WO2018131476A1 - マグネシウム合金 - Google Patents
マグネシウム合金 Download PDFInfo
- Publication number
- WO2018131476A1 WO2018131476A1 PCT/JP2017/046768 JP2017046768W WO2018131476A1 WO 2018131476 A1 WO2018131476 A1 WO 2018131476A1 JP 2017046768 W JP2017046768 W JP 2017046768W WO 2018131476 A1 WO2018131476 A1 WO 2018131476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium alloy
- less
- alloy
- magnesium
- alloy according
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
Definitions
- the present invention relates to a magnesium alloy.
- the present invention relates to a medical magnesium alloy having controlled biodegradability and excellent deformation characteristics.
- Patent Document 1 describes a medical biodegradable magnesium material containing magnesium oxide or hydroxide formed by anodic oxidation on the surface of crystallized magnesium or magnesium alloy. It describes that when the material contains a second component other than magnesium, the uneven concentration of the second component in the grain boundary is 1.2 times or more of the average in the crystal grain.
- the magnesium alloy When using a magnesium alloy as a biodegradable medical material, it is necessary to maintain the strength until the affected living body is repaired. If the magnesium alloy is in contact with a metal that is more noble electrically than this, galvanic corrosion will proceed rapidly in an environment where it comes into contact with body fluids. To avoid this, avoid phase separation of the parent phase. Is preferred. Further, the magnesium alloy may be used as a raw material for a medical device accompanied by deformation such as a stent. In this case, the alloy has an appropriate deformability (ductility) and becomes a fracture starting point after deformation. It is preferable that there are no coarse precipitates (compounds).
- An object of the present invention is to provide a magnesium alloy in which the corrosion rate is appropriately controlled and has excellent deformability.
- the magnesium alloy of the present invention contains 1.0% to 2.0% Zn, 0.05% to 0.80% Zr, 0.05% to 0.40% Mn, with the balance being Mg. And a magnesium alloy composed of inevitable impurities.
- the magnesium alloy having the above structure has a structure in which fine precipitates containing Zr are dispersed in a solid solution type alloy.
- This magnesium alloy is excellent in deformability (ductility, elongation), and since the parent phase is a single phase, corrosion due to a potential difference is avoided, and generation of a magnesium compound that becomes a fracture starting point after deformation is also avoided.
- the magnesium alloy may further contain 0.005% or more and less than 0.20% Ca by mass%.
- the contents of Fe, Ni, Co, and Cu as inevitable impurities are each preferably less than 10 ppm.
- the decomposition rate can be further suppressed.
- the magnesium alloy preferably has a total amount of inevitable impurities of 30 ppm or less and does not contain rare earth elements and aluminum.
- the magnesium alloy may have an average crystal grain size of 1 to 10 ⁇ m.
- the magnesium alloy may have a tensile strength measured by JIS Z2241 of 230 to 380 MPa, a proof stress of 180 to 330 MPa, and a breaking elongation of 10 to 30%.
- the magnesium alloy does not contain a precipitate having a particle size of 500 nm or more.
- the medical device of the present invention is a medical device including a metal member made of the magnesium alloy according to the present invention.
- the metal member deformed in the body can stably maintain its shape, and its biodegradation characteristics can be controlled appropriately.
- the magnesium alloy of the present invention contains 1.0% to 2.0% Zn, 0.05% to 0.80% Zr, 0.05% to 0.40% Mn, with the balance being Mg. And a magnesium alloy composed of inevitable impurities.
- the magnesium alloy may further contain 0.005% or more and less than 0.20% Ca by mass%. That is, the magnesium alloy is 1.0% to 2.0% Zn, 0.05% to 0.80% Zr, 0.05% to 0.40% Mn, 0.005% or more by mass%. It may be a magnesium alloy containing less than 0.20% Ca, with the balance being Mg and inevitable impurities.
- the magnesium alloy having the above structure can have an alloy structure composed of a solid phase of a solid solution type. Therefore, it is possible to avoid corrosion due to a potential difference, which becomes a problem when the magnesium alloy is phase-separated. Moreover, since the formation of coarse precipitates, which is the starting point of destruction, is also avoided, the possibility of destruction at the time of deformation or after deformation can be suppressed. Although Zr added to refine the crystal grain size of the alloy forms precipitates, it is dispersed in the matrix at a nanometer size, and the effects on deformation and corrosion of the alloy can be almost ignored. .
