで表される置換基としては、それぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基のいずれかを表す。少なくとも1つの水素原子がフッ素原子で置換されたメチル基とは、具体的には、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が挙げられる。これらの中でも、フッ素原子、トリフルオロメチル基が好適である。
 一般式(2)中、lは1~5の整数を表し、Xは芳香環上の置換可能な5箇所の炭素のうち任意の位置に置換し、その結合位置は問わない。
 一般式(2)中、Rで表されるアルキレン基としては、直鎖状、分枝状又は環状の、炭素数1~8のアルキレン基が好ましい。炭素数1~8のアルキレン基としては、具体的には、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、t-ブチレン基等が挙げられる。これらの中でも特に、メチレン基が好ましい。
 このような一般式(2)で表される含フッ素フェニルアルコール化合物は、例えば、2-フルオロベンジルアルコール、3-フルオロベンジルアルコール、4-フルオロベンジルアルコール、2,3-ジフルオロベンジルアルコール、2,4-ジフルオロベンジルアルコール、2,5-ジフルオロベンジルアルコール、2,6-ジフルオロベンジルアルコール、3,4-ジフルオロベンジルアルコール、3,5-ジフルオロベンジルアルコール、3,6-ジフルオロベンジルアルコール、2,3,4-トリフルオロベンジルアルコール、2,3,5-トリフルオロベンジルアルコール、2,3,6-トリフルオロベンジルアルコール、2,4,5-トリフルオロベンジルアルコール、2,4,6-トリフルオロベンジルアルコール、2,5,6-トリフルオロベンジルアルコール、3,4,5-トリフルオロベンジルアルコール、2,3,4,5-テトラフルオロベンジルアルコール、2,3,4,6-テトラフルオロベンジルアルコール、2,3,5,6-テトラフルオロベンジルアルコール、2,4,5,6-テトラフルオロベンジルアルコール、2,3,4,5,6-ペンタフルオロベンジルアルコール、2-(トリフルオロメチル)ベンジルアルコール、3-(トリフルオロメチル)ベンジルアルコール、4-(トリフルオロメチル)ベンジルアルコール、2,3-ビス(トリフルオロメチル)ベンジルアルコール、2,4-ビス(トリフルオロメチル)ベンジルアルコール、2,5-ビス(トリフルオロメチル)ベンジルアルコール、2,6-ビス(トリフルオロメチル)ベンジルアルコール、3,4-ビス(トリフルオロメチル)ベンジルアルコール、3,5-ビス(トリフルオロメチル)ベンジルアルコール、3,6-ビス(トリフルオロメチル)ベンジルアルコール、2,3,4-トリス(トリフルオロメチル)ベンジルアルコール、2,3,5-トリス(トリフルオロメチル)ベンジルアルコール、2,3,6-トリス(トリフルオロメチル)ベンジルアルコール、2,4,5-トリス(トリフルオロメチル)ベンジルアルコール、2,4,6-トリス(トリフルオロメチル)ベンジルアルコール、2,5,6-トリス(トリフルオロメチル)ベンジルアルコール、3,4,5-トリス(トリフルオロメチル)ベンジルアルコール、2,3,4,5-テトラキス(トリフルオロメチル)ベンジルアルコール、2,3,4,6-テトラキス(トリフルオロメチル)ベンジルアルコール、2,3,5,6-テトラキス(トリフルオロメチル)ベンジルアルコール、2,4,5,6-テトラキス(トリフルオロメチル)ベンジルアルコール、2,3,4,5,6-ペンタキス(トリフルオロメチル)ベンジルアルコール、2-フルオロ-3-(トリフルオロメチル)ベンジルアルコール、2-フルオロ-4-(トリフルオロメチル)ベンジルアルコール、2-フルオロ-5-(トリフルオロメチル)ベンジルアルコール、2-フルオロ-6-(トリフルオロメチル)ベンジルアルコール、3-フルオロ-2-(トリフルオロメチル)ベンジルアルコール、3-フルオロ-4-(トリフルオロメチル)ベンジルアルコール、3-フルオロ-5-(トリフルオロメチル)ベンジルアルコール、3-フルオロ-6-(トリフルオロメチル)ベンジルアルコール、4-フルオロ-2-(トリフルオロメチル)ベンジルアルコール、4-フルオロ-3-(トリフルオロメチル)ベンジルアルコール、等が挙げられる。
 また、一般式(1)で表される(メタ)アクリレート化合物のうち、特にmが1~5、Rがオキシアルキレン基である含フッ素フェノキシアルキル(メタ)アクリレート化合物は、例えば、下記一般式(3)で表される含フッ素フェノール化合物を原料にして得られる。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、lは1~5の整数を表す。
 一般式(3)中、Xで表される置換基としては、それぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基のいずれかを表す。少なくとも1つの水素原子がフッ素原子で置換されたメチル基とは、具体的には、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が挙げられる。これらの中でも、フッ素原子、トリフルオロメチル基が好適である。
 一般式(3)中、lは1~5の整数を表し、Xは芳香環上の置換可能な5箇所の炭素のうち任意の位置に置換し、その結合位置は問わない。
 このような一般式(3)で表される含フッ素フェノール化合物は、例えば、2-フルオロフェノール、3-フルオロフェノール、4-フルオロフェノール、2,3-ジフルオロフェノール、2,4-ジフルオロフェノール、2,5-ジフルオロフェノール、2,6-ジフルオロフェノール、3,4-ジフルオロフェノール、3,5-ジフルオロフェノール、3,6-ジフルオロフェノール、2,3,4-トリフルオロフェノール、2,3,5-トリフルオロフェノール、2,3,6-トリフルオロフェノール、2,4,5-トリフルオロフェノール、2,4,6-トリフルオロフェノール、2,5,6-トリフルオロフェノール、3,4,5-トリフルオロフェノール、2,3,4,5-テトラフルオロフェノール、2,3,4,6-テトラフルオロフェノール、2,3,5,6-テトラフルオロフェノール、2,4,5,6-テトラフルオロフェノール、2,3,4,5,6-ペンタフルオロフェノール、2-(トリフルオロメチル)フェノール、3-(トリフルオロメチル)フェノール、4-(トリフルオロメチル)フェノール、2,3-ビス(トリフルオロメチル)フェノール、2,4-ビス(トリフルオロメチル)フェノール、2,5-ビス(トリフルオロメチル)フェノール、2,6-ビス(トリフルオロメチル)フェノール、3,4-ビス(トリフルオロメチル)フェノール、3,5-ビス(トリフルオロメチル)フェノール、3,6-ビス(トリフルオロメチル)フェノール、2,3,4-トリス(トリフルオロメチル)フェノール、2,3,5-トリス(トリフルオロメチル)フェノール、2,3,6-トリス(トリフルオロメチル)フェノール、2,4,5-トリス(トリフルオロメチル)フェノール、2,4,6-トリス(トリフルオロメチル)フェノール、2,5,6-トリス(トリフルオロメチル)フェノール、3,4,5-トリス(トリフルオロメチル)フェノール、2,3,4,5-テトラキス(トリフルオロメチル)フェノール、2,3,4,6-テトラキス(トリフルオロメチル)フェノール、2,3,5,6-テトラキス(トリフルオロメチル)フェノール、2,4,5,6-テトラキス(トリフルオロメチル)フェノール、2,3,4,5,6-ペンタキス(トリフルオロメチル)フェノール、2-フルオロ-3-(トリフルオロメチル)フェノール、2-フルオロ-4-(トリフルオロメチル)フェノール、2-フルオロ-5-(トリフルオロメチル)フェノール、2-フルオロ-6-(トリフルオロメチル)フェノール、3-フルオロ-2-(トリフルオロメチル)フェノール、3-フルオロ-4-(トリフルオロメチル)フェノール、3-フルオロ-5-(トリフルオロメチル)フェノール、3-フルオロ-6-(トリフルオロメチル)フェノール、4-フルオロ-2-(トリフルオロメチル)フェノール、4-フルオロ-3-(トリフルオロメチル)フェノール、等が挙げられる。これらの中でも、特に、4-フルオロフェノール、3,4-ジフルオロフェノール、3-(トリフルオロメチル)フェノールが好ましい。
 一般式(3)で表される含フッ素フェノール化合物を塩基性化合物と反応させることで、下記一般式(4)で表される含フッ素フェノキシド化合物が得られる。
Figure JPOXMLDOC01-appb-C000011
 一般式(4)中、Mはアルカリ金属原子又はアルカリ土類金属原子を表し、lは1~5の整数を表す。
 好適な塩基性化合物としては例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の無機塩基が挙げられる。これらの中では、容易に入手可能かつ安価である水酸化カリウムが好ましい。なお、これらは単独で用いてもよく、二種類以上を混合して用いてもよい。
 使用される溶媒としては、原料に対する適当な溶解度があり、化合物に対して反応性を有さない溶媒であれば特に限定されないが、例えば、後述のハロゲン化アルキルアルコールと同様の炭素数を有するアルコールを用いることができる。
 本反応の反応温度は、上記溶媒の温度等によって適宜調節することが可能であるが、反応時間と副反応の抑制の観点からは、0~100℃、好ましくは20~50℃の範囲であることが望ましい。
 一般式(4)で表される含フッ素フェノキシド化合物を求核剤としてハロゲン化アルキルアルコールと反応させることで、下記一般式(5)で表される含フッ素アルコール化合物が得られる。
Figure JPOXMLDOC01-appb-C000012
 一般式(5)中、Rは炭素数1~8のオキシアルキレン基を表し、lは1~5の整数を表す。
 一般式(5)中、Rで表されるオキシアルキレン基としては、直鎖状又は分枝状の、炭素数1~8のオキシアルキレン基が好ましい。炭素数1~8のオキシアルキレン基としては、具体的には、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシイソプロピレン基、オキシn-ブチレン基、オキシt-ブチレン基等が挙げられる。これらの中でも特に、オキシエチレン基が好ましい。
 好適なハロゲン化アルキルアルコールとしては、直鎖状又は分枝状の、炭素数1~8のハロゲン化アルキルアルコールであり、具体的には、ブロモメタノール、クロロメタノール、ヨードメタノール、2-ブロモエタノール、2-クロロエタノール、2-ヨードエタノール、3-ブロモ-1-プロパノール、3-クロロ-1-プロパノール、3-ヨード-1-プロパノール、1-ブロモ-2-プロパノール、1-クロロ-2-プロパノール、1-ヨード-2-プロパノール、4-ブロモ-1-ブタノール、4-クロロ-1-ブタノール、4-ヨード-1-ブタノール、ブロモ-t-ブチルアルコール、クロロ-t-ブチルアルコール、ヨード-t-ブチルアルコール等が挙げられる。これらの中でも特に、2-ブロモエタノールが好ましい。なお、これらは単独で用いてもよく、二種類以上を混合して用いてもよい。
 本反応の反応温度は、反応時間と副反応の抑制の観点から、-20℃~150℃、好ましくは60~110℃の範囲であることが望ましい。
 一般式(2)および(5)で表される含フッ素アルコール化合物を、(メタ)アクリロイル化することで、上記一般式(1)で表される含フッ素フェニルアルキル(メタ)アクリレート化合物、および含フッ素フェノキシアルキル(メタ)アクリレート化合物を得ることができる。
