WO2018124585A1 - 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법 - Google Patents

폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법 Download PDF

Info

Publication number
WO2018124585A1
WO2018124585A1 PCT/KR2017/015001 KR2017015001W WO2018124585A1 WO 2018124585 A1 WO2018124585 A1 WO 2018124585A1 KR 2017015001 W KR2017015001 W KR 2017015001W WO 2018124585 A1 WO2018124585 A1 WO 2018124585A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
diol
film
repeating unit
polyester
Prior art date
Application number
PCT/KR2017/015001
Other languages
English (en)
French (fr)
Inventor
오미옥
이득영
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160180844A external-priority patent/KR101771171B1/ko
Priority claimed from KR1020170103244A external-priority patent/KR101948280B1/ko
Priority claimed from KR1020170103233A external-priority patent/KR101940784B1/ko
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to JP2018553872A priority Critical patent/JP6964091B2/ja
Priority to US16/081,769 priority patent/US20190309161A1/en
Priority to EP17887243.8A priority patent/EP3412725A4/en
Priority to CN201780018955.1A priority patent/CN108884305A/zh
Publication of WO2018124585A1 publication Critical patent/WO2018124585A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/24Apparatus or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the embodiment relates to a polyester resin and a method for producing the same, which are not only low in calorific heat and excellent in calenderability, but also economical and environmentally friendly.
  • the embodiment relates to a method for producing a co-polyester film economical and environmentally friendly by the calendering process using the polyester resin and excellent in surface hardness and UV resistance, and the film produced thereby.
  • the embodiment relates to a polyester resin composition for calendering having low calorific heat and excellent calenderability, and a method for producing a polyester film, which is economical and environmentally friendly, and has excellent surface hardness and chemical resistance.
  • a calendering process is a process of shape
  • the calendering process is one of the typical methods for making films and sheets because the production speed is faster and easier to process than the extrusion process.
  • polyethylene terephthalate (PET) resin has excellent properties for the price but has a problem inferior calenderability.
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PET polyethylene terephthalate glycol
  • PVC polyvinyl chloride
  • PP polypropylene
  • PP polypropylene
  • Korean Patent Laid-Open Publication No. 2014-0109506 discloses a polyester composition for calendering comprising a terephthalic acid residue, a 1,4-cyclohexanedimethanol residue, and an ethylene glycol residue.
  • an object of the embodiment is to provide a polyester resin and a method for producing the same, which are not only low in calorific heat and excellent in calenderability, but also economical and environmentally friendly.
  • another object of the embodiment is to provide a method for producing a film by calendering the copolyester resin, economical and environmentally friendly, excellent surface hardness and UV resistance and the like and a film produced thereby.
  • another object of the embodiment is to provide a polyester resin composition for calendering having a low calorific heat and excellent calenderability, and a method for producing a polyester film using the same, which is economical and environmentally friendly, and has excellent surface hardness and chemical resistance. .
  • polyester resin for calendaring containing a dicarboxylic acid repeating unit and a diol repeating unit
  • the diol repeat unit comprises more than 10 mol% and up to 90 mol% of neopentylglycol residues based on the total moles of the diol repeat unit,
  • the diol repeat unit does not include an alicyclic diol residue
  • polyester resin for calendaring whose intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g.
  • the diol component comprises more than 10 mol% and 90 mol% or less neopentylglycol based on the total moles of the diol component,
  • the diol component does not include an alicyclic diol
  • the diol repeat unit consists of linear or branched C 2 to C 10 diol residues
  • copolyester film produced by the method for producing a copolyester film.
  • a polyester resin composition for calendering comprising a polyester resin and an additive
  • the polyester resin comprises a dicarboxylic acid repeating unit and a diol repeating unit
  • the diol repeating unit consists of linear or branched C 2 to C 10 diol residues
  • the diol repeat unit comprises 10 to 90 mol% of neopentylglycol residues based on the total moles of the diol repeat unit,
  • Intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g
  • 2nd process index ⁇ [(mol% of diol residues other than ethylene glycol based on the total moles of diol repeating unit) / 100] + intrinsic viscosity of polyester resin ( ⁇ / g) ⁇ -said polyester resin Calorific value of crystallization (J / g) ⁇ ⁇ content of the additive (wt%).
  • the diol repeating unit consists of linear or branched C 2 to C 10 diol residues
  • the diol repeat unit comprises 10 to 90 mol% of neopentylglycol residues based on the total moles of the diol repeat unit,
  • Intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g
  • the resin composition provides a method for producing a polyester film having a second process index of 0.5 to 10, calculated by the following Equation 3:
  • 2nd process index ⁇ [(mol% of diol residues other than ethylene glycol based on the total moles of diol repeating unit) / 100] + intrinsic viscosity of polyester resin ( ⁇ / g) ⁇ -said polyester resin Calorific value of crystallization (dl / g) ⁇ ⁇ content of the additive (wt%).
  • another embodiment is a substrate layer comprising the polyester resin or the polyester resin composition; And it provides a film comprising a printed layer laminated on the base layer.
  • the polyester resin which concerns on an Example has a specific intrinsic viscosity and low calorific value of crystallization, it is excellent in calender workability.
  • the polyester resin according to the embodiment may be utilized in various fields as an environmentally friendly material. Furthermore, according to the manufacturing method of the polyester resin which concerns on an Example, it is possible to manufacture a polyester resin which is low in crystallization calorie and excellent in calender processability, and economical and environmentally friendly.
  • the manufacturing method of the co-polyester film according to the embodiment by applying a co-polyester resin to the calendering process it can be produced a film excellent in surface hardness, chemical resistance and the like.
  • the co-polyester film produced by the above method is economical, environmentally friendly, excellent post-processing can be printed without a primer treatment, it is easy to emboss.
  • the polyester resin composition for calendering according to the embodiment has a specific second process index and has a low calorific value of crystallization, so it is excellent in calender workability.
  • the polyester resin composition for calendaring according to the embodiment is economical, and functions as an environmentally friendly material, it can be utilized in various ways. Furthermore, according to the method of manufacturing a polyester film using the said polyester resin composition for calendaring, the polyester film which is excellent in surface hardness, chemical resistance, etc. can be manufactured. In addition, the polyester film is excellent in post-processability, it is possible to print without primer treatment, it is easy to emboss.
  • Embodiment A is a diagrammatic representation of Embodiment A.
  • the embodiment provides a polyester resin that can be used in a calendering process, a film comprising the same, and a method of manufacturing the same.
  • Polyester resin for calendaring is a polyester resin for calendaring comprising a dicarboxylic acid repeating unit and a diol repeating unit,
  • the diol repeat unit comprises more than 10 mol% and up to 90 mol% of neopentylglycol residues based on the total moles of the diol repeat unit,
  • the diol repeat unit does not include an alicyclic diol residue
  • the intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g.
  • the dicarboxylic acid repeat unit is terephthalic acid (TPA), isophthalic acid (IPA), naphthalene dicarboxylic acid (NDC), cyclohexane dicarboxylic acid (CHDA), succinic acid, glutaric acid, orthophthalic acid, adipic acid , Azelaic acid, sebacic acid, decandicarboxylic acid, 2,5-furandicarboxylic acid, 2,5-thiophendicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-bibenzoic acid And residues thereof, or combinations thereof.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • NDC naphthalene dicarboxylic acid
  • CHDA cyclohexane dicarboxylic acid
  • succinic acid glutaric acid, orthophthalic acid, adipic acid , Azelaic acid, sebacic acid, decandicarboxylic acid
  • the dicarboxylic acid repeating unit may include a residue of terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, or a combination thereof. More specifically, the dicarboxylic acid repeating unit may include a terephthalic acid residue. More specifically, the dicarboxylic acid repeat unit may be composed of terephthalic acid residues.
  • the diol repeat unit comprises more than 10 mol% and up to 90 mol% of neopentylglycol residues based on the total moles of the diol repeat unit.
  • the diol repeating unit is more than 30 mol% 90 mol% or less, more than 30 mol% 80 mol% or less, or more than 30 mol% 70 mol% or less neopentyl glycol based on the total moles of the diol repeating units. May include residues.
  • the diol repeating unit may include more than 30 mol% and less than 60 mol% of neopentylglycol residues based on the total moles of the diol repeating units.
  • the processability by crystallization is excellent, it is easy to obtain a desired intrinsic viscosity, it is excellent in the color properties and mechanical properties of the resin.
  • the content of the neopentyl glycol residue is 90 mol% or less, it is difficult to raise the intrinsic viscosity more than a certain level can prevent the problem that the mechanical properties can be weak.
  • the diol repeating unit is ethylene glycol (EG), diethylene glycol (DEG), 1,3-propanediol, 1,2-octanediol, 1,3-octanediol, 2,3-butanediol, 1,3-butanediol , 1,4-butanediol, 1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,5-pentanediol, 2,4-diethyl- Residues of 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,1-dimethyl-1,5-pentanediol, polyetherglycol, or combinations thereof.
  • the diol repeating unit may further include residues of ethylene glycol, diethylene glycol, polyether glycol, or a combination thereof. More specifically, the
  • polyether glycol examples include polytetrahydrofuran (PTMEG), polyethylene glycol (PEG), polypropylene glycol (PPG), and the like.
  • the diol repeating unit may include 43 to 67 mol% of ethylene glycol residues and more than 30 mol% and less than 57 mol% of neopentyl glycol residues based on the total moles of the diol repeating units.
  • the dicarboxylic acid repeating unit consists of a terephthalic acid residue, and the diol repeating unit may consist of a residue of (i) neopentylglycol residues and (ii) ethylene glycol, diethylene glycol, or a combination thereof.
  • the dicarboxylic acid repeating unit consists of a terephthalic acid residue, and the diol repeating unit may consist of (i) neopentylglycol residues and (ii) ethylene glycol residues.
  • the diol repeat unit may further comprise a linear diol residue.
  • packing may be well performed, and thus the film may have excellent chemical resistance and surface strength.
  • the printing layer when the printing layer is formed on the film due to the excellent chemical resistance and surface strength properties, the printing layer peeling due to the external environment is not easily generated, it can be utilized in the substrate use, such as printing films, decorative sheets.
  • the linear diol residue may be a linear C 2 to C 10 diol residue.
  • the diol repeat unit does not include an alicyclic diol residue.
  • the diol repeat unit does not include a cyclohexanedimethanol (CHDM) residue.
  • CHDM cyclohexanedimethanol
  • the packing may not be well performed due to the bulky structure of the alicyclic diol, and thus the chemical resistance and Surface strength may drop.
  • the dimensional stability of the film may be poor, making it difficult to expand the application.
  • the intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.68 to 3.0 dl / g, or 0.7 to 0.9 dl / g. More specifically, the intrinsic viscosity (IV) of the polyester resin may be 0.7 to 0.8 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.72 to 0.78 dl / g.
  • the intrinsic viscosity of the polyester resin is in the above range, it is excellent in calender workability, excellent in kinematic viscosity retention in the calendering process, and excellent in thickness uniformity of sheets and films.
  • the polyester resin may have a first process index calculated by Equation 1 below 1.0 and less than 1.7. Specifically, the process index of the polyester resin may be more than 1.0 to 1.55 or less. More specifically, the process index of the polyester resin may be more than 1.0 less than 1.4. More specifically, the first process index of the polyester resin may be 1.05 to 1.35.
  • 1st process index ⁇ (mol% of diol residues other than ethylene glycol based on the total mole of a diol repeat unit) / 100 ⁇ + intrinsic viscosity (dl / g) of a polyester resin.
  • the process index is a sum of the mole% content of diol residues other than ethylene glycol and the intrinsic viscosity of the polyester resin, and corresponds to an index capable of exhibiting calender processability.
  • the 1st process index of the said polyester resin is the said range, it is excellent in transparency, thickness uniformity, and dimensional stability of a sheet, and is suitable for calendering.
  • Another embodiment is a substrate layer comprising the polyester resin; And it provides a film comprising a printed layer laminated on the base layer.
  • the average thickness of the substrate layer may be the thickness of the substrate layer of a conventional printing film or decor sheet.
  • the printed layer may be a printed layer of a conventional material included in a decor sheet, or the like, and may be formed on the base layer by a conventional method.
  • the average thickness of the printing layer may be the thickness of the printing layer of a conventional printing film or decor sheet.
  • the diol component comprises more than 10 mol% and 90 mol% or less neopentylglycol based on the total moles of the diol component,
  • the diol component does not include an alicyclic diol
  • the intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g.
  • the molar ratio of the dicarboxylic acid component and the diol component is mixed so as to be 1: 1.05 to 1: 3.0 for esterification.
  • the mixing may be performed such that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 2.0. Specifically, the mixing may be performed so that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 1.5.
  • the esterification reaction may proceed stably, sufficient ester oligomer may be formed, and may be suitable for expressing the properties of the neopentyl glycol component.
  • the type and content of the dicarboxylic acid component and the diol component are the same as the dicarboxylic acid repeating unit and diol repeating unit described above.
  • polyester resin for calendering When the polyester resin for calendering is prepared using the above components, it is economical in terms of cost, and the produced polyester resin is environmentally friendly, easy to recycle, and excellent in dimensional stability.
  • the acrylic compound is not included.
  • undissolved gel (gel) foreign matter may occur in the resin.
  • the intrinsic viscosity (IV) of the polyester resin produced through the method of preparing the polyester resin is 0.6 to 3.0 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.68 to 3.0 dl / g, or 0.7 to 0.9 dl / g. More specifically, the intrinsic viscosity (IV) of the polyester resin may be 0.7 to 0.8 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.72 to 0.78 dl / g.
  • polyester resin When the polyester resin is prepared using the above-described components and their contents, it may be easy to obtain the intrinsic viscosity of the above range.
  • the intrinsic viscosity of the polyester resin is in the above range, it is excellent in calender workability, excellent in kinematic viscosity retention in the calendering process, and excellent in thickness uniformity of sheets and films.
  • the esterified product is polycondensed.
  • the polycondensation may be carried out under a temperature of 230 to 300 °C and pressure conditions of 0.1 to 3.0 kg / cm2. Specifically, the polycondensation may be carried out under a temperature of 240 to 295 °C and pressure conditions of 0.2 to 2.9 kg / cm2.
  • the polycondensation is carried out in the presence of polycondensation catalysts, stabilizers, colorants, dispersants, antiblocking agents, antistatic agents, antistatic agents, antioxidants, heat stabilizers, sunscreens, photoinitiators or combinations thereof well known to those skilled in the art.
  • the additive may be included within a range that does not impair the effect of the embodiment.
  • the polycondensation may be carried out in the presence of a polycondensation catalyst and a stabilizer.
  • the polycondensation catalyst may include alkali metal, alkaline earth metal, antimony, titanium, manganese, cobalt, cerium, germanium, or a combination thereof.
  • the polycondensation catalyst may be an antimony compound.
  • the polycondensation catalyst may be used in an amount of 50 to 1,000 ppm based on the total weight of the polyester resin. Specifically, the polycondensation catalyst may be used in an amount of 50 to 500 ppm based on the total weight of the polyester resin. When the amount of the polycondensation catalyst is in the above range, the polycondensation reaction rate may be increased and side reactions may be suppressed, thereby improving transparency of the produced resin.
  • the stabilizer may include a phosphorus stabilizer.
  • the phosphorus stabilizer may include, but is not limited to, phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, triethyl phosphonoacetate, hindered phenol, or a combination thereof.
  • the stabilizer may be used in an amount of 3,000 ppm or less based on the total weight of the polyester resin. Specifically, the stabilizer may be used in an amount of 1 to 2,500 ppm based on the total weight of the polyester resin.
  • the colorant may include cobalt acetate, cobalt propionate, organic compound colorant, inorganic compound colorant, dye, or combinations thereof.
  • the colorant may be cobalt acetate, cobalt propionate, an inorganic compound colorant, or a combination thereof.
  • the colorant may be used in an amount of 1 to 500 ppm based on the total weight of the polyester resin. Specifically, the colorant may be used in an amount of 1 to 200 ppm based on the total weight of the polyester resin.
  • Embodiment B is a diagrammatic representation of Embodiment B.
  • the examples provide a method of making a copolyester film comprising calendering and a film produced thereby.
  • Steps (1) to (5) may be sequentially performed to prepare the copolyester film.
  • a polyester resin containing a dicarboxylic acid repeating unit and a diol repeating unit is mixed.
  • the dicarboxylic acid repeat unit is terephthalic acid (TPA), isophthalic acid (IPA), naphthalene dicarboxylic acid (NDC), cyclohexane dicarboxylic acid (CHDA), succinic acid, glutaric acid, orthophthalic acid, adipic acid , Azelaic acid, sebacic acid, decandicarboxylic acid, 2,5-furandicarboxylic acid, 2,5-thiophendicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-bibenzoic acid And residues thereof, or combinations thereof.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • NDC naphthalene dicarboxylic acid
  • CHDA cyclohexane dicarboxylic acid
  • succinic acid glutaric acid, orthophthalic acid, adipic acid , Azelaic acid, sebacic acid, decandicarboxylic acid
  • the dicarboxylic acid repeating unit may include a residue of terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, or a combination thereof. More specifically, the dicarboxylic acid repeating unit may include a terephthalic acid residue. More specifically, the dicarboxylic acid repeat unit may be composed of terephthalic acid residues.
  • the diol repeat unit consists of linear or branched C 2 to C 10 diol residues. That is, the diol repeat unit does not include an alicyclic diol residue or an aromatic diol residue.
  • the linear or branched C 2 to C 10 diol residues are, for example, ethylene glycol (EG), diethylene glycol (DEG), neopentyl glycol, 1,3-propanediol, 1,2-octanediol, 1 , 3-octanediol, 2,3-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, 2,2- Diethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,1-dimethyl-1,5-pentanediol, 1, 6-hexanediol, 2-ethyl-3-methyl-1,5-hexanediol,
  • the diol repeating unit may include more than 10 mol% and less than 90 mol% of neopentylglycol residues based on the total moles of the diol repeating units.
  • the diol repeating unit is more than 30 mol% 90 mol%, more than 30 mol% 80 mol% or less, or more than 30 mol% 70 mol% neopentyl glycol residues based on the total moles of the diol repeating units It may include. More specifically, the diol repeating unit may include more than 30 mol% and less than 60 mol% of neopentylglycol residues based on the total moles of the diol repeating units.
  • the processability by crystallization is excellent, it is easy to obtain the target intrinsic viscosity, and the color properties and mechanical properties of the resin is excellent.