- FIG. 1 is an SEM image of an alloy according to Example 1 described later
- FIG. 2 is an Example 6
- FIG. 3 is an alloy according to Comparative Example 1.
- the dark part of the contrast is the magnesium alloy, and the white bar at the bottom of the figure indicates the 1 ⁇ m scale.
- FIG. 1 only a small number of precipitates having a particle size of 500 nm or less are observed in the crystal grains, but in FIG. 2, precipitates having a particle size exceeding 500 nm are observed at the crystal grain boundaries.
- FIG. 3 precipitates are also observed at the crystal grain boundaries, and many spots with different contrasts are observed within the crystal grains, indicating that a compound is formed by phase separation.
- Zinc (Zn) 1.0% by mass or more and 2.0% or less by mass% Zn is added to improve the strength and elongation of the alloy by solid solution with Mg. If the added amount of Zn is less than 1.0%, the desired effect cannot be obtained. When the content of Zn exceeds 2.0%, greater than the solid solubility limit, it precipitates rich in Zn is formed, undesirably reducing the corrosion resistance. Therefore, the Zn content is set to 1.0% or more and 2.0% or less. The Zn content may be less than 2.0%. The Zn content is preferably 1.4% or more and 1.7% or less.
- Zr Zirconium
- 0.05% or more and 0.80% or less in terms of mass% Zr is an effect that hardly dissolves with Mg and forms fine precipitates to prevent the crystal grain size of the alloy from becoming coarse. There is. If the amount of Zr added is less than 0.05%, the effect of addition cannot be obtained. When the addition amount exceeds 0.80%, the amount of precipitates increases and the workability decreases. Therefore, the content of Zr is set to 0.05% or more and 0.80% or less. The Zr content is preferably 0.2% or more and 0.6% or less.
- Mn Manganese
- Mn Manganese
- 0.05% or more and 0.40% or less by mass% Mn is effective in making the alloy finer and improving the corrosion resistance. If the Mn content is less than 0.05%, the desired effect cannot be obtained. If the Mn content exceeds 0.40%, the plastic workability is lowered. Therefore, the Mn content is set to 0.05% or more and 0.40% or less. A preferable Mn content is 0.2% or more and 0.4% or less.
- Ca Calcium (Ca): 0.05% or more and less than 0.20% by mass, if necessary, Ca can be expected to have an effect of improving the corrosion resistance while maintaining the strength of the magnesium alloy. To do. If the addition amount is less than 0.05%, the effect of addition cannot be obtained. When 0.20% or more of Ca is added, precipitates are easily formed, and a single-phase complete solid solution cannot be obtained. Therefore, the addition amount when Ca is added is set to 0.05% or more and less than 0.20%. A preferable addition amount of Ca is 0.05% or more and less than 0.10%.
- the content of inevitable impurities is also preferably controlled. Since Fe, Ni, Co, and Cu promote corrosion of the magnesium alloy, the content of each is preferably less than 10 ppm, more preferably 5 ppm or less, and substantially no content.
- the total amount of inevitable impurities is preferably 30 ppm or less, more preferably 10 ppm or less.
- rare earth elements and aluminum are not substantially contained.
- the content in the alloy is less than 1 ppm, it is regarded as not substantially contained.
- the content of inevitable impurities can be confirmed by, for example, ICP emission spectroscopic analysis.
- the above magnesium alloy is manufactured by injecting Mg, Zn, Zr, Mn ingot or alloy and, if necessary, Ca into a crucible and melting and casting at a temperature of 650 to 800 ° C. in accordance with a normal magnesium alloy manufacturing method. can do. If necessary, solution heat treatment may be performed after casting. Rare earths (and aluminum) are not included in the metal. Moreover, the amount of Fe, Ni, and Cu in impurities can be suppressed by using a high purity metal. Fe, Ni, and Co in the impurities may be removed by a deironing process at the stage of melting. In addition, or smelted and smelted metal may be used.
- the magnesium alloy can have an average crystal grain size of 1 to 10 ⁇ m by controlling the above-described composition and manufacturing method. Fine precipitates containing Zr can have a particle size of less than 500 nm.
- the parent phase excluding the Zr precipitate is preferably a Mg—Zn—Mn ternary alloy all solid solution or a Mg—Zn—Mn—Ca quaternary all solid solution.
- the alloy has mechanical properties of a tensile strength of 230 to 380 MPa, a proof stress of 180 to 330 MPa, and a breaking elongation of 10 to 30% as measured according to JIS Z2241. Moreover, in the result of the corrosion test performed as an index of biodegradability, it is controlled to be slower than the decomposition rate of magnesium alone.