 (メタ)アクリロイル化は、塩基の存在下または非存在下、(メタ)アクリロイル化剤と反応させることで行われる。(メタ)アクリロイル化剤としては、例えば、(メタ)アクリル酸クロリドや(メタ)アクリル酸無水物等を挙げることができる。これらは単独で用いてもよく、二種類以上を混合して用いてもよい。
 上記(メタ)アクリロイル化剤の使用量としては、例えば、上記含フッ素アルコール化合物に対して、1.0~2.0モル当量、好ましくは1.0~1.5モル当量程度である。
 塩基としては有機塩基が好ましく、特に第3級アミン類が好適に用いられる。具体的には、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、N-メチルピペリジン等の脂肪族アミン類や、ピリジン等の芳香族アミン類等が挙げられる。これらは単独で用いてもよく、二種類以上を混合して用いてもよい。
 上記塩基の使用量は、例えば、上記含フッ素アルコール化合物に対して、1.0~2.0モル当量、好ましくは1.0~1.5モル当量程度である。
 溶媒は特に限定されないが、化合物に対して反応性を有さないものが望ましく、例えば、THF、ジエチルエーテル、ジメトキシエタン等のエーテル類や、ベンゼン、トルエン、キシレン等の芳香族炭化水素類が挙げられる。
 その他、必要に応じて他の化合物を添加してもよい。また、重合を防止するための重合禁止剤を用いてもよい。
 一般式(1)で表される(メタ)アクリレート化合物のうち、特にmが0、Rがアルキレン基であるフェニルアルキル(メタ)アクリレート化合物は、例えば、以下のものが挙げられる。
 ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、3-フェニルプロピル(メタ)アクリレート、4-フェニルブチル(メタ)アクリレート、5-フェニルペンチル(メタ)アクリレート、6-フェニルヘキシル(メタ)アクリレート、7-フェニルヘプチル(メタ)アクリレート、8-フェニルオクチル(メタ)アクリレート。この中でも特に、ベンジル(メタ)アクリレートが好ましい。
 一般式(1)で表される(メタ)アクリレート化合物のうち、特にmが0、Rがオキシアルキレン基であるフェノキシアルキル(メタ)アクリレート化合物は、例えば、以下のものが挙げられる。
 フェノキシメチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3-フェノキシプロピル(メタ)アクリレート、4-フェノキシブチル(メタ)アクリレート、5-フェノキシペンチル(メタ)アクリレート、6-フェノキシヘキシル(メタ)アクリレート、7-フェノキシヘプチル(メタ)アクリレート、8-フェノキシオクチル(メタ)アクリレート。
 このようなフェニルアルキル(メタ)アクリレート化合物及びフェノキシアルキル(メタ)アクリレート化合物は、従来既知の合成方法により得ることができる。
 なお、上記一般式(1)で表される(メタ)アクリレート化合物は、その分子量が800以下であることが好ましい。より好ましくは600以下、より好ましくは400以下である。
 <(b)光学用樹脂化合物>
 本発明の実施様態の一般式(1)で表される(a)(メタ)アクリレート化合物を含む添加剤が添加される光学用樹脂化合物としては、光学用の一般的な樹脂原料であればよく、特に限定されるものではない。挙げるとするならば、例えば、ABS(アクリロニトリルブタジエンスチレン)系樹脂、PS(ポリスチレン)系樹脂、PC(ポリカーボネート)系樹脂、AS(アクリロニトリルスチレン)系樹脂、PMMA(ポリメチルメタクリレート)系樹脂、EP(エポキシ)系樹脂、フェノール(PF)系樹脂、PE(ポリエチレン)やPP(ポリプロピレン)等のオレフィン系樹脂、サイトップ樹脂等の樹脂原料であり、これらのモノマーや、モノマーを含む組成物である。
 なおこの中でも、高分散側の光学素子として利用可能な光学用樹脂化合物が効果的である。具体的には例えば、下記一般式(6)及び(7)で表される光学用樹脂化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(6)及び(7)中、Rはそれぞれ独立して、水素原子又はメチル基を表し、p及びqはそれぞれ独立して、1~3の整数を表す。
 一般式(7)中、R及びRはそれぞれ独立して、水素原子又は炭素数1~2のアルキル基であり、R,R,R,Rはそれぞれ独立して、水素原子、フッ素原子、炭素数1~6のアルキル基、又は、一部の水素原子が炭素数1~6のアルキル基によって置換されていてもよいフェニル基の何れかを表す。
 <光学用樹脂前駆体組成物>
本発明の実施様態の光学用樹脂前駆体組成物は、本発明の実施様態の一般式(1)で表される(a)(メタ)アクリレート化合物を含む添加剤を、上記(b)光学用樹脂化合物に添加することで得られる。即ち、このような光学用樹脂組成物は、一般式(1)で表される(a)(メタ)アクリレート化合物と上記(b)光学用樹脂化合物とを含む混合物である。
 <光学用樹脂組成物>
 本発明の実施様態の光学用樹脂組成物は、本発明の実施様態の一般式(1)で表される(a)(メタ)アクリレート化合物を含む添加剤と、上記(b)光学用樹脂化合物とを含む樹脂前駆体化合物を重合することで得られる。即ち、このような光学用樹脂組成物は、一般式(8)で表される構成単位を含む。
Figure JPOXMLDOC01-appb-C000014
 一般式(8)中、Rはそれぞれ独立して水素原子又はメチル基を表し、Xはそれぞれ独立してフッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表す。
 一例として、本発明の実施様態の光学用樹脂組成物が含む、上記一般式(1)で表される化合物と上記一般式(6)で表される化合物との共重合体の構成単位を、下記一般式(9)に示す。
Figure JPOXMLDOC01-appb-C000015
 一般式(9)中、Rはそれぞれ独立して水素原子又はメチル基を表し、p及びqはそれぞれ独立して1~3の整数を表し、Xはそれぞれ独立してフッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表す。
 一般式(9)で表される共重合体の重合法は特に限定されないが、制御の容易性等の観点からラジカル重合法が好ましく、ラジカル重合の中でも、制御ラジカル重合がより好ましい。制御ラジカル重合法としては、連鎖移動剤法、リビング重合の一種であるリビングラジカル重合法等が挙げられるが、分子量分布の制御が容易であるリビングラジカル重合がさらに好ましい。なお、リビングラジカル重合法としては、ニトロキシラジカル重合法(NMP)、原子移動ラジカル重合法(ATRP)、可逆的付加解裂連鎖移動法(RAFT)等が挙げられる。
 <(c)重合開始剤>
 なお、ラジカル重合を用いる場合には、従来公知の重合開始剤を適宜用いることができる。また、重合開始剤は、単独又は二種以上を使用してもよく、また、市販されているものをそのまま使用してもよい。
 具体的には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2‐メチル-1-[4―(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のアルキルフェノン系光重合開始剤や、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルフォスフィンオキサイド系光重合開始剤等が挙げられる。この中では特に、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが好ましい。
 なお、その他の添加剤についても、適宜用いることができる。例えば、原料の製造工程に起因する屈折率のバラツキを抑制でき、硬化後の樹脂前駆体混合物の屈折率を所望の値に調整する屈折率調整成分を適宜添加することができる。これにより、回折光学素子の回折特性を安定させることができる。屈折率調整成分としては、少量の添加で効果を発揮するものが好ましく、さらに、主成分より屈折率の低い化合物であることが望ましい。屈折率調整成分の一例として、2,2,2-トリフルオロエチル(メタ)アクリレート、1,6-ビス(アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(以下化合物Aと称す)などが挙げられる。なお、屈折率調整成分は、上記化合物に限定されるものではない。
 また、重合反応に用いる触媒を、重合法に応じて適宜用いることができる。また、金属触媒に応じた配位子についても、適宜用いることができる。
 さらに、密着性、塗布均一性、耐薬品性、耐熱性等の特性を付与するために、他の一般的な添加剤を加えることもできる。
 また、リビングラジカル重合法で得られた共重合体は、さらなる化学反応により官能基の変換を行うことができる。本発明の実施様態の光学用樹脂組成物は、このような変換後の共重合体についても含むものとする。官能基の変換としては、例えば、(メタ)アクリレート由来のカルボキシ基のエステル化等が挙げられる。
 さらに、本発明の実施様態の光学用樹脂前駆体組成物は、少なくとも一種の一般式(1)で示される構成単位を含む(メタ)アクリレート化合物を、二種以上含んでいてもよい。また、その他の任意の構成単位を、一種以上含んでいてもよい。
 このようにして調製される光学用樹脂前駆体組成物は、成形加工性に優れる。
一般的に、屈折率が低く分散が高い光学用樹脂前駆体組成物は、粘度が高いことで知られる。粘度の高い光学用樹脂前駆体組成物を金型を用いて成形加工する場合、硬化物に泡が混入する不具合が生じる。上述の添加剤をこの光学用樹脂前駆体組成物に所定の割合で混合して光学用樹脂前駆体組成物を調製することにより、成形に適した粘度にする事ができる。なお、金型による成形加工に適した粘度の範囲は、適用する成形プロセスにより異なるものの、概ね500~5000Mpa・sである。
 また、このようにして合成される、一般式(8)で表される構成単位を有する共重合体は、透明性および熱特性に優れる。一般的に、光学用樹脂組成物には、高い透明性が求められ、400nm~800nmの波長帯全域において100μm厚での内部透過率が95%以上である事が望ましい。上述の光学用樹脂前駆体組成物を硬化させた樹脂組成物は400nm~800nmの波長帯全域にわたって、100μm厚での内部透過率が、96%以上(波長帯域430nm~650nmでは98.0%以上)であり、この内部透過率の条件を満たす。
 ところで、密着複層型回折光学素子を形成したレンズには、2枚のレンズで密着複層型回折光学素子を挟み込んだ接合タイプと、1枚のレンズの片面に密着複層型回折光学素子を成形し、回折光学素子の上にはレンズを接合しない非接合タイプとがある。回折光学素子の機能はどちらも同じだが、非接合タイプは接合タイプに比べ硝子レンズの枚数が一枚少なくて済むため、特に小型軽量化が要求される光学系で有利である。非接合成形タイプの回折光学素子では、回折光学要素を成形する際に、レンズ形状の金型を樹脂面に転写する事により回折光学要素の形状を球面若しくは非球面に成形できる。この場合、樹脂の硬化収縮により、成形後の樹脂面形状が金型の反転形状と異なる事があるが、その場合は樹脂成形面が所望の形状になる様、金型の形状を修正加工して形状の補正が可能である。さらに、場合によっては、回折光学素子の最上面を研磨して修正することも出来るため、最表面の形状を自由に選択でき、かつ高精度な樹脂面を形成する事ができる。