  • the content of the neopentyl glycol residue is 90 mol% or less, it is difficult to raise the intrinsic viscosity by a certain level or more to prevent the problem of weak mechanical properties.
  • the said diol repeating unit does not contain an alicyclic diol residue or an aromatic diol residue. Specifically, the diol repeat unit does not include a cyclohexanedimethanol (CHDM) residue.
  • CHDM cyclohexanedimethanol
  • the diol repeating unit calenders a polyester resin including an alicyclic diol residue or an aromatic diol residue to prepare a film or sheet
  • packing is not performed well due to the bulky structure of the alicyclic diol or aromatic diol.
  • the chemical resistance and surface strength of the film may be degraded.
  • the dimensional stability of the resin produced may be difficult to expand the use.
  • the polyester resin includes a dicarboxylic acid repeating unit and a diol repeating unit, the dicarboxylic acid repeating unit consists of a terephthalic acid residue, and the diol repeating unit is (i) neopentyl glycol Residues and (ii) ethylene glycol, diethylene glycol, or a combination thereof.
  • the dicarboxylic acid repeating unit consists of a terephthalic acid residue
  • the diol repeating unit may consist of (i) neopentylglycol residues and (ii) ethylene glycol residues.
  • the dicarboxylic acid repeating unit is a terephthalic acid residue in the polyester resin
  • the diol repeating unit is a residue of (i) neopentyl glycol residues and (ii) ethylene glycol, diethylene glycol, or a combination thereof
  • the intrinsic viscosity (IV) of the said polyester resin is 0.6-3.0 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin is 0.68 to 3.0 dl / g, 0.7 to 2.5 dl / g, 0.7 to 2.0 dl / g, 0.7 to 1.5 dl / g, 0.7 to 1.2 dl / g, or 0.7 to 0.9 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.7 to 0.8 dl / g.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.72 to 0.78 dl / g.
  • the intrinsic viscosity of the polyester resin is in the above range, it is excellent in calender workability, excellent in kinematic viscosity retention in the calendering process, and excellent in thickness uniformity of sheets and films.
  • the polyester resin may have a first process index calculated by Equation 1 below 1.0 and less than 1.7. Specifically, the process index of the polyester resin may be more than 1.0 1.55 or less. More specifically, the process index of the polyester resin may be more than 1.0 less than 1.4.
  • 1st process index ⁇ (mol% of diol residues other than ethylene glycol based on the total mole of a diol repeat unit) / 100 ⁇ + intrinsic viscosity (dl / g) of a polyester resin.
  • the process index is a sum of the mole% content of diol residues other than ethylene glycol and the intrinsic viscosity of the polyester resin, and corresponds to an index capable of exhibiting calender processability.
  • the sheet has excellent transparency, thickness uniformity and dimensional stability, and is suitable for calendering.
  • the heat of crystallization of the polyester resin may be 2.5 J / g or less.
  • the heat of crystallization of the polyester resin is 2.0 J / g or less, 1.8 J / g or less, 1.5 J / g or less, 1.2 J / g or less, 1.0 J / g or less, 0.7 J / g or less, or 0.5 J It may be less than / g.
  • the heat of crystallization of the polyester resin may be 0 to 2.2 J / g, 0 to 2 J / g, 0 to 1.0 J / g, or 0 to 0.8 J / g.
  • the viscosity retention rate at the shear of the polyester resin may be 0.1 to 20 Nm. Specifically, the viscosity retention rate at the shear of the polyester resin may be 0.1 to 18 Nm, or 0.2 to 15 Nm.
  • the viscosity retention at the shear was measured through a brabender, and the measurement conditions indicated a difference in shear stress after 10 and 30 minutes at 190 ° C. and 50 rpm.
  • Viscosity retention at the shear is a physical property in the calendering process, that is, to evaluate the workability of the sheet or film stably without breaking.
  • the viscosity retention rate at the time of shearing of the polyester resin is in the above range, the calendering stability of the resin becomes maximum.
  • the film made from the polyester resin is suitable for a calendering process, thereby producing a polyester film having excellent surface hardness, chemical resistance, and the like.
  • This step comprises the steps of (1-1) mixing the esterification reaction so that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 3.0; And (1-2) polycondensing the esterified product.
  • the molar ratio of the dicarboxylic acid component and the diol component is mixed so as to be 1: 1.05 to 1: 3.0 to perform an esterification reaction.
  • the molar ratio of the dicarboxylic acid component and the diol component may be mixed so as to be 1: 1.05 to 1: 2.0 to perform an esterification reaction.
  • the molar ratio of the dicarboxylic acid component and the diol component may be mixed so that the molar ratio is 1: 1.05 to 1: 1.5 to perform an esterification reaction.
  • the esterification reaction may proceed stably, sufficient ester oligomer may be formed, and may be suitable for expressing the properties of the neopentyl glycol component.
  • the polycondensation of the step (1-2) may be carried out under a temperature of 230 to 300 °C and pressure conditions of 0.1 to 3.0 kg / cm2. Specifically, the polycondensation may be carried out under a temperature of 240 to 295 °C and pressure conditions of 0.2 to 2.9 kg / cm2.
  • the polycondensation step is carried out in the presence of polycondensation catalysts, stabilizers, colorants, dispersants, antiblocking agents, antistatic agents, antistatic agents, antioxidants, heat stabilizers, sunscreens, photoinitiators or combinations thereof well known to those skilled in the art. It may be included within the scope that does not impair the effect of the embodiment. Specifically.
  • the polycondensation step may be carried out in the presence of a polycondensation catalyst, a stabilizer or a combination thereof.
  • the polycondensation catalyst may include, but is not limited to, alkali metal, alkaline earth metal, antimony, titanium, manganese, cobalt, cerium, germanium, or any combination thereof.
  • an antimony compound may be used as the polycondensation catalyst.
  • the polycondensation catalyst may be used in an amount of 50 to 1,000 ppm based on the total weight of the polyester resin. Specifically, the polycondensation catalyst may be used in an amount of 50 to 500 ppm based on the total weight of the polyester resin. When the amount of the polycondensation catalyst is within the above range, the polycondensation reaction rate may be increased and side reactions may be suppressed, thereby improving transparency of the produced resin.
  • the stabilizer may include a phosphorus stabilizer.
  • the phosphorus stabilizer may include phosphoric acid, trimethylphosphate, triethylphosphate, triphenylphosphate, triethyl phosphonoacetate, hindered phenol, or a combination thereof.
  • the stabilizer may be used in an amount of 3,000 ppm or less based on the total weight of the polyester resin. Specifically, the stabilizer may be used in an amount of 1 to 2,500 ppm based on the total weight of the polyester resin.
  • the colorant may include cobalt acetate, cobalt propionate, organic compound colorant, inorganic compound colorant, dye, or a combination thereof, but is not limited thereto. Specifically, the colorant may be cobalt acetate, cobalt propionate, an inorganic compound colorant, or a combination thereof.
  • the colorant may be used in an amount of 1 to 500 ppm based on the total weight of the polyester resin. Specifically, the colorant may be used in an amount of 1 to 200 ppm based on the total weight of the polyester resin.
  • step (1) and before the step (2) further comprising the step of mixing the polyester resin and additives,
  • the additive may include one or more selected from the group consisting of fatty acids, fatty acid salts, metal salts of organic acids, fatty acid esters, hydrocarbon waxes, ester waxes, phosphate esters, amides, modified polyolefin waxes, talc and acrylic copolymers. .
  • the flowability of the resin may be improved and crystallization may be delayed by the additives, thereby lowering the amount of crystallization heat of the resin.
  • Mixing of the polyester resin and the additive may be mixed so that the weight ratio is 100: 0.5 to 100: 5.
  • a high speed mixer (eg, Henshell Mixer) may be used to mix the polyester resin.
  • the polyester resin may be pelletized, the pelletized polyester resin may be charged into a high speed mixer, and mixed for 30 to 300 seconds in a temperature range of 20 to 40 ° C.
  • the above-described additives may be mixed together, but is not limited thereto.
  • the mixed resin is kneaded and gelled.
  • Step (2) comprises: (2-1) gelling the mixed resin using a planetary extruder or a Banbury intensive mixer; (2-2) homogenizing the gelled resin using a mixing roll; And (2-3) homogenizing the gelled resin prior to feeding into the calender roll using a warming roll; It may include one or more steps selected. Specifically, step (2) may perform the steps (2-1), (2-2) and (2-3) sequentially.
  • Step (2-1) may be performed at 180 to 230 ° C.
  • the step (2-2) may be carried out at 90 to 130 °C.
  • the step (2-3) may be carried out at 90 to 130 °C.
  • the gelled resin is calendered and filmed.
  • the calendering may include calendering the film using a calender roll. Specifically, calendering the film using the calender roll may be performed at a speed of 10 to 40 m / min at 145 to 210 ° C, but is not limited thereto.
  • the step may further include peeling the calendered film from the calender roll using take off rolls and adjusting the thickness and smoothness of the film. Adjusting the thickness and smoothness of the film may be performed at a speed of 30 to 70 m / min at 120 to 170 °C, but is not limited thereto.
  • the step of surface treatment of the calendered film may further comprise a.
  • the surface treatment step it is possible to improve the winding properties of the film and to implement matt.
  • the surface treatment examples include embossing.
  • the embossing means a process that exhibits a concave or convex shape by applying heat and pressure to the surface of the film.
  • the embossing process may be performed in a temperature range of 30 to 90 °C using an embossing unit.
  • the surface treatment speed of the film may be 45 to 80 m / min, but is not limited thereto.
  • This step cools the calendered film.
  • step (3) comprises embossing (surface treatment) the calendered film
  • step of peeling the film from the embossing unit using an annealing roll may be performed first. At this time, the peeling of the film may be carried out at a speed of 55 to 90 m / min in the temperature range of 35 to 80 °C, but is not limited thereto.
  • the cooling may cool the film at a speed of 55 to 95 m / min in a temperature range of 35 to 50 °C using a cooling roll.
  • ⁇ T calculated by Equation 2 may be 20 to 225 ° C. Specifically, ⁇ T may be 25 to 220 ° C, 30 to 215 ° C or 35 to 210 ° C.
  • T1 maximum temperature (° C) of step (3) above
  • T2 minimum temperature (° C.) of step (4) above
  • the cooled film is wound up.
  • the cooled film may be wound at a speed of 55 to 95 m / min using a winder, but is not limited thereto.
  • Co-polyester film according to another embodiment is prepared according to the manufacturing method of the co-polyester film.
  • the surface hardness of the film may be B to HB.
  • the surface hardness is the result measured by the electric pencil hardness tester method.
  • the pencil used is Mitsubishi, 6B-9H (17ea), and is a numerical value measured at the same load (200g) and the same speed
  • the transparency of the film may be 30% to 75%. Specifically, the transparency of the film may be 32% to 73%, 33% to 70%, 35% to 70%, 35% to 68%, or 40% to 65%.
  • the transparency is measured by the Haze meter method, the thickness of the sample film is 0.2 mm, and analyzed by the embossed sample at the rear end of the calendering process, the numerical value is not 100%, the higher the value is transparent Means that.
  • the surface tension of the film may be 37 to 43 mN / m. Specifically, the surface tension of the film may be 38 to 42 mN / m, or 39 to 41 mN / m.
  • the surface tension is a result of confirming through the contact angle measurement, the lower the contact angle means that the surface tension of the film is higher.
  • the higher the surface tension of the film is advantageous when the printing, coating and the like in the post-process.
  • the film may have a color difference ⁇ E of 0.2 to 1.9 after being left for 500 hours at 63 ⁇ 3 ° C. and 50 ⁇ 5% relative humidity.
  • the color difference of the film may be 0.25 to 1.85, 0.25 to 1.58, 0.3 to 1.9, 0.3 to 1.85, 0.3 to 1.58, 0.3 to 1.2, or 0.35 to 1.0.
  • the color difference is the result measured by the accelerated weathering test (KS M ISO 4892-2) method.
  • the color difference is a measure of UV resistance, and that the color difference of the film satisfies the range means that the UV resistance is excellent.
  • the copolyester film that satisfies the combination of various properties is excellent in post-processability.
  • the copolyester film can be printed without a primer treatment, it is excellent in embossability can facilitate the surface treatment of the film.
  • Another embodiment provides a polyester resin composition for calendaring, a film including the resin composition, and a method of manufacturing a polyester film using the same.
  • the polyester resin composition for calendaring includes a polyester resin and an additive.
  • the polyester resin includes a dicarboxylic acid repeating unit and a diol repeating unit.
  • the kind and content of the dicarboxylic acid repeating unit and the diol repeating unit are as described in Embodiment B.
  • the said diol repeating unit does not contain an alicyclic diol residue or an aromatic diol residue. Specifically, the diol repeating unit does not include a cyclohexanedimethanol (CHDM) residue.
  • CHDM cyclohexanedimethanol
  • the diol repeating unit is not well packed due to the bulky structure of the alicyclic diol or aromatic diol when calendering a film or a sheet by calendering a polyester resin including an alicyclic diol residue or an aromatic diol residue.
  • the chemical resistance and surface strength of the film may be degraded.
  • dimensional stability can be difficult to extend the use.
  • the diol repeating unit contains 10 to 90 mol% of neopentylglycol residues based on the total moles of the diol repeating unit.
  • the diol repeating unit may include 20 to 90 mol% of neopentylglycol residues based on the total moles of the diol repeating unit. More specifically, the diol repeating unit may include 20 to 85 mol%, 23 to 84 mol%, or 24 to 83 mol% of neopentyl glycol residues based on the total moles of the diol repeating units.
  • the processability by crystallization is excellent, it is possible to easily prepare a resin having a target intrinsic viscosity.
  • the resin has excellent color properties and mechanical properties.
  • it contains less than 90 mol% neopentyl glycol residues, it is difficult to raise the intrinsic viscosity more than a certain level can prevent the problem that the mechanical properties are weak.
  • the polyester resin includes a dicarboxylic acid repeating unit and a diol repeating unit, the dicarboxylic acid repeating unit consists of a terephthalic acid residue, and the diol repeating unit is (i) neopentyl glycol Residues and (ii) ethylene glycol, diethylene glycol, or a combination thereof.
  • the dicarboxylic acid repeating unit consists of a terephthalic acid residue
  • the diol repeating unit may consist of (i) neopentylglycol residues and (ii) ethylene glycol residues.
  • the dicarboxylic acid repeating unit is a terephthalic acid residue in the polyester resin
  • the diol repeating unit is a residue of (i) neopentyl glycol residues and (ii) ethylene glycol, diethylene glycol, or a combination thereof
  • the resin has a low haze of 15% or less and excellent dimensional stability.
  • the additive may include at least one selected from the group consisting of fatty acids, fatty acid salts, metal salts of organic acids, fatty acid esters, amides, hydrocarbon waxes, ester waxes, phosphate esters, polyolefin waxes, modified polyolefin waxes, talc and acrylic copolymers. It may be, but is not limited thereto.
  • the additive is one or more selected from the group consisting of fatty acids, fatty acid salts, metal salts of organic acids, fatty acid esters, amides, hydrocarbon waxes, ester waxes, phosphate esters, polyolefin waxes, modified polyolefin waxes, talc and acrylic copolymers. Can be done.
  • the weight ratio of the polyester resin and the additive may be 100: 0.5 to 100: 5. Specifically, the weight ratio of the polyester resin and the additive may be 100: 0.5 to 100: 4.5, 100: 0.6 to 100: 4.2, 100: 0.8 to 100: 4.0, or 100: 0.9 to 100: 3.8.
  • the content ratio of the polyester resin and the additive is in the above range, the calenderability of the resin is excellent, the haze of the film produced using the low haze and the orange peel phenomenon of the film surface is reduced. Specifically, when a small amount of the additive is included, it is impossible to manufacture the film. When the additive is included in an excessive amount, the additive is migrated to the surface, so that the haze of the film is increased.
  • the intrinsic viscosity (IV) of the polyester resin may be 0.6 to 3.0 dl / g. Specifically, the intrinsic viscosity (IV) of the polyester resin is 0.6 to 2.5 dl / g, 0.6 to 2.0 dl / g, 0.6 to 1.5 dl / g, 0.6 to 1.0 dl / g, 0.62 to 1.5 dl / g, 0.64 To 1.2 dl / g, or 0.66 to 0.85 dl / g.
  • the calenderability of the resin is excellent
  • the kinematic viscosity retention rate is excellent during the calendering process
  • the thickness uniformity of the sheet or film manufactured using the same is excellent.
  • the polyester resin has a first process index of 0.8 to 2.0 calculated by Equation 1 below.
  • the first process index of the polyester resin may be 0.8 to 1.8, 0.8 to 1.7, 0.85 to 1.6, or 0.9 to 1.6.
  • 1st process index ⁇ (mol% of diol residues other than ethylene glycol based on the total mole of a diol repeat unit) / 100 ⁇ + intrinsic viscosity (dl / g) of a polyester resin.
  • the first process index is a sum of the mole% content of the diol residues other than ethylene glycol and the intrinsic viscosity of the polyester resin, and corresponds to an index capable of indicating calender processability.
  • the film produced using the polyester resin is excellent in transparency, thickness uniformity and dimensional stability, and is suitable for calender processing.
  • the resin composition may be a 0.5 to 10 second process index calculated by the following equation (3).
  • the second process index of the composition may be 0.5 to 9, 0.6 to 9, 0.7 to 8.5, 0.7 to 8, 0.7 to 7, or 0.7 to 6.
  • 2nd process index ⁇ [(mol% of diol residues other than ethylene glycol based on the total moles of diol repeating unit) / 100] + intrinsic viscosity of polyester resin ( ⁇ / g) ⁇ -said polyester resin Calorific value of crystallization (J / g) ⁇ ⁇ content of the additive (% by weight)
  • the second process index is an index related to the improvement of resin and film processability and the film surface and optical properties due to the additive content, and corresponds to the calender process index.
  • the second process index of the polyester resin is in the above range, while eluting additives from the resin is minimized, the roll adhesion of the composition is prevented, so that the calenderability is excellent, the foreign matter is low, the film haze is low, and the overall resin smoothness. This improvement reduces the orange peel phenomenon of the produced film surface.
  • the heat of crystallization of the polyester resin may be 2.5 J / g or less.
  • the heat of crystallization of the polyester resin is 2.0 J / g or less, 1.8 J / g or less, 1.5 J / g or less, 1.2 J / g or less, 1.0 J / g or less, 0.7 J / g or less, or 0.5 J It may be less than / g.
  • the heat of crystallization of the polyester resin may be 0 to 2.2 J / g, 0 to 2 J / g, 0 to 1.0 J / g, or 0 to 0.8 J / g.
  • the calorific value of the crystallization of the polyester resin is in the above range, the flexibility of the film due to the crystallization of the resin prevents the film from falling off the roll without being filmed along the roll and making the process impossible.
  • the viscosity retention at the shear of the composition may be 0.1 to 20 Nm. Specifically, the viscosity retention rate at the shear of the composition may be 0.1 to 18 Nm, or 0.2 to 15 Nm.
  • Viscosity retention at the shear was measured through a brabender, showing a difference in shear stress after 10 minutes and 30 minutes at 190 ° C. and 50 rpm. Viscosity retention at the shear is a physical property in the calendering process, that is, to evaluate the workability of the sheet or film stably without breaking. When the viscosity retention rate during shearing is within the above range, it is possible to produce a sheet or a film stably without breaking due to excellent processing stability.
  • the polyester resin composition for calendaring includes a polyester resin and an additive, the polyester resin includes a dicarboxylic acid repeating unit and a diol repeating unit, and the diol repeating unit is linear or branched. Consisting of C 2 to C 10 diol residues, wherein the diol repeating units comprise from 10 to 90 mol% of neopentylglycol residues based on the total moles of the diol repeating units, and the intrinsic viscosity (IV) of the polyester resin Is 0.6 to 3.0 dl / g, and the resin composition may have a second process index of 0.5 to 10 calculated by Equation 3.
  • the polyester resin composition satisfies the properties as described above, the film prepared from the polyester resin composition is suitable for the calendering process, thereby producing a polyester film excellent in surface hardness, chemical resistance and the like.