- the magnesium alloy of the present invention is excellent in ductility and has biodegradability controlled at a decomposition rate lower than that of magnesium alone, and the components are adjusted to components and concentrations that do not cause biotoxicity. It has excellent properties as a medical metal.
- the magnesium alloy of the present invention can be suitably used as a metal member constituting a medical device such as a stent, a stapler, a screw, a plate, and a coil.
- Mg, Zn, Mn, Zr high purity metal and Ca were prepared as materials. Each of these was weighed so as to have the component concentrations shown in Table 1 and put into a crucible, melted at 730 ° C., and stirred, cast into an ingot, and the mixing ratio of the main components was within the scope of the present invention.
- the magnesium alloys of Examples 1 to 7 and Comparative Example 1 in which the blending ratio of the main component was outside the scope of the present invention were obtained.
- the raw materials used do not contain rare earth elements or aluminum as unavoidable impurities.
- Example 1 a magnesium ingot having a low impurity Cu concentration and a purity of 99.99% was used, and a deironing process for removing iron and nickel from the molten metal was performed in a furnace. Went in.
- Example 7 the impurity concentration was relatively high due to selection of raw materials, omission of deironing treatment, and the like. With respect to the sample thus obtained, an impurity concentration was measured using an ICP emission spectrometer (AGILENT 720 ICP-OES, manufactured by AGILENT). Table 1 shows the components of Examples and Comparative Examples.
- Example 1 the total amount of impurities was 30 ppm or less, the concentrations of Fe, Ni, and Cu were all 9 ppm or less, and Al and rare earth elements were not detected.
- Example 7 the total amount of impurities exceeded 30 ppm, and the concentrations of Fe, Ni, and Cu were each 10 ppm or more.
- Table 1 shows component concentrations of Examples and Comparative Examples, and concentrations of Fe, Ni, Co, and Cu as impurities. Those with ND in the table are below the detection limit.
- Example 6 Compared with Examples 1 to 7 in which the main component concentration is within the range of the present invention, in Comparative Example 1 in which the main component concentration is outside the range of the present invention and phase separation occurs, Corrosion due to physiological saline is progressing rapidly.
- Example 6 a precipitate having a particle size of 500 nm or more is generated, which is considered to be involved in relatively fast corrosion. In such a case, heat treatment is required to reduce precipitates.
- Example 7 the result of the structure observation is good, but the concentrations of Fe, Ni, and Cu contained as impurities all exceed 10 ppm, and the decomposition rate is as fast as that of the comparative example.