 一方、非接合タイプは樹脂成形面が空気に接しているので、表面反射を抑える場合は、回折光学素子の最上面に反射防止コートを成膜する必要がある。しかし、樹脂材料からなる回折光学素子の上に無機材料からなる反射防止コートを施す際、材料同士の線膨張係数の差が大きいとコートにクラックが入りやすい。また、樹脂材料の貯蔵弾性率が低いと、反射防止コート等の工程で樹脂が加熱されたときに、反射防止コート層の圧縮応力により樹脂層が変形し、コート後の表面に微細な皺が発生するという不具合が生じる。これらのクラックや皺は、樹脂材料からなる回折光学素子層の上に更に異なる材料からなる回折光学素子層を積層した場合にも同様に発生し、下層の回折光学素子層の熱特性が最上層の反射防止コートに影響を及ぼす事が知られている。また、一般に、線膨張係数が大きいとされる樹脂を硝子レンズの上に成形すると、環境温度の変化により樹脂が膨張あるいは収縮し、一体化された硝子レンズの面形状を変化させてしまう。
 これらの観点から、硬化後の光学用樹脂組成物は、線膨張係数と貯蔵弾性率が所定条件をみたすことが望ましい、例えば、回折光学素子を構成する材料の線膨張係数は2.0×10-4(1/K、25-70℃)以下であることが好ましい。さらに、回折光学要素がレンズ形状で、1000μm以上の樹脂厚差が存在する場合には、1.2×10-4(1/K、25-70℃)以下であることが好ましい。また100℃における貯蔵弾性率が19MPa以上であることが好ましい。上述の光学用樹脂組成物は、これら熱特性を満たす。
従来、回折光学特性と熱特性を両立させることは困難と考えられてきたが、上述の光学用樹脂前駆体組成物を硬化させた光学用樹脂組成物により、回折光学特性と熱特性とを両立させる光学用樹脂組成物を得ることができる。
 <回折光学素子>
 このような本発明の実施様態に係る光学用樹脂前駆体組成物は例えば、多くの光学装置の備える回折光学素子として好適である。以下、本発明の実施様態に用いられる光学素子及び光学装置について説明する。
 図1に、一般的な密着複層型の回折光学素子(DOE)の構造(断面形状)の一例を示す。この回折光学素子は、低屈折率高分散の樹脂からなる第1回折光学要素1と、高屈折率低分散の樹脂からなる第2回折光学要素2とから構成され、両回折光学要素の間に、鋸歯状のレリーフパターン5(回折格子パターン)が形成されている。
 図2に、密着複層型の回折光学素子(DOE)のさらなる構造例を7つ示す。密着複層型の回折光学素子(DOE)は、高屈折率低分散の樹脂と、その樹脂よりも低屈折率高分散の樹脂とを積層し、界面に回折格子を設けたいわゆる密着複層型の光学素子である。密着複層型の光学素子は、1枚の基板上に形成されてもよく、また2枚の基板に挟まれる構成であってもよい。基板は平行平板であってもよく、平凹形状、平凸形状あるいはメニスカス形状、両凸形状であってもよい。密着複層型の光学素子は平面上に形成されてもよいし、凸面上または凹面上に形成されてもよい。また、高屈折率低分散樹脂、低屈折率高分散樹脂のどちらを1層目に形成してもよい。また、1枚の基板上に形成された密着複層型の光学素子の上面に反射防止膜を形成してもよい。
さらに、基板の前記凸面および凹面は非球面であってもよい。また、一枚の基板上に形成された光学素子の第2層目の空気層側の面が非球面であってもよい。
 本発明の実施様態の光学要素・光学素子は撮影光学系、顕微鏡用光学系、観察光学系用光学系等に幅広く用いられ、その用途や光学系の形態により適宜最適な構成を選択できる。
 光学機器の例として、図3に、本発明の実施様態に係る光学用樹脂組成物を母材とする密着複層型の回折光学素子(DOE)を搭載した撮像装置51を示す。
 この撮像装置51はいわゆるデジタル一眼レフカメラであり、カメラボディ52のレンズマウント(不図示)にレンズ鏡筒53が着脱自在に取り付けられる。そして、レンズ鏡筒53の撮像レンズ54を通した光がカメラボディ52の背面側に配置されたマルチチップモジュールのセンサチップ(固体撮像素子)55上に結像される。撮像レンズ54を構成する少なくとも1つのレンズ群56は、上述した密着複層型の回折光学素子(DOE)を含んでいる。
 なお、光学機器はこのような撮像装置に限らず、例えば、顕微鏡、双眼鏡、望遠鏡、防犯カメラ、プロジェクタ等を挙げることができる。
 以下に、実施例および比較例を示し、本発明の実施様態をより具体的に説明する。ただし、本発明の実施様態は、これらの実施例によって限定されるものではない。
 [(メタ)アクリレート化合物の合成]
 下記に記載する方法により、(メタ)アクリレート化合物を合成した。
 <実施例1:EA2の合成>
 フラスコに、水酸化カリウム5.40g(96.3mmol)、エタノール(100mL)、3,4-ジフルオロフェノール12.5g(96.3mmol)(東京化成工業製)を加え23℃で良く撹拌後、溶媒のエタノールと副生した水を減圧留去してカリウム3,4-ジフルオロフェノキシドを調製した。
 その後、2-ブロモエタノール15.1g(121mmol)(東京化成工業製)を加えて90℃で24時間加熱撹拌した。反応終了後、析出した塩を除去し、得られた液体を分液漏斗に移した。分液漏斗にジクロロメタンを加え、有機相を水酸化カリウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。有機相をフラスコに移して硫酸ナトリウムで乾燥後、減圧濃縮して粗生成物12.4gを得た。シリカゲルを充填剤、ヘキサン-アセトンの混合溶媒を展開溶媒として用いたカラムクロマトグラフィーにより粗生成物を精製し、黄色透明液体として2-(3,4-ジフルオロフェノキシ)エタノール10.1g(57.7mmol)を得た。
 H-NMR(日本電子株式会社製、NM-ECA400)の測定結果を以下に示す。なお、基準物質としてテトラメチルシランのSi-CHのプロトンのシグナルを基準(δ=0ppm)として行った。
 H-NMR(400MHz,TMS):δ=1.98(1H,s,-OH),3.99(4H,m,-CH-CH-),6.62(1H,m,Ph-H),6.72(1H,m,Ph-H),7.07(1H,q,Ph-H)
 得られた2-(3,4-ジフルオロフェノキシ)エタノール10.1g(57.7mmol)、トリエチルアミン5.83g(57.7mmol)、テトラヒドロフラン30mLをフラスコに加えた。フラスコを氷冷し、撹拌しながら塩化アクリロイル6.79g(75.0mmol)(東京化成工業製)を滴下し、滴下完了後1時間室温で撹拌を続けた。白色析出物を除去し、減圧濃縮した後、濃縮液体にジクロロメタンを加えて分液漏斗に移した。有機相を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、減圧濃縮して粗生成物(淡黄色透明液体)6.96gを得た。シリカゲルを充填剤、ヘキサン-アセトンの混合溶媒を展開溶媒として用いたカラムクロマトグラフィーにより粗生成物を精製し、無色透明液体として、下記一般式(10)で表される2-(3,4-ジフルオロフェノキシ)エチルアクリレート5.15g(22.6mmol)を得た。
 H-NMR(400MHz,TMS):δ=4.16(2H,m,-CH-),4.50(2H,m,-CH-),5.88(1H,m,-CH=CH),6.16(1H,q,-CH=CH),6.45(1H,q,-CH=CH),6.62(1H,m,Ph-H),6.75(1H,m,Ph-H),7.07(1H,q,Ph-H)
 <実施例2:EA1の合成>
 上記実施例1の3,4-ジフルオロフェノールを4-フルオロフェノールに変えて、同様の処理を行い、下記一般式(11)で表される2-(4-フルオロフェノキシ)エチルアクリレートを得た。
 H-NMR(400MHz,TMS):δ=4.30(2H,m,-CH-),4.53(2H,m,-CH-),5.86(1H,dd,-CH=CH),6.16(1H,dd,-CH=CH),6.44(1H,dd,-CH=CH),6.90-7.12(4H,m,Ph-H)
 <実施例3:EA3の合成>
 上記実施例1の3,4-ジフルオロフェノールを3,4,5-トリオロフェノールに変えて、同様の処理を行い、下記一般式(12)で表される2-(3,4,5-トリフルオロフェノキシ)エチルアクリレートを得た。
 H-NMR(400MHz,TMS):δ=4.14(2H,m,-CH-),4.49(2H,m,-CH-),5.89(1H,dd,-CH=CH),6.16(1H,dd,-CH=CH,6.46(1H,dd,-CH=CH),6.54(2H,m,Ph-H)
 <実施例4:EA4の合成>
 上記実施例1の3,4-ジフルオロフェノールを2,3,5,6-テトラフルオロフェノールに変えて、同様の処理を行い、下記一般式(13)で表される2-(2,3,5,6-テトラフルオロフェノキシ)エチルアクリレートを得た。
 H-NMR(400MHz,TMS):δ=4.48(4H,m,-CH-CH-),5.88(1H,dd,-CH=CH),6.14(1H,dd,-CH=CH),6.42(1H,dd,-CH=CH),6.80(1H,m,Ph-H)
 <実施例5:EA5の合成>
 上記実施例1の3,4-ジフルオロフェノールを2,3,4,5,6-ペンタフルオロフェノールに変えて、同様の処理を行い、下記一般式(14)で表される2-(パーフルオロフェノキシ)エチルアクリレートを得た。
 H-NMR(400MHz,TMS):δ=4.40(2H,t,-CH-),4.49(2H,t,-CH-),5.88(1H,dd,-CH=CH),6.13(1H,dd,-CH=CH),6.43(1H,dd,-CH=CH
 <実施例6:EM2の合成>
 上記実施例1の塩化アクリロイルを塩化メタクリロイルに変えて、同様の処理を行い、下記一般式(15)で表される2-(3,4-ジフルオロフェノキシ)エチルメタクリレートを得た。
 H-NMR(400MHz,TMS):δ=1.95(3H,s,-CH),4.17(2H,t,-CH-),4.48(2H,t,-CH-),5.60(1H,quin,=CH),6.14(1H,s,=CH),6.62(1H,m,Ph-H),6.75(1H,m,Ph-H),7.07(1H,q,Ph-H)
 <実施例7:EM1の合成>
 上記実施例2の塩化アクリロイルを塩化メタクリロイルに変えて、同様の処理を行い、下記一般式(16)で表される2-(4-フルオロフェノキシ)エチルメタクリレートを得た。
 H-NMR(400MHz,TMS):δ=1.95(3H,t,-CH),4.31(2H,m,-CH-),4.51(2H,m,-CH-),5.59(1H,m,=CH),6.14(1H,s,=CH),6.44(1H,dd,-CH=CH),6.90-7.12(4H,m,Ph-H)
 <実施例8:EM3の合成>
 上記実施例1の3,4-ジフルオロフェノールを3-トリフルオロメチルフェノールに、また塩化アクリロイルを塩化メタクリロイルにそれぞれ変えて、同様の処理を行い、下記一般式(17)で表される2-(3-トリフルオロメチルフェノキシ)エチルメタクリレートを得た。
 H-NMR(400MHz,TMS):δ=1.95(3H,s,-CH),4.27(2H,t,-CH-),4.52(2H,t,-CH-),5.60(1H,q,=CH),6.14(1H,q,=CH),7.09(1H,dd,Ph-H),7.16(1H,t,Ph-H),7.23(1H,d,Ph-H),7.40(1H,t,Ph-H) 