  • Another embodiment is a substrate layer comprising the polyester resin composition; And it provides a film comprising a printed layer laminated on the base layer.
  • the average thickness of the substrate layer may be the thickness of the substrate layer of a conventional printing film or decor sheet.
  • the printed layer may be a printed layer of a conventional material included in a decor sheet, or the like, and may be formed on the base layer by a conventional method.
  • the average thickness of the printing layer may be the thickness of the printing layer of a conventional printing film or decor sheet.
  • Method for producing the polyester film may be carried out step (i) to (v) sequentially.
  • a polyester resin composition is prepared by mixing a polyester resin and an additive including a dicarboxylic acid repeating unit and a diol repeating unit.
  • the weight ratio of the polyester resin and the additive may be mixed so as to be 100: 0.5 to 100: 5. Specifically, the weight ratio of the polyester resin and the additive may be mixed so as to be 100: 0.5 to 100: 4.5, 100: 0.6 to 100: 4.2, 100: 0.8 to 100: 4.0, or 100: 0.9 to 100: 3.8. have.
  • the additive may include at least one selected from the group consisting of fatty acids, fatty acid salts, metal salts of organic acids, fatty acid esters, amides, hydrocarbon waxes, ester waxes, phosphate esters, polyolefin waxes, modified polyolefin waxes, talc and acrylic copolymers. Can be.
  • a high speed mixer for example, Henshell Mixer
  • the polyester resin composition may be pelletized, the pelletized polyester resin may be charged into a high speed mixer, and mixed for 30 to 300 seconds in a temperature range of 20 to 40 ° C.
  • Step (i-1) may be carried out by mixing so that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 3.0 to perform the esterification reaction.
  • the step (i-1) may be carried out by mixing so that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 2.0 to perform the esterification reaction.
  • step (i-1) may be carried out by mixing so that the molar ratio of the dicarboxylic acid component and the diol component is 1: 1.05 to 1: 1.5 to perform the esterification reaction.
  • the esterification reaction may proceed stably, sufficient ester oligomer may be formed, and may be suitable for expressing the properties of the neopentyl glycol component.
  • step (i-2) may be carried out under a temperature of 230 to 300 °C and pressure conditions of 0.1 to 3.0 kg / cm2. Specifically, step (i-2) may be carried out under a temperature of 240 to 295 °C and pressure conditions of 0.2 to 2.9 kg / cm2.
  • Step (i-2) is the presence of polycondensation catalysts, stabilizers, colorants, dispersants, antiblocking agents, antistatic agents, antistatic agents, antioxidants, heat stabilizers, sunscreens, photoinitiators or combinations well known to those skilled in the art. Under the present invention, it may be included within the scope of not impairing the effects of the embodiments.
  • the polycondensation step may be carried out in the presence of a polycondensation catalyst, a stabilizer or a combination thereof.
  • the polycondensation catalyst may include alkali metal, alkaline earth metal, antimony, titanium, manganese, cobalt, cerium, germanium, or any combination thereof.
  • an antimony compound may be used as the polycondensation catalyst.
  • the polycondensation catalyst may be used in an amount of 50 to 1,000 ppm based on the total weight of the polyester resin. Specifically, the polycondensation catalyst may be used in an amount of 50 to 500 ppm, or 50 to 400 ppm relative to the total weight of the polyester resin. When the content of the polycondensation catalyst is in the above range, by increasing the polycondensation reaction rate and suppressing side reactions, transparency of the produced resin can be improved.
  • the stabilizer may include a phosphorus stabilizer.
  • the phosphorus stabilizer may include, but is not limited to, phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, triethyl phosphonoacetate, hindered phenol, or a combination thereof.
  • the stabilizer may be used in an amount of 3,000 ppm or less based on the total weight of the polyester resin. Specifically, the stabilizer may be used in an amount of 1 to 2,500 ppm, 1 to 1,500 ppm, or 1 to 1,000 ppm with respect to the total weight of the polyester resin.
  • the colorant may include cobalt acetate, cobalt propionate, organic compound colorant, inorganic compound colorant, dye, or any combination thereof.
  • the colorant may be cobalt acetate, cobalt propionate, an inorganic compound colorant, or a combination thereof.
  • the colorant may be used in an amount of 1 to 500 ppm based on the total weight of the polyester resin. Specifically, the colorant may be used in an amount of 1 to 200 ppm based on the total weight of the polyester resin.
  • the resin composition is kneaded and gelled.
  • This step comprises the steps of (ii-1) gelling the resin composition using a planetary extruder or a Banbury intensive mixer; (ii-2) homogenizing the resin composition using a mixing roll; And (ii-3) homogenizing the resin composition before introducing it into the calender roll using a warming roll; It may include one or more steps selected. Specifically, this step may be carried out step (ii-1), (ii-2) and (ii-3) sequentially.
  • Step (ii-1) may be performed at 180 to 230 ° C.
  • the step (ii-2) may be carried out at 90 to 130 °C.
  • the step (ii-3) can be carried out at 90 to 130 °C.
  • the gelled composition is calendered and filmed.
  • the calendering may include calendering the film using a calender roll.
  • the calendering of the film using the calender roll may be performed at a speed of 10 to 120 m / min at 145 to 210 ° C., but is not limited thereto.
  • the step may further include peeling the calendered film from the calender roll using take off rolls and adjusting the thickness and smoothness of the film. Adjusting the thickness and smoothness of the film may be performed at a speed of 30 to 120 m / min at 120 to 170 °C, but is not limited thereto.
  • the method may further include surface treating the calendered film.
  • the surface treatment step it is possible to improve the winding properties of the film and to implement matt.
  • the surface treatment examples include embossing.
  • the embossing means a process that exhibits a concave or convex shape by applying heat and pressure to the surface of the film.
  • the embossing process may be performed at 30 to 90 °C using an embossing unit.
  • the surface treatment speed of the film may be 30 to 120 m / min, but is not limited thereto.
  • the calendered film is cooled.
  • step (iii) comprises embossing (surface treatment) the calendered film
  • the step of peeling the film from the embossing unit using an annealing roll may first be performed. At this time, the peeling may be performed at a speed of 40 to 130 m / min at 5 to 80 °C, but is not limited thereto.
  • the cooling may cool the film at a speed of 30 to 120 m / min in the temperature range of -5 to 50 °C using a cooling roll.
  • ⁇ T calculated by Equation 2 may be 20 to 225 ° C. Specifically, ⁇ T may be 25 to 220 ° C, 30 to 215 ° C, or 35 to 210 ° C. When the value of ⁇ T satisfies the above range, there is an effect of minimizing shrinkage of the film and maximizing the thickness smoothness of the film.
  • T1 maximum temperature (° C.) of step (iii) above
  • T2 lowest temperature (° C.) of step (iv) above
  • the cooled film is wound up.
  • the cooled film may be wound at a speed of 55 to 95 m / min using a winder, but is not limited thereto.
  • Copolymer polyester resin was prepared using the components and contents shown in Table 1 below.
  • an antimony catalyst (antimony triglycolate, Sigma-Aldrich) was added to 500 ppm based on the amount of antimony element, and triethyl phosphate (TEP) was added as a stabilizer. A small amount was added to 700 ppm.
  • a low vacuum reaction was performed for 40 minutes up to 50 mmHg at normal pressure while raising the reactor internal temperature from 240 ° C to 285 ° C. Thereafter, the ethylene glycol was removed and the pressure was gradually reduced to 0.1 mmHg, followed by reaction under high vacuum until the intrinsic viscosity shown in Table 1 below.
  • the obtained reactant was discharged and cut
  • the resins prepared in Examples 1 to 4 and Comparative Examples 1 to 7 were extruded at 190 ° C., kneaded at 110 ° C., gelled, and calendered to prepare sheets having a thickness of 0.2 mm. Since the uniformity of the thickness of the sheet was measured using a thickness gauge (manufacturer: TESA, model name: TESA-uHITE), in this case, when the uniformity of the thickness is less than ⁇ 5% " ⁇ ", if more than ⁇ 5% 10% or less " ⁇ ” , " ⁇ " for more than ⁇ 10% and 15% or less, and "X" for more than ⁇ 15% and 20% or less.
  • TESA thickness gauge
  • the heat of crystallization ( ⁇ Hc) of the resins prepared in Examples 1 to 4 and Comparative Examples 1 to 7 was measured by a differential scanning calorimeter (DSC). Specifically, the prepared polyester resin was annealed at 300 ° C. for 5 minutes, cooled to room temperature, and then scanned again at a temperature increase rate of 0.1 ° C./min to measure the intrinsic crystallization amount (J / g) of the resin. It was.
  • TPA terephthalic acid
  • NPG neopentyl glycol
  • EG ethylene glycol
  • DEG diethylene glycol
  • CHDM cyclohexanedimethanol
  • ethylene glycol (EG) and neopentyl glycol (NPG) were used as a diol component in a 2500 L reactor equipped with a stirrer and an outflow condenser as the base of the final polymer amount of 2,000 kg.
  • Terephthalic acid (TPA) was added as a dicarboxylic acid component.
  • the diol component and the dicarboxylic acid component were added so that the diol component was 1.5 mol with respect to 1 mol of the dicarboxylic acid component, and the molar ratio between the diol components was mixed so that the molar ratio of EG and NPG was 5: 5.
  • the reaction was carried out while raising the temperature of the reactor to 265 ° C.
  • the produced water was discharged out of the system and esterified, and when the generation and outflow of water were completed, the reaction product was transferred to a polycondensation reactor equipped with a stirrer, a cooling condenser, and a vacuum system.
  • an antimony catalyst (antimony triglycolate) was added as a metal polycondensation catalyst to 300 ppm based on the amount of antimony element, and triethyl phosphate (TEP) was added as a phosphorus stabilizer. To 500 ppm was added. Thereafter, a low vacuum reaction was performed for 40 minutes from 50 ° C. to 50 mm Hg at atmospheric pressure while raising the reactor internal temperature from 240 ° C. to 290 ° C. Thereafter, the ethylene glycol was taken out of the system and the pressure was gradually reduced to 0.1 mmHg, and the reaction proceeded to the maximum power value under high vacuum. The obtained polycondensation reaction product was discharged and cut
  • the intrinsic viscosity (IV) of the obtained copolymerized polyester resin was 0.8 dl / g, and the heat of crystallization was 0 J / g.
  • the viscosity retention rate at the shear of the co-polyester resin was 15 ⁇ 5 Nm.
  • the intrinsic viscosity was measured in the same manner as in Evaluation Example 1-1, and the heat of crystallization was evaluated in the same manner as in Evaluation Example 1-3, the viscosity retention at the shear was measured by the following method.
  • Viscosity retention at shear was measured by Brabender (manufacturer: Brabender GmbH & Co KG, model name: Brabender® Plasti-Corder equipment), and the brabender was operated while treating the copolyester resin at 50 rpm at 190 ° C. It was calculated as the difference in shear stress after 10 minutes and 30 minutes later.
  • the co-polyester resin of Example 5-1 was calendered to prepare a film.
  • 2 phr (part per hundred resin) of process additive manufactured by Brother enterprise, product name: Montanwax E
  • process additive manufactured by Brother enterprise, product name: Montanwax E
  • the film was extruded at 190 ° C., kneaded at 110 ° C., gelled, and calendered to prepare a film having a thickness of 0.2 mm.
  • the prepared film was embossed before cooling, and the roughness Ra of the used embossing roll was 3 ⁇ m. It was then cooled to 45 ° C. and wound up.
  • a film was manufactured in the same manner as in Example 5, except that PVC resin (trade name: P1000) of Hanwha General Chemical was used as the PVC resin.
  • a film was prepared in the same manner as in Example 5, except that PP resin was used to receive a calcining resin (weight average molecular weight: 550,000 to 1,200,000 g / mol) in SK Innovation.
  • a film was prepared in the same manner as in Example 5 except that TPA was used as the dicarboxylic acid and EG alone was used as the diol component.
  • Air sampling for emission measurements was performed after 7 days (168 hours ⁇ 2 hours) from the start of the test. It was assumed that the release test was started when the prepared specimen was installed in the chamber.
  • the analysis of volatile organic compounds was in accordance with ES 02603.1 "Methods for Measuring Volatile Organic Compounds Emissions from Indoor and Building Materials-Solid Absorber Tubes and Gas Chromatographs-MS / FID Method".
  • Example 5 In each of Example 5 and Comparative Examples 8 to 11, the calenderability of the resin was evaluated through the thickness uniformity of the sheet and the degree of gelling formation.
  • the target thickness of the sheet was prepared to 0.2 mm, the degree of migrating was evaluated by visually observing the surface of the film by the number of gilling (foreign material) per 1 m 2 of the film. Calendar workability was measured in the same manner as in Evaluation Example 1-2.
  • the thickness uniformity (% thickness deviation) and the sum of the number of Miguellings are relatively compared, the smallest " ⁇ ", the second smallest " ⁇ ", the third and fourth smallest " ⁇ ", and the process is impossible. The case was evaluated with "X”.
  • the surface hardness of the films prepared in Example 5 and Comparative Examples 8 to 11 was measured according to the Pencil Hardness Tester method. Surface hardness was measured under a condition of 5 mm / sec with a 200 g load on the surface of each film without any treatment, and the average value was used after 10 repeated measurements.
  • Example 5 The transparency of the films prepared in Example 5 and Comparative Examples 8 to 11 was measured by Haze meter: NDH 5000W (manufacturer: NIPPON DENSHOKU INDUSTRIES).
  • the decor sheet is laminated on a transparent layer on the printing paper
  • the parallel transmittance is important for the demonstration of the printing paper. Therefore, the transparency of the film was confirmed through the parallel transmittance.
  • the stain resistance of the films prepared in Example 5 and Comparative Examples 8 to 11 was measured by HCJ-D-204-7 and HCJ-D-204-8 methods. At this time, when there was a change of 1 or less, " ⁇ ", 2 or less, “ ⁇ ", 3 or less, " ⁇ ", 4 or less, "X" was evaluated. The change means that haze or swelling occurs on the surface of the film.
  • the surface tension of the films prepared in Example 5 and Comparative Examples 8 to 11 was confirmed through contact angle measurement.
  • the method of calculating the surface tension through the contact angle is as follows.
  • the color difference of the films prepared in Example 5 and Comparative Examples 8 to 11 was measured according to the accelerated weathering test (KS M ISO 4892-2).
  • the measurement conditions were 6500 W xenon arc as the light source, the irradiance is 0.51 W / m2, measuring the initial color at 63 ⁇ 3 °C, humidity 50 ⁇ 5% relative humidity After leaving for 500 hours under the above conditions, the color was measured to evaluate the color difference change.
  • the printability of the films prepared in Example 5 and Comparative Examples 8 to 11 was measured according to the adhesion test method (ASTM D3359). X-cut the surface of the film after printing by a bar coating method without a primer (primer), and after attaching a tape (manufacturer: TESA, model name: Tesa 7476) and peeled off to confirm the extent of the print layer peeled off. At this time, "X" is indicated when the printed layer is peeled off, and " ⁇ " when the printed layer is maintained.
  • the molding processability of the films prepared in Example 5 and Comparative Examples 8 to 11 was confirmed according to the depth measuring method capable of processing.
  • the moldability is "mm” for 10 mm, 10 mm for "8” mm, " ⁇ ” for 8 mm, “ ⁇ ” for 6 mm, and "X” for 4 mm using a vacuum molding machine. Evaluated as ".
  • the film of Example 5 is very excellent in terms of environmental friendliness, calenderability, surface hardness, transparency, stain resistance, surface tension, color difference, printability and embossability compared to the films of Comparative Examples 8 to 11 could confirm.
  • a diol component and a dicarboxylic acid component were charged to the 2500L reactor equipped with a stirrer and an outlet condenser based on the final polymer amount of 2,000 kg, and the contents of Table 3 were used.
  • the diol component and the dicarboxylic acid component were charged so that the diol component was 1.5 mol with respect to 1 mol of the dicarboxylic acid component, and terephthalic acid (TPA) was used as the dicarboxylic acid component.
  • TPA terephthalic acid
  • the produced water was discharged out of the system and esterified, and when the generation and outflow of water were completed, the reaction product was transferred to a polycondensation reactor equipped with a stirrer, a cooling condenser, and a vacuum system.
  • an antimony catalyst (antimony triglycolate) was added as a metal polycondensation catalyst to 300 ppm based on the amount of antimony element, and triethyl phosphate (TEP) was added as a phosphorus stabilizer. To 500 ppm was added. Subsequently, the low vacuum reaction was performed for 40 minutes from atmospheric pressure to 50 mmHg while raising the reactor internal temperature from 240 ° C to 285 to 290 ° C. Thereafter, ethylene glycol was taken out of the system, and the pressure was gradually reduced to 0.1 mmHg, and the reaction proceeded to the maximum power value under high vacuum. The obtained polycondensation reaction product was discharged and cut into chips to prepare a polyester resin.
  • a polyester resin composition was prepared by mixing the polyester resin of Example 6-1 and the additive so that the weight ratio was 100: 1.2.
  • the additive used was a Montan-based process additive (manufacturer: Brother enterprise, product name: Montanwax E). Thereafter, the resin composition was extruded at 200 ° C., kneaded at 110 ° C., gelled, and calendered to prepare a film having a thickness of 0.2 mm.
  • a polyester resin composition for calendering was prepared in the same manner as in Example 1, except that the diol component, the content ratio, and the content of the additive were used as described in Tables 3 and 4, and a film was prepared using the same.
  • Intrinsic viscosity was evaluated about the polyester resin of Examples 6-12 and Comparative Examples 12-18.
  • the 1st process index was evaluated about the polyester resin of Examples 6-12 and Comparative Examples 12-18.
  • the first process index was calculated by the following equation.
  • 1st process index ⁇ (mole% of diol residues other than ethylene glycol based on the total moles of diol repeating unit) / 100 ⁇ + intrinsic viscosity (dl / g) of polyester resin
  • the heat of crystallization ( ⁇ Hc) was measured by a differential scanning calorimeter (DSC). Specifically, the polyester resin was annealed at 300 ° C. for 5 minutes, cooled to room temperature, and then scanned again at a temperature increase rate of 0.1 ° C./min to measure the intrinsic crystallization heat (J / g) of the resin.
  • the second process index was evaluated for the polyester resin compositions of Examples 6 to 12 and Comparative Examples 12 to 18.
  • the second process index was calculated by Equation 3, and the value rounded to three decimal places was described.
  • 2nd process index ⁇ [(mol% of diol residues other than ethylene glycol based on the total moles of diol repeating unit) / 100] + intrinsic viscosity of polyester resin ( ⁇ / g) ⁇ -said polyester resin Calorific value of crystallization (J / g) ⁇ ⁇ content of the additive (% by weight)
  • polyester films of Examples 6 to 12 and Comparative Examples 12 to 18 were measured using a thickness gauge (manufacturer: TESA, model name: TESA-uHITE) based on a target thickness of 0.2 mm.
  • thickness uniformity is less than ⁇ 5%, " ⁇ ", more than ⁇ 5%, less than 10%, " ⁇ ", more than ⁇ 10%, less than 15%, " ⁇ ", more than ⁇ 15%, less than 20%, "X”. Evaluated as.
  • Haze was evaluated about the polyester films of Examples 6-12 and Comparative Examples 12-18. Specifically, the films of Examples 6 to 12 and Comparative Examples 12 to 18 were cut into 16 cm ⁇ 16 cm ⁇ 0.2 mm (width ⁇ length ⁇ thickness), and then Haze meter: NDH 5000W (manufacturer: NIPPON DENSHOKU INDUSTRIES) Haze was measured.
  • Example 6 Example 7
  • Example 8 Example 9
  • Example 10 Example 11
  • Example 12 Dior NPG 33 43 55 67 25 71 82 EG 67 57 45 33 75 24 18 DEG - - - - 5 - CHDM - - - - - - Additive content 1.2 1.5 0.9 2.5 1.6 3.6 3.5
  • Intrinsic viscosity of resin (dl / g) 0.78 0.75 0.85 0.68 0.72 0.82 0.71 1st Process Index 1.11 1.18 1.4 1.35 0.97 1.58 1.53
  • Crystallization calorie (J / g) 0.2 0 0 0 0.5 0 0 2nd Process Index 1.09 1.77 1.26 3.38 0.75 5.69 5.36 Calendar processability ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Haze of film (%) 4 5 2 8 5 13 11
  • Examples 6 to 12 had a lower calorific value of crystallization and a proper intrinsic viscosity, and calender processability and a haze value of the prepared film were also superior to Comparative Examples 12 to 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