- the magnesium alloy provided by the present invention is excellent in deformation characteristics, and the matrix is composed of a single-phase alloy of a completely solid solution type, and corrosion due to a potential difference can be avoided, so that the decomposition rate in the living body is appropriately controlled. be able to. Therefore, for example, it is highly usable as a metal member for medical devices such as stents and staplers that require deformation and stable biodegradability during use.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Materials For Medical Uses (AREA)
- Powder Metallurgy (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Abstract
Description
本発明のマグネシウム合金は、質量%で、1.0~2.0%のZn、0.05~0.80%のZr、0.05~0.40%のMnを含有し、残部がMgおよび不可避的不純物からなる、マグネシウム合金である。上記マグネシウム合金は、さらに質量%で、0.005%以上、0.20%未満のCaを含んでもよい。すなわち、上記マグネシウム合金は、質量%で、1.0~2.0%のZn、0.05~0.80%のZr、0.05~0.40%のMn、0.005%以上、0.20%未満のCaを含有し、残部がMgおよび不可避的不純物からなる、マグネシウム合金であってもよい。
Znは、Mgと固溶し、合金の強度、伸びを向上するために添加される。Znの添加量が1.0%未満では所望の効果が得られない。Znの含有量が2.0%を超えると、固溶限界を超えて、Znに富む析出物が形成され、耐食性を低下させるため好ましくない。そのため、Znの含有量は、1.0%以上、2.0%以下とした。Znの含有量は2.0%未満であってもよい。Znの含有量は、1.4%以上1.7%以下であることが好ましい。
ZrはMgとはほとんど固溶せず、微細な析出物を形成し、合金の結晶粒径の粗大化を防止する効果がある。Zrの添加量が0.05%未満では、添加の効果は得られない。添加量が0.80%を超えると、析出物の量が多くなり、加工性が低下する。そのため、Zrの含有量は、0.05%以上、0.80%以下とした。Zrの含有量は、0.2%以上、0.6%以下であることが好ましい。
Mnは、合金の微細化、および耐食性向上の上で効果がある。Mnの含有量が0.05%未満では、所望の効果が得られない。Mnの含有量が0.40%を超えると、塑性加工性が低下する。そのため、Mnの含有量は、0.05%以上、0.40%以下とした。好ましいMn含有量は0.2%以上、0.4%以下である。
Caは、マグネシウム合金の強度を保持しながら、耐食性を向上する効果が期待できるので、必要に応じて添加する。添加量が0.05%未満では、添加の効果は得られない。Caを0.20%以上添加すると、析出物が形成されやすくなり、単相の完全固溶体はえられない。そのため、Caを添加する場合の添加量は、0.05%以上、0.20%未満とした。好ましいCaの添加量は、0.05%以上、0.10%未満である。
医療用マグネシウム合金においては、不可避不純物の含有量も制御されることが好ましい。Fe、Ni、Co、Cuは、マグネシウム合金の腐食を促進するため、それぞれの含有量は、10ppm未満とすることが好ましく、5ppm以下とすることがさらに好ましく、実質的含有しないことが好ましい。不可避不純物の総量は、30ppm以下とすることが好ましく、10ppm以下とすることがさらに好ましい。また、希土類元素およびアルミニウムは実質的に含まれないことが好ましい。ここで、合金中の含有量が1ppm未満であれば、実質的に含有しないとみなす。不可避不純物の含有量は、例えば、ICP発光分光分析により、確認できる。
上記マグネシウム合金は、通常のマグネシウム合金の製法に従い、Mg、Zn、Zr、Mnの地金もしくは合金、および必要に応じCaを坩堝に投入し、温度650~800℃で溶解、鋳造することによって製造することができる。必要に応じ、鋳造後に溶体化熱処理を行ってもよい。希土類(およびアルミニウム)は、地金には含まれない。また高純度の地金を用いることにより、不純物中のFe、Ni、Cu量は抑制できる。不純物中のFe、Ni、Coについては、溶湯化した段階で脱鉄処理により除去してもよい。また/あるいは、蒸留製錬した地金を用いてもよい。
マグネシウム合金は、上述の組成及び製造方法の制御により、平均結晶粒径1~10μmとすることができる。Zrを含む細粒の析出物は、粒径500nm未満とできる。Zr析出物をのぞく母相は、Mg-Zn-Mn三元系合金の全固溶体、またはMg-Zn-Mn-Ca四元系の全固溶体であることが好ましい。
合金は、JIS Z2241による測定で、引張強度230~380MPa、耐力180~330MPa、破断伸び10~30%の機械的特性を有する。また生分解性の指標として行われる腐食試験の結果では、マグネシウム単体の分解速度より低速に制御されている。
本発明のマグネシウム合金は、延性にすぐれ、またマグネシウム単体に比して低い分解速度に制御された生分解性を有するため、また成分は生体毒性を生じない成分・濃度に調整されているので、医療用金属としてすぐれた特性を有する。本発明のマグネシウム合金は、ステント、ステープラー、スクリュー、プレート、コイルなどの医療機器を構成する金属部材として好適に使用できる。
Mg、Zn、Mn、Zrの高純度地金、およびCaを材料として準備した。これらをそれぞれ表1に記載の成分濃度となるように秤量して坩堝に投入し、730℃で溶融し、撹拌したメルトを鋳造し、鋳塊とし、主成分の配合割合を本発明の範囲内とした実施例1~7、および、主成分の配合割合を本発明の範囲外とした比較例1のマグネシウム合金を得た。使用した原料には、希土類元素やアルミニウムは、不可避的不純物としても含まれていない。実施例1~6、及び比較例1では、マグネシウム地金には、不純物Cu濃度の低い、純度99.99%のものを用い、また溶湯から鉄、ニッケルを除去するための脱鉄処理を炉内で行った。実施例7は、原材料の選択、脱鉄処理の省略等によって比較的不純物濃度の高いものとした。このようにして得られた試料について、ICP発光分光分析計(AGILENT製、AGILENT 720 ICP-OES)を使用し、不純物濃度を測定した。実施例および比較例の成分を表1に示す。実施例1~6、および比較例1では、不純物の総量は30ppm以下で、Fe、Ni、Cuの濃度はいずれも9ppm以下で、Alおよび希土類元素は検出されなかった。実施例7では、不純物の総量が30ppmを越え、Fe、Ni、Cuの濃度もそれぞれ10ppm以上であった。実施例および、比較例の成分濃度、および不純物であるFe、Ni、Co、Cuの濃度を表1に示す。表でNDとあるものは、検出限界以下のものである。