Figure JPOXMLDOC01-appb-C000016
 <実施例9:BA3の合成>
 2,4,5-トリフルオロベンジルアルコール6.5g(40mmol)、トリエチルアミン4.0g(40mmol)、ジクロロメタン20mLをフラスコに加えた。フラスコを氷冷し、撹拌しながらジクロロメタン(10mL)で希釈した塩化アクリロイル4.0g(44mmol)(東京化成工業製)溶液を滴下し、滴下完了後1時間室温で撹拌を続けた。白色析出物を除去し、分液漏斗に移した。有機相を塩酸(5mM)、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、溶液を硫酸ナトリウムで乾燥した。その後、減圧濃縮して粗生成物(淡黄色透明液体)6.9gを得た。シリカゲルを充填剤、ヘキサン/ジクロロメタン=1/1(vol/vol)の混合溶媒を展開溶媒として用いたカラムクロマトグラフィーにより粗生成物を精製し、無色透明液体として、下記一般式(18)で表される2,4,5-トリフルオロベンジルアクリレート4.7g(21mmol)を得た。
 1H-NMR(400MHz,TMS):δ=5.20(2H,s,-CH2-),5.90(1H,dd,-CH=CH2),6.16(1H,q,-CH=CH2),6.47(1H,dd,-CH=CH2),
 6.96(1H,m,Ph-H),7.26(1H,m,Ph-H)
 <実施例10:BA4の合成>
 上記実施例9の2,4,5-トリフルオロベンジルアルコールを2,3,4,5-テトラフルオロベンジルアルコールに変えて、同様の処理を行い、下記一般式(19)で表される2,3,4,5-テトラフルオロベンジルアクリレートを得た。
 1H-NMR(400MHz,TMS):δ=5.22(2H,s,-CH2-),5.92(1H,dd,-CH=CH2),6.16(1H,q,-CH=CH2),6.48(1H,dd,-CH=CH2),7.07(1H,m,Ph-H)
 <実施例11:BA5の合成>
 上記実施例9の2,4,5-トリフルオロベンジルアルコールをペンタテトラフルオロベンジルアルコールに変えて、同様の処理を行い、下記一般式(20)で表されるパーフルオロベンジルアクリレートを得た。
 1H-NMR(400MHz,TMS):δ=5.29(2H,s,-CH2-),5.89(1H,dd,-CH=CH2),6.12(1H,q,-CH=CH2),6.45(1H,dd,-CH=CH2)
Figure JPOXMLDOC01-appb-C000017
 [光学用樹脂前駆体組成物の調製]
 下記に記載する方法により、光学用樹脂前駆体組成物を調製した。
 <実施例12:BAHFとEA2の樹脂前駆体(BAHF-EA2)の調製>
 上記実施例1で得られた2-(3,4-ジフルオロフェノキシ)エチルアクリレート(EA2)10質量部と、下記一般式(21)で表わされる2,2-ビス(((アクリロイルオキシ)エトキシ)フェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(BAHF)90質量部と、を混合して均一になるまで23℃で撹拌した。なお、BAHFは、従来既知の合成方法により合成した(Chemical Papers, 2014, vol.68, ♯11, p1561-1572)。
Figure JPOXMLDOC01-appb-C000018
 この混合物100質量部に、光重合開始剤として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(以下HCPKと称す)(イルガキュア184;BASFジャパン株式会社製)を0.5質量部添加(BAHF:EA2:HCPK=90:10:0.5)し、光学用樹脂前駆体組成物を調製した。これは、光硬化後に下記一般式(22)で表される構成単位を含むものとなる。さらに、BAHF:EA2=80:20質量部、及び70:30質量部として同様の処理を行い、それぞれの割合で光学用樹脂前駆体組成物を調製した。
 <実施例13:BAHFとEA1の樹脂前駆体組成物(BAHF-EA1)の調製>
 上記実施例12のEA2を、上記実施例2で得られた2-(4-フルオロフェノキシ)エチルアクリレート(EA1)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA1:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(23)で表される構成単位を含むものとなる。
Figure JPOXMLDOC01-appb-C000019
 <実施例14:BAHFとEA3の樹脂前駆体組成物(BAHF-EA3)の調製>
 上記実施例12のEA2を、上記実施例3で得られた2-(3,4,5-トリフルオロフェノキシ)エチルアクリレート(EA3)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA3:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(24)で表される構成単位を含むものとなる。
 <実施例15:BAHFとEA4の樹脂前駆体組成物(BAHF-EA4)の調製>
 上記実施例12のEA2を、上記実施例4で得られた2-(2,3,5,6-テトラフルオロフェノキシ)エチルアクリレート(EA4)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA4:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(25)で表される構成単位を含むものとなる。
Figure JPOXMLDOC01-appb-C000020
 <実施例16:BAHFとEA5の樹脂前駆体組成物(BAHF-EA5)の調製>
 上記実施例12のEA2を、上記実施例5で得られた2-(パーフルオロフェノキシ)エチルアクリレート(EA5)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA5:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(26)で表される構成単位を含むものとなる。
 <実施例17:BAHFとEM2の樹脂前駆体組成物(BAHF-EM2)の調製>
 上記実施例12のEA2を、上記実施例6で得られた2-(3,4-ジフルオロフェノキシ)エチルメタクリレート(EM2)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EM2:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(27)で表される構成単位を含むものとなる。さらに、BAHF:EM2:HCPK=80:20:0.5質量部の割合で同様の処理を行い、光学用樹脂前駆体組成物を調製した。
Figure JPOXMLDOC01-appb-C000021
 <実施例18:BAHFとEM1の樹脂前駆体組成物(BAHF-EM1)の調製>
 上記実施例12のEA2を、上記実施例7で得られた2-(4-フルオロフェノキシ)エチルメタクリレート(EM1)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EM1:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(28)で表される構成単位を含むものとなる。
 <実施例19:BAHFとEA3の樹脂前駆体組成物(BAHF-EA3)の調製>
 上記実施例12のEA2を、上記実施例8で得られた2-(3-トリフルオロメチルフェノキシ)エチルメタクリレート(EM3)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EM3:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(29)で表される構成単位を含むものとなる。
Figure JPOXMLDOC01-appb-C000022
 <実施例20:BAHFとEA0の樹脂前駆体組成物(BAHF-EA0)の調製>
 上記実施例12のEA2を、下記一般式(30)で表される既知の2-フェノキシエチルアクリレート(EA0)(新中村化学製)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA0:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(32)で表される構成単位を含むものとなる。
 <実施例21:BAHFとEM0の樹脂前駆体組成物(BAHF-EM0)の調製>
 上記実施例1で得られた2-(3,4-ジフルオロフェノキシ)エチルアクリレート(EA2)を、下記一般式(31)で表される既知の2-フェノキシエチルメタクリレート(EM0)(新中村化学製)に変えて同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EM0:HCPK=90:10:0.5)。これは、光硬化後に下記一般式(33)で表される構成単位を含むものとなる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 <実施例22:BAHFとEA2の樹脂前駆体組成物(BAHF-EA2-化合物A)の調製>
 屈折率調整成分として、1,6-ビス(アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(化合物A)を加えて上記実施例12と同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA0:化合物A:HCPK=85:12:3:0.5)。さらに、BAHF:EM2:化合物A=85:12:3質量部、及び80:17:3質量部として同様の処理を行い、それぞれの割合で光学用樹脂前駆体組成物を調製した。
 <実施例23:BAHFとEA0の樹脂前駆体組成物(BAHF-EA0-化合物A)の調製>
 屈折率調整成分として、1,6-ビス(アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(化合物A)を加えて上記実施例20と同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EA0:化合物A:HCPK=85:12:3:0.5)。さらに、BAHF:EA0:化合物A=85:12:3質量部として同様の処理を行い、光学用樹脂前駆体組成物を調製した。
 <実施例24:BAHFとEM0の樹脂前駆体組成物(BAHF-EM0-化合物A)の調製>
 屈折率調整成分として、1,6-ビス(アクリロイルオキシ)-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(化合物A)を加えて上記実施例21と同様の処理を行い、光学用樹脂前駆体組成物を調製した(BAHF:EM0:化合物A:HCPK=85:12:3:0.5)。さらに、BAHF:EM0:化合物A=85:12:3質量部として同様の処理を行い、光学用樹脂前駆体組成物を調製した。
 <比較例1:BAHFの樹脂前駆体組成物>
 EA2を添加せずにBAHF:HCPK=100:0.5の組成で同様の処理を行い、BAHFの光学用樹脂前駆体組成物(BAHF)を調製した。
 <光学用樹脂前駆体組成物の粘度測定>
 [評価]