실시예는 결정화 열량이 낮고 캘린더 가공성이 우수할 뿐만 아니라, 경제적이며 친환경적인 폴리에스테르 수지 및 이의 제조 방법에 관한 것이다. 또한, 실시예는 상기 폴리에스테르 수지를 이용한, 캘린더링 공정에 의해 경제적이고 친환경적이며 표면 경도 및 내UV성 등이 우수한 공중합 폴리에스테르 필름을 제조하는 방법 및 이에 의해 제조된 필름에 관한 것이다. 나아가, 실시예는 결정화 열량이 낮고 캘린더 가공성이 우수한 캘린더링용 폴리에스테르 수지 조성물 및 이를 이용하여 경제적이고 친환경적이며 표면 경도 및 내화학성 등이 우수한 폴리에스테르 필름을 제조하는 방법에 관한 것이다.

Description

폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법
실시예는 결정화 열량이 낮고 캘린더 가공성이 우수할 뿐만 아니라, 경제적이며 친환경적인 폴리에스테르 수지 및 이의 제조 방법에 관한 것이다. 또한, 실시예는 상기 폴리에스테르 수지를 이용한, 캘린더링 공정에 의해 경제적이고 친환경적이며 표면 경도 및 내UV성 등이 우수한 공중합 폴리에스테르 필름을 제조하는 방법 및 이에 의해 제조된 필름에 관한 것이다. 나아가, 실시예는 결정화 열량이 낮고 캘린더 가공성이 우수한 캘린더링용 폴리에스테르 수지 조성물 및 이를 이용하여 경제적이고 친환경적이며 표면 경도 및 내화학성 등이 우수한 폴리에스테르 필름을 제조하는 방법에 관한 것이다.
캘린더링 공정은 캘린더, 즉 여러 개의 가열 롤을 배열한 압연 기계를 사용하여 필름 및 시트 등을 성형하는 공정이다. 캘린더링 공정의 경우 압출 공정에 비해 생산 속도가 빠르고 얇은 두께로 가공이 용이하므로 필름 및 시트 등을 만드는 대표적인 방법 중 하나이다.
일반적으로 사용되는 수지들 중, 폴리에틸렌테레프탈레이트(PET) 수지는 가격 대비 우수한 물성을 가지고 있으나 캘린더 가공성이 떨어지는 문제가 있다. 또한, 폴리에틸렌테레프탈레이트 글리콜(PETG) 수지는 캘린더링 공정을 적용할 수 있으나, 고가의 가격으로 인해 용도가 제한되며, 이를 필름으로 제조하는 경우 표면 강도가 낮아 데코시트 등으로 사용하기에는 어려움이 있다. 뿐만 아니라, 폴리비닐클로라이드(PVC) 수지는 캘린더 가공성은 우수하나 친환경적이지 않고 재활용이 어렵다는 문제가 있다. 또한, 폴리프로필렌(PP) 수지는 캘린더 가공성은 우수하나, 후공정성에 어려움이 있어 코로나 및 프라이머 처리 없이는 인쇄 및 합지 공정이 불가능하여, 공정시 에너지 소비가 크고 친환경적이지도 않다. 따라서, 캘린더링 공정에 사용될 수 있으면서도 상기 수지들의 단점을 보완할 수 있는 고분자 수지에 대한 요구가 커지고 있다.
일례로 대한민국 공개특허 제2014-0109506호는 테레프탈산 잔기, 1,4-사이클로헥산다이메탄올 잔기 및 에틸렌 글리콜 잔기를 포함하는 캘린더링용 폴리에스테르 조성물을 개시하고 있다.
그러나, 상기 공개특허와 같이, 사이클로헥산다이메탄올 잔기 등의 지환족 디올 잔기를 포함하는 폴리에스테르 수지를 캘린더링하여 필름을 제조할 경우, 필름의 표면 경도 및 내화학성이 저하되는 문제가 있다.
따라서, 실시예의 목적은 결정화 열량이 낮고 캘린더 가공성이 우수할 뿐만 아니라, 경제적이며 친환경적인 폴리에스테르 수지 및 이의 제조 방법을 제공하는 것이다. 또한, 실시예의 다른 목적은 공중합 폴리에스테르 수지를 캘린더링하여 경제적이고 친환경적이며 표면 경도 및 내UV성 등이 우수한 필름을 제조하는 방법 및 이에 의해 제조된 필름을 제공하는 것이다. 나아가, 실시예의 또 다른 목적은 결정화 열량이 낮고 캘린더 가공성이 우수한 캘린더링용 폴리에스테르 수지 조성물, 및 이를 이용하여 경제적이고 친환경적이며 표면 경도 및 내화학성 등이 우수한 폴리에스테르 필름을 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위해 일 실시예는,
디카르복실산 반복단위 및 디올 반복단위를 포함하는 캘린더링용 폴리에스테르 수지로서,
상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로, 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜 잔기를 포함하고,
상기 디올 반복단위가 지환족 디올 잔기를 포함하지 않고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 캘린더링용 폴리에스테르 수지를 제공한다.
또한, 다른 실시예는,
(a) 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시키는 단계; 및
(b) 상기 에스테르화 반응시킨 생성물을 중축합시키는 단계;를 포함하는 캘린더링용 폴리에스테르의 수지의 제조방법으로서,
상기 디올 성분이 상기 디올 성분의 전체 몰을 기준으로 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜을 포함하고,
상기 디올 성분은 지환족 디올을 포함하지 않고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 캘린더링용 폴리에스테르 수지의 제조방법을 제공한다.
나아가, 또 다른 실시예는,
(1) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지를 혼합하는 단계;
(2) 상기 혼합된 수지를 혼련하여 겔화(gelation)하는 단계;
(3) 상기 겔화된 수지를 캘린더링하여 필름화하는 단계;
(4) 상기 캘링더링된 필름을 냉각하는 단계; 및
(5) 상기 냉각된 필름을 권취하는 단계;를 포함하는 공중합 폴리에스테르 필름의 제조방법의 제조방법으로서,
상기 디올 반복단위가 선형 또는 분지형 C2 내지 C10 디올 잔기로 이루어지고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 공중합 폴리에스테르 필름의 제조방법을 제공한다.
또한, 또 다른 실시예는,
상기 공중합 폴리에스테르 필름의 제조방법에 의해 제조된 공중합 폴리에스테르 필름을 제공한다.
나아가, 또 다른 실시예는,
폴리에스테르 수지 및 첨가제를 포함하는 캘린더링용 폴리에스테르 수지 조성물로서,
상기 폴리에스테르 수지가 디카르복실산 반복단위 및 디올 반복단위를 포함하고,
상기 디올 반복단위가 선형 또는 분지형의 C2 내지 C10 디올 잔기로 이루어지고,
상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함하고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이고,
하기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10인, 캘린더링용 폴리에스테르 수지 조성물을 제공한다:
[수학식 3]
제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(J/g)} × 상기 첨가제의 함량(중량%).
또한, 또 다른 실시예는,
(i) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지 및 첨가제를 혼합하여 폴리에스테르 수지 조성물을 제조하는 단계;
(ii) 상기 수지 조성물을 혼련하여 겔화(gelation)하는 단계;
(iii) 상기 겔화된 조성물을 캘린더링하여 필름화하는 단계;
(iv) 상기 캘링더링된 필름을 냉각하는 단계; 및
(v) 상기 냉각된 필름을 권취하는 단계;를 포함하는 폴리에스테르 필름의 제조방법으로서,
상기 디올 반복단위가 선형 또는 분지형의 C2 내지 C10 디올 잔기로 이루어지고,
상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함하고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이고,
상기 수지 조성물은 하기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10인, 폴리에스테르 필름의 제조방법을 제공한다:
[수학식 3]
제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(㎗/g)} × 상기 첨가제의 함량(중량%).
또한, 또 다른 실시예는 상기 폴리에스테르 수지 또는 상기 폴리에스테르 수지 조성물을 포함하는 기재층; 및 상기 기재층 상에 적층된 인쇄층을 포함하는, 필름을 제공한다.
실시예에 따른 폴리에스테르 수지는 특정한 고유점도를 갖고 결정화 열량이 낮으므로, 캘린더 가공성이 우수하다. 또한, 실시예에 따른 폴리에스테르 수지는 친환경 소재로서 다양한 분야에 활용될 수 있다. 나아가, 실시예에 따른 폴리에스테르 수지의 제조 방법에 의하면, 결정화 열량이 낮고 캘린더 가공성이 우수할 뿐만 아니라, 경제적이며 친환경적인 폴리에스테르 수지를 제조할 수 있다.
더불어, 실시예에 따른 공중합 폴리에스테르 필름의 제조방법에 의하면, 공중합 폴리에스테르 수지를 캘린더링 공정에 적용하여 표면 경도 및 내화학성 등이 우수한 필름을 제조할 수 있다. 또한, 상기 방법에 의해 제조된 공중합 폴리에스테르 필름은 경제적이고, 친환경적이며, 후공정성이 우수하여 프라이머 처리 없이 인쇄가 가능하고, 엠보 가공이 용이하다.
또한, 실시예에 따른 캘린더링용 폴리에스테르 수지 조성물은 특정한 제2 공정지수를 갖고 결정화 열량이 낮으므로, 캘린더 가공성이 우수하다. 더불어, 실시예에 따른 캘린더링용 폴리에스테르 수지 조성물은 경제적이며, 친환경 소재로서 기능하므로, 다양하게 활용될 수 있다. 나아가, 상기 캘린더링용 폴리에스테르 수지 조성물을 이용하여 폴리에스테르 필름을 제조하는 방법에 따르면, 표면 경도 및 내화학성 등이 우수한 폴리에스테르 필름을 제조할 수 있다. 또한, 상기 폴리에스테르 필름은 후공정성이 우수하여 프라이머 처리 없이 인쇄가 가능하고, 엠보 가공이 용이하다.
이하, 실시예를 통해 본 발명을 상세하게 설명한다. 실시예는 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
또한, 본 명세서에서 "포함"한다는 것은 특별한 기재가 없는 한 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서 제1, 제2 등의 용어는 다양한 구성 요소를 설명하기 위해 사용되는 것이고, 상기 구성 요소들은 상기 용어에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로 구별하는 목적으로만 사용된다.
실시양태 A.
실시예는 캘린더링 공정에 사용될 수 있는 폴리에스테르 수지, 이를 포함하는 필름 및 이의 제조방법을 제공한다.
<캘린더링용 폴리에스테르 수지>
일 실시예에 따른 캘린더링용 폴리에스테르 수지는 디카르복실산 반복단위 및 디올 반복단위를 포함하는 캘린더링용 폴리에스테르 수지로서,
상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로, 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜 잔기를 포함하고,
상기 디올 반복단위가 지환족 디올 잔기를 포함하지 않고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이다.
상기 디카르복실산 반복단위는 테레프탈산(TPA), 이소프탈산(IPA), 나프탈렌 디카르복실산(NDC), 사이클로헥산 디카르복실산(CHDA), 숙신산, 글루타릭산, 오르토프탈산, 아디프산, 아젤라산, 세바식산, 데칸디카르복실산, 2,5-푸란디카르복실산, 2,5-티오펜디카르복실산, 2,7-나프탈렌디카르복실산, 4,4'-비벤조산 및 이의 유도체, 또는 이의 조합의 잔기를 포함할 수 있다. 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 사이클로헥산 디카르복실산, 또는 이의 조합의 잔기를 포함할 수 있다. 보다 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산 잔기를 포함할 수 있다. 더욱 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산 잔기로 이루어질 수 있다.
상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜 잔기를 포함한다. 구체적으로, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 30 몰% 초과 90 몰% 이하, 30 몰% 초과 80 몰% 이하, 또는 30 몰% 초과 70 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다. 보다 구체적으로, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 30 몰% 초과 60 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다.
상기 네오펜틸글리콜 잔기의 함량이 상기 범위일 때, 결정화에 의한 공정성이 우수하며, 원하는 고유점도를 얻기에 용이하고, 수지의 칼라 특성 및 기계적 물성이 우수하다. 특히, 상기 네오펜틸글리콜 잔기의 함량이 90 몰% 이하일 경우, 고유점도를 일정 수준 이상 올리기 어려워 기계적 물성이 취약해질 수 있는 문제를 방지할 수 있다.
상기 디올 반복단위는 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 1,3-프로판디올, 1,2-옥탄디올, 1,3-옥탄디올, 2,3-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 2-부틸-2-에틸-1,3-프로판디올, 2,2-디에틸-1,5-펜탄디올, 2,4-디에틸-1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 1,1-디메틸-1,5-펜탄디올, 폴리에테르글리콜, 또는 이의 조합의 잔기를 추가로 포함할 수 있다. 구체적으로, 상기 디올 반복단위는 에틸렌글리콜, 디에틸렌글리콜, 폴리에테르글리콜, 또는 이의 조합의 잔기를 추가로 포함할 수 있다. 더욱 구체적으로, 상기 디올 반복단위는 에틸렌글리콜 잔기를 추가로 포함할 수 있다.
상기 폴리에테르글리콜은, 예를 들어, 폴리테트라하이드로퓨란(PTMEG), 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 등을 들 수 있다.
또한, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 43 내지 67 몰%의 에틸렌글리콜 잔기 및 30 몰% 초과 57 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다.
상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기로 이루어질 수 있다. 구체적으로, 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜의 잔기로 이루어질 수 있다.
상기 디올 반복단위는 선형 디올 잔기를 추가로 포함할 수 있다. 선형 디올 잔기들을 추가로 포함하는 폴리에스테르 수지를 캘린더링하여 필름 또는 시트를 제조할 경우, 패킹(packing)이 잘 이루어지므로 필름의 내화학성 및 표면 강도가 우수할 수 있다.
특히, 우수한 내화학성 및 표면 강도 물성으로 인해 필름 상에 인쇄층을 형성할 경우, 외부 환경에 의한 인쇄층 박리가 잘 발생되지 않아 인쇄용 필름, 데코시트 등의 기재 용도의 활용될 수 있다.
상기 선형 디올 잔기는 선형 C2 내지 C10 디올 잔기일 수 있다.
상기 디올 반복단위는 지환족 디올 잔기를 포함하지 않는다. 예를 들어, 상기 디올 반복단위는 사이클로헥산다이메탄올(CHDM) 잔기를 포함하지 않는다.
상기 디올 반복단위가 지환족 디올 잔기를 포함하는, 폴리에스테르 수지를 캘린더링하여 필름 또는 시트를 제조할 경우, 지환족 디올의 벌키(bulky)한 구조 때문에 패킹이 잘 이루어지지 않아 필름의 내화학성 및 표면 강도가 떨어질 수 있다. 또한, 필름의 치수 안정성이 떨어져 용도 확장이 어려울 수 있다.
상기 폴리에스테르 수지의 고유점도(IV)는 0.6 내지 3.0 ㎗/g이다. 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.68 내지 3.0 ㎗/g, 또는 0.7 내지 0.9 ㎗/g일 수 있다. 더욱 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.7 내지 0.8 ㎗/g일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 고유점도(IV)는 0.72 내지 0.78 ㎗/g일 수 있다.
상기 폴리에스테르 수지의 고유점도가 상기 범위일 때, 캘린더 가공성이 우수하고, 캘린더링 공정시 동점도 유지율이 우수하며, 시트 및 필름의 두께 균일도가 우수하다.
상기 폴리에스테르 수지는 하기 수학식 1로 계산된 제1 공정지수가 1.0 초과 1.7 이하일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 공정지수는 1.0 초과 내지 1.55 이하일 수 있다. 보다 구체적으로, 상기 폴리에스테르 수지의 공정지수는 1.0 초과 1.4 미만일 수 있다. 더욱 구체적으로, 상기 폴리에스테르 수지의 제1 공정지수는 1.05 내지 1.35일 수 있다.
[수학식 1]
제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g).
상기 공정지수는 에틸렌글리콜 이외의 디올 잔기의 몰% 함량과 폴리에스테르 수지의 고유점도의 합으로서, 캘린더 가공성을 나타낼 수 있는 지표에 해당한다.
상기 폴리에스테르 수지의 제1 공정지수가 상기 범위일 때, 시트의 투명도, 두께 균일성 및 치수 안정성이 우수하여 캘린더 가공에 적합하다.
<필름>
다른 실시예는 상기 폴리에스테르 수지를 포함하는 기재층; 및 상기 기재층 상에 적층된 인쇄층을 포함하는, 필름을 제공한다.
상기 기재층의 평균 두께는 통상적인 인쇄용 필름 또는 데코시트의 기재층의 두께일 수 있다.
나아가, 상기 인쇄층은 데코시트 등에 포함되는 통상적인 재질의 인쇄층일 수 있으며, 통상적인 방법으로 기재층 위에 형성될 수 있다. 또한, 상기 인쇄층의 평균 두께는 통상적인 인쇄용 필름 또는 데코시트의 인쇄층의 두께일 수 있다.
<캘린더링용 폴리에스테르 수지의 제조방법>
다른 실시예에 따른 캘린더링용 폴리에스테르 수지의 제조방법은,
(a) 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시키는 단계; 및
(b) 상기 에스테르화 반응시킨 생성물을 중축합시키는 단계;를 포함하는 캘린더링용 폴리에스테르 수지의 제조방법으로서,
상기 디올 성분이 상기 디올 성분의 전체 몰을 기준으로 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜을 포함하고,
상기 디올 성분은 지환족 디올을 포함하지 않고,
상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이다.
단계 (a)
본 단계에서는 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시킨다.
상기 혼합은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:2.0이 되도록 수행할 수 있다. 구체적으로, 상기 혼합은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:1.5가 되도록 수행할 수 있다.
디카르복실산 성분 및 디올 성분의 몰비가 상기 범위 내일 경우, 에스테르화 반응이 안정적으로 진행되고, 충분한 에스테르 올리고머가 형성될 수 있으며, 네오펜틸글리콜 성분의 특성이 발현되기에 적합할 수 있다.
상기 디카르복실산 성분 및 상기 디올 성분의 종류 및 함량은 앞서 설명한 디카르복실산 반복단위 및 디올 반복단위와 같다.
상기 성분들을 사용하여 캘린더링용 폴리에스테르 수지를 제조하는 경우, 가격적인 측면에서 경제성이 있고, 제조된 폴리에스테르 수지는 친환경적이며 재활용이 용이하고, 치수 안정성이 우수하다.
상기 캘린더링용 폴리에스테르 수지 제조시, 아크릴계 화합물을 포함하지 않는다. 상기 아크릴계 화합물을 포함하여 반응시키는 경우, 수지 내에 미용융 겔(gel) 이물질이 발생할 수 있다.
상기 폴리에스테르 수지의 제조방법을 통해 제조된 폴리에스테르 수지의 고유점도(IV)는 0.6 내지 3.0 dl/g이다. 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.68 내지 3.0 dl/g, 또는 0.7 내지 0.9 dl/g일 수 있다. 더욱 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.7 내지 0.8 dl/g일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 고유점도(IV)는 0.72 내지 0.78 dl/g일 수 있다.
상술한 구성 성분 및 그 함량을 이용하여 폴리에스테르 수지를 제조하면, 상기 범위의 고유점도를 얻기에 용이할 수 있다.
상기 폴리에스테르 수지의 고유점도가 상기 범위일 때, 캘린더 가공성이 우수하고, 캘린더링 공정시 동점도 유지율이 우수하며, 시트 및 필름의 두께 균일도가 우수하다.
단계 (b)
본 단계에서는 상기 에스테르화 반응시킨 생성물을 중축합시킨다.
상기 중축합은 230 내지 300 ℃의 온도 및 0.1 내지 3.0 kg/㎠의 압력 조건 하에서 수행될 수 있다. 구체적으로, 상기 중축합은 240 내지 295 ℃의 온도 및 0.2 내지 2.9 kg/㎠의 압력 조건 하에서 수행될 수 있다.
상기 중축합은 통상의 기술자에게 널리 알려진 중축합촉매, 안정제, 정색제, 분산제, 블로킹 방지제, 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 광개시제 또는 이의 조합의 존재하에, 수행될 수 있으며, 상기 첨가제는 실시예의 효과를 손상시키지 않는 범위 내에서 포함될 수 있다. 구체적으로, 상기 중축합은 중축합촉매 및 안정제의 존재 하에 수행될 수 있다.
상기 중축합촉매는 알칼리금속, 알칼리토금속, 안티몬, 티타늄, 망간, 코발트, 세륨, 게르마늄, 또는 이의 조합을 포함할 수 있다. 구체적으로, 상기 중축합 촉매는 안티몬계 화합물일 수 있다.