実施例および比較例の各合金について、熱間押出し加工にて丸棒材を作製し、JISZ2241に従い引張強度、耐力、および破断伸びを測定した。その結果を表2に示す。
押出材の断面を、Arイオンビームスパッタリングで清浄な面を得た後、走査型電子顕微鏡(JEOL製、JSM-7000F)で観察し、電子線後方散乱回折(EBSD)法により平均粒径を測定した。その結果を表2に示す。また、析出物の産状についても観察を行った。2mm×2mmの観察領域において、母相が単相で、粒径500nm以上の析出物が観察されない場合A、粒径500nm以上の析出物が観察された場合B、母相に二相以上に分相が生じている場合をCと評価した。その結果を表2に示す。
生分解性の指標として、各合金からφ10mm厚さ1mmのディスク試料を採取し、両面を鏡面研磨した後、37℃の生理食塩水に浸漬し、腐食生成物を除去し、試験前後の重量減少から、分解特性を評価した。その結果を表2に示す。
Claims (8)
- 質量%で、1.0~2.0%のZn、0.05~0.80%のZr、0.05~0.40%のMnを含有し、残部がMgおよび不可避的不純物からなる、マグネシウム合金。
- 請求項1に記載のマグネシウム合金であって、さらに質量%で、0.005%以上、0.20%未満のCaを含むマグネシウム合金。
- 請求項1または2に記載のマグネシウム合金であって、不可避的不純物としてのFe、Ni、Co、Cuの含有量が、それぞれ10ppm未満であるマグネシウム合金。
- 請求項1から3のいずれか一項に記載のマグネシウム合金であって、不可避不純物の総量が30ppm以下であり、該不純物中に希土類元素およびアルミニウムを含有しない、マグネシウム合金。
- 請求項1から4のいずれか一項に記載のマグネシウム合金であって、合金の平均粒径が1~10μmである、マグネシウム合金。
- 請求項1から5のいずれか一項に記載のマグネシウム合金であって、JIS Z2241によって測定される引張強度が230~380MPa、耐力が180~330MPa、破断伸びが10~30%である、マグネシウム合金。
- 請求項1から6のいずれか一項に記載のマグネシウム合金であって、粒径500nm以上の析出物を含有しない、マグネシウム合金。
- 請求項1から7のいずれか一項に記載のマグネシウム合金からなる金属部材を有する医療機器。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17891541.9A EP3569723B1 (en) | 2017-01-10 | 2017-12-26 | Magnesium alloy |
JP2018561915A JP6644303B2 (ja) | 2017-01-10 | 2017-12-26 | マグネシウム合金 |
AU2017393044A AU2017393044B2 (en) | 2017-01-10 | 2017-12-26 | Magnesium alloy |
CN201780082913.4A CN110191971A (zh) | 2017-01-10 | 2017-12-26 | 镁合金 |
ES17891541T ES2945875T3 (es) | 2017-01-10 | 2017-12-26 | Aleación de magnesio |
US16/506,298 US11248282B2 (en) | 2017-01-10 | 2019-07-09 | Magnesium alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-001887 | 2017-01-10 | ||
JP2017001887 | 2017-01-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/506,298 Continuation US11248282B2 (en) | 2017-01-10 | 2019-07-09 | Magnesium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018131476A1 true WO2018131476A1 (ja) | 2018-07-19 |
Family
ID=62839479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046768 WO2018131476A1 (ja) | 2017-01-10 | 2017-12-26 | マグネシウム合金 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11248282B2 (ja) |
EP (1) | EP3569723B1 (ja) |
JP (1) | JP6644303B2 (ja) |
CN (1) | CN110191971A (ja) |
AU (1) | AU2017393044B2 (ja) |
ES (1) | ES2945875T3 (ja) |
WO (1) | WO2018131476A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6695546B1 (ja) * | 2018-07-09 | 2020-05-20 | 不二ライトメタル株式会社 | マグネシウム合金 |
WO2020196777A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社日本医療機器技研 | 非管腔領域用インプラント |
WO2020196778A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社日本医療機器技研 | 表面改質マグネシウム合金 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109717992B (zh) * | 2014-11-28 | 2021-07-16 | 元心科技(深圳)有限公司 | 管腔支架预制件及由管腔支架预制件制备的管腔支架 |
CN112695237A (zh) * | 2020-12-22 | 2021-04-23 | 上海康德莱医疗器械股份有限公司 | 不含稀土元素的生物可降解镁合金及其制备方法 |
CN112853186A (zh) * | 2021-01-10 | 2021-05-28 | 沈阳工业大学 | 一种细晶高强韧变形镁合金及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183062A (ja) * | 2002-12-04 | 2004-07-02 | Sumitomo Denko Steel Wire Kk | マグネシウム基合金線及びその製造方法 |