 実施例12、14~17、20~24及び比較例1の光硬化前の光学用樹脂前駆体組成物について評価した。
 上記実施例12、14~17、20~24及び比較例1で調製した樹脂前駆体組成物の25℃における粘度を、粘度計(TVE-35H;東機産業株式会社製)を用いて計測した。これらの粘度測定の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000025
 なお、BAHFの粘度はロットにより相違する。
()内の数値はBAHFロット1:粘度16500mPa・sの混合物、()無しの数値はBAHFロット2:粘度19800mPa・sの混合物の測定結果である。
 上記結果から、BAHFの樹脂前駆体組成物に本実施例1,3~5(EA2,EA3,EA4,EA5)、または本実施例6(EM2)及びEM0、及びEA0の添加剤を加えることによって、大幅に混合物の粘度が低減することがわかった。
上記表には示していないが、同様に本実施例2(EA1)および本実施例7,8,9,10,11(EM1,EM3,BA3,BA4,BA5)の添加剤についても、実施例1,6と同等な粘度低減効果を確認した。
 <実施例25:硬化物の作成(BAHF-EA2)>
 実施例12の光学用樹脂前駆体(BAHF-EA2)のうち、組成比がBAHF:EA2:HCPK=90:10:0.5の樹脂前駆体組成物に対し紫外線を照射して、厚さ5mmの樹脂組成物BAHF-EA2硬化物を作製した。紫外光照射は、365nmの紫外光を発生する高圧水銀ランプを備えた紫外光照射機(HOYA CANDEO OPTRONICS社製 UL-250)を使用して、すりガラス越しに、仮硬化として8mW/cm2で150秒(1200mJ/cm)の照射を行った。さらに、すりガラスを外して8mW/cmで75秒(600mJ/cm)の照射を行った。なお、光源は365nmを含むものならメタルハライドランプ、高圧水銀ランプ、LED等が使用可能である。次に、365nmの紫外光を発生するメタルハライドランプを備えた紫外光照射機(アイグラフィックス社製)を使用して、本硬化として31mW/cm2で233秒(約7000mJ/cm)の照射を行った。
 <実施例26:硬化物の作成(BAHF-EA0)>
 実施例22の光学用樹脂前駆体(BAHF-EA0-化合物A)にそれぞれ紫外線を照射して、厚さ5mmの樹脂組成物BAHF-EA0の硬化物を作製した。紫外光照射は、それぞれ、すりガラス越しに、仮硬化として8mW/cm2で75秒(600mJ/cm)の照射を行った。さらに、すりガラスを外して8mW/cmで150秒(1200mJ/cm)の照射を行った。次に、365nmの紫外光を発生するメタルハライドランプを備えた紫外光照射機(アイグラフィックス社製)を使用して、本硬化として31mW/cm2で583秒(約18000mJ/cm)の照射を行った。
 <実施例27:硬化物の作成(BAHF-EM0)>
実施例23の光学用樹脂前駆体(BAHF-EM0-化合物A)に、上記実施例22と同様の処理を行い、厚さ5mmの樹脂組成物BAHF-EM0の硬化物を作製した。
 <比較例2:硬化物の作成(BAHF)>
 比較例1で調製した光学用樹脂前駆体組成物(BAHF)に紫外線を照射して、厚さ5mmの樹脂組成物BAHF硬化物を作製した。紫外光照射は、すりガラス越しに、仮硬化として8mW/cm2で150秒(1200mJ/cm)の照射を行った。さらに、すりガラスを外して8mW/cmで75秒(600mJ/cm)の照射を行った。次に、365nmの紫外光を発生するメタルハライドランプを備えた紫外光照射機(アイグラフィックス社製)を使用して、本硬化として31mW/cm2で233秒(約7000mJ/cm)の照射を行った。
 <光学用樹脂前駆体組成物の屈折率測定>
 これら硬化物のg線,F線,d線に対する屈折率をカールツァイス・イエナ製屈折計(PR-2型)を用いて、22.5℃で測定した。その結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000026
 また、図4に、実施例1から5で合成したEA1,EA2,EA3,EA4,EA5をそれぞれ添加物として、下記組成にてBAHFまたはBMHFに加えて上記と同様に調製した光学用樹脂前駆体組成硬化物の屈折率波長特性を示す。
            組成比             アッベ数νd
 BMHF:EA1:HCPK(50:50:0.5質量部) 37.4
 BMHF:EA2:HCPK(50:50:0.5質量部) 38.0
 BAHF:EA2:HCPK(50:50:0.5質量部) 37.9
 BAHF:EA3:HCPK(50:50:0.5質量部) 37.8
 BAHF:EA4:HCPK(50:50:0.5質量部) 38.5
 BAHF:EA5:HCPK(50:50:0.5質量部) 38.9
 さらに、図5に、実施例6から8で合成したEM1,EM2,EM3をそれぞれ添加物として下記組成にてBAMFに加えて上記と同様に調製した光学用樹脂前駆体組成硬化物の屈折率波長特性を示す。
            組成比             アッベ数νd
 BMHF:EM1:HCPK(50:50:0.5質量部) 37.9
 BMHF:EM2:HCPK(50:50:0.5質量部) 38.6
 BMHF:EM3:HCPK(50:50:0.5質量部) 38.5
 <実施例28:回折光学素子の作成1>
 図1に示す第1回折光学要素(低屈折率高分散樹脂)1として上記実施例12において調製した光学用樹脂前駆体組成物のうちのBAHF:EA2:HCPK(90:10:0.5質量部)の樹脂前駆体組成物と、第2回折光学要素(高屈折率低分散樹脂)2として調製したトリシクロデカンジメタノールジアクリレート(A-DCP)とジ(2-メルカプトジエチル)スルフィド(DMDS)(A-DCP:DMDS=88:12)のマイケル付加反応物とHCPK(100:0.5質量部)の樹脂前駆体組成物とを用いて、回折光学素子を作成した。
 まず、図1に示す第1光学要素として調製した光学用樹脂前駆体組成物(低屈折率高分散樹脂)1として光学用樹脂前駆体組成物BAHF:EA2:HCPK(90:10:0.5)をガラス基板に滴下した後、所定の金型を樹脂面に近接させて、樹脂厚が200μmになる位置までガラス基板に近づけて樹脂を押し広げ紫外線を照射した。紫外光照射は、365nmの紫外光を発生する高圧水銀ランプを備えた紫外光照射機(HOYA CANDEO OPTRONICS社製 UL-250)を使用して行った。このとき、すりガラス越しに、仮硬化として6mW/cm2で167秒(1000mJ/cm)の照射を行った。さらに、すりガラスを外して7mW/cmで14秒(100mJ/cm)の照射を行った。なお、光源は365nmを含むものならメタルハライドランプ、高圧水銀ランプ、LED等が使用可能である。仮硬化後、金型から外し第1回折光学要素を作成した。なお、第1光学要素に用いた樹脂前駆体の粘度は3900mPa・sと、十分低く抑えられていた。
 次に、図1に示す第2光学要素として調製した光学用樹脂前駆体組成物(高屈折率低分散樹脂)2としてトリシクロデカンジメタノールジアクリレート(A-DCP)とジ(2-メルカプトジエチル)スルフィド(DMDS)(A-DCP:DMDS=88:12質量部)のマイケル付加反応物:HCPK(100:0.5質量部)の樹脂前駆体組成物を、成形した第1回折光学要素上に塗布した。そして、表面が平板形状に加工された金型を樹脂塗布面に近接させ、樹脂厚が300μmになる位置までゆっくり下地レンズを近づけて樹脂を押し広げた後、紫外線を照射した。仮硬化として行った紫外線照射条件は第1光学要素の仮硬化の条件と同様であり、まず、すりガラス越しに、仮硬化として6mW/cm2で167秒(1000mJ/cm)照射し、すりガラスを外してさらに、7mW/cmで14秒(100mJ/cm)照射した。その後、樹脂から金型を離し、365nmの紫外光を発生するメタルハライドランプを備えた紫外光照射機(アイグラフィックス社製)を使用して、本硬化として20mW/cmで500秒(10000mJ)の照射を行い、回折光学素子を成形した。なお、回折格子の格子高さは28.2μmである。
 <実施例29:回折光学素子の作成2>
 実施例28の低屈折率高分散用樹脂前駆体組成物BAHF:EA2:HCPK(90:10:0.5質量部)に変えて、実施例22において調製したBAHF:EA2:化合物A:HCPK(85:12:3:0.5質量部)を用い、また実施例28の高屈折率低分散用樹脂前駆体組成物に変えて、トリシクロデカンジメタノールジアクリレート(A-DCP)とジ(2-メルカプトジエチル)スルフィド(DMDS)(A-DCP:DMDS=88:12質量部)のマイケル付加反応物:HCPK(100:0.5質量部)を用い、A-DCPとDMDSとのマイケル付加反応物(A-DCP:DMDS=90:10):HCPK(100:0.5質量部)を用い、実施例28と同様の処理により回折光学素子を作成した。なお、回折格子の格子高さは28.1μmである。また、第1光学要素に用いた樹脂前駆体の粘度は2160mPa・sと、十分低く抑えられていた。
 <実施例30:回折光学素子の作成3>
 実施例28の低屈折率高分散用樹脂前駆体組成物BAHF:EA2:HCPK(90:10:0.5質量部)に変えて、実施例23のBAHF:EM0:化合物A:HCPK(85:12:3:0.5質量部)を用い、また実施例28の高屈折率低分散用樹脂前駆体組成物に変えて、トリシクロデカンジメタノールジアクリレート(A-DCP)とジ(2-メルカプトジエチル)スルフィド(DMDS)(A-DCP:DMDS=88:12質量部)のマイケル付加反応物:HCPK(100:0.5質量部)を用い、実施例28と同様の処理により回折光学素子を作成した。なお、回折格子の格子高さは28.8μmである。また、第1光学要素に用いた樹脂前駆体の粘度は1960mPa・sであり、十分低く抑えられていた。
 <比較例3:回折光学素子の作成4>
 実施例28の樹脂前駆体組成物BAHF:EA2:HCPK(90:10:0.5質量部)に変えて、比較例1の光学用樹脂前駆体組成物BAHF:HCPK(100:0.5質量部)を用い、実施例28と同様の処理により回折光学素子を作成した。なお、回折格子の格子高さは27.9μmであった。
 上記結果から、屈折率が低く分散が高い光学用樹脂前駆体組成物であるBAHFに、一般式(1)で示される本実施様態の添加剤を加えることによって、光学用樹脂前駆体組成物の粘度が大幅に低減し、回折光学素子の加工に際し、問題なく精緻なレリーフパターンを得ることができた。また、本実施例2~8の添加剤についても、粘度を低減する効果は実施例1と同様であり、回折光学素子の加工に際し、問題なく精緻なレリーフパターンを得ることができることを確認した。一方、上述の実施例と同様の方法で回折光学素子の作成を試みた結果、比較例1の樹脂前駆体組成物については、金型で樹脂を押し広げる工程において一般式(1)で示される添加剤を加えた光学樹脂前駆体組成物を用いた成形工程と比べて、金型を樹脂に接触させる速度を十分に低くおさえない限り泡が混入した。
 実施例28から30及び比較例3で作製した各回折光学素子のフレア量についてスカラー計算を行った。図6に、光の波長とフレア量との関係についてのグラフを示した。図6の横軸は光の波長(nm)、縦軸は、1次回折光に対する、ゼロ次回折光と2次回折光の和の比を(%)で示している。