상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 1,000 ppm의 양으로 사용될 수 있다. 구체적으로, 상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 500 ppm의 양으로 사용될 수 있다. 상기 중축합촉매의 사용량이 상기 범위일 경우, 중축합 반응 속도를 증가시키고 부반응을 억제하여, 제조된 수지의 투명도가 향상될 수 있다.
상기 안정제는 인계 안정제를 포함할 수 있다. 상기 인계 안정제는 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트, 트리에틸포스포노아세테이트, 힌다드 페놀, 또는 이의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 3,000 ppm 이하의 양으로 사용될 수 있다. 구체적으로, 상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 2,500 ppm의 양으로 사용될 수 있다.
상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 유기 화합물 정색제, 무기 화합물 정색제, 염료, 또는 이의 조합을 포함할 수 있다. 구체적으로, 상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 무기 화합물 정색제, 또는 이의 조합일 수 있다.
상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 500 ppm의 양으로 사용할 수 있다. 구체적으로, 상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 200 ppm의 양으로 사용할 수 있다.
실시양태 B.
실시예는 캘린더링하는 단계를 포함하는 공중합 폴리에스테르 필름을 제조하는 방법 및 이에 의해 제조된 필름을 제공한다.
<공중합 폴리에스테르 필름의 제조방법>
또 다른 일 실시예에 따른 공중합 폴리에스테르 필름을 제조하는 방법은,
(1) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지를 혼합하는 단계;
(2) 상기 혼합된 수지를 혼련하여 겔화(gelation)하는 단계;
(3) 상기 겔화된 수지를 캘린더링하여 필름화하는 단계;
(4) 상기 캘링더링된 필름을 냉각하는 단계; 및
(5) 상기 냉각된 필름을 권취하는 단계;를 포함한다.
상기 공중합 폴리에스테르 필름을 제조하기 위하여 단계 (1) 내지 (5)를 순차적으로 수행할 수 있다.
단계 (1)
본 단계에서는 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지를 혼합한다.
상기 디카르복실산 반복단위는 테레프탈산(TPA), 이소프탈산(IPA), 나프탈렌 디카르복실산(NDC), 사이클로헥산 디카르복실산(CHDA), 숙신산, 글루타릭산, 오르토프탈산, 아디프산, 아젤라산, 세바식산, 데칸디카르복실산, 2,5-푸란디카르복실산, 2,5-티오펜디카르복실산, 2,7-나프탈렌디카르복실산, 4,4'-비벤조산 및 이의 유도체, 또는 이의 조합의 잔기를 포함할 수 있다. 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 사이클로헥산 디카르복실산, 또는 이의 조합의 잔기를 포함할 수 있다. 보다 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산 잔기를 포함할 수 있다. 더욱 구체적으로, 상기 디카르복실산 반복단위는 테레프탈산 잔기로 이루어질 수 있다.
상기 디올 반복단위는 선형 또는 분지형 C2 내지 C10 디올 잔기로 이루어진다. 즉, 상기 디올 반복단위는 지환족 디올 잔기 또는 방향족 디올 잔기를 포함하지 않는다.
상기 선형 또는 분지형 C2 내지 C10 디올 잔기는, 예를 들어, 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 네오펜틸글리콜, 1,3-프로판디올, 1,2-옥탄디올, 1,3-옥탄디올, 2,3-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 2-부틸-2-에틸-1,3-프로판디올, 2,2-디에틸-1,5-펜탄디올, 2,4-디에틸-1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 1,1-디메틸-1,5-펜탄디올, 1,6-헥산디올, 2-에틸-3-메틸-1,5-헥산디올, 2-에틸-3-에틸-1,5-헥산디올, 1,7-헵탄디올, 2-에틸-3메틸-1,5-헵탄디올, 2-에틸-3-에틸-1,6-헵탄디올, 1,8-옥탄디올, 1,9-노난디올, 1,10-데칸디올 등의 유도체 또는 이의 조합의 잔기를 포함할 수 있다. 구체적으로, 상기 선형 또는 분지형 C2 내지 C10 디올 잔기는 에틸렌글리콜(EG), 디에틸렌글리콜(DEG), 네오펜틸글리콜 또는 이의 조합의 잔기를 포함할 수 있다.
또한, 상기 선형 또는 분지형 C2 내지 C10 디올 잔기를 포함하는 폴리에스테르 수지를 이용하여 캘린더링하여 필름 또는 시트를 제조할 경우, 패킹(packing)이 잘 이루어지므로 필름의 내화학성 및 표면 강도가 우수할 수 있다.
일 실시예에 따르면, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다. 구체적으로, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 30 몰% 초과 90 몰%, 30 몰% 초과 80 몰% 이하, 또는 30 몰% 초과 70 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다. 보다 구체적으로, 상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로, 30 몰% 초과 60 몰% 이하의 네오펜틸글리콜 잔기를 포함할 수 있다.
상기 네오펜틸글리콜 잔기의 함량이 상기 범위일 때, 결정화에 의한 공정성이 우수하며 목적 고유점도를 얻기에 용이하고, 수지의 칼라 특성 및 기계적 물성이 우수하다. 특히, 상기 네오펜틸글리콜 잔기의 함량이 90 몰% 이하일 경우, 고유점도를 일정 수준 이상 올리기 어려워 기계적 물성이 취약해지는 문제를 방지할 수 있다.
상기 디올 반복단위는 지환족 디올 잔기 또는 방향족 디올 잔기를 포함하지 않는 것이 바람직하다. 구체적으로 상기 디올 반복단위는 사이클로헥산다이메탄올(CHDM) 잔기를 포함하지 않는다.
상기 디올 반복단위가 지환족 디올 잔기 또는 방향족 디올 잔기를 포함하는 폴리에스테르 수지를 캘린더링하여 필름 또는 시트를 제조할 경우, 지환족 디올 또는 방향족 디올의 벌키(bulky)한 구조 때문에 패킹이 잘 이루어지지 않아 필름의 내화학성 및 표면 강도가 떨어질 수 있다. 또한, 제조된 수지의 치수 안정성이 떨어져 용도 확장이 어려울 수 있다.
상기 폴리에스테르 수지 제조시, 아크릴계 화합물을 포함하지 않는다. 상기 아크릴계 화합물을 포함하여 반응시키는 경우, 제조된 수지 내에 미용융 겔(gel) 이물질이 발생할 수 있다.
일 실시예에 따르면, 상기 폴리에스테르 수지는 디카르복실산 반복단위 및 디올 반복단위를 포함하고, 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기로 이루어질 수 있다. 구체적으로, 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜의 잔기로 이루어질 수 있다.
상기 폴리에스테르 수지 중 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기로 이루어지는 경우, 수지의 백탁 현상이 줄어들며 8% 이하의 낮은 헤이즈를 갖고 치수 안정성이 우수할 수 있다.
상기 폴리에스테르 수지의 고유점도(IV)는 0.6 내지 3.0 ㎗/g이다. 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.68 내지 3.0 ㎗/g, 0.7 내지 2.5 ㎗/g, 0.7 내지 2.0 ㎗/g, 0.7 내지 1.5 ㎗/g, 0.7 내지 1.2 ㎗/g, 또는 0.7 내지 0.9 ㎗/g일 수 있다. 더욱 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)는 0.7 내지 0.8 ㎗/g일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 고유점도(IV)는 0.72 내지 0.78 ㎗/g일 수 있다.
상기 폴리에스테르 수지의 고유점도가 상기 범위일 때, 캘린더 가공성이 우수하고, 캘린더링 공정시 동점도 유지율이 우수하며, 시트 및 필름의 두께 균일도가 우수하다.
상기 폴리에스테르 수지는 하기 수학식 1로 계산된 제1 공정지수가 1.0 초과 1.7 이하일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 공정지수는 1.0 초과 1.55 이하일 수 있다. 더욱 구체적으로, 상기 폴리에스테르 수지의 공정지수는 1.0 초과 1.4 미만일 수 있다.
[수학식 1]
제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g).
상기 공정지수는 에틸렌글리콜 이외의 디올 잔기의 몰% 함량과 폴리에스테르 수지의 고유점도의 합으로서, 캘린더 가공성을 나타낼 수 있는 지표에 해당한다.
상기 폴리에스테르 공정지수가 상기 범위일 때, 시트의 투명도, 두께 균일성 및 치수 안정성이 우수하여 캘린더 가공에 적합하다.
상기 폴리에스테르 수지의 결정화 열량은 2.5 J/g 이하일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 결정화 열량은 2.0 J/g 이하, 1.8 J/g 이하, 1.5 J/g 이하, 1.2 J/g 이하, 1.0 J/g 이하, 0.7 J/g 이하, 또는 0.5 J/g 이하일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 결정화 열량은 0 내지 2.2 J/g, 0 내지 2 J/g, 0 내지 1.0 J/g, 또는 0 내지 0.8 J/g일 수 있다. 상기 폴리에스테르 수지의 결정화 열량이 상기 범위일 때, 캘린더 가공성이 향상되는 효과가 있다.
상기 폴리에스테르 수지의 전단시 점도 유지율이 0.1 내지 20 Nm일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 전단시 점도 유지율이 0.1 내지 18 Nm, 또는 0.2 내지 15 Nm일 수 있다. 상기 전단시 점도 유지율은 브라벤더를 통해 측정하였고, 측정 조건은 190℃ 및 50 rpm에서 10 분과 30 분 후의 전단 응력의 차이를 나타낸다.
상기 전단시 점도 유지율은 캘린더링 가공에 있어서, 가공 안정성, 즉 파단 없이 안정적으로 시트 또는 필름의 생산 가능성을 평가하는 물성이다. 상기 폴리에스테르 수지의 전단시 점도 유지율이 상기 범위일 때, 수지의 캘린더링 가공 안정성이 최대가 된다.
상기 폴리에스테르 수지는 상술한 바와 같은 다양한 특성들을 만족함으로써, 상기 폴리에스테르 수지로부터 제조된 필름은 캘린더링 공정에 적합하며, 이로써 표면 경도, 내화학성 등이 우수한 폴리에스테르 필름을 제조할 수 있다.
본 단계는 (1-1) 상기 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시키는 단계; 및 (1-2) 상기 에스테르화 반응시킨 생성물을 중축합시키는 단계;를 포함할 수 있다.
상기 단계 (1-1)은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응을 시킨다. 구체적으로, 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:2.0이 되도록 혼합하여 에스테르화 반응을 시킬 수 있다. 더욱 구체적으로, 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:1.5가 되도록 혼합하여 에스테르화 반응을 시킬 수 있다. 디카르복실산 성분 및 디올 성분의 몰비가 상기 범위 내일 경우, 에스테르화 반응이 안정적으로 진행되고, 충분한 에스테르 올리고머가 형성될 수 있으며, 네오펜틸글리콜 성분의 특성이 발현되기에 적합할 수 있다.
상기 단계 (1-2)의 중축합은 230 내지 300℃의 온도 및 0.1 내지 3.0 kg/㎠의 압력 조건 하에서 수행될 수 있다. 구체적으로, 상기 중축합은 240 내지 295℃의 온도 및 0.2 내지 2.9 kg/㎠의 압력 조건 하에서 수행될 수 있다.
상기 중축합 단계는 통상의 기술자에게 널리 알려진 중축합촉매, 안정제, 정색제, 분산제, 블로킹 방지제, 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 광개시제 또는 이의 조합의 존재하에, 수행될 수 있으며, 이는 실시예의 효과를 손상시키지 않는 범위 내에서 포함될 수 있다. 구체적으로. 상기 중축합 단계는 중축합촉매, 안정제 또는 이의 조합의 존재 하에 수행될 수 있다.
상기 중축합촉매는 알칼리금속, 알칼리토금속, 안티몬, 티타늄, 망간, 코발트, 세륨, 게르마늄, 또는 이의 임의의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 중축합 촉매로서, 안티몬계 화합물이 사용될 수 있다.
상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 1,000 ppm의 양으로 사용될 수 있다. 구체적으로, 상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 500 ppm의 양으로 사용될 수 있다. 상기 중축합촉매의 사용량이 상기 범위 내일 경우, 중축합 반응 속도를 증가시키고 부반응을 억제하여, 제조된 수지의 투명도가 향상될 수 있다.
상기 안정제는 인계 안정제를 포함할 수 있다. 상기 인계 안정제는 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트, 트리에틸 포스포노아세테이트, 힌다드 페놀, 또는 이의 조합을 포함할 수 있다.
상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 3,000 ppm 이하의 양으로 사용될 수 있다. 구체적으로, 상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 2,500 ppm의 양으로 사용될 수 있다.
상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 유기 화합물 정색제, 무기 화합물 정색제, 염료, 또는 이의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 무기 화합물 정색제, 또는 이의 조합일 수 있다.
상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 500 ppm의 양으로 사용될 수 있다. 구체적으로, 상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 200 ppm의 양으로 사용될 수 있다.
상기 단계 (1) 이후와 상기 단계 (2) 이전에, 상기 폴리에스테르 수지와 첨가제를 혼합하는 단계를 더 포함하고,
상기 첨가제는 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 아마이드, 변성한 폴리 올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 첨가제를 폴리에스테르 수지와 혼합함으로써 캘린더링 공정시 롤 점착 방지, 수지의 흐름성 향상 및 두께 균일도 개선의 효과가 있다.
상기 첨가제를 혼합할 경우, 첨가제로 의해 수지의 흐름성이 향상되고 결정화가 지연되어 수지의 결정화 열량이 혼합하지 않은 조성 대비 낮아질 수 있다.
상기 폴리에스테르 수지와 상기 첨가제의 혼합은 중량비가 100 : 0.5 내지 100 : 5가 되도록 혼합할 수 있다.
상기 폴리에스테르 수지를 혼합하기 위하여 고속 믹서(예를 들어, Henshell Mixer)를 사용할 수 있다. 상기 폴리에스테르 수지를 펠렛화하고, 펠렛화된 폴리에스테르 수지를 고속 믹서에 투입하고, 20 내지 40℃의 온도 범위에서 30 내지 300 초 동안 혼합할 수 있다. 이때 상술한 첨가제를 함께 혼합할 수 있으나, 이에 한정되는 것은 아니다.
단계 (2)
본 단계에서는 상기 혼합된 수지를 혼련하여 겔화(gelation)한다.
상기 단계 (2)는 (2-1) 유선형 압출기(planetary extruder) 또는 반바리 인텐시브 믹서(Banbury intensive mixer)를 사용하여 혼합된 수지를 겔화하는 단계; (2-2) 믹싱 롤를 사용하여 상기 겔화된 수지를 균일화하는 단계; 및 (2-3) 워밍 롤을 이용하여 캘린더 롤에 투입하기 전에 상기 겔화된 수지를 균질화하는 단계; 중 선택된 1 종 이상의 단계를 포함할 수 있다. 구체적으로, 상기 단계 (2)는 상기 단계 (2-1), (2-2) 및 (2-3)을 순차적으로 수행할 수 있다.
상기 단계 (2-1)은 180 내지 230 ℃에서 수행될 수 있다. 또한, 상기 단계 (2-2)는 90 내지 130 ℃에서 수행될 수 있다. 나아가, 상기 단계 (2-3)은 90 내지 130 ℃에서 수행될 수 있다.
단계 (3)
본 단계에서는 상기 겔화된 수지를 캘린더링하여 필름화한다.
상기 캘린더링은 캘린더 롤을 이용하여 필름을 캘린더링하는 단계를 포함할 수 있다. 구체적으로, 상기 캘린더 롤을 이용하여 필름을 캘린더링하는 단계는 145 내지 210 ℃에서 10 내지 40 m/분의 속도로 수행될 수 있으나, 이에 한정되는 것은 아니다.
본 단계는 테이크 오프 롤(take off rolls)을 이용하여 상기 캘린더링된 필름을 캘린더 롤로부터 박리하고 필름의 두께 및 평활도를 조절하는 단계를 더 포함할 수 있다. 상기 필름의 두께 및 평활도를 조절하는 단계는 120 내지 170 ℃에서 30 내지 70 m/분의 속도로 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 단계 (3) 이후와 상기 단계 (4) 이전에, 상기 캘린더링된 필름을 표면 처리하는 단계;를 더 포함할 수 있다. 상기 표면 처리 단계를 포함함으로써, 필름의 권취성을 향상시키고 무광을 구현할 수 있다.
상기 표면 처리는, 예를 들어, 엠보싱 가공 등을 들 수 있다. 상기 엠보싱 가공은 필름의 표면에 열과 압력을 가하여 오목 또는 볼록한 모양을 나타내는 가공을 의미한다. 예를 들어, 상기 엠보싱 가공은 엠보싱 유닛을 이용하여 30 내지 90℃의 온도 범위에서 수행될 수 있다. 또한, 필름의 표면 처리 속도는 45 내지 80 m/분일 수 있으나, 이에 한정되는 것은 아니다.
단계 (4)
본 단계는 상기 캘린더링된 필름을 냉각한다.
상기 단계 (3)이 캘린더링된 필름을 엠보싱 가공(표면 처리)하는 단계를 포함할 경우, 어닐링 롤을 이용하여 엠보싱 유닛으로부터 필름을 박리하는 단계를 먼저 수행할 수 있다. 이때, 필름의 박리는 35 내지 80 ℃의 온도 범위에서 55 내지 90 m/분의 속도로 수행할 수 있으나, 이에 한정되는 것은 아니다.
상기 냉각은 쿨링 롤을 이용하여 35 내지 50 ℃의 온도 범위에서 55 내지 95 m/분의 속도로 필름을 냉각시킬 수 있다.
이어서, (4-1) 냉각된 필름을 사이드 트리밍 장치(side trimming device)를 이용하여 제조된 필름의 폭을 재단하는 단계; 및 (4-2) 두께 측정기(thickness gauge)를 이용하여 제조된 필름의 두께를 측정하는 단계;를 포함할 수 있다.
상기 단계 (3)의 온도와 단계 (d)의 온도 사이의 관계에 있어서, 하기 수학식 2로 계산된 △T는 20 내지 225 ℃일 수 있다. 구체적으로, 상기 △T가 25 내지 220 ℃, 30 내지 215 ℃ 또는 35 내지 210 ℃일 수 있다. 상기 △T의 값이 상기 범위를 만족할 경우, 필름의 수축률을 최소화하고, 필름의 두께 평활도를 최대로 하는 효과가 있다.
[수학식 2]
△T = T1 - T2
T1 : 상기 단계 (3)의 최고 온도(℃)
T2 : 상기 단계 (4)의 최저 온도(℃)
단계 (5)
본 단계에서는 상기 냉각된 필름을 권취한다.
상기 냉각된 필름은 와인더(winder)를 이용하여 55 내지 95 m/분의 속도로 권취될 수 있으나, 이에 한정되는 것은 아니다.
<공중합 폴리에스테르 필름>
다른 실시예에 따른 공중합 폴리에스테르 필름은 상기 공중합 폴리에스테르 필름의 제조방법에 따라 제조된다.
상기 필름의 표면 경도는 B 내지 HB일 수 있다. 상기 표면 경도는 전동식 연필경도시험기 방법에 의해 측정한 결과이다. 사용한 연필은 Mitsubishi, 6B∼9H (17ea)이며, 45°에서 동일한 하중(200g) 및 동일한 속도로 측정한 수치이다.
상기 필름의 투명도는 30% 내지 75%일 수 있다. 구체적으로, 상기 필름의 투명도는 32% 내지 73%, 33% 내지 70%, 35% 내지 70%, 35% 내지 68%, 또는 40% 내지 65%일 수 있다. 상기 투명도는 Haze meter 방법에 의해 측정한 결과로, 샘플 필름의 두께는 0.2 mm이며, 캘린더링 공정 후단부에서 엠보싱을 진행한 샘플로 분석하였으므로, 수치는 100 %가 되지 않으며, 값이 높을 수록 투명한 것을 의미한다.
상기 필름의 표면 장력은 37 내지 43 mN/m일 수 있다. 구체적으로, 상기 필름의 표면 장력은 38 내지 42 mN/m, 또는 39 내지 41 mN/m일 수 있다. 상기 표면 장력은 접촉각 측정을 통해 확인한 결과로, 접촉각이 낮을수록 필름의 표면장력은 높음을 의미한다. 또한, 필름의 표면 장력이 높을수록 후공정에서 인쇄, 코팅 등을 진행할 때 유리하다.
상기 필름은 63 ± 3 ℃ 및 상대습도 50 ± 5 %에서 500 시간 동안 방치한 후 측정한 색차(ΔE)가 0.2 내지 1.9일 수 있다. 구체적으로, 상기 필름의 색차는 0.25 내지 1.85, 0.25 내지 1.58, 0.3 내지 1.9, 0.3 내지 1.85, 0.3 내지 1.58, 0.3 내지 1.2, 또는 0.35 내지 1.0일 수 있다.
상기 색차는 촉진 내후성 시험(KS M ISO 4892-2) 방법에 의해 측정한 결과이다. 상기 색차는 내UV성을 나타내는 척도로서, 상기 필름의 색차가 상기 범위를 만족한다는 것은 내UV성이 우수함을 의미한다.