WO2007108450A1 (ja) | 2006-03-20 | 2007-09-27 | National Institute For Materials Science | 医療用生分解性マグネシウム材 |
JP2012082474A (ja) * | 2010-10-12 | 2012-04-26 | Sumitomo Electric Ind Ltd | マグネシウム合金の線状体及びボルト、ナット並びにワッシャー |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB851871A (en) | 1957-10-25 | 1960-10-19 | British Thomson Houston Co Ltd | Improved magnesium alloys |
GB9023270D0 (en) | 1990-10-25 | 1990-12-05 | Castex Prod | Magnesium manganese alloy |
ES2134205T3 (es) | 1991-03-08 | 1999-10-01 | Keiji Igaki | Stent para vasos, estructura de sujecion de dicho stent, y dispositivo para montar dicho stent. |
JP3904035B2 (ja) | 1996-03-21 | 2007-04-11 | 株式会社豊田中央研究所 | 耐熱マグネシウム合金 |
DE19731021A1 (de) | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
US8257725B2 (en) | 1997-09-26 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
US7960405B2 (en) | 1998-09-24 | 2011-06-14 | Abbott Laboratories | Compounds and methods for treatment and prevention of diseases |
EP2259530B1 (en) | 1999-07-28 | 2019-03-27 | Panasonic Intellectual Property Corporation of America | Apparatus for the transmission and reception of data and method for digital radio communication |
WO2004002367A1 (fr) | 2002-06-27 | 2004-01-08 | Microport Medical (Shanghai) Co., Ltd. | Stent eluant des medicaments |
CN100552241C (zh) | 2003-06-19 | 2009-10-21 | 住友电气工业株式会社 | 镁基合金螺钉及其制造方法 |
JP4782987B2 (ja) | 2003-06-19 | 2011-09-28 | 住友電気工業株式会社 | マグネシウム基合金ねじの製造方法 |
JP2006087704A (ja) | 2004-09-24 | 2006-04-06 | Terumo Corp | 医療用インプラント |
WO2006108065A2 (en) | 2005-04-05 | 2006-10-12 | Elixir Medical Corporation | Degradable implantable medical devices |
US20070135908A1 (en) | 2005-12-08 | 2007-06-14 | Zhao Jonathon Z | Absorbable stent comprising coating for controlling degradation and maintaining pH neutrality |
NO20063703L (no) | 2006-08-18 | 2008-02-19 | Magontec Gmbh | Magnesium stopeprosess og legeringssammensetning |
US20100145436A1 (en) | 2006-09-18 | 2010-06-10 | Boston Scientific Scimed, Inc. | Bio-erodible Stent |
ATE530210T1 (de) | 2006-09-18 | 2011-11-15 | Boston Scient Ltd | Endoprothesen |
US8361251B2 (en) | 2007-11-06 | 2013-01-29 | GM Global Technology Operations LLC | High ductility/strength magnesium alloys |
CN101468216A (zh) | 2007-12-26 | 2009-07-01 | 中国科学院金属研究所 | 一种带药可降解镁合金心血管支架及其制备方法 |
JP5467294B2 (ja) * | 2008-06-05 | 2014-04-09 | 独立行政法人産業技術総合研究所 | 易成形性マグネシウム合金板材及びその作製方法 |
CN101629260A (zh) * | 2008-07-18 | 2010-01-20 | 中国科学院金属研究所 | 医用可吸收Mg-Zn-Mn-Ca镁合金 |
US9283304B2 (en) | 2008-11-25 | 2016-03-15 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Absorbable stent having a coating for controlling degradation of the stent and maintaining pH neutrality |
US9254350B2 (en) | 2009-04-10 | 2016-02-09 | Medtronic Vascular, Inc. | Implantable medical devices having bioabsorbable primer polymer coatings |
KR20100116566A (ko) | 2009-04-22 | 2010-11-01 | 유앤아이 주식회사 | 생체분해성 임플란트 및 이의 제조방법 |
US8382823B2 (en) | 2009-05-28 | 2013-02-26 | Snu R&Db Foundation | Biodegradable stent and method for manufacturing the same |