 図6の点線はそれぞれ、上記実施例12,22,24の光学樹脂前駆体組成物を用いて作成した回折光学素子のフレア量を示している。また、図6の実線は、上記比較例2の光学樹脂前駆体組成物を用いて作成した回折光学素子のフレア量を示している。
 図示するように、低屈折率高分散特性を有する光学用樹脂化合物に本実施様態の(メタ)アクリレート化合物添加剤を加えても、BAHFのみの場合と比較してフレアの発生量には殆ど変化が無かった。また、一般式(1)で表される化合物の1つである、EM0の添加物を加えても、フレア発生量には殆ど変化が無かった。
 実施例28から30では、高屈折率低分散樹脂としてA-DCPとDMDSとの共重合体を用いたが、これに限られるものではない。高屈折率低分散樹脂として、例えば、ヘキサンジオールジ(メタ)アクリレート,デカンジオールジ(メタ)アクリレート,ジプロピレングコールジ(メタ)アクリレート,ネオペンチルグリコールジ(メタ)アクリレートなどを用いることができる。高屈折率低分散側の樹脂は、図4や図5等に示した屈折率特性に合わせて、適宜選択・調合して使用できる。例えば、フッ素の配合比が高く屈折率が全体として低くなる樹脂に対しては、相手方の高屈折率低分散樹脂として屈折率を抑えた材料を選択すればよい。
 また、本実施様態の(メタ)アクリレート化合物を添加することにより低屈折率高分散樹脂の粘度を低下させて加工特性を向上させるのみならず、選択した高屈折低分散樹脂の挙動に合わせて、本発明の実施様態の添加剤である(メタ)アクリレート化合物の種類の選択および添加量の調整により、波長に対する屈折率挙動調整の自由度が増し、より精度の高い波長-屈折率挙動の制御が可能となるため、さらなるフレア光低減効果が期待できる。
 <回折光学素子の熱特性評価>
 実施例28から30、および比較例3で用いた低屈折高分散樹脂および高屈折率低分散樹脂の物性を以下に示す。なお、上述のとおり、回折格子の厚みは第1回折光学素子が200μm、第2回折光学素子が300μmである。また、回折格子高さは約28μmである。
 (実施例28)
○第1回折光学要素(低屈高分散)
 ・BAHF:EA2:HCPK=(90:10:0.5質量部)の硬化物
  硬化物貯蔵弾性率:110 (MPa、@100℃)
  硬化物線膨張係数:1.0×10-4 (1/K、25-70℃)
○第2回折光学要素(高屈低分散)
 ・A-DCP:DMDS(88:12質量部)のマイケル付加反応物:HCPK=(100:0.5質量部)の硬化物
  硬化物貯蔵弾性率:91 (MPa、@100℃)
  硬化物線膨張係数:1.0×10-4 (1/K、25-70℃)
 (実施例29)
○第1回折光学要素(低屈高分散)
 ・BAHF:EA2:化合物A:HCPK=(85:12:3:0.5質量部)
  硬化物貯蔵弾性率:34 (MPa、@100℃)
  硬化物線膨張係数:1.8×10-4 (1/K、25-70℃)
○第2回折光学要素(高屈低分散)
 ・A-DCP:DMDS(90:10質量部)のマイケル付加反応物:HCPK=(100:0.5質量部)
  硬化物貯蔵弾性率:177 (MPa、@100℃)
  硬化物線膨張係数:0.9×10-4 (1/K、25-70℃)
 (実施例30)
○第1回折光学要素(低屈高分散)
 ・BAHF:EM0:化合物A:HCPK=(85:12:3:0.5質量部)
  硬化物貯蔵弾性率:48 (MPa、@100℃)
  硬化物線膨張係数:1.1×10-4 (1/K、25-70℃)
○第2回折光学要素(高屈低分散)
 ・A-DCP:DMDS(83:17質量部)のマイケル付加反応物:HCPK(100:0.5質量部)
  硬化物貯蔵弾性率:90 (MPa、@100℃)
  硬化物線膨張係数:1.1×10-4 (1/K、25-70℃)
 (比較例3)
○第1回折光学要素(低屈高分散)
 ・BAHF:EA2:化合物A:HCPK=(85:12:3:0.5質量部)
  硬化物貯蔵弾性率:34 (MPa、@100℃)
  硬化物線膨張係数:1.8×10-4 (1/K、25-70℃)
○第2回折光学要素(高屈低分散)
 ・A-DCP:DMDS(80:20)のマイケル付加反応物:HCPK(100:0.5質量部)
  硬化物貯蔵弾性率:8(MPa、@100℃)
  硬化物線膨張係数:2.5×10-4 (1/K、25-70℃)
 実施例28から30、および比較例3で作成した4種類回折光学素子の表面にそれぞれ真空蒸着法により、多層膜からなる無機酸化物を成膜し、反射防止膜を形成した。その結果、線膨張係数が2.0×10-4(1/K、25℃-70℃)以下である実施例28から30の樹脂を用いて作成された回折光学素子においては、膜にクラックが発生せず、良好な反射防止特性を有する膜を成膜できた。また、100℃における貯蔵弾性率が50MPa以上である硬化物を第2回折光学要素とする実施例28から30の回折光学素子は、耐熱試験、温度サイクル試験、耐湿試験などの環境試験を行っても、膜に皺が入る事が無かった。これは、加熱や吸湿により貯蔵弾性率が多少低下しても、実施例28から30においては、空気層に最も近い樹脂(第2光学要素)の100℃における貯蔵弾性率が90MPa以上と高いため、膜の応力による樹脂表面の変形を抑制できている事を意味する。
 一方、比較例3で作成した回折光学素子で同様の環境試験を行うと、膜に皺が入ってしまうという問題が生じた。これは、比較例3の第2回折光学要素の100℃における貯蔵弾性率が8MPaと低い為、膜の持つ応力により樹脂表面が変形した結果であると考えられる。
 なお、第2光学要素に100℃における貯蔵弾性率が19MPaの樹脂を用いた場合は、環境試験後に皺の入らない反射防止膜の形成が可能であった。従って、第2回折光学要素樹脂の100℃における貯蔵弾性率は、少なくとも19Mpa以上であれば反射防止膜の成膜は可能である。しかし、回折光学要素の大きさ(回折光学要素面の面積)や回折光学要素面内の樹脂硬化状態分布バラツキの影響を考慮すると貯蔵弾性率はより高い方が好ましく、安全係数を掛け合わせ、50MPa以上であることが望ましい。
 実施例28から30の回折光学素子では第2光学要素の厚さが場所によらず一定、すなわち等厚となっているが、半径方向の位置に応じ第2光学要素の厚さを変えて非球面形状にする事も可能である。回折光学素子の機能に加えて第2光学要素に非球面レンズ機能を持たせる事で、光学系の小型軽量化に更に大きな寄与をする事が可能になる。非球面レンズにする場合、第2回折光学要素の樹脂厚差は通常の複合非球面レンズにおける樹脂厚差と同程度であれば良く、具体的には最も厚い部分と最も薄い部分の樹脂厚差は10μm以上1500μm以下とすればよい。この様に第2光学要素の樹脂厚を場所により変えると、表面に多層膜を成膜する際のクラックの発生や環境試験における皺の発生のリスクが高まる傾向にある。しかし、本発明の第1回折光学要素と第2回折光学要素の線膨張係数はともに2.0×10-4(1/K、25℃-70℃)以下と低く、かつ第2回折光学素子の100℃における貯蔵弾性率は50MPa以上と高い為、第2回折光学要素の厚さを変えて非球面形状にしても、膜のクラックや皺などの不具合の無い、耐環境性の高い光学素子を作製する事が可能である。さらに、線膨張係数を1.2×10-4(1/K、25℃-70℃)以下とすれば、1000μm以上の樹脂厚差を有する球面もしくは非球面レンズ形状を有する回折光学要素を安定して成形することが可能となる。
 以上の結果から、本発明の実施様態の添加剤によれば、光学特性を損なうことなく、加工特性を向上させることができる。
 1:第1回折光学要素、2:第2回折光学要素1、5:レリーフパターン、51:撮像装置、52:カメラボディ、53:レンズ鏡筒、54:撮像レンズ、55:センサチップ。

Claims (12)

  1.  一般式(1)で表される(メタ)アクリレート化合物。
    Figure JPOXMLDOC01-appb-C000001
     〔一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは1~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。〕
  2.  一般式(1)で表される(メタ)アクリレート化合物を含む光学用樹脂添加剤。
    Figure JPOXMLDOC01-appb-C000002
     〔一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。〕
  3.  二官能(メタ)アクリレート(A成分);一官能(メタ)アクリレート(B成分);及び光重合開始剤(C成分);を含み、
     前記B成分が下記一般式(1)で表される化合物である樹脂前駆体組成物。
    Figure JPOXMLDOC01-appb-C000003
     〔一般式(1)中、Xはそれぞれ独立して、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは1~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表し、Rは水素原子またはメチル基を表す。〕
  4.  前記A成分が下記一般式(6)で表される化合物および/又は下記一般式(7)で表される請求項3に記載の樹脂前駆体組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    〔一般式(6)及び(7)中、Rはそれぞれ独立して、水素原子又はメチル基を表し、p及びqはそれぞれ独立して、1~3の整数を表す。一般式(7)中、R及びRはそれぞれ独立して、水素原子又は炭素数1~2のアルキル基であり、R,R,R,Rはそれぞれ独立して、水素原子、フッ素原子、炭素数1~6のアルキル基、又は、一部の水素原子が炭素数1~6のアルキル基によって置換されていてもよいフェニル基の何れかを表す。〕
  5.  一般式(8)で表される構成単位を含む光学用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
     〔一般式(8)中、Rはそれぞれ独立して水素原子又はメチル基を表し、Xはそれぞれ独立してフッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたメチル基を表し、mは0~5の整数を表し、Rは炭素数1~8のアルキレン基又はオキシアルキレン基を表す。〕
  6.  d線(587.56nm)における屈折率ndが1.53以下であり、且つアッベ数νdが39以下であることを特徴とする請求項5に記載の光学用樹脂組成物。
  7.  100℃における貯蔵弾性率が50MPa以上であることを特徴とする請求項5に記載の光学用樹脂組成物。
  8.  25℃から70℃における線膨張係数が2.0×10-4(1/K)以下であることを特徴とする請求項5に記載の光学用樹脂組成物。
  9.  (a)請求項2に記載の光学用樹脂添加剤、(b)光学用樹脂化合物、(c)光重合開始剤、を含有する光学用樹脂前駆体組成物。
  10.  請求項5~8に記載の光学用樹脂組成物、または9に記載の光学用樹脂前駆体組成物を硬化させて得られる樹脂組成物を含む光学素子。
  11.  請求項5~8に記載の光学用樹脂組成物、または9に記載の光学用樹脂前駆体組成物を硬化させて得られる光学用樹脂組成物と、当該光学用樹脂組成物よりも高屈折率低分散の光学用樹脂組成物と、を含む光学素子。
  12.  請求項10または11に記載の光学素子を含む光学装置。