상술한 바와 같이 다양한 특성들의 조합을 만족하는 공중합 폴리에스테르 필름은 후공정성이 우수하다. 구체적으로, 상기 공중합 폴리에스테르 필름은 프라이머 처리 없이 인쇄가 가능하며, 엠보 가공성이 우수하여 필름의 표면 처리를 용이하게 할 수 있다.
실시양태 C.
다른 실시예는 캘린더링용 폴리에스테르 수지 조성물, 상기 수지 조성물을 포함하는 필름 및 이를 이용한 폴리에스테르 필름의 제조방법을 제공한다.
<캘린더링용 폴리에스테르 수지 조성물>
일 실시예에 따른 캘린더링용 폴리에스테르 수지 조성물은 폴리에스테르 수지 및 첨가제를 포함한다.
상기 폴리에스테르 수지는 디카르복실산 반복단위 및 디올 반복단위를 포함한다.
상기 디카르복실산 반복단위 및 디올 반복단위의 종류 및 함량은 상기 실시양태 B에서 설명한 바와 같다.
상기 디올 반복단위는 지환족 디올 잔기 또는 방향족 디올 잔기를 포함하지 않는 것이 바람직하다. 구체적으로, 상기 디올 반복단위는 사이클로헥산다이메탄올(CHDM) 잔기를 포함하지 않는다.
상기 디올 반복단위는 지환족 디올 잔기 또는 방향족 디올 잔기를 포함하는 폴리에스테르 수지를 캘린더링하여 필름 또는 시트를 제조할 경우, 지환족 디올 또는 방향족 디올의 벌키(bulky)한 구조 때문에 패킹이 잘 이루어지지 않아 필름의 내화학성 및 표면 강도가 떨어질 수 있다. 또한, 치수 안정성이 떨어져 용도 확장이 어려울 수 있다.
상기 디올 반복단위는 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함한다. 구체적으로, 상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 20 내지 90 몰%의 네오펜틸글리콜 잔기를 포함할 수 있다. 더욱 구체적으로, 상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 20 내지 85 몰%, 23 내지 84 몰%, 또는 24 내지 83 몰%의 네오펜틸글리콜 잔기를 포함할 수 있다.
상기 네오펜틸글리콜 잔기의 함량이 상기 범위일 때, 결정화에 의한 공정성이 우수하며, 목적 고유점도를 갖는 수지를 용이하게 제조할 수 있다. 또한, 수지의 칼라 특성 및 기계적 물성이 우수하다. 특히, 90 몰% 이하의 네오펜틸글리콜 잔기를 포함하는 경우, 고유점도를 일정 수준 이상 올리기 어려워 기계적 물성이 취약해지는 문제를 방지할 수 있다.
일 실시예에 따르면, 상기 폴리에스테르 수지는 디카르복실산 반복단위 및 디올 반복단위를 포함하고, 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기로 이루어질 수 있다. 구체적으로, 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜의 잔기로 이루어질 수 있다.
상기 폴리에스테르 수지 중 상기 디카르복실산 반복단위가 테레프탈산 잔기로 이루어지고, 상기 디올 반복단위가 (i) 네오펜틸글리콜 잔기와 (ii) 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기로 이루어지는 경우, 수지의 백탁 현상이 줄어들며 15% 이하의 낮은 헤이즈를 갖고 치수 안정성이 우수하다.
상기 첨가제는 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 아마이드, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 폴리올레핀 왁스, 변성한 폴리올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
또는, 상기 첨가제는 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 아마이드, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 폴리올레핀 왁스, 변성한 폴리올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상으로 이루어질 수 있다.
상기 폴리에스테르 수지 및 상기 첨가제의 중량비가 100 : 0.5 내지 100 : 5일 수 있다. 구체적으로, 상기 폴리에스테르 수지 및 상기 첨가제의 중량비가 100 : 0.5 내지 100 : 4.5, 100 : 0.6 내지 100 : 4.2, 100 : 0.8 내지 100 : 4.0, 또는 100 : 0.9 내지 100 : 3.8일 수 있다.
상기 폴리에스테르 수지 및 상기 첨가제의 함량비가 상기 범위일 때, 수지의 캘린더 가공성이 우수하고, 이를 사용하여 제조된 필름의 헤이즈가 낮으며 필름 표면의 오렌지 필(orange peel) 현상이 감소한다. 구체적으로, 첨가제가 소량 포함되면 필름의 제조가 불가능하고, 첨가제가 과량 포함되면 첨가제가 표면으로 이동(migration)되어 필름의 헤이즈가 높아지는 단점이 있다.
상기 폴리에스테르 수지의 고유점도(IV)는 0.6 내지 3.0 ㎗/g일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 2.5 ㎗/g, 0.6 내지 2.0 ㎗/g, 0.6 내지 1.5 ㎗/g, 0.6 내지 1.0 ㎗/g, 0.62 내지 1.5 ㎗/g, 0.64 내지 1.2 ㎗/g, 또는 0.66 내지 0.85 ㎗/g일 수 있다.
상기 폴리에스테르 수지의 고유점도가 상기 범위일 때, 수지의 캘린더 가공성이 우수하고, 캘린더링 공정시 동점도 유지율이 우수하며, 이를 이용하여 제조된 시트 또는 필름의 두께 균일도가 우수하다.
상기 폴리에스테르 수지는 하기 수학식 1로 계산된 제1 공정지수가 0.8 내지 2.0이다. 구체적으로, 상기 폴리에스테르 수지의 제1 공정지수는 0.8 내지 1.8, 0.8 내지 1.7, 0.85 내지 1.6, 또는 0.9 내지 1.6일 수 있다.
[수학식 1]
제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g).
상기 제1 공정지수는 에틸렌글리콜 이외의 디올 잔기의 몰% 함량과 폴리에스테르 수지의 고유점도의 합으로서, 캘린더 가공성을 나타낼 수 있는 지표에 해당한다.
상기 폴리에스테르 수지의 제1 공정지수가 상기 범위일 때, 상기 폴리에스테르 수지를 이용하여 제조된 필름은 투명도, 두께 균일성 및 치수 안정성이 우수하며, 캘린더 가공에 적합하다.
상기 수지 조성물은 하기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10일 수 있다. 구체적으로, 상기 조성물의 제2 공정지수는 0.5 내지 9, 0.6 내지 9, 0.7 내지 8.5, 0.7 내지 8, 0.7 내지 7, 또는 0.7 내지 6일 수 있다.
[수학식 3]
제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(J/g)} × 상기 첨가제의 함량(중량%)
상기 제2 공정지수는 첨가제 함유에 따른 수지 및 필름 가공성의 향상과 필름 표면 및 광학적 물성의 향상에 관련된 지수로서, 캘린더 공정 지표에 해당한다.
상기 폴리에스테르 수지의 제2 공정지수가 상기 범위일 때, 수지로부터의 첨가제 용출이 최소화되면서, 조성물의 롤 접착을 방지하여 캘린더 가공성이 우수하며, 이물이 적어 필름 헤이즈가 낮으며, 전반적인 수지의 평활성이 향상되어 제조된 필름 표면의 오렌지 필(orange peel) 현상이 감소한다.
상기 폴리에스테르 수지의 결정화 열량은 2.5 J/g 이하일 수 있다. 구체적으로, 상기 폴리에스테르 수지의 결정화 열량은 2.0 J/g 이하, 1.8 J/g 이하, 1.5 J/g 이하, 1.2 J/g 이하, 1.0 J/g 이하, 0.7 J/g 이하, 또는 0.5 J/g 이하일 수 있다. 예를 들어, 상기 폴리에스테르 수지의 결정화 열량은 0 내지 2.2 J/g, 0 내지 2 J/g, 0 내지 1.0 J/g, 또는 0 내지 0.8 J/g일 수 있다.
상기 폴리에스테르 수지의 결정화 열량이 상기 범위일 때, 수지의 결정에 의한 필름의 유연성 감소로 필름이 롤을 따라 필름화되지 않고 롤에서 떨어져 나와 공정이 불가능하게 되는 것을 방지해준다.
상기 조성물의 전단시 점도 유지율이 0.1 내지 20 Nm일 수 있다. 구체적으로, 상기 조성물의 전단시 점도 유지율이 0.1 내지 18 Nm, 또는 0.2 내지 15 Nm일 수 있다.
상기 전단시 점도 유지율은 브라벤더를 통해 측정되었고, 190℃, 50 rpm에서 10 분과 30 분 후의 전단 응력의 차이를 나타낸 것이다. 상기 전단시 점도 유지율은 캘린더링 가공에 있어서, 가공 안정성, 즉 파단 없이 안정적으로 시트 또는 필름의 생산 가능성을 평가하는 물성이다. 전단시 점도 유지율이 상기 범위 내일 경우, 가공 안정성이 우수하여 파단 없이 안정적으로 시트 또는 필름의 생산이 가능하다.
상기 조성물의 전단시 점도 유지율이 상기 범위일 때, 캘린더링 가공 안정성이 최대가 되는 효과가 있다.
상술한 폴리에스테르 수지, 첨가제 및 조성물에 대한 다양한 특성들이 조합될 수 있다.
예를 들어, 상기 캘린더링용 폴리에스테르 수지 조성물은 폴리에스테르 수지 및 첨가제를 포함하고, 상기 폴리에스테르 수지가 디카르복실산 반복단위 및 디올 반복단위를 포함하고, 상기 디올 반복단위가 선형 또는 분지형의 C2 내지 C10 디올 잔기로 이루어지고, 상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함하고, 상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이고, 상기 수지 조성물은 상기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10일 수 있다.
상기 폴리에스테르 수지 조성물은 상술한 바와 같은 특성들을 만족함으로써, 상기 폴리에스테르 수지 조성물로부터 제조된 필름은 캘린더링 공정에 적합하며, 이로써 표면 경도, 내화학성 등이 우수한 폴리에스테르 필름을 제조할 수 있다.
<필름>
다른 실시예는 상기 폴리에스테르 수지 조성물을 포함하는 기재층; 및 상기 기재층 상에 적층된 인쇄층을 포함하는, 필름을 제공한다.
상기 기재층의 평균 두께는 통상적인 인쇄용 필름 또는 데코시트의 기재층의 두께일 수 있다.
나아가, 상기 인쇄층은 데코시트 등에 포함되는 통상적인 재질의 인쇄층일 수 있으며, 통상적인 방법으로 기재층 위에 형성될 수 있다. 또한, 상기 인쇄층의 평균 두께는 통상적인 인쇄용 필름 또는 데코시트의 인쇄층의 두께일 수 있다.
<폴리에스테르 필름의 제조방법>
일 실시예에 따른 폴리에스테르 필름을 제조하는 방법은,
(i) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지 및 첨가제를 혼합하여 폴리에스테르 수지 조성물을 제조하는 단계;
(ii) 상기 수지 조성물을 혼련하여 겔화(gelation)하는 단계;
(iii) 상기 겔화된 조성물을 캘린더링하여 필름화하는 단계;
(iv) 상기 캘링더링된 필름을 냉각하는 단계; 및
(v) 상기 냉각된 필름을 권취하는 단계;를 포함한다.
상기 폴리에스테르 필름의 제조방법은 단계 (i) 내지 (v)를 순차적으로 수행할 수 있다.
단계 (i)
본 단계에서는 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지와 첨가제를 혼합하여 폴리에스테르 수지 조성물을 제조한다.
상기 디카르복실산 반복단위, 상기 디올 반복단위, 상기 폴리에스테르 수지, 상기 첨가제 및 상기 폴리에스테르 수지 조성물에서 설명한 바와 같다.
상기 폴리에스테르 수지 및 상기 첨가제의 중량비는 100 : 0.5 내지 100 : 5가 되도록 혼합할 수 있다. 구체적으로, 상기 폴리에스테르 수지 및 상기 첨가제의 중량비는 100 : 0.5 내지 100 : 4.5, 100 : 0.6 내지 100 : 4.2, 100 : 0.8 내지 100 : 4.0, 또는 100 : 0.9 내지 100 : 3.8가 되도록 혼합할 수 있다.
상기 첨가제는 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 아마이드, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 폴리올레핀 왁스, 변성한 폴리올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 첨가제를 폴리에르테르 수지와 함께 혼합함으로써 캘린더링 공정시 롤 점착 방지, 수지의 흐름성 향상 및 두께 균일도 개선의 효과가 있다.
상기 폴리에스테르 수지 및 첨가제를 혼합하기 위하여 고속 믹서(예를 들어, Henshell Mixer)를 사용할 수 있고, 이로써 폴리에스테르 수지 조성물을 제조할 수 있다. 상기 폴리에스테르 수지 조성물을 펠렛화하고, 펠렛화된 폴리에스테르 수지를 고속 믹서에 투입하고, 20 내지 40℃의 온도 범위에서 30 내지 300 초 동안 혼합할 수 있다.
상기 폴리에스테르 수지의 제조방법은, (i-1) 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시키는 단계; 및 (i-2) 상기 에스테르화 반응시킨 생성물을 중축합시키는 단계;를 포함할 수 있다.
상기 폴리에스테르 수지 제조시, 아크릴계 화합물을 포함하지 않는다. 상기 아크릴계 화합물을 포함하여 반응시키는 경우, 제조된 수지 내에 미용융 겔(gel) 이물질이 발생할 수 있다.
상기 단계 (i-1)은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응을 수행할 수 있다. 구체적으로, 상기 단계 (i-1)은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:2.0이 되도록 혼합하여 에스테르화 반응을 수행할 수 있다. 더욱 구체적으로, 상기 단계 (i-1)은 상기 디카르복실산 성분 및 상기 디올 성분의 몰비가 1:1.05 내지 1:1.5가 되도록 혼합하여 에스테르화 반응을 수행할 수 있다.
디카르복실산 성분 및 디올 성분의 몰비가 상기 범위 내일 경우, 에스테르화 반응이 안정적으로 진행되고, 충분한 에스테르 올리고머가 형성될 수 있으며, 네오펜틸글리콜 성분의 특성이 발현되기에 적합할 수 있다.
상기 단계 (i-2)는 230 내지 300℃의 온도 및 0.1 내지 3.0 kg/㎠의 압력 조건 하에서 수행될 수 있다. 구체적으로, 상기 단계 (i-2)는 240 내지 295℃의 온도 및 0.2 내지 2.9 kg/㎠의 압력 조건 하에서 수행될 수 있다.
상기 단계 (i-2)는 통상의 기술자에게 널리 알려진 중축합촉매, 안정제, 정색제, 분산제, 블로킹 방지제, 정전인가제, 대전방지제, 산화방지제, 열안정제, 자외선 차단제, 광개시제 또는 이의 조합의 존재하에, 수행될 수 있으며, 이는 실시예의 효과를 손상시키지 않는 범위 내에서 포함될 수 있다.
상기 중축합 단계는 중축합촉매, 안정제 또는 이의 조합의 존재 하에 수행될 수 있다.
상기 중축합촉매는 알칼리금속, 알칼리토금속, 안티몬, 티타늄, 망간, 코발트, 세륨, 게르마늄, 또는 이의 임의의 조합을 포함할 수 있다. 구체적으로, 상기 중축합 촉매로서, 안티몬계 화합물이 사용될 수 있다.
상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 1,000 ppm의 양으로 사용될 수 있다. 구체적으로, 상기 중축합촉매는 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 500 ppm, 또는 50 내지 400 ppm의 양으로 사용될 수 있다. 상기 중축합촉매의 함량이 상기 범위인 경우, 중축합 반응 속도를 증가시키고 부반응을 억제하여, 제조된 수지의 투명도가 향상될 수 있다.
상기 안정제는 인계 안정제를 포함할 수 있다. 상기 인계 안정제는 인산, 트리메틸포스페이트, 트리에틸포스페이트, 트리페닐포스페이트, 트리에틸 포스포노아세테이트, 힌다드 페놀, 또는 이의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 3,000 ppm 이하의 양으로 사용될 수 있다. 구체적으로, 상기 안정제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 2,500 ppm, 1 내지 1,500 ppm, 또는 1 내지 1,000 ppm의 양으로 사용될 수 있다.
상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 유기 화합물 정색제, 무기 화합물 정색제, 염료, 또는 이의 임의의 조합을 포함할 수 있다. 구체적으로, 상기 정색제는 코발트 아세테이트, 코발트 프로피오네이트, 무기 화합물 정색제, 또는 이의 조합일 수 있다.
상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 500 ppm의 양으로 사용될 수 있다. 구체적으로, 상기 정색제는 상기 폴리에스테르 수지 총 중량에 대하여 1 내지 200 ppm의 양으로 사용될 수 있다.
단계 (ii)
본 단계에서는 상기 수지 조성물을 혼련하여 겔화(gelation)한다.
본 단계는 (ii-1) 유선형 압출기(planetary extruder) 또는 반바리 인텐시브 믹서(Banbury intensive mixer)를 사용하여 수지 조성물을 겔화하는 단계; (ii-2) 믹싱 롤를 사용하여 상기 수지 조성물을 균일화하는 단계; 및 (ii-3) 워밍 롤을 이용하여 캘린더 롤에 투입하기 전에 상기 수지 조성물을 균질화하는 단계; 중 선택된 1 종 이상의 단계를 포함할 수 있다. 구체적으로, 본 단계는 단계 (ii-1), (ii-2) 및 (ii-3)를 순차적으로 수행할 수 있다.
상기 단계 (ii-1)은 180 내지 230℃에서 수행될 수 있다. 또한, 상기 단계 (ii-2)는 90 내지 130℃에서 수행될 수 있다. 나아가, 상기 단계 (ii-3)은 90 내지 130℃에서 수행될 수 있다.
단계 (iii)
본 단계에서는 상기 겔화된 조성물을 캘린더링하여 필름화한다.
상기 캘린더링은 캘린더 롤을 이용하여 필름을 캘린더링하는 단계를 포함할 수 있다. 상기 캘린더 롤을 이용하여 필름을 캘린더링하는 단계는 145 내지 210℃에서 10 내지 120 m/분의 속도로 수행될 수 있으나, 이에 한정되는 것은 아니다.
본 단계는 테이크 오프 롤(take off rolls)을 이용하여 상기 캘린더링된 필름을 캘린더 롤로부터 박리하고 필름의 두께 및 평활도를 조절하는 단계를 더 포함할 수 있다. 상기 필름의 두께 및 평활도를 조절하는 단계는 120 내지 170℃에서 30 내지 120 m/분의 속도로 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 단계 (iii) 이후와 상기 단계 (iv) 이전에, 상기 캘린더링된 필름을 표면 처리하는 단계;를 더 포함할 수 있다. 상기 표면 처리 단계를 포함함으로써, 필름의 권취성을 향상시키고 무광을 구현할 수 있다.
상기 표면 처리는, 예를 들어, 엠보싱 가공 등을 들 수 있다. 상기 엠보싱 가공은 필름의 표면에 열과 압력을 가하여 오목 또는 볼록한 모양을 나타내는 가공을 의미한다. 예를 들어, 상기 엠보싱 가공은 엠보싱 유닛을 이용하여 30 내지 90℃에서 수행될 수 있다. 이때, 필름의 표면 처리 속도는 30 내지 120 m/분일 수 있으나, 이에 한정되는 것은 아니다.
단계 (iv)
본 단계에서는 상기 캘링더링된 필름을 냉각한다.
상기 단계 (iii)이 캘린더링된 필름을 엠보싱 가공(표면 처리)하는 단계를 포함할 경우, 어닐링 롤을 이용하여 엠보싱 유닛으로부터 필름을 박리하는 단계를 먼저 수행할 수 있다. 이때, 상기 박리는 5 내지 80℃에서 40 내지 130 m/분의 속도로 수행할 수 있으나, 이에 한정되는 것은 아니다.
상기 냉각은 쿨링 롤을 이용하여 -5 내지 50℃의 온도 범위에서 30 내지 120 m/분의 속도로 필름을 냉각시킬 수 있다.
이어서, 사이드 트리밍 장치(side trimming device)를 이용하여 제조된 필름의 폭을 재단하는 단계; 및 두께 측정기(thickness gauge)를 이용하여 제조된 필름의 두께를 측정하는 단계;를 추가로 포함할 수 있다.
상기 단계 (iii)의 온도와 단계 (iv)의 온도 사이의 관계에 있어서, 하기 수학식 2로 계산된 △T가 20 내지 225℃일 수 있다. 구체적으로, 상기 △T가 25 내지 220℃, 30 내지 215℃, 또는 35 내지 210℃일 수 있다. 상기 △T의 값이 상기 범위를 만족할 경우, 필름의 수축률을 최소화하고 필름의 두께 평활도를 최대로 하는 효과가 있다.
[수학식 2]
△T = T1 - T2
T1 : 상기 단계 (iii)의 최고 온도(℃)
T2 : 상기 단계 (iv)의 최저 온도(℃)
단계 (v)
본 단계에서는 상기 냉각된 필름을 권취한다.
상기 냉각된 필름은 와인더(winder)를 이용하여 55 내지 95 m/분의 속도로 권취될 수 있으나, 이에 한정되는 것은 아니다.
상기 내용을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 실시예의 범위가 이들만으로 한정되는 것은 아니다.
<캘린더링용 폴리에스테르 수지의 제조>
실시예 1. 캘린더링용 폴리에스테르 수지의 제조
하기 표 1에 기재된 성분 및 함량을 이용하여 공중합 폴리에스테르 수지를 제조하였다.
먼저, 교반기와 유출 콘덴서를 구비한 30 L 반응기에 최종 폴리머양 20 kg을 기본(base)으로 하여, 하기 표 1에 기재된 성분을 디카르복실산 성분과 디올 성분의 몰비가 1:1.35 되도록 투입하였다. 이후, 반응기 내의 압력을 질소로 2.0 kg/㎠까지 올린 후 반응기의 온도를 서서히 255℃까지 올리면서 반응시켰다. 이때, 생성되는 물을 계외로 유출시켜 에스테르화 반응시키고, 물의 발생 및 유출이 종료되면 교반기와 냉각 콘덴서 및 진공 시스템이 부착된 중축합반응기로 반응물을 옮겼다.
상기에서 얻어진 에스테르화 반응물에 안티몬계 촉매(안티모니 트리글리콜레이트(antimony triglycolate), 시그마-알드리치사)를 안티몬 원소량을 기준으로 500 ppm이 되도록 첨가하고, 안정제로서 트리에틸포스페이트(TEP)를 인 원소량을 기준으로 700 ppm이 되도록 첨가하였다. 이후, 반응기 내부 온도를 240℃에서 285℃까지 올리면서 압력을 상압에서 50 mmHg까지 40분간 저진공 반응을 수행하였다. 이후, 에틸렌글리콜을 빼내고 다시 압력을 0.1 mmHg까지 서서히 감압하여 고진공 하에서 하기 표 1에 기재된 고유점도가 될 때까지 반응시켰다. 얻어진 반응물을 토출하고 칩상으로 절단함으로써 캘린더링용 공중합 폴리에스테르 수지를 제조하였다.