US20130204391A1 (en) | 2010-07-15 | 2013-08-08 | Tohoku Univresity | Highly elastic stent and production method for highly elastic stent |
US20130004362A1 (en) | 2011-03-10 | 2013-01-03 | Nagata Seiki Kabushiki Kaisha | Process for production of medical instrument, and medical instrument |
JP6157484B2 (ja) | 2011-10-06 | 2017-07-05 | ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケーションUniversity Of Pittsburgh Of The Commonwealth System Of Higher Education | 生分解性金属合金 |
US20130090741A1 (en) | 2011-10-07 | 2013-04-11 | Medtronic Vascular, Inc. | Magnesium Alloys for Bioabsorbable Stent |
JP2013215332A (ja) | 2012-04-06 | 2013-10-24 | Japan Stent Technology Co Ltd | 生体吸収性医療器具及びその分解速度調整方法 |
CN102719717A (zh) | 2012-05-25 | 2012-10-10 | 河海大学 | 骨固定用可降解高强韧超细晶镁锌稀土合金及其制备方法 |
CH706803A1 (de) | 2012-08-06 | 2014-02-14 | Axetis Ag | Beschichteter Stent. |
US9504554B2 (en) * | 2013-01-16 | 2016-11-29 | Biotronik Ag | Microstructured absorbable implant |
US9155637B2 (en) | 2013-03-13 | 2015-10-13 | Medtronic Vascular, Inc. | Bioabsorbable stent with hydrothermal conversion film and coating |
US10478529B2 (en) * | 2013-03-14 | 2019-11-19 | DePuy Synthes Products, Inc. | Magnesium alloy with adjustable degradation rate |
US9593397B2 (en) | 2013-03-14 | 2017-03-14 | DePuy Synthes Products, Inc. | Magnesium alloy with adjustable degradation rate |
AU2014232750B2 (en) | 2013-03-15 | 2017-10-26 | Thixomat, Inc. | High strength and bio-absorbable magnesium alloys |
CN103255329B (zh) | 2013-05-07 | 2015-08-26 | 宝山钢铁股份有限公司 | 一种低成本细晶弱织构镁合金薄板及其制造方法 |
JP2017501756A (ja) | 2013-10-29 | 2017-01-19 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 体内プロテーゼ用の生侵食性マグネシウム合金マイクロ構造 |
JP6560193B2 (ja) | 2014-03-28 | 2019-08-14 | 古河電気工業株式会社 | マグネシウム合金管材とその製造方法、及びそれを用いてなるステントとその製造方法 |
CN104046867B (zh) * | 2014-06-26 | 2017-01-25 | 宝山钢铁股份有限公司 | 一种高塑性导热镁合金及其制备方法 |
CN105586521A (zh) | 2014-10-22 | 2016-05-18 | 上海交通大学深圳研究院 | 高导热Mg-Zn-Mn变形镁合金及其制备方法 |
US10322214B2 (en) | 2014-11-06 | 2019-06-18 | Medtronic Vascular, Inc. | Protected magnesium alloys for bioresorbable stents |
CN104498790B (zh) | 2014-12-01 | 2017-04-26 | 中国兵器科学研究院宁波分院 | 一种可降解镁合金生物植入材料及其制备方法 |
CN104630587A (zh) * | 2015-02-28 | 2015-05-20 | 天津理工大学 | 一种骨折内固定用可降解镁合金板、棒材及其制备方法 |
JP6667758B2 (ja) | 2015-11-26 | 2020-03-18 | 株式会社 日本医療機器技研 | 生体吸収性ステント |
CN105256213A (zh) * | 2015-12-01 | 2016-01-20 | 天津东义镁制品股份有限公司 | 生物医用Mg-Zn-Zr-Mn镁合金及其制备方法 |
EP3342433A1 (de) | 2016-12-27 | 2018-07-04 | MeKo Laserstrahl-Materialbearbeitungen e.K. | Stent aus einer biologisch abbaubaren magnesiumlegierung mit einer magnesiumfluorid-beschichtung und einer organischen beschichtung |
JP6671731B2 (ja) | 2017-01-30 | 2020-03-25 | 株式会社 日本医療機器技研 | 高機能生体吸収性ステント |
CN107385419B (zh) | 2017-06-28 | 2019-02-15 | 河南工业大学 | 一种提高医用镁合金表面耐腐蚀及亲水性能的涂层及其制备方法 |
-
2017
- 2017-12-26 ES ES17891541T patent/ES2945875T3/es active Active
- 2017-12-26 EP EP17891541.9A patent/EP3569723B1/en active Active
- 2017-12-26 CN CN201780082913.4A patent/CN110191971A/zh active Pending