PCT/JP2017/001357 2017-01-17 2017-01-17 (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置 WO2018134871A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/001357 WO2018134871A1 (ja) 2017-01-17 2017-01-17 (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置
CN202310093924.XA CN116082563A (zh) 2017-01-17 2017-01-17 (甲基)丙烯酸酯化合物、光学用树脂添加剂、光学元件和光学装置
JP2018562748A JP6809540B2 (ja) 2017-01-17 2017-01-17 (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置
CN201780078969.2A CN110088077A (zh) 2017-01-17 2017-01-17 (甲基)丙烯酸酯化合物、光学用树脂添加剂、光学元件和光学装置
EP17892595.4A EP3572396A4 (en) 2017-01-17 2017-01-17 (METH) ACRYLATE COMPOUND, ADDITIVE FOR OPTICAL RESIN, OPTICAL ELEMENT AND OPTICAL DEVICE
US16/459,923 US11142636B2 (en) 2017-01-17 2019-07-02 (Meth)acrylate compound, additive for optical resin, optical element, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001357 WO2018134871A1 (ja) 2017-01-17 2017-01-17 (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/459,923 Continuation US11142636B2 (en) 2017-01-17 2019-07-02 (Meth)acrylate compound, additive for optical resin, optical element, and optical device

Publications (1)

Publication Number Publication Date
WO2018134871A1 true WO2018134871A1 (ja) 2018-07-26

Family

ID=62907859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001357 WO2018134871A1 (ja) 2017-01-17 2017-01-17 (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置

Country Status (5)

Country Link
US (1) US11142636B2 (ja)
EP (1) EP3572396A4 (ja)
JP (1) JP6809540B2 (ja)
CN (2) CN116082563A (ja)
WO (1) WO2018134871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085948A (ja) * 2019-11-26 2021-06-03 キヤノン株式会社 回折光学素子、回折光学素子の製造方法、光学機器および撮像装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220512A1 (ja) * 2020-05-01 2021-11-04 株式会社ニコン 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
CN114890873B (zh) * 2022-03-18 2024-03-19 上海邃铸科技有限公司 一种组合物以及提高酰亚胺化率的方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098828A (ja) * 1999-08-23 2002-04-05 Fuji Photo Film Co Ltd 液晶配向膜、その製造方法、光学補償シート、stn型液晶表示装置およびディスコティック液晶性分子を配向させる方法
JP2003055408A (ja) * 2001-06-21 2003-02-26 Hynix Semiconductor Inc フォトレジスト単量体、フォトレジスト重合体、フォトレジスト重合体の製造方法、フォトレジスト組成物、フォトレジストパターン形成方法、及び半導体素子
JP2003519819A (ja) * 2000-01-11 2003-06-24 コーニング・インコーポレーテッド 温度無依存化した光集積導波路デバイス
JP2003523528A (ja) * 2000-01-11 2003-08-05 コーニング・インコーポレーテッド 有機材料を含む光導波路デバイスのチューニング
JP2008111110A (ja) * 2006-10-06 2008-05-15 Fujifilm Corp 組成物、位相差板、液晶表示装置および、位相差板の製造方法
JP2008203821A (ja) 2007-01-22 2008-09-04 Canon Inc 積層型回折光学素子
JP2009079225A (ja) * 2001-11-30 2009-04-16 Nikon Corp 光学用樹脂前駆体組成物、光学用樹脂、光学素子及び光学物品
JP2010007004A (ja) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd 活性エネルギー線硬化型樹脂組成物
JP2010037525A (ja) * 2008-08-08 2010-02-18 Hitachi Maxell Ltd 光学シート
WO2011010633A1 (ja) * 2009-07-22 2011-01-27 株式会社ニコン 樹脂前駆体組成物、及びそれを光硬化させた樹脂
KR20120061427A (ko) * 2010-12-03 2012-06-13 재단법인대구경북과학기술원 액정 디스플레이용 광경화성 조성물 및 이를 이용한 액정 디스플레이
JP2013049823A (ja) * 2011-08-04 2013-03-14 Daicel Corp ウェハレベルレンズ用ラジカル硬化性組成物
JP2013204034A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
JP2013227392A (ja) * 2012-04-25 2013-11-07 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物(3)
JP2014108983A (ja) * 2012-11-30 2014-06-12 Denki Kagaku Kogyo Kk 光硬化性樹脂組成物
JP2014122949A (ja) * 2012-12-20 2014-07-03 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
WO2016031249A1 (ja) * 2014-08-26 2016-03-03 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
JP2016098248A (ja) * 2014-11-18 2016-05-30 株式会社菱晃 硬化性樹脂組成物、硬化物、光学部材、レンズ及びカメラモジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216987A1 (de) * 1982-05-06 1983-11-17 Chemische Werke Hüls AG, 4370 Marl Phenylsubstituierter acrylsaeureester und dessen verwendung
JPH01234406A (ja) * 1988-03-14 1989-09-19 Nippon Kayaku Co Ltd ジ(メタ)アクリル酸エステル、これを用いた樹脂組成物及びコーテイング剤
JP2889593B2 (ja) * 1989-05-24 1999-05-10 株式会社日立製作所 光学部品及びその製造方法とその応用装置
JPH11349645A (ja) * 1998-06-11 1999-12-21 Mitsubishi Rayon Co Ltd 活性エネルギー線硬化性樹脂組成物および光学シート
US6540940B1 (en) * 1999-08-23 2003-04-01 Fuji Photo Film Co., Ltd. Orientation layer containing (meth) acrylic copolymer having hydrophobic repeating units
WO2001040828A1 (fr) * 1999-11-29 2001-06-07 Omron Corporation Mosaique de micro-lentilles resistante a la lumiere et composition a base de resine pouvant etre utilisee dans ladite mosaique
US6531195B2 (en) 2000-03-29 2003-03-11 Fuji Photo Film Co., Ltd. Process for orienting rod-like liquid crystal molecules
JP4760714B2 (ja) * 2004-12-20 2011-08-31 株式会社ニコン 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
JP5250949B2 (ja) * 2006-08-07 2013-07-31 デクセリアルズ株式会社 発光素子モジュール
US7989037B2 (en) 2006-10-06 2011-08-02 Fujifilm Corporation Composition, retardation plate, and liquid-crystal display device
US8809413B2 (en) * 2011-06-29 2014-08-19 Chau Ha Ultraviolet radiation-curable high refractive index optically clear resins
JP5815304B2 (ja) * 2011-06-29 2015-11-17 日揮触媒化成株式会社 光学薄膜形成用塗料および光学薄膜
JP5916399B2 (ja) * 2012-01-27 2016-05-11 株式会社タムラ製作所 紫外線硬化性透明樹脂組成物