실시예 2 내지 4, 및 비교예 1 내지 4, 6 및 7.
하기 표 1에 기재된 성분 및 함량을 이용하여 공중합 폴리에스테르 수지를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 캘린더링용 공중합 폴리에스테르 수지를 제조하였다.
비교예 5.
하기 표 1에 기재된 성분 및 함량을 이용하여 공중합 폴리에스테르 수지를 제조하고, 중축합 반응시, 메틸메타크릴레이트를 최종 폴리머양을 기준으로 5 중량%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 캘린더링용 공중합 폴리에스테르 수지를 제조하였다.
평가예 1.
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지를 대상으로 하기와 같은 물성을 측정 및 평가하였으며, 그 결과를 표 1에 나타냈다.
1-1: 수지의 고유점도 (IV)
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지를 100℃의 오르쏘-클로로페놀(ortho-chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(ostwald) 점도계로 시료의 낙하 시간을 구하여 고유점도(IV)를 측정하였다.
1-2: 캘린더 가공성
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지의 캘린더 가공성을 시트의 두께 균일도를 통해 평가하였다.
구체적으로, 상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지를 190 ℃에서 압출하고 110 ℃에서 혼련하여 겔화한 후 캘린더링하여, 두께 0.2 mm의 시트를 제조하였다. 이후 시트 두께의 균일도는 두께측정기(제조사: TESA, 모델명: TESA-uHITE)을 이용하여 측정하였으며, 이때, 두께 균일도가 ±5% 이하일 경우 "◎", ±5% 초과 10% 이하일 경우 "○", ±10% 초과 15% 이하일 경우 "△", ±15% 초과 20% 이하일 경우 "X"로 평가하였다.
1-3: 결정화 열량(△ Hc )
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지의 결정화열량(△Hc)을 시차주사열량분석기(DSC)로 측정하였다. 구체적으로, 제조된 폴리에스테르 수지를 300℃에서 5분간 어닐링(annealing)하고 상온으로 냉각시킨 후, 승온 속도 0.1℃/분에서 다시 스캔하여, 수지가 가지는 고유한 결정화 열량(J/g)을 측정하였다.
1-4: 경제성
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 수지의 경제성을 통상의 지환족 폴리에스테르 수지의 제조단가 대비 제조단가가 7.5% 초과 10% 이하로 감소된 경우 "◎", 5% 초과 7.5% 이하로 감소된 경우 "○", 2.5% 초과 5% 이하로 감소된 경우 "△", 2.5% 이하로 감소된 경우 "X"로 평가하였다.
구분(중량부) 실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 비교예 7
디카르복실산 TPA 100 100 100 100 100 100 100 100 100 100 100
디올 NPG 33 43 57 82 18 - 65 32 35 30 51
EG 67 57 43 18 77 70 35 58 65 70 49
DEG - - - - 5 - - - - - -
CHDM - - - - - 30 - 10 - - -
메틸메타크릴레이트 - - - - - - - - 5 - -
수지의 고유점도(㎗/g) 0.78 0.78 0.72 0.71 0.68 0.75 0.65 0.76 0.75 0.81 0.58
제1 공정지수 1.11 1.21 1.29 1.53 0.91 1.05 1.30 1.18 1.10 1.11 1.09
캘린더 가공성 X X
결정화 열량(J/g) 2.2 1.5 0.9 0.7 5 0.3 0.5 1.0 1.9 2.4 1.1
경제성 X
* TPA: 테레프탈산, NPG: 네오펜틸글리콜, EG: 에틸렌글리콜, DEG: 디에틸렌글리콜, CHDM: 사이클로헥산다이메탄올.
표 1에서 보는 바와 같이, 실시예 1 내지 4는 비교예 1 내지 7에 비해 캘린더 가공성이 우수하고 결정화 열량이 낮으며, 가격적인 측면에서도 경제성이 있음을 확인할 수 있었다.
실시예 5. 공중합 폴리에스테르 수지로 제조된 필름
5-1: 공중합 폴리에스테르 수지의 제조
공중합 폴리에스테르 수지를 제조하기 위해, 교반기와 유출 콘덴서를 구비한 2500 ℓ 반응기에 최종 폴리머양 2,000 kg을 기본(base)으로 하여, 디올 성분으로 에틸렌글리콜(EG) 및 네오펜틸글리콜(NPG)을, 디카르복실산 성분으로 테레프탈산(TPA)을 투입하였다. 상기 디올 성분과 디카르복실산 성분은 디카르복실산 성분 1 몰에 대하여 디올 성분이 1.5 몰이 되도록 투입하였으며, 상기 디올 성분들 사이의 몰비는 EG와 NPG의 몰비가 5:5가 되도록 혼합하였다.
이후, 질소를 이용하여 반응기 내부 압력을 2.0 kg/㎠으로 올린 후, 반응기의 온도를 265℃까지 올리면서 반응시켰다. 이때, 생성되는 물을 계외로 유출시켜 에스테르화 반응시키고, 물의 발생 및 유출이 종료되면 교반기와 냉각 콘덴서 및 진공 시스템이 부착된 중축합 반응기로 반응 생성물을 옮겼다.
얻어진 에스테르화 반응생성물에 금속 중축합 촉매로서 안티몬계 촉매(안티모니 트리글리콜레이트, antimony triglycolate)를 안티몬 원소량을 기준으로 300 ppm이 되도록 첨가하고, 인계 안정제로서 트리에틸포스페이트(TEP)를 인 원소량을 기준으로 500 ppm이 되도록 첨가하였다. 이후, 반응기 내부 온도를 240℃에서 290℃까지 올리면서 압력을 상압에서 50 mmHg까지 40 분 동안 저진공 반응을 수행하였다. 이후, 에틸렌 글리콜을 계외로 빼내고 다시 압력을 0.1 mmHg까지 서서히 감압하여 고진공 하에서 최대 전력치까지 반응을 진행하였다. 얻어진 중축합 반응생성물을 토출하고 칩상으로 절단하여 공중합 폴리에스테르 수지를 제조하였다.
수득된 공중합 폴리에스테르 수지의 고유점도(IV)는 0.8 ㎗/g이며, 결정화 열량은 0 J/g이었다. 또한, 상기 공중합 폴리에스테르 수지의 전단시 점도 유지율은 15 ± 5 Nm이었다.
상기 고유점도는 상기 평가예 1-1과, 상기 결정화 열량은 평가예 1-3과 동일한 방법으로 측정하였으며, 상기 전단시 점도 유지율은 하기와 같은 방법으로 측정하였다.
전단시 점도 유지율은 브라벤더(제조사: Brabender GmbH & Co KG, 모델명: Brabender® Plasti-Corder 장비)를 통해 측정하였고, 상기 공중합 폴리에스테르 수지를 190℃에서 50 rpm으로 처리하면서 브라벤더를 작동시키고 난 후 10 분과 30 분 지났을 때의 전단 응력의 차이로 계산하였다.
5-2: 캘린더링을 이용한 필름의 제조
상기 실시예 5-1의 공중합 폴리에스테르 수지를 캘린더링하여 필름을 제조하였다. 상기 공중합 폴리에스테르 수지의 총량을 기준으로 공정 첨가제(제조사: Brother enterprise, 제품명: Montanwax E)를 2 phr(part per hundred resin) 투입하였다. 이후, 190 ℃에서 압출하고 110 ℃에서 혼련하여 겔화한 후 캘린더링하여, 두께 0.2 mm의 필름을 제조하였다. 제조된 필름은 냉각 전에 엠보 공정을 진행하였으며, 사용된 엠보 롤의 조도(Ra)는 3 ㎛이었다. 이후 45 ℃로 냉각하고 권취하였다.
비교예 8. 폴리비닐클로라이드(PVC) 수지로 제조된 필름
PVC 수지로 한화종합화학의 캘린더링용 PVC 레진(상품명: P1000)을 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 필름을 제조하였다.
비교예 9. 폴리프로필렌(PP) 수지로 제조된 필름
PP 수지로 SK 이노베이션에서 캘린더링용 레진(중량평균분자량: 550,000 내지 1,200,000 g/mol)을 제공받아 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 필름을 제조하였다.
비교예 10. 폴리에틸렌테레프탈레이트(PET) 수지로 제조된 필름
디카르복실산으로서 TPA를 사용하고, 디올 성분으로서 EG 단독으로 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 필름을 제조하였다.
비교예 11. 폴리에틸렌테레프탈레이트 글리콜(PETG) 수지로 제조된 필름
디카르복실산으로서 TPA를 사용하고, 디올 성분으로서 EG 및 CHDM을 사용하고, 상기 디올 성분들 사이의 몰비는 EG와 CHDM이 7:3이 되도록 혼합 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 필름을 제조하였다.
평가예 2.
상기 실시예 5 및 비교예 8 내지 11의 수지 및 상기 수지를 이용하여 제조된 필름에 대하여 하기과 같은 물성을 측정 및 평가하였으며, 그 결과를 표 2에 나타내었다.
2-1: 친환경성 평가
상기 실시예 5 및 비교예 8 내지 11의 필름에 대하여 친환경성을 평가하였다. 친환경성의 평가는 실내공기질공정시험기준(환경부 고시 제2017-11호)에 따라 소형방출시험챔버(small-scale emission test chamber)를 이용하여 측정하였다.
방출량 측정을 위한 공기시료채취는 시험시작일로부터 7 일(168 시간 ± 2 시간)이 경과한 후에 실시했다. 준비된 시험편을 챔버 내 설치하는 시점에서 방출시험이 시작된 것으로 했다. 휘발성 유기화합물의 분석은 ES 02603.1 "실내 및 건축자재에서 방출되는 휘발성 유기화합물 측정방법 - 고체흡착관과 가스크로마토그래프 - MS/FID법"에 따랐다.
실시예 5 및 비교예 8 내지 11의 필름을 16 cm × 16 cm × 0.2 mm(가로×세로×두께)로 절단한 후, 휘발성 유기 화합물의 발생량(mg/㎡·hr)을 비교하여, 발생량이 제일 적은 경우 "◎", 두번째로 적은 경우 "○", 세번째로 적은 경우 "△", 발생량이 제일 많은 경우 "X"로 평가하였다.
2-2: 캘린더 가공성
상기 실시예 5 및 비교예 8 내지 11 각각에 있어서, 수지의 캘린더 가공성을 시트의 두께 균일도 및 미겔링 형성 정도를 통해 평가하였다.
구체적으로, 시트의 목적 두께는 0.2 mm로 제조하였으며, 미겔링 정도는 필름의 표면을 육안으로 관찰하여 필름 1 ㎡ 당 미겔링(이물)의 개수로 평가하였다. 캘린더 가공성은 평가예 1-2와 동일한 방법으로 측정하였다. 또한, 두께 균일도(두께 편차 %) 및 미겔링 개수의 합을 상대적으로 비교하여, 가장 적은 경우 "◎", 두번째로 적은 경우 "○", 세번째 및 네번째로 적은 경우 "△", 공정이 불가한 경우는 "X"로 평가하였다.
2-3: 표면 경도
상기 실시예 5 및 비교예 8 내지 11에서 제조한 필름의 표면 경도를 Pencil Hardness Tester 방법에 따라 측정하였다. 아무런 처리도 하지 않은 각 필름의 표면에 200 g 하중으로, 5 mm/초의 조건에서 표면 경도를 측정하였으며, 10 회 반복 측정한 후 평균값을 사용하였다.
2-4: 투명도
상기 실시예 5 및 비교예 8 내지 11에서 제조한 필름의 투명도를 Haze meter : NDH 5000W(제조사 : NIPPON DENSHOKU INDUSTRIES)로 측정하였다.
일반적으로 데코 시트는 인쇄지 위에 투명층을 합지하게 되는데, 이때 인쇄지의 시연성이 좋기 위해서는 평행 투과율이 중요하다. 따라서 필름의 투명도를 평행 투과율을 통해 확인하였다.
2-5: 내오염성
상기 실시예 5 및 비교예 8 내지 11에서 제조된 필름의 내오염성을 HCJ-D-204-7 및 HCJ-D-204-8 방법으로 측정하였다. 이때, 변화가 있는 경우가 1개 이하일 경우 "◎", 2개 이하일 경우 "○", 3개 이하일 경우 "△", 4개 이하일 경우 "X"로 평가하였다. 상기 변화는 필름의 표면에 헤이즈(Haze)가 생기거나, 팽윤(swelling)되는 것을 의미한다.
2-6: 표면 장력
상기 실시예 5 및 비교예 8 내지 11에서 제조된 필름의 표면 장력을 접촉각 측정을 통해 확인하였다. 측정 장비는 SEO 사의phoenix 300 touch를 사용하고, 측정 표준 용액으로는 Di-water를 사용하였다. 접촉각을 통한 표면 장력을 계산하는 방법은 하기와 같다.
Figure PCTKR2017015001-appb-I000001
2-7: 색차
상기 실시예 5 및 비교예 8 내지 11에서 제조된 필름의 색차를 촉진 내후성 시험(KS M ISO 4892-2) 방법에 따라 측정하였다. 측정 조건은 광원으로 6500 W의 크세논 아크(xenon Arc)를 사용하고, 방사 조도는 0.51 W/㎡으로 하고, 측정 온도는 63±3 ℃, 습도는 50 ± 5% 상대습도에서 초기 색을 측정하고, 상기 조건에서 500 시간 동안 방치한 후 색을 측정하여, 색차 변화를 평가하였다.
2-8: 인쇄성
상기 실시예 5 및 비교예 8 내지 11에서 제조된 필름의 인쇄성을 부착력 시험(ASTM D3359) 방법에 따라 측정하였다. 프라이머(primer) 처리 없이 바(bar) 코팅 방법으로 인쇄 후 필름의 표면을 X-cut하고, 테이프(제조사: TESA, 모델명: Tesa 7476)를 붙인 후 떼어내어 인쇄층이 벗겨지는 정도를 확인하였다. 이때, 인쇄층이 벗겨지면 "X", 인쇄층이 유지되면 "○"로 나타내었다.
2-9: 성형 가공성
상기 실시예 5 및 비교예 8 내지 11에서 제조된 필름의 성형 가공성을 가공 가능한 깊이 측정 방법에 따라 확인하였다. 성형성은 진공성형기를 이용하여, 35 mm로 120 ℃에서 열성형이 가능한 깊이가 10 mm일 경우 "◎", 8 mm일 경우 "○", 6 mm일 경우 "△", 4 mm일 경우 "X"로 평가하였다.
실시예 5 비교예 8 비교예 9 비교예 10 비교예 11
수지 co-PET PVC PP PET PETG
공정 친환경성 X 측정불가
캘린더 가공성 X(가공불가)
필름의 물성 표면 경도 B 2B 3B - 6B
투명도 (%) 60 10.5 35 - 61
내오염성 -
표면 장력 (mN/m) 40 38 29 - 41
색차 0.8 3.2 2.1 - 4.7
수지의 물성 제1 공정지수 1.4 - - 0.67 1.05
결정화 열량(J/g) 0 - 17.6 39.9 0
전단시 점도 유지율(Nm) 2.0 1.9 5.3 9.1 6.2
후공정성 인쇄성 X (프라이머 처리없이 인쇄불가) -
성형 가공성 -
표 2에서 보는 바와 같이, 실시예 5의 필름은 비교예 8 내지 11의 필름에 비해 친환경성, 캘린더 가공성, 표면 경도, 투명도, 내오염성, 표면 장력, 색차, 인쇄성 및 엠보 가공성 면에서 매우 우수함을 확인할 수 있었다.
실시예 6.
6-1: 캘린더링용 폴리에스테르 수지의 제조
폴리에스테르 수지 제조를 위하여, 교반기와 유출 콘덴서를 구비한 2500 L 반응기에 최종 폴리머양 2,000 kg을 기본(base)으로 하여, 디올 성분 및 디카르복실산 성분을 표 3의 함량대로 투입하였다. 상기 디올 성분과 디카르복실산 성분은 디카르복실산 성분 1 몰에 대하여 디올 성분이 1.5 몰이 되도록 투입하였으며, 디카르복실산 성분으로는 테레프탈산(TPA)을 사용하였다. 이후, 질소를 이용하여 반응기 내부 압력을 2.0 kg/㎠로 올린 후, 반응기의 온도를 265 ℃까지 올리면서 반응시켰다. 이때, 생성되는 물을 계외로 유출시켜 에스테르화 반응시키고, 물의 발생 및 유출이 종료되면 교반기와 냉각 콘덴서 및 진공 시스템이 부착된 중축합 반응기로 반응 생성물을 옮겼다.
얻어진 에스테르화 반응생성물에 금속 중축합 촉매로서 안티몬계 촉매(안티모니 트리글리콜레이트, antimony triglycolate)를 안티몬 원소량을 기준으로 300 ppm이 되도록 첨가하고, 인계 안정제로서 트리에틸포스페이트(TEP)를 인 원소량을 기준으로 500 ppm이 되도록 첨가하였다. 이후, 반응기 내부 온도를 240 ℃에서 285 내지 290 ℃까지 올리면서 압력을 상압에서 50 mmHg까지 40 분동안 저진공 반응을 수행하였다. 이후 에틸렌 글리콜을 계외로 빼내고 다시 압력을 0.1 mmHg까지 서서히 감압하여 고진공 하에서 최대 전력치까지 반응을 진행하였다. 얻어진 상기 중축합 반응생성물을 토출하고 칩상으로 절단하여 폴리에스테르 수지를 제조하였다.
6-2: 필름의 제조
상기 실시예 6-1의 폴리에스테르 수지와 상기 첨가제의 중량비가 100 : 1.2가 되도록 혼합하여 폴리에스테르 수지 조성물을 제조하였다. 이때, 사용한 첨가제는 몬탄계 기반의 공정 첨가제(제조사: Brother enterprise, 제품명: Montanwax E)를 사용하였다. 이후, 상기 수지 조성물을 200℃에서 압출하고, 110℃에서 혼련하여 겔화한 후 캘린더링하여 두께 0.2 mm의 필름을 제조하였다.
실시예 7 내지 12 및 비교예 12 내지 18
디올 성분 및 함량비 및 첨가제의 함량을 표 3 및 4에 기재된 대로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 캘린더링용 폴리에스테르 수지 조성물을 제조하고, 이를 이용하여 필름을 제조하였다.
평가예 3.
상기 실시예 6 내지 12 및 비교예 12 내지 18에 따른 폴리에스테르 수지, 폴리에스테르 수지 조성물 및 폴리에스테르 필름에 대하여 다음과 같은 물성을 측정 및 평가하였으며, 그 결과를 표 3 및 4에 나타내었다.
3-1: 폴리에스테르 수지의 고유점도 (IV)
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 수지에 대하여 고유점도를 평가하였다.
상기 실시예 6 내지 12 및 비교예 12 내지 18에서 제조된 수지를 100℃의 오르쏘-클로로페놀(ortho-chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(ostwald) 점도계로 시료의 낙하 시간을 구하여 고유점도(IV)를 측정하였다.
3-2: 폴리에스테르 수지의 제1 공정지수
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 수지에 대하여 제1 공정지수를 평가하였다. 상기 제1 공정지수는 하기 수학식 1로 계산하였다.
[수학식 1]
제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g)
3-3: 폴리에스테르 수지의 결정화 열량
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 수지에 대하여 결정화 열량(△Hc)을 시차주사열량분석기(DSC)로 측정하였다. 구체적으로, 폴리에스테르 수지를 300℃에서 5분간 어닐링(annealing)하고 상온으로 냉각시킨 후, 승온 속도 0.1℃/분에서 다시 스캔하여, 수지가 가지는 고유한 결정화 열량(J/g)을 측정하였다.
3-4: 폴리에스테르 수지 조성물의 제2 공정지수
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 수지 조성물에 대하여 제2 공정지수를 평가하였다. 상기 제2 공정지수는 수학식 3으로 계산하였으며, 소수점 셋째자리에서 반올림한 값을 기재하였다.
[수학식 3]
제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(J/g)} × 상기 첨가제의 함량(중량%)
3-5: 폴리에스테르 수지 조성물의 캘린더 가공성
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 수지 조성물의 캘린더 가공성을 시트의 두께 균일도를 통해 평가하였다.
구체적으로, 상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 필름은 목적 두께를 0.2 mm로 기준으로 두께의 균일도는 두께측정기(제조사: TESA, 모델명: TESA-uHITE)을 이용하여 측정하였으며, 이때, 두께 균일도가 ±5% 이하일 경우 "◎", ±5% 초과 10% 미만일 경우 "○", ±10% 초과 15% 미만일 경우 "△", ±15% 초과 20% 미만일 경우 "X"로 평가하였다.
3-6: 폴리에스테르 필름의 헤이즈
상기 실시예 6 내지 12 및 비교예 12 내지 18의 폴리에스테르 필름에 대하여 헤이즈를 평가하였다. 구체적으로, 상기 실시예 6 내지 12 및 비교예 12 내지 18의 필름을 16 cm × 16 cm × 0.2 mm (가로×세로×두께)로 절단한 후 Haze meter : NDH 5000W(제조사 : NIPPON DENSHOKU INDUSTRIES)를 사용하여 헤이즈를 측정하였다.
실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12
디올 NPG 33 43 55 67 25 71 82
EG 67 57 45 33 75 24 18
DEG - - - - - 5 -
CHDM - - - - - - -
첨가제 함량 1.2 1.5 0.9 2.5 1.6 3.6 3.5
수지의 고유점도(㎗/g) 0.78 0.75 0.85 0.68 0.72 0.82 0.71
제1 공정지수 1.11 1.18 1.4 1.35 0.97 1.58 1.53
결정화 열량(J/g) 0.2 0 0 0 0.5 0 0
제2 공정지수 1.09 1.77 1.26 3.38 0.75 5.69 5.36
캘린더가공성
필름의 헤이즈(%) 4 5 2 8 5 13 11
비교예 12 비교예 13 비교예 14 비교예 15 비교예 16 비교예 17 비교예 18
디올 NPG 18 5 92 13 43 30 51
EG 82 65 8 77 57 70 49
DEG - - - - - - -
CHDM - 30 - 10 - - -
첨가제 함량 8 7.2 9.5 0.3 0.1 6.8 0
수지의 고유점도(㎗/g) 0.68 0.75 0.65 0.76 0.75 0.52 0.58
제1 공정지수 0.86 1.1 1.57 0.99 1.18 0.82 1.09
결정화 열량(J/g) 8 0 0 5 0 0.3 0
제2 공정지수 -57.12 7.92 14.92 -1.20 0.12 3.54 0.00
캘린더가공성 X X X X
필름의 헤이즈(%) 측정 불가 28 39 측정 불가 측정 불가 24 측정 불가
표 3 및 4를 참조하면, 실시예 6 내지 12가 비교예 12 내지 18에 비해 결정화 열량이 낮고 적절한 고유점도를 가지며, 캘린더 가공성 및 제조된 필름의 헤이즈 수치 또한 우수함을 확인할 수 있었다.