- 2017-12-26 WO PCT/JP2017/046768 patent/WO2018131476A1/ja unknown
- 2017-12-26 AU AU2017393044A patent/AU2017393044B2/en active Active
- 2017-12-26 JP JP2018561915A patent/JP6644303B2/ja active Active
-
2019
- 2019-07-09 US US16/506,298 patent/US11248282B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004183062A (ja) * | 2002-12-04 | 2004-07-02 | Sumitomo Denko Steel Wire Kk | マグネシウム基合金線及びその製造方法 |
WO2007108450A1 (ja) | 2006-03-20 | 2007-09-27 | National Institute For Materials Science | 医療用生分解性マグネシウム材 |
JP2012082474A (ja) * | 2010-10-12 | 2012-04-26 | Sumitomo Electric Ind Ltd | マグネシウム合金の線状体及びボルト、ナット並びにワッシャー |
Non-Patent Citations (1)
Title |
---|
See also references of EP3569723A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6695546B1 (ja) * | 2018-07-09 | 2020-05-20 | 不二ライトメタル株式会社 | マグネシウム合金 |
US11685975B2 (en) | 2018-07-09 | 2023-06-27 | Japan Medical Device Technology Co., Ltd. | Magnesium alloy |
WO2020196777A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社日本医療機器技研 | 非管腔領域用インプラント |
WO2020196778A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社日本医療機器技研 | 表面改質マグネシウム合金 |
JPWO2020196777A1 (ja) * | 2019-03-28 | 2020-10-01 | ||
JPWO2020196778A1 (ja) * | 2019-03-28 | 2020-10-01 | ||
CN113631745A (zh) * | 2019-03-28 | 2021-11-09 | 株式会社日本医疗机器技研 | 非管腔区域用植入物 |
JP7426988B2 (ja) | 2019-03-28 | 2024-02-02 | 株式会社 日本医療機器技研 | 表面改質マグネシウム合金 |
JP7428698B2 (ja) | 2019-03-28 | 2024-02-06 | 株式会社 日本医療機器技研 | 非管腔領域用インプラント |
Also Published As
Publication number | Publication date |
---|---|
EP3569723A4 (en) | 2020-06-03 |
EP3569723B1 (en) | 2023-05-10 |
JP6644303B2 (ja) | 2020-02-12 |
US11248282B2 (en) | 2022-02-15 |
AU2017393044B2 (en) | 2022-03-10 |
ES2945875T3 (es) | 2023-07-10 |
CN110191971A (zh) | 2019-08-30 |
AU2017393044A1 (en) | 2019-07-25 |
US20190330718A1 (en) | 2019-10-31 |
JPWO2018131476A1 (ja) | 2019-11-21 |
EP3569723A1 (en) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018131476A1 (ja) | マグネシウム合金 | |
JP6695546B1 (ja) | マグネシウム合金 | |
US10954587B2 (en) | Uncoated biodegradable corrosion resistant bone implants | |
US10478529B2 (en) | Magnesium alloy with adjustable degradation rate | |
EP2169090B3 (en) | Implant made of a biodegradable magnesium alloy | |
EP2224032A1 (en) | Process for manufacturing magnesium alloy based products | |
BRPI0919523B1 (pt) | Ligas de magnésio contendo terras-raras | |
JP2023020858A (ja) | チタン合金の製造方法 | |
JP5404391B2 (ja) | Mg基合金 | |
Mousavian et al. | Effects of zirconium addition on electrochemical and mechanical properties of Mg-3Zn-1Ca-1RE alloy | |
KR102284492B1 (ko) | 고강도 난연성 마그네슘 합금 압출재 및 그 제조방법 | |
JP4528109B2 (ja) | 弾性率65GPa以下の低弾性βチタン合金およびその製造方法 | |
CN117795109A (zh) | 固溶退火回火中具有改进的可成形性的超高强度铜钛合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17891541 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018561915 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017393044 Country of ref document: AU Date of ref document: 20171226 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017891541 Country of ref document: EP Effective date: 20190812 |