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098828A (ja) * 1999-08-23 2002-04-05 Fuji Photo Film Co Ltd 液晶配向膜、その製造方法、光学補償シート、stn型液晶表示装置およびディスコティック液晶性分子を配向させる方法
JP2003519819A (ja) * 2000-01-11 2003-06-24 コーニング・インコーポレーテッド 温度無依存化した光集積導波路デバイス
JP2003523528A (ja) * 2000-01-11 2003-08-05 コーニング・インコーポレーテッド 有機材料を含む光導波路デバイスのチューニング
JP2003055408A (ja) * 2001-06-21 2003-02-26 Hynix Semiconductor Inc フォトレジスト単量体、フォトレジスト重合体、フォトレジスト重合体の製造方法、フォトレジスト組成物、フォトレジストパターン形成方法、及び半導体素子
JP2009079225A (ja) * 2001-11-30 2009-04-16 Nikon Corp 光学用樹脂前駆体組成物、光学用樹脂、光学素子及び光学物品
JP2008111110A (ja) * 2006-10-06 2008-05-15 Fujifilm Corp 組成物、位相差板、液晶表示装置および、位相差板の製造方法
JP2008203821A (ja) 2007-01-22 2008-09-04 Canon Inc 積層型回折光学素子
JP2010007004A (ja) * 2008-06-30 2010-01-14 Sanyo Chem Ind Ltd 活性エネルギー線硬化型樹脂組成物
JP2010037525A (ja) * 2008-08-08 2010-02-18 Hitachi Maxell Ltd 光学シート
WO2011010633A1 (ja) * 2009-07-22 2011-01-27 株式会社ニコン 樹脂前駆体組成物、及びそれを光硬化させた樹脂
KR20120061427A (ko) * 2010-12-03 2012-06-13 재단법인대구경북과학기술원 액정 디스플레이용 광경화성 조성물 및 이를 이용한 액정 디스플레이
JP2013049823A (ja) * 2011-08-04 2013-03-14 Daicel Corp ウェハレベルレンズ用ラジカル硬化性組成物
JP2013204034A (ja) * 2012-03-29 2013-10-07 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
JP2013227392A (ja) * 2012-04-25 2013-11-07 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物(3)
JP2014108983A (ja) * 2012-11-30 2014-06-12 Denki Kagaku Kogyo Kk 光硬化性樹脂組成物
JP2014122949A (ja) * 2012-12-20 2014-07-03 Shin Etsu Chem Co Ltd レジスト材料及びこれを用いたパターン形成方法
WO2016031249A1 (ja) * 2014-08-26 2016-03-03 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子
JP2016098248A (ja) * 2014-11-18 2016-05-30 株式会社菱晃 硬化性樹脂組成物、硬化物、光学部材、レンズ及びカメラモジュール

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATHAWALE, V. D.: "Syntheses of optically active polyacrylates", JOURNAL OF MACROMOLECULAR SCIENCE, vol. 35, no. 6, June 1998 (1998-06-01), pages 985 - 1001, XP055506250 *
CHEMICAL PAPERS, vol. 68, no. 11, 2014, pages 1561 - 1572
HARUUMI HASUO: "Development of High-performance Normal Mode Type (Polymer/Liquid Crystal) Composite Films using UV curable monomers", HEISEI 13 NENDO FUKUOKA-KEN KOGYO GIJUTSU CENTER KENKYU HOKOKU, vol. 12, 2001, pages 14 - 17, XP009515521 *
MASAHIRO YAMAGUCHI: "UV Jugosei Monomer o Mochiita (Kobunshi/Ekisho) Fukugomaku no Kaihatsu", GIJUTSU CENTER KENKYU HOKOKU, no. 10, 1999, pages 55 - 57, XP009515409 *
YAMAMOTO E.: "Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1- Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, no. 49, 22 November 2016 (2016-11-22), pages 15877 - 15880, XP055506249 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085948A (ja) * 2019-11-26 2021-06-03 キヤノン株式会社 回折光学素子、回折光学素子の製造方法、光学機器および撮像装置
CN112946801A (zh) * 2019-11-26 2021-06-11 佳能株式会社 衍射光学元件及其生产方法、光学设备和图像拾取装置
US11719866B2 (en) 2019-11-26 2023-08-08 Canon Kabushiki Kaisha Diffractive optical element, method for producing diffractive optical element, optical device, and image pickup apparatus
JP7346262B2 (ja) 2019-11-26 2023-09-19 キヤノン株式会社 回折光学素子、回折光学素子の製造方法、光学機器および撮像装置
CN112946801B (zh) * 2019-11-26 2024-05-28 佳能株式会社 衍射光学元件及其生产方法、光学设备和图像拾取装置

Also Published As

Publication number Publication date
CN116082563A (zh) 2023-05-09
EP3572396A4 (en) 2020-11-18
US20190322857A1 (en) 2019-10-24
US11142636B2 (en) 2021-10-12
JPWO2018134871A1 (ja) 2019-11-07
JP6809540B2 (ja) 2021-01-06
CN110088077A (zh) 2019-08-02
EP3572396A1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
US11142636B2 (en) (Meth)acrylate compound, additive for optical resin, optical element, and optical device
JP5424623B2 (ja) 樹脂組成物およびそれにより成形された光学素子、回折光学素子及び積層型回折光学素子
KR101267101B1 (ko) 광학 재료 및 광학 소자
CN101061148A (zh) 可固化配方、固化组合物及由其形成的制品
JP3797223B2 (ja) 耐光性マイクロレンズアレイおよびそれに使用する樹脂組成物
JP2012227190A (ja) ナノインプリント用硬化性樹脂組成物
CN106662817B (zh) 感光性组合物及其固化膜
US20220120937A1 (en) Compound, resin precursor, cured object, optical element, optical system, interchangeable camera lens, optical device, cemented lens, and method for manufacturing cemented lens
JP5852330B2 (ja) 硬化性樹脂組成物および成形体
US11440869B2 (en) Compound, resin precursor, cured product, optical element, optical system, interchangeable lens for camera, optical device, cemented lens, and production method for cemented lens
US11346985B2 (en) Cured product, and optical element, diffractive optical element, optical apparatus, and imaging device using the cured product
WO2010082659A1 (ja) シリコーンモノマー
US20140226216A1 (en) Composite optical element
JP4204391B2 (ja) 重合性アダマンタン化合物
JP2011074280A (ja) スターポリマー、硬化性樹脂組成物
JP6531762B2 (ja) 回折光学素子
KR101112599B1 (ko) 퍼플루오로피나콜기 함유 (메타)아크릴레이트 화합물, 그의 중합체 및 그 중합체를 함유하는 조성물
TWI798429B (zh) 化合物、樹脂前驅物、硬化物、光學元件、光學系統、相機用交換鏡頭、光學裝置、接合透鏡及接合透鏡之製造方法
JP2006232907A (ja) 光学材料、及び該光学材料を用いた光学素子の成形方法、該成形方法によって成形された光学素子、該光学素子を有する光学系装置
JP2004126499A (ja) 光学素子及び光学素子の製造方法、積層型光学素子及び積層型光学素子の製造方法、または光学材料
JP7298780B2 (ja) 化合物、樹脂前駆体、硬化物、光学素子、光学系、カメラ用交換レンズ、光学装置、接合レンズ、及び接合レンズの製造方法
JP7327979B2 (ja) 硬化物、硬化物を用いた光学素子、回折光学素子、光学機器および撮像装置
WO2005044876A1 (ja) 光学部品
CN112533974A (zh) 光学构件、其制造方法和光学构件用固化性组合物
JP2009137868A (ja) 新規含硫黄エチレン性不飽和基含有化合物、及びその重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892595

Country of ref document: EP

Effective date: 20190819