Claims (22)

  1. 디카르복실산 반복단위 및 디올 반복단위를 포함하는 캘린더링용 폴리에스테르 수지로서,
    상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로, 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜 잔기를 포함하고,
    상기 디올 반복단위가 지환족 디올 잔기를 포함하지 않고,
    상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 캘린더링용 폴리에스테르 수지.
  2. 제1항에 있어서,
    상기 디카르복실산 반복단위가 테레프탈산, 이소프탈산, 나프탈렌 디카르복실산, 사이클로헥산 디카르복실산, 또는 이의 조합의 잔기를 포함하고,
    상기 디올 반복단위가 에틸렌글리콜, 디에틸렌글리콜, 또는 이의 조합의 잔기를 추가로 포함하는, 캘린더링용 폴리에스테르 수지.
  3. 제1항에 있어서,
    상기 폴리에스테르 수지는 하기 수학식 1로 계산된 제1 공정지수가 1.0 초과 1.7 이하인, 캘린더링용 폴리에스테르 수지:
    [수학식 1]
    제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g).
  4. (a) 디카르복실산 성분 및 디올 성분의 몰비가 1:1.05 내지 1:3.0이 되도록 혼합하여 에스테르화 반응시키는 단계; 및
    (b) 상기 에스테르화 반응시킨 생성물을 중축합시키는 단계;를 포함하는 캘린더링용 폴리에스테르 수지의 제조방법으로서,
    상기 디올 성분이 상기 디올 성분의 전체 몰을 기준으로 10 몰% 초과 90 몰% 이하의 네오펜틸글리콜을 포함하고,
    상기 디올 성분은 지환족 디올을 포함하지 않고,
    상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 캘린더링용 폴리에스테르 수지의 제조방법.
  5. 제4항에 있어서,
    상기 단계 (b)의 중축합이, 중축합촉매 및 안정제의 존재하에서, 230 내지 300℃의 온도 및 0.1 내지 3.0 kg/㎠의 압력 조건 하에서 수행되는, 캘린더링용 폴리에스테르 수지의 제조방법.
  6. 제5항에 있어서,
    상기 중축합촉매가 알칼리금속, 알칼리토금속, 안티몬, 티타늄, 망간, 코발트, 세륨, 게르마늄, 또는 이들의 조합을 포함하고,
    상기 안정제가 인계 안정제를 포함하는, 캘린더링용 폴리에스테르 수지의 제조방법.
  7. 제5항에 있어서,
    상기 중축합촉매가 상기 폴리에스테르 수지 총 중량에 대하여 50 내지 1,000 ppm의 양으로 사용되고,
    상기 안정제가 상기 폴리에스테르 수지 총 중량에 대하여 3,000 ppm 이하의 양으로 사용되는, 캘린더링용 폴리에스테르 수지의 제조방법.
  8. (1) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지를 혼합하는 단계;
    (2) 상기 혼합된 수지를 혼련하여 겔화(gelation)하는 단계;
    (3) 상기 겔화된 수지를 캘린더링하여 필름화하는 단계;
    (4) 상기 캘링더링된 필름을 냉각하는 단계; 및
    (5) 상기 냉각된 필름을 권취하는 단계;를 포함하는 공중합 폴리에스테르 필름의 제조방법으로서,
    상기 디올 반복단위가 선형 또는 분지형 C2 내지 C10 디올 잔기로 이루어지고,
    상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g인, 공중합 폴리에스테르 필름의 제조방법.
  9. 제8항에 있어서,
    상기 단계 (1) 이후와 상기 단계 (2) 이전에, 상기 폴리에스테르 수지와 첨가제를 혼합하는 단계를 더 포함하고,
    상기 첨가제가 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 아마이드, 변성한 폴리 올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 공중합 폴리에스테르 필름의 제조방법.
  10. 제8항에 있어서,
    상기 단계 (3) 이후와 상기 단계 (4) 이전에,
    상기 캘린더링된 필름을 표면 처리하는 단계;를 더 포함하는, 공중합 폴리에스테르 필름의 제조방법.
  11. 제8항에 있어서,
    하기 수학식 2로 계산된 △T가 20 내지 225 ℃인, 공중합 폴리에스테르 필름의 제조방법:
    [수학식 2]
    △T = T1 - T2
    T1 : 상기 단계 (3)의 최고 온도(℃)
    T2 : 상기 단계 (4)의 최저 온도(℃)
  12. 제8항에 의해 제조된 공중합 폴리에스테르 필름.
  13. 제12항에 있어서,
    상기 필름은 표면 경도가 B 내지 HB이고, 투명도가 30 내지 75%이며, 표면 장력이 37 내지 43 mN/m이고, 63 ± 3 ℃ 및 상대습도 50 ± 5 %에서 500 시간 동안 방치한 후 측정한 색차(ΔE)가 0.2 내지 1.9인, 공중합 폴리에스테르 필름.
  14. 폴리에스테르 수지 및 첨가제를 포함하는 캘린더링용 폴리에스테르 수지 조성물로서,
    상기 폴리에스테르 수지가 디카르복실산 반복단위 및 디올 반복단위를 포함하고,
    상기 디올 반복단위가 선형 또는 분지형의 C2 내지 C10 디올 잔기로 이루어지고,
    상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함하고,
    상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이고,
    하기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10인, 캘린더링용 폴리에스테르 수지 조성물:
    [수학식 3]
    제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(J/g)} × 상기 첨가제의 함량(중량%).
  15. 제14항에 있어서,
    상기 폴리에스테르 수지와 상기 첨가제의 중량비가 100 : 0.5 내지 100 : 5인, 캘린더링용 폴리에스테르 수지 조성물.
  16. 제14항에 있어서,
    상기 첨가제가 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 아마이드, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 폴리올레핀 왁스, 변성한 폴리올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 캘린더링용 폴리에스테르 수지 조성물.
  17. 제14항에 있어서,
    상기 폴리에스테르 수지는 결정화 열량이 2.5 J/g 이하이고, 하기 수학식 1로 계산된 제1 공정지수가 0.8 내지 2.0인, 캘린더링용 폴리에스테르 수지 조성물:
    [수학식 1]
    제1 공정지수 = {(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100} + 폴리에스테르 수지의 고유점도(㎗/g).
  18. 제1항의 폴리에스테르 수지 또는 제14항의 폴리에스테르 수지 조성물을 포함하는 기재층; 및
    상기 기재층 상에 적층된 인쇄층을 포함하는, 필름.
  19. (i) 디카르복실산 반복단위 및 디올 반복단위를 포함하는 폴리에스테르 수지 및 첨가제를 혼합하여 폴리에스테르 수지 조성물을 제조하는 단계;
    (ii) 상기 수지 조성물을 혼련하여 겔화(gelation)하는 단계;
    (iii) 상기 겔화된 조성물을 캘린더링하여 필름화하는 단계;
    (iv) 상기 캘링더링된 필름을 냉각하는 단계; 및
    (v) 상기 냉각된 필름을 권취하는 단계;를 포함하는 폴리에스테르 필름의 제조방법으로서,
    상기 디올 반복단위가 선형 또는 분지형의 C2 내지 C10 디올 잔기로 이루어지고,
    상기 디올 반복단위가 상기 디올 반복단위의 전체 몰을 기준으로 10 내지 90 몰%의 네오펜틸글리콜 잔기를 포함하고,
    상기 폴리에스테르 수지의 고유점도(IV)가 0.6 내지 3.0 ㎗/g이고,
    상기 수지 조성물은 하기 수학식 3으로 계산된 제2 공정지수가 0.5 내지 10인, 폴리에스테르 필름의 제조방법:
    [수학식 3]
    제2 공정지수 = {{[(디올 반복단위의 전체 몰을 기준으로, 에틸렌글리콜 이외의 디올 잔기의 몰%)/100] + 폴리에스테르 수지의 고유점도(㎗/g)} - 상기 폴리에스테르 수지의 결정화 열량(㎗/g)} × 상기 첨가제의 함량(중량%).
  20. 제19항에 있어서,
    상기 단계 (i)에서, 상기 폴리에스테르 수지와 상기 첨가제의 중량비가 100 : 0.5 내지 100 : 5가 되도록 혼합하는, 폴리에스테르 필름의 제조방법.
  21. 제19항에 있어서,
    상기 첨가제가 지방산, 지방산염, 유기산의 금속염, 지방산 에스테르, 아마이드, 탄화수소 왁스, 에스테르 왁스, 인산 에스테르, 폴리올레핀 왁스, 변성한 폴리올레핀 왁스, 활석 및 아크릴 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 폴리에스테르 필름의 제조방법.
  22. 제19항에 있어서,
    상기 단계 (iii) 이후와 상기 단계 (iv) 이전에,
    상기 캘린더링된 필름을 표면 처리하는 단계;를 더 포함하는, 폴리에스테르 필름의 제조방법.
PCT/KR2017/015001 2016-12-28 2017-12-19 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법 WO2018124585A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553872A JP6964091B2 (ja) 2016-12-28 2017-12-19 ポリエステル樹脂、その製造方法、およびそれを用いた共重合体ポリエステルフィルムの製造方法
US16/081,769 US20190309161A1 (en) 2016-12-28 2017-12-19 Polyester resin, preparation method therefor, and copolymer polyester film manufacturing method using same
EP17887243.8A EP3412725A4 (en) 2016-12-28 2017-12-19 POLYESTER RESIN, PREPARATION METHOD THEREOF, AND PROCESS FOR PRODUCING COPOLYMER POLYESTER FILM USING THE SAME
CN201780018955.1A CN108884305A (zh) 2016-12-28 2017-12-19 聚酯树脂及其制备方法,以及使用该聚酯树脂制备共聚聚酯薄膜的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020160180844A KR101771171B1 (ko) 2016-12-28 2016-12-28 폴리에스테르 수지 및 이의 제조 방법
KR10-2016-0180844 2016-12-28
KR1020170103244A KR101948280B1 (ko) 2017-08-14 2017-08-14 폴리에스테르 수지 조성물 및 이를 이용한 폴리에스테르 필름의 제조방법
KR1020170103233A KR101940784B1 (ko) 2017-08-14 2017-08-14 공중합 폴리에스테르 필름 및 이의 제조 방법
KR10-2017-0103233 2017-08-14
KR10-2017-0103244 2017-08-14

Publications (1)

Publication Number Publication Date
WO2018124585A1 true WO2018124585A1 (ko) 2018-07-05

Family

ID=62709553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015001 WO2018124585A1 (ko) 2016-12-28 2017-12-19 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법

Country Status (6)

Country Link
US (1) US20190309161A1 (ko)
EP (1) EP3412725A4 (ko)
JP (1) JP6964091B2 (ko)
CN (1) CN108884305A (ko)
TW (1) TWI663182B (ko)
WO (1) WO2018124585A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932603B1 (ko) * 2017-12-29 2019-03-20 에스케이씨 주식회사 캘링더링용 폴리에스테르 수지 조성물 및 폴리에스테르 필름의 제조방법
KR20210072065A (ko) * 2018-10-08 2021-06-16 이스트만 케미칼 컴파니 수지 배합물로부터 제조된 결정화가능한 수축성 필름 및 열성형성 시트
CN110684184B (zh) * 2019-08-30 2022-06-28 江阴市华宏化纤有限公司 二元醇改性petg聚酯切片及其生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036045A (ko) * 2002-10-23 2004-04-30 에스케이케미칼주식회사 난연성 폴리에스테르 수지 및 이의 제조방법
JP2005008771A (ja) * 2003-06-19 2005-01-13 Lonseal Corp カレンダー成形用ポリエステル系樹脂組成物および該樹脂組成物を用いてなるフィルムまたはシート
KR20100079504A (ko) * 2008-12-31 2010-07-08 에스케이케미칼주식회사 네오펜틸글리콜이 공중합된 폴리에스테르 수지의 제조방법
JP2011046860A (ja) * 2009-08-28 2011-03-10 Toyobo Co Ltd 共重合ポリエステル
JP2014185219A (ja) * 2013-03-22 2014-10-02 Unitika Ltd 共重合ポリエステル樹脂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068910A (en) * 1998-03-17 2000-05-30 Eastman Chemical Company Polyester resin compositions for calendering
US6551688B2 (en) * 2001-02-28 2003-04-22 Eastman Chemical Company Calendered polyester films or sheets having a haze value of less than five percent
JP2003128894A (ja) * 2001-10-29 2003-05-08 Toyobo Co Ltd カレンダー加工用ポリエステル樹脂組成物及びそれを使用したシート
JP2004182759A (ja) * 2002-11-29 2004-07-02 Kanebo Ltd カレンダー加工用ポリエステル樹脂組成物及びその成形品
US7235623B2 (en) * 2003-11-26 2007-06-26 Eastman Chemical Company Polyester compositions for calendering
KR100991812B1 (ko) * 2008-05-19 2010-11-04 도레이첨단소재 주식회사 데코시트용 폴리에스테르 필름 및 그 제조방법
CN102432855B (zh) * 2011-09-13 2013-10-16 中国石油化工股份有限公司 一种透明改性共聚酯及其板材的制备方法
KR102222247B1 (ko) * 2013-10-24 2021-03-02 도요보 가부시키가이샤 공중합 폴리에스테르 수지
TWI577863B (zh) * 2014-12-11 2017-04-11 Nanya Plastics Corp A halogen-free plastic floor tiles and its composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036045A (ko) * 2002-10-23 2004-04-30 에스케이케미칼주식회사 난연성 폴리에스테르 수지 및 이의 제조방법
JP2005008771A (ja) * 2003-06-19 2005-01-13 Lonseal Corp カレンダー成形用ポリエステル系樹脂組成物および該樹脂組成物を用いてなるフィルムまたはシート
KR20100079504A (ko) * 2008-12-31 2010-07-08 에스케이케미칼주식회사 네오펜틸글리콜이 공중합된 폴리에스테르 수지의 제조방법
JP2011046860A (ja) * 2009-08-28 2011-03-10 Toyobo Co Ltd 共重合ポリエステル
JP2014185219A (ja) * 2013-03-22 2014-10-02 Unitika Ltd 共重合ポリエステル樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412725A4 *

Also Published As

Publication number Publication date
US20190309161A1 (en) 2019-10-10
CN108884305A (zh) 2018-11-23
JP2019513872A (ja) 2019-05-30
EP3412725A1 (en) 2018-12-12
JP6964091B2 (ja) 2021-11-10
TWI663182B (zh) 2019-06-21
EP3412725A4 (en) 2020-01-29
TW201829533A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2021241931A1 (ko) 생분해성 폴리에스테르 수지 조성물, 부직포 및 필름, 및 이의 제조방법
WO2018124585A1 (ko) 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2023018307A1 (ko) 수지 및 이의 제조방법, 수지 조성물 및 성형품
WO2013048156A2 (ko) 수분산 조성물 및 이를 이용한 광학필름
WO2012128518A9 (ko) 폴리에스테르계 증착필름
WO2023033596A1 (ko) 수지, 이의 제조방법, 수지 조성물 및 성형품
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2023068594A1 (ko) 생분해성 폴리에스테르 수지, 및 이를 포함하는 생분해성 폴리에스테르 필름 및 적층체
WO2023229214A1 (ko) 생분해성 폴리에스테르 수지 조성물 및 이를 포함하는 생분해성 성형품
WO2023229213A1 (ko) 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물 및 생분해성 폴리에스테르 필름
WO2023121283A1 (ko) 공중합 폴리에스테르 수지 및 이의 제조 방법
WO2023229216A1 (ko) 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물
WO2022169129A1 (ko) 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
WO2023229212A1 (ko) 생분해성 폴리에스테르 수지 조성물 및 이를 포함하는 생분해성 폴리에스테르 성형품
WO2023229215A1 (ko) 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 성형품
WO2023239039A1 (ko) 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 성형품
WO2023229235A1 (ko) 생분해성 폴리에스테르 수지 조성물, 이의 제조방법 및 이를 포함하는 생분해성 성형품
WO2019160355A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2023229209A1 (ko) 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물
WO2024112154A1 (ko) 생분해성 폴리에스테르 수지 조성물의 제조방법, 및 이를 이용한 생분해성 폴리에스테르 필름의 제조방법
WO2023055086A1 (ko) 경화성 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017887243

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017887243

Country of ref document: EP

Effective date: 20180905

ENP Entry into the national phase

Ref document number: 2018553872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE