WO2022169129A1 - 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법 - Google Patents

폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022169129A1
WO2022169129A1 PCT/KR2022/000707 KR2022000707W WO2022169129A1 WO 2022169129 A1 WO2022169129 A1 WO 2022169129A1 KR 2022000707 W KR2022000707 W KR 2022000707W WO 2022169129 A1 WO2022169129 A1 WO 2022169129A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
polyester resin
polyester
mol
formula
Prior art date
Application number
PCT/KR2022/000707
Other languages
English (en)
French (fr)
Inventor
연제원
노일호
임병재
허영민
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210017040A external-priority patent/KR102514285B1/ko
Priority claimed from KR1020210017041A external-priority patent/KR102514280B1/ko
Priority claimed from KR1020210017039A external-priority patent/KR20220113597A/ko
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Publication of WO2022169129A1 publication Critical patent/WO2022169129A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/197Hydroxy compounds containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5377Phosphinous compounds, e.g. R2=P—OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • Embodiments relate to polyester resin pellets, polyester films, and methods of making the same.
  • Polyester is the most widely used synthetic resin in fibers, films, and containers.
  • the polyester film has excellent light transmittance and heat resistance, so it is widely used in all industries including packaging, carrier, optics, and polarization.
  • polyester has a problem in that when exposed to ultraviolet rays in the structure, deterioration of the film proceeds and yellowing may occur easily.
  • the luminance may also decrease, so that the quality may be lowered. Accordingly, research to improve the color characteristics of the polyester film is continuing.
  • polyester waste such as defective products or scraps is generated in the melt extrusion or stretching process.
  • polyester waste polyester there have been attempts to manufacture a polyester film by extruding it, but polyester is sensitive to heat, so if heat or pressure is applied in the process of recycling this waste polyester, The quality, especially the color characteristics, is very poor.
  • Japanese Patent Laid-Open No. 2007-092204 discloses a method of depolymerizing waste polyester after mixing and melting with ethylene glycol, but this process is complicated and takes a long time. In addition, since the film produced by this method has poor quality in terms of color as well as mechanical properties, recyclability is low.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-092204
  • the embodiment is to provide a polyester resin pellet, a polyester film, and a method for producing the same, which can be produced by recycling waste polyester while having excellent color characteristics.
  • Polyester resin pellets according to an embodiment include a polyester resin including cyclohexanedimethanol or a derivative thereof as a diol component, and terephthalic acid and isophthalic acid as a dicarboxylic acid component; phenolic first antioxidant; and a second antioxidant represented by the following formula (1) or (2).
  • R 1 to R 3 are each independently an aryl group substituted with a C 1 to C 10 alkyl group
  • R 4 and R 5 are each independently an aryl group substituted with a C 1 to C 20 arylalkyl group.
  • a method for producing a polyester film includes preparing a polyester resin including cyclohexanedimethanol or a derivative thereof as a diol component and terephthalic acid and isophthalic acid as a dicarboxylic acid component; mixing a phenol-based first antioxidant and a second antioxidant represented by Formula 1 or 2 to the polyester resin; preparing an unstretched sheet by melt-extruding the mixture; manufacturing a stretched sheet by first stretching the unstretched sheet in a first direction and secondarily stretching the unstretched sheet in a second direction perpendicular to the first direction; and heat setting the stretched sheet at 200°C to 260°C.
  • the polyester film according to another embodiment contains 70 mol% or more of cyclohexanedimethanol or a derivative thereof as a diol component, and 70 mol% to 99 mol% of terephthalic acid and 1 mol% to 30 mol% of a dicarboxylic acid component % of isophthalic acid, having an L* of 90 or greater, a* of 0.1 or less, and b* of 4.0 or less, or a yellowness (Y.I.) of 3 or less.
  • the polyester resin pellets according to the embodiment are excellent in intrinsic viscosity and color characteristics by including the phenol-based first antioxidant, and the second antioxidant represented by Chemical Formula 1 or 2.
  • the polyester resin pellets can be manufactured using waste polyester without a complicated process, and even when manufactured using waste polyester, the color characteristics are not deteriorated and the quality is excellent, so environmental problems can be solved and recyclability Also excellent.
  • the polyester film according to another embodiment is prepared by using a mixture comprising a first antioxidant and a second antioxidant represented by Formula 1 or 2, so that mechanical properties such as tensile strength, as well as color properties great.
  • the polyester film may be manufactured using the polyester resin pellets or waste polyester, and even when manufactured using waste polyester, the color characteristics are not deteriorated and the quality is excellent, so that environmental problems can be solved while Recyclability is also excellent.
  • Polyester resin pellets according to an embodiment include a polyester resin including cyclohexanedimethanol or a derivative thereof as a diol component, and terephthalic acid and isophthalic acid as a dicarboxylic acid component; phenolic first antioxidant; and a second antioxidant represented by the following formula (1) or (2).
  • R 1 to R 3 are each independently an aryl group substituted with a C 1 to C 10 alkyl group
  • R 4 and R 5 are each independently an aryl group substituted with a C 1 to C 20 arylalkyl group.
  • the polyester resin pellets include a polyester resin.
  • the polyester resin pellets may include a copolymerized polyester resin in which a diol component and a dicarboxylic acid component are copolymerized.
  • the diol component includes cyclohexanedimethanol or a derivative thereof.
  • the diol component may include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol or 1,4-cyclohexanedimethanol, preferably 1,4-cyclohexanedimethanol.
  • Methanol may be included.
  • the diol component may include cyclohexanedimethanol or a derivative thereof in an amount of 70 mol% or more.
  • the polyester resin contains 72 mol% or more, 75 mol% or more, 85 mol% or more, 88 mol% or more, 90 mol% or more of cyclohexanedimethanol or a derivative thereof based on the total number of moles of the diol component. , 93 mol% or more, 95 mol% or more, 97 mol% or more, 99 mol% or more, or 100 mol%.
  • the diol component includes cyclohexanedimethanol or a derivative thereof, flexibility, adhesion, durability and hydrolysis resistance can be improved, and when the diol is composed only of cyclohexanedimethanol, heat resistance and hydrolysis resistance can be maximized. have.
  • the diol component may include at least one selected from the group consisting of ethylene glycol, neopentyl glycol and diethylene glycol, if necessary.
  • the polyester resin may contain at least one selected from the group consisting of ethylene glycol, neopentyl glycol, and diethylene glycol in 1 mol% to 30 mol%, 1 mol% to 20 mol% based on the total number of moles of the diol component. It may be included in mol%, 1 mol% to 15 mol%, 1 mol% to 10 mol%, or 1 mol% to 5 mol%.
  • the dicarboxylic acid component comprises 70 mol% to 99 mol% of terephthalic acid and 1 mol% to 30 mol% of isophthalic acid.
  • the polyester resin may contain 72 mol% to 99 mol%, 75 mol% to 99 mol%, 80 mol% to 98 mol%, 83 mol% of terephthalic acid based on the total number of moles of the dicarboxylic acid component. to 98 mol% or 85 mol% to 98 mol%, 1 mol% to 28 mol%, 1 mol% to 25 mol%, 1 mol% to 20 mol%, 2 mol% to 15 mol% It may be included in mol% or 3 mol% to 13 mol%. When the content of terephthalic acid and isophthalic acid satisfies the above ranges, flexibility, durability, heat resistance, and hydrolysis resistance may be improved.
  • the polyester resin may further include dimethyl terephthalic acid as the dicarboxylic acid component.
  • the polyester resin may further contain 1 mol% to 15 mol%, 1 mol% to 10 mol%, or 3 mol% to 7 mol% of dimethyl terephthalic acid based on the total number of moles of the dicarboxylic acid component. may include
  • the polyester resin according to the embodiment may be a polycyclohexylenedimethylene terephthalate (PCT) resin.
  • PCT polycyclohexylenedimethylene terephthalate
  • the polyester resin may include waste polyester.
  • the polyester may be a waste polyester resin sheet pulverized.
  • the waste polyester may be polyester waste such as defective products or scraps that may be generated in the manufacturing process of the polyester film, and may be in the shape of a sheet, but is not limited thereto.
  • the polyester resin may include 98 wt% to 99.9 wt% of waste polyester based on the total weight of the polyester resin pellets.
  • the content of the waste polyester may be 98.1 wt% to 99.9 wt%, 98.6 wt% to 99.9 wt%, or 98.8 wt% to 99.8 wt%, based on the total weight of the polyester resin pellets.
  • polyester film waste polyester such as defective products or scraps is generated in the melt extrusion or stretching process.
  • polyester is sensitive to heat, so if heat or pressure is applied in the process of recycling this waste polyester, The quality, especially the color characteristics, is very deteriorated, resulting in yellowing.
  • the polyester resin pellets according to the embodiment are excellent in mechanical properties such as light transmittance and heat resistance, even when a large amount of such waste polyester is included in 98 wt% to 99.9 wt% as described above, and the color properties are not deteriorated, so the quality is poor. great.
  • the waste polyester may include a diol component and a dicarboxylic acid component.
  • the description of the diol component and the dicarboxylic acid is the same as described above.
  • the polyester resin pellets according to the embodiment include a phenolic first antioxidant.
  • the polyester resin pellets include a first antioxidant having a phenolic ester structure.
  • the first antioxidant may include a structure of Formula A below.
  • R 11 to R 14 are each independently hydrogen; Or C 1 To C 10 Alkyl group,
  • X 11 is C(R 15 ) b ,
  • R 15 is hydrogen; Or C 1 To C 10 Alkyl group,
  • a is an integer from 1 to 4
  • b is an integer from 0 to 3
  • a + b 4.
  • R 11 to R 14 may each independently be hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or a tert-butyl group. More specifically, R 11 and R 14 may each independently be a tert-butyl group, and R 12 and R 13 may each independently be hydrogen.
  • X 11 may be C(R 15 ) b
  • R 15 may be hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or a tert-butyl group.
  • a is an integer of 1 to 4
  • b is an integer of 0 to 3
  • a + b 4.
  • a is 2 or more, two or more R 11 to R 14 are the same as or different from each other, and when b is 2 or more, two or more R 15 are the same as or different from each other, respectively. More specifically, a may be 4, and b may be 0.
  • the first antioxidant may be represented by the following Chemical Formula A-1.
  • the polyester resin pellets according to the embodiment may include 0.05 wt% to 1.0 wt% of the first antioxidant based on the total weight of the polyester resin pellets.
  • the polyester resin pellets may contain 0.05 wt% to 0.95 wt%, 0.05 wt% to 0.7 wt%, 0.1 wt% to 0.6 wt% of the first antioxidant based on the total weight of the polyester resin pellets Or 0.15 wt% to 0.55 wt% may be included.
  • the content of the first antioxidant satisfies the above range, it is possible to improve the anti-yellowing effect of the polyester resin pellets, and thus may have excellent color characteristics.
  • Polyester resin pellets according to an embodiment may include a second antioxidant represented by the following formula (1).
  • R 1 to R 3 are each independently an aryl group substituted with a C 1 to C 10 alkyl group.
  • R 1 to R 3 may each independently be a phenyl group substituted with a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, a pentyl group, or a hexyl group.
  • R 1 to R 3 may each independently be a phenyl group substituted with a tert-butyl group, 2,4-tert-butylphenyl group, 2,5-tert-butylphenyl group, or 3,5-tert-butyl group It may be a phenyl group. Also, R 1 to R 3 may be the same.
  • the second antioxidant may be selected from the group represented by the following Chemical Formulas 1-1 to 1-3.
  • Polyester resin pellets according to another embodiment may include a second antioxidant represented by the following formula (2).
  • R 4 and R 5 are each independently an aryl group substituted with a C 1 to C 20 arylalkyl group. Specifically, R 4 and R 5 may each independently be a phenyl group substituted with an arylalkyl group. More specifically, R 4 and R 5 may each independently be a phenyl group substituted with a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a phenylisopropyl group, a phenylbutyl group, or a phenyl-tert-butyl group. In addition, R 4 and R 5 may be the same as each other.
  • the second antioxidant may be selected from the group represented by the following Chemical Formulas 2-1 to 2-3.
  • R 6 to R 9 may independently be an alkyl group substituted with a C 1 to C 10 aryl group. Specifically, R 6 to R 9 may each independently represent a methyl group substituted with a phenyl group, an ethyl group substituted with a phenyl group, a propyl group substituted with a phenyl group, an isopropyl group substituted with a phenyl group, or a butyl group substituted with a phenyl group. In addition, all of R 6 to R 9 may be the same.
  • the second antioxidant may be selected from the group represented by the following Chemical Formulas 2-4 to 2-6.
  • the polyester resin pellets according to the embodiment may include 0.05 wt% to 1.0 wt% of the second antioxidant based on the total weight of the polyester resin pellets.
  • the polyester resin pellets may contain 0.05 wt% to 0.95 wt%, 0.05 wt% to 0.7 wt%, 0.1 wt% to 0.6 wt%, of the second antioxidant based on the total weight of the polyester resin pellets Or 0.15 wt% to 0.55 wt% may be included.
  • the content of the second antioxidant satisfies the above range, it is possible to improve the anti-yellowing effect of the polyester resin pellets, and thus may have excellent color characteristics.
  • the weight ratio of the first antioxidant: the second antioxidant may be 1: 0.5 to 4.0.
  • the weight ratio of the first antioxidant: the second antioxidant is 1: 0.5 to 3.8, 1: 0.5 to 3.5, 1: 0.5 to 3.0, 1: 0.6 to 2.5, 1: 0.6 to 2.3, 1: 0.6 to 2.0, 1: 0.65 to 1.8, 1: 0.65 to 1.5, or 1: 0.7 to 1.2.
  • excellent color characteristics may be obtained without deterioration in mechanical properties such as durability and heat resistance.
  • Polyester resin pellets according to another embodiment may further include a third antioxidant represented by the following formula (3).
  • R 10 is a C 1 to C 20 alkyl group
  • X 1 is C(R A ) m ,
  • R A is hydrogen; Or C 1 To C 10 Alkyl group,
  • n is an integer from 1 to 4
  • m is an integer from 0 to 3
  • n+m 4.
  • R 10 is a C 1 to C 20 alkyl group.
  • R 10 may be a C 1 to C 15 alkyl group, a C 5 to C 15 alkyl group, or a C 10 to C 15 alkyl group. More specifically, R 10 may be a C 12 alkyl group.
  • X 1 may be C( RA ) m
  • R A may be hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or a tert-butyl group.
  • n is an integer of 1 to 4
  • m is an integer of 0 to 3
  • n + m 4.
  • n is 2 or more, two or more R 10 are the same as or different from each other, and when m is 2 or more, two or more R A are the same as or different from each other, respectively. More specifically, a may be 4, and b may be 0.
  • the third antioxidant may be selected from the group represented by the following Chemical Formulas 3-1 to 3-3.
  • the third antioxidant may be represented by the following Chemical Formula 3-4.
  • Polyester resin pellets according to the embodiment may include a third antioxidant in an amount of 0.05 wt% to 1.0 wt% based on the total weight of the polyester resin pellets.
  • the polyester resin pellets contain 0.05 wt% to 0.95 wt%, 0.06 wt% to 0.95 wt%, 0.08 wt% to 0.8 wt% of the third antioxidant based on the total weight of the polyester resin pellets , 0.08 wt% to 0.6 wt% or 0.08 wt% to 0.5 wt% may be included.
  • the content of the third antioxidant satisfies the above range, it is possible to improve the anti-yellowing effect of the polyester resin pellets, and thus may have excellent color characteristics.
  • the weight ratio of the first antioxidant: the second antioxidant: the third antioxidant may be 1: 0.5 to 1.5: 0.5 to 1.5.
  • the weight ratio of the first antioxidant: the second antioxidant: the third antioxidant may be 1: 0.7 to 1.5: 0.7 to 1.5 or 1: 0.7 to 1.2: 0.7 to 1.2. More specifically, the weight ratio of the first antioxidant to the third antioxidant may be 1:1:1.
  • excellent color characteristics may be obtained without deterioration in mechanical properties such as durability and heat resistance.
  • the polyester resin pellets may further include one or more pigments selected from the group consisting of carbon black, titanium oxide, insoluble azo, phthalocyanine, and polyazo.
  • the polyester resin pellets may further include a blue-based pigment having a visible light absorption wavelength band of 560 nm to 680 nm.
  • the polyester resin pellets may further comprise 0.01 parts by weight to 1.0 parts by weight of the pigment.
  • the content of the pigment may be 0.01 parts by weight to 0.8 parts by weight, 0.01 parts by weight to 0.7 parts by weight, 0.03 parts by weight 0.7 parts by weight, 0.05 parts by weight to 0.5 parts by weight, 0.1 parts by weight to 0.5 parts by weight, or 0.2 parts by weight. parts to 0.4 parts by weight.
  • polyester resin pellets may further include one or more additives selected from the group consisting of a UV stabilizer, a heat stabilizer, an antistatic agent and a dispersant.
  • the UV stabilizer may be at least one selected from the group consisting of a benzophenone-based compound, a benzotriazole-based compound, a cyanoacrylate-based compound, and a salicylic acid ester-based compound, but is not limited thereto.
  • the polyester resin pellets may further include 0.5 parts by weight to 2.5 parts by weight, 0.5 parts by weight to 2.0 parts by weight, 1.0 parts by weight to 2.0 parts by weight or 1.5 parts by weight to 2.0 parts by weight of the UV stabilizer.
  • the heat stabilizer may be an iodine-based compound, but is not limited thereto.
  • the polyester resin pellets are 0.01 parts by weight to 5 parts by weight, 0.05 parts by weight to 4 parts by weight, 0.1 parts by weight to 3 parts by weight, 0.15 parts by weight to 3 parts by weight, 0.3 parts by weight to 2.5 parts by weight or 0.5 parts by weight. Part to 2.5 parts by weight of the heat stabilizer may be further included.
  • the antistatic agent may be at least one selected from the group consisting of quaternary ammonium salts, metal salts, conductive polymers, metal oxides, surfactants, and carbon nanotubes, but is not limited thereto.
  • the polyester resin pellets are 0.01 parts by weight to 5 parts by weight, 0.05 parts by weight to 4 parts by weight, 0.1 parts by weight to 3 parts by weight, 0.15 parts by weight to 3 parts by weight, 0.3 parts by weight to 2.5 parts by weight or 0.5 parts by weight.
  • An antistatic agent may be further included in parts by weight to 2.5 parts by weight.
  • the dispersant may be at least one selected from the group consisting of polyacrylate-based, polyurethane-based and polyester-based compounds, but is not limited thereto.
  • the polyester resin pellets are 0.25 parts by weight to 10 parts by weight, 0.3 parts by weight to 7 parts by weight, 0.3 parts by weight to 5 parts by weight, 0.5 parts by weight to 3 parts by weight, 1 parts by weight to 3 parts by weight or 1.5 parts by weight. It may further include parts by weight to 2.5 parts by weight of the dispersant.
  • the yellowness (Y.I.) of the polyester resin pellets may be 6 or less.
  • the yellowness of the polyester resin pellets may be 5.5 or less, 5 or less, 4.5 or less, 4 or less, 3 or less, 2 or less, or 1.5 or less.
  • L* of the polyester resin pellets may be 55 or more, a* may be -0.5 or less, and b* may be 8 or less.
  • L* of the polyester resin pellets may be 55.5 or more, 56 or more, or 57 or more, a* may be -0.55 or less, -0.6 or less, or -0.8 or less, b* is 7.5 or less, 7 or less, 6.7 or less, 6.5 or less, 6.3 or less, or 6.1 or less.
  • the L*, the a* and the b* are the color systems established by the Commission International d'Eclairage (CIE), and Color is L (brightness), a (complementary colors from green to red), The color is expressed by writing b (complementary color from yellow to blue), and it can be measured using UltraScan PRO (Manufacturer: Hunterlab) If yellowing occurs in the film, the value of b* may increase.
  • CIE Commission International d'Eclairage
  • Color is L (brightness), a (complementary colors from green to red), The color is expressed by writing b (complementary color from yellow to blue), and it can be measured using UltraScan PRO (Manufacturer: Hunterlab) If yellowing occurs in the film, the value of b* may increase.
  • the intrinsic viscosity (IV) of the polyester resin pellets may be 0.60 dl/g or more.
  • the intrinsic viscosity (IV) of the polyester resin pellets may be 0.60 dl/g or more, 0.61 dl/g or more, or 0.62 dl/g or more.
  • a method for producing a polyester resin pellet according to another embodiment includes preparing a polyester resin comprising cyclohexanedimethanol or a derivative thereof as a diol component, and terephthalic acid and isophthalic acid as a dicarboxylic acid component; mixing the polyester resin with a phenol-based first antioxidant and a second antioxidant represented by Formula 1 or 2; and melt-extruding the mixture.
  • a polyester resin is prepared .
  • polyester resin The description of the polyester resin is the same as described above.
  • the polyester resin may be in the form of a chip. Specifically, the mixture of the diol component and the dicarboxylic acid component is heated at 260°C to 320°C, 270°C to 310°C, or 270°C to 295°C for 2 hours to 8 hours, 3 hours to 7 hours, or 4 hours to 7 hours. During the reaction, a polyester-based resin in the form of a chip can be prepared.
  • waste polyester may be used as the polyester resin, and the description of waste polyester is the same as described above.
  • the waste polyester may be pulverized waste polyester.
  • the polyester resin may be a pulverized waste polyester resin sheet.
  • the polyester resin may be a waste polyester or a waste polyester sheet pulverized to a size of 5 mm to 25 mm.
  • the size of the pulverized waste polyester may be 5 mm to 23 mm, 5 mm to 20 mm, 5 mm to 18 mm, 7 mm to 15 mm, 7 mm to 13 mm or 9 mm to 13 mm. have.
  • the size of the pulverized waste polyester satisfies the above range, it is possible to improve the homogeneity and thus improve the quality of the polyester resin pellets.
  • the polyester resin is mixed with a phenol-based first antioxidant and a second antioxidant represented by Formula 1 or 2 .
  • the polyester resin prepared above is mixed with the phenolic first antioxidant and the second antioxidant.
  • an additive at least one selected from the group consisting of a pigment, a UV stabilizer, a heat stabilizer, an antistatic agent, and a dispersant may be additionally added.
  • a pigment e.g., a UV stabilizer, a heat stabilizer, an antistatic agent, and a dispersant.
  • the description of the additive is the same as described above.
  • the polyester resin prepared above may be mixed with the phenol-based first antioxidant, the second antioxidant, and the third antioxidant represented by Chemical Formula 3.
  • the description of the third antioxidant is the same as described above.
  • the mixture may be melt-extruded, dried and cooled, and then cut with a pellet cutter to prepare pellets.
  • the melt extrusion may be performed at 260 °C to 300 °C.
  • the melt extrusion may be performed at 260°C to 298°C, 265°C to 300°C, 270°C to 295°C, or 275°C to 295°C.
  • the drying may be performed at 60° C. to 100° C. for 2 hours to 12 hours. Specifically, the drying may be performed at 65° C. to 95° C., 70° C. to 90° C., or 75° C. to 85° C. for 3 hours to 12 hours, 3 hours to 10 hours, or 4 hours to 8 hours.
  • the dried pellets After cooling the dried pellets to 15 °C or less, 10 °C or less, or 6 °C or less, it can be cut by a pellet cutter to prepare pellets.
  • the polyester resin pellets may have a spherical, cylindrical or polygonal column shape, but is not limited thereto.
  • the polyester resin pellets may have a cross-sectional area of a geometric shape such as a circle, a triangle, a square, a pentagon, a hexagon, an octagon, or a star, but is not limited thereto.
  • a method for producing a polyester film includes preparing a polyester resin including cyclohexanedimethanol or a derivative thereof as a diol component and terephthalic acid and isophthalic acid as a dicarboxylic acid component; mixing a phenol-based first antioxidant and a second antioxidant represented by Formula 1 or 2 to the polyester resin; preparing an unstretched sheet by melt-extruding the mixture; manufacturing a stretched sheet by first stretching the unstretched sheet in a first direction and secondarily stretching the unstretched sheet in a second direction perpendicular to the first direction; and heat setting the stretched sheet at 200°C to 260°C.
  • a polyester resin is prepared .
  • the step of producing the polyester resin is the same as described in the method for producing the polyester pellets.
  • the polyester resin is mixed with a phenol-based first antioxidant and a second antioxidant represented by Formula 1 or 2 .
  • the polyester resin prepared above is mixed with a phenol-based first antioxidant and a second antioxidant.
  • a phenol-based first antioxidant e.g., a phenol-based first antioxidant
  • a second antioxidant e.g., a phenol-based second antioxidant
  • at least one selected from the group consisting of a pigment, a UV stabilizer, a heat stabilizer, an antistatic agent, and a dispersant may be additionally added.
  • the description of the additive is the same as described above.
  • the polyester resin prepared above may be mixed with the phenol-based first antioxidant, the second antioxidant, and the third antioxidant represented by Chemical Formula 3.
  • the description of the third antioxidant is the same as described above.
  • the polyester resin is first mixed with the phenolic first antioxidant and the second antioxidant, or the polyester resin is mixed with the phenolic first antioxidant, the second antioxidant and First mixing with the third antioxidant; and secondarily mixing the first mixture with a base resin.
  • the polyester resin is pulverized waste polyester
  • the quality of the polyester film produced may be lowered. Therefore, it is possible to improve the quality of the polyester film produced by additionally using the same raw material resin as the components and content of the pulverized waste polyester.
  • the polyester resin is first mixed with the phenolic first antioxidant and the second antioxidant, or the polyester resin is mixed with the phenolic first antioxidant, the second antioxidant, and the third oxidation agent It is possible to improve the quality of the polyester film produced by the secondary mixing of the primary mixture prepared by primary mixing with the inhibitor and the raw resin.
  • the raw material resin may include a diol component and a dicarboxylic acid component.
  • the diol component and the dicarboxylic acid component of the raw material resin may have the same type and content as the diol component and the dicarboxylic acid component of the waste polyester.
  • the quality of the polyester film can be further improved while increasing the recyclability of the waste polyester.
  • the second mixing step 5 to 50 parts by weight of the first mixture may be mixed.
  • 5 parts by weight to 48 parts by weight, 5 parts by weight to 45 parts by weight, 7 parts by weight to 35 parts by weight, 7 parts by weight to 100 parts by weight of the raw resin 32 parts by weight or 10 to 30 parts by weight may be added and mixed.
  • both mechanical properties and color characteristics such as light transmittance, haze, tensile strength, and intrinsic viscosity of the prepared polyester resin film can be improved.
  • the secondary mixing step may be performed by mixing the polyester resin pellets prepared above with the raw resin.
  • the secondary mixing step may be performed by using the polyester resin pellets prepared above as a primary mixture, and mixing them with the raw resin.
  • the type and content of the diol component and the dicarboxylic acid component of the polyester resin pellet may be the same as the raw material resin.
  • the mixture or the secondary mixture is melt-extruded with a T-die, and then cooled to prepare an unstretched sheet.
  • the melt extrusion step may be performed at a temperature of Tm+5°C to Tm+70°C, Tm+5°C to Tm+50°C or Tm+7°C to Tm+35°C, and the cooling step is Tg-120°C to Tg+20°C, Tg-110°C to Tg+10°C, Tg-105°C to Tg-30°C, Tg-105°C to Tg-50°C, Tg-105°C to Tg-65°C, Tg-105°C to Tg-80°C.
  • the melt extrusion temperature may be 260 °C to 320 °C, 270 °C to 310 °C or 270 °C to 295 °C
  • the cooling temperature is -20 °C to 100 °C, 0 °C to 90 °C, 5 °C to 75°C, 10°C to 60°C, 10°C to 50°C or 15°C to 45°C.
  • the melt extrusion temperature satisfies the above range, the viscosity of the extrudate may be properly maintained while melting is smooth.
  • the unstretched sheet is primarily stretched in a first direction, and the stretched sheet is prepared by secondary stretching in a second direction perpendicular to the first direction .
  • the first stretching may be performed at a temperature of 60° C. to 120° C. at a stretching ratio of 2 to 5 times.
  • the first stretching step is 2 to 4.8 times, 2.5 to 4.5 times, 2.5 times at a temperature of 70 ° C. to 110 ° C., 75 ° C. to 105 ° C., 80 ° C. to 100 ° C. or 85 ° C. to 100 ° C. It may be performed at an elongation of 4 to 4 or 3 to 3.5 times.
  • heat resistance and hydrolysis resistance can be improved.
  • the first direction may be a width direction TD or a length direction MD.
  • the first direction may be the longitudinal direction MD
  • the second direction perpendicular to the first direction may be the width direction TD.
  • the secondary stretching is performed in a second direction perpendicular to the first direction.
  • the second stretching may be performed at a stretching ratio of 2 to 5 times.
  • the secondary stretching is at a temperature of 70 ° C. to 140 ° C., 80 ° C. to 140 ° C., 90 ° C. to 135 ° C., 100 ° C. to 130 ° C. or 115 ° C. to 125 ° C. 2.5 times to 5 times, 3 times to It may be performed at an elongation of 4.5 times or 3.5 times to 4.5 times.
  • a preheating step or a coating step may be additionally performed before the second stretching.
  • the preheating step may be performed at 70° C. to 120° C. for 0.01 to 1 minute.
  • the preheating temperature may be 75° C. to 115° C. or 80° C. to 110° C.
  • the preheating time may be 0.05 minutes to 0.5 minutes, 0.08 minutes to 0.2 minutes.
  • the coating step is a step capable of imparting functionality such as antistatic properties to the polyester film, and may be performed by spin coating or inline coating, but is not limited thereto.
  • a ratio (d1/d2) of the draw ratio d1 in the first direction and the draw ratio d2 in the second direction may be 0.5 to 1.
  • the ratio (d1/d2) of the draw ratio d1 in the first direction and the draw ratio d2 in the second direction may be 0.5 to 0.95, 0.65 to 0.95, or 0.7 to 0.9.
  • the stretched sheet is heat-set at 200° C. to 260° C. to prepare a polyester film .
  • the heat setting may be annealing, and may be performed at 200° C. to 260° C. for 0.01 minute to 1 minute.
  • the heat setting temperature (T2) may be 205 °C to 260 °C, 210 °C to 250 °C, 225 °C to 250 °C or 235 °C to 245 °C, and the heat setting time is 0.05 minutes to 0.5 minutes or It may be 0.08 minutes to 0.2 minutes, but is not limited thereto.
  • a polyester film according to another embodiment contains 70 mol% or more of cyclohexanedimethanol or a derivative thereof as a diol component, and 70 mol% to 99 mol% of terephthalic acid and 1 mol% to 30 mol% of a dicarboxylic acid component % of isophthalic acid, having an L* of 90 or greater, a* of 0.1 or less, and b* of 4.0 or less, or a yellowness (Y.I.) of 3 or less.
  • polyester resin The description of the polyester resin is the same as described above.
  • the polyester film may be manufactured by the method for producing the polyester film.
  • the polyester film according to the embodiment may be a polycyclohexylenedimethylene terephthalate (PCT) film.
  • PCT polycyclohexylenedimethylene terephthalate
  • L* of the said polyester film is 90 or more, a* is 0.1 or less, b* is 4.0 or less.
  • L* of the polyester film may be 91 or more, 92 or more, 95 or more, or 96 or more, a* may be 0.09 or less, 0.07 or less, or 0.05 or less, and b* is 3.8 or less, 3.5 or less, 2.8 or less. or less, 2.5 or less, 1.8 or less, 1.3 or less, 1.0 or less, or 0.7 or less.
  • the yellowness (Y.I.) of the polyester film may be 3 or less.
  • the yellowness of the polyester film may be 2.5 or less, 2 or less, 1.8 or less, 1.5 or less, 1.4 or less, 1.2 or less, 1 or less, 0.8 or less, or 0.5 or less.
  • the intrinsic viscosity (IV) of the polyester film may be 0.65 dl/g or more.
  • the intrinsic viscosity (IV) of the polyester film may be 0.67 dl/g or more or 0.70 dl/g or more.
  • the tensile strength of the polyester film may be 3.5 kgf / mm 2 or more.
  • the tensile strength of the polyester film in the first direction is 3.6 kgf/mm 2 or more, 3.8 kgf/mm 2 or more, 4.0 kgf/mm 2 or more, 5.5 kgf/mm 2 or more, 6.5 kgf/mm 2 or more, 8.5 kgf/mm 2 or more, 9.0 kgf/mm 2 or more, 9.5 kgf/mm 2 or more, or 10 kgf/mm 2 or more.
  • the tensile strength in the second direction perpendicular to the first direction is 3.5 kgf/mm 2 or more, 3.8 kgf/mm 2 or more, 4.0 kgf/mm 2 or more, 5.5 kgf/mm 2 or more, 6.5 kgf/mm 2 or more , 8.5 kgf/mm 2 or more, 9.0 kgf/mm 2 or more, 9.5 kgf/mm 2 or more, or 10 kgf/mm 2 or more.
  • the tensile strength of the polyester film in the first direction may be 9 kgf/mm 2 or more, and the tensile strength in the second direction perpendicular to the first direction may be 225 kgf/mm 2 or more.
  • the tensile strength in the MD direction of the polyester film may be 9.2 kgf/mm 2 or more, 9.5 kgf/mm 2 or more, or 10 kgf/mm 2 or more
  • the tensile strength in the TD direction is 228 kgf/mm 2 or more , 230 kgf/mm 2 or more, 240 kgf/mm 2 or more, 245 kgf/mm 2 or more, or 250 kgf/mm 2 or more.
  • the modulus of the polyester film may be 220 kgf/mm 2 or more.
  • the modulus of the polyester film in the first direction may be 220 kgf/mm 2 or more, 225 kgf/mm 2 or more, 230 kgf/mm 2 or more, 235 kgf/mm 2 or more, or 240 kgf/mm 2 or more. .
  • the haze of the polyester film may be 11% or less.
  • the haze of the polyester film may be 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5.8% or less, 5% or less, 4.5% or less, or 4% or less.
  • the light transmittance of the polyester film may be 60% or more.
  • the light transmittance of the polyester film may be 60% or more, 70% or more, 80% or more, 85% or more, 90% or more, 90.5% or more, 91% or more, or 91.4% or more.
  • the polyester film may have a change rate of yellowness according to Equation 1 below 1,000%.
  • HT1 is a measurement value before heat treatment of the polyester film at 250° C. for 30 minutes
  • HT2 is a measurement value after heat treatment of the polyester film at 250° C. for 30 minutes.
  • the polyester film may have a yellowness change rate according to Formula 1 of 985% or less, 950% or less, 850% or less, 700% or less, 600% or less, or 550% or less. Since the polyester film has excellent heat resistance and the yellowness change rate according to Equation 1 satisfies the above range, the color characteristics are not deteriorated even after heat treatment, and thus the quality is excellent.
  • the polyester film may have a tensile strength change rate of -80% or more according to Equation 1 above.
  • the polyester film may have a tensile strength change rate of -70% or more, -60% or more, -55% or more, or -50% or more according to Equation 1 above.
  • the polyester film has excellent heat resistance and thus the tensile strength change rate according to Equation 1 satisfies the above range, so that the mechanical properties are not deteriorated even after heat treatment, and thus the quality is excellent.
  • the polyester film may have a change rate of modulus according to Equation 1 of -10% or more.
  • the polyester film has a rate of change of modulus in the first direction according to Formula 1 of -9% or more, -8.5% or more, -8% or more, -6% or more, -4% or more, -3.5% or more or -2% or more. Since the polyester film has excellent heat resistance, the rate of change of the modulus according to Equation 1 satisfies the above range, and thus the mechanical properties are not deteriorated even after heat treatment, and thus the quality is excellent.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the mixture was melt-extruded at 280°C, dried at 80°C for 5 hours, cooled to 5°C, and cut with a pellet cutter to prepare polyester resin pellets.
  • Polyester resin pellets were prepared in the same manner as in Example 1-1, except that each composition and content were changed as shown in Table 1 below. In this case, in Examples 1-4, 0.3 parts by weight of the pigment blue pigment was additionally added based on the total weight of the mixture.
  • Example 1-1 99.70 wt% 0.15% by weight 0.15% by weight - Example 1-2 99.30 wt% 0.35 wt% 0.35 wt% - Examples 1-3 99.00 wt% 0.50 wt% 0.50 wt% - Examples 1-4 99.70% by weight 0.15% by weight 0.15% by weight 0.30 parts by weight Comparative Example 1-1 100.00 wt% - - -
  • Example 1-1 58.56 -0.86 5.33 0.628
  • Example 1-2 59.84 -0.81 6.39 0.623
  • Examples 1-3 61.80 -1.05 6.65 0.620
  • polyester resin pellets of Examples 1-1 to 1-4 were superior in both color and intrinsic viscosity characteristics compared to the pellets of Comparative Example 1-1.
  • the polyester resin pellets of Examples 1-1 to 1-4 include the first antioxidant and the second antioxidant represented by Chemical Formula 1, so that as in Example 1-4, the pigment is added as well as , even in the case of Examples 1-1 to 1-3 to which the pigment was not added, color characteristics were excellent. In particular, it can be seen that the b* value is low and the yellowing prevention effect is excellent.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the raw material resin contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the secondary mixture was put into the extruder, it was melt-extruded at 290°C with a T-die, and then cooled to obtain an unstretched sheet.
  • the unstretched sheet is first stretched in the MD direction at 95° C. at a 3.3 times elongation, and preheated to 105° C. while being transferred at a speed of 30 m/min.
  • a polyester film having a thickness of 40 ⁇ m was prepared by stretching and heat setting at 240° C. for 0.1 minutes.
  • a polyester film was prepared in the same manner as in Example 2-1, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 2-1, except that 0.3 parts by weight of the pigment blue pigment was additionally added to the primary mixture.
  • a polyester film was prepared in the same manner as in Example 2-3, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 2-1, except that 100 parts by weight of the pulverized waste polyester was used as a primary mixture without adding the first antioxidant and the second antioxidant.
  • a polyester film was prepared in the same manner as in Comparative Example 2-1, except that 0.3 parts by weight of the pigment blue pigment was additionally added to the first mixture.
  • Example 2-1 96.19 0.04 0.59 0.748
  • Example 2-2 96.15 0 0.69 0.720
  • Example 2-3 96.18 0.01 0.49 0.743
  • Example 2-4 96.11 -0.03 0.51 0.720 Comparative Example 2-1 51.69 -0.14 8.59 0.639 Comparative Example 2-2 53.01 -1.79 4.55 0.633
  • the polyester films of Examples 2-1 to 2-4 had color, intrinsic viscosity, tensile strength, haze and light transmittance characteristics compared to the films of Comparative Examples 2-1 and 2-2. All of these were excellent.
  • the polyester films of Examples 2-1 to 2-4 were prepared using the first antioxidant and the second antioxidant represented by Chemical Formula 1. Therefore, as in Examples 2-3 and 2-4, the polyester films prepared by adding a pigment, as well as the polyester films of Examples 2-1 and 2-2 prepared without adding a pigment, have the same tensile strength as the polyester films of Examples 2-1 and 2-2. Mechanical properties as well as color characteristics were excellent. In particular, it can be seen that the polyester films of Examples 2-1 to 2-4 have a very low b* value and thus have excellent anti-yellowing effects.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the mixture was melt-extruded at 280°C, dried at 80°C for 5 hours, cooled to 5°C, and cut with a pellet cutter to prepare polyester resin pellets.
  • Polyester resin pellets were prepared in the same manner as in Example 3-1, except that each composition and content were changed as shown in Table 5 below. In this case, in Examples 3-4 and Comparative Example 3-2, 0.3 parts by weight of the pigment blue pigment was additionally added based on the total weight of the mixture, respectively.
  • Example 3-1 99.70 wt% 0.15% by weight 0.15% by weight - Example 3-2 99.30 wt% 0.35 wt% 0.35 wt% - Example 3-3 99.00 wt% 0.50 wt% 0.50 wt% - Example 3-4 99.70 wt% 0.15% by weight 0.15% by weight 0.30 parts by weight Comparative Example 3-1 100.00 wt% - - - Comparative Example 3-2 100.00 wt% - - 0.30 parts by weight
  • polyester resin pellets (10 mg) of Examples 3-1 to 3-4, Comparative Examples 3-1 and 3-2 prepared above were each in ortho-chlorophenol at 100° C. After dissolution, the falling time of the sample was calculated using an Ostwald viscometer in a constant temperature bath at 35° C., and the relative viscosity was measured. The obtained relative viscosity was converted to intrinsic viscosity (IV) based on the relative viscosity-intrinsic viscosity conversion table, and the value rounded to the third decimal place is shown in Table 6 below.
  • Example 3-1 1.27 59.10 -0.95 6.02 0.628
  • Example 3-2 1.03 59.47 -0.81 5.00 0.627
  • Example 3-3 0.81 61.33 -0.68 4.26 0.620
  • Example 3-4 1.11 57.54 -1.83 0.62 0.659
  • Comparative Example 3-1 4.50 51.69 -0.14 8.59 0.639
  • Comparative Example 3-2 4.10 53.01 -1.79 4.55 0.633
  • polyester resin pellets of Examples 3-1 to 3-4 were superior in both color and intrinsic viscosity characteristics compared to the pellets of Comparative Examples 3-1 and 3-2.
  • the polyester resin pellets of Examples 3-1 to 3-4 include a first antioxidant and a second antioxidant represented by Chemical Formula 2, so that as in Example 3-4, a pigment is added as well as , even in the case of Examples 3-1 to 3-3 to which the pigment was not added, the yellowness was very low and the color characteristics were excellent.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the raw material resin contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the secondary mixture was put into the extruder, it was melt-extruded at 290°C with a T-die, and then cooled to obtain an unstretched sheet.
  • the unstretched sheet is first stretched in the MD direction at 95° C. at a 3.3 times elongation, and preheated to 105° C. while being transferred at a speed of 30 m/min.
  • a polyester film having a thickness of 40 ⁇ m was prepared by stretching and heat setting at 240° C. for 0.1 minutes.
  • a polyester film was prepared in the same manner as in Example 4-1, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 4-1, except that 0.3 parts by weight of the pigment blue pigment was further added to the first mixture.
  • a polyester film was prepared in the same manner as in Example 4-3, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 4-1, except that 100 parts by weight of the pulverized waste polyester was used as a primary mixture without adding the first antioxidant and the second antioxidant.
  • a polyester film was prepared in the same manner as in Comparative Example 4-1, except that 0.3 parts by weight of the pigment blue pigment was additionally added to the first mixture.
  • Example 4-1 1.46 10.3 243.4 5.35
  • Example 4-2 1.13 10.7 250.6 4.94
  • Example 4-3 0.81 11.6 265.8 3.91
  • Example 4-4 1.25 10.2 242.1 5.65
  • Comparative Example 4-1 5.50 9.50 220.7 6.20
  • Comparative Example 4-2 4.90 9.60 223.5 6.11
  • polyester films of Examples 4-1 to 4-4 were superior to the films of Comparative Examples 4-1 and 4-2 in yellowness, tensile strength, modulus and haze characteristics.
  • the polyester films of Examples 4-1 to 4-4 were prepared using the first antioxidant and the second antioxidant represented by Chemical Formula 2. Therefore, as in Examples 4-3 and 4-4, the polyester films prepared by adding a pigment as well as the polyester films of Examples 4-1 and 4-2 prepared without adding a pigment have tensile strength, modulus As well as mechanical properties such as, the yellowness was very low, and the color characteristics were excellent.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the mixture was melt-extruded at 280°C, dried at 80°C for 5 hours, cooled to 5°C, and cut with a pellet cutter to prepare polyester resin pellets.
  • Polyester resin pellets were prepared in the same manner as in Example 5-1, except that each composition and content were changed as shown in Table 8 below. In this case, in Example 5-4 and Comparative Example 5-2, 0.3 parts by weight of the pigment blue pigment was additionally added based on the total weight of the mixture, respectively.
  • Example 5-1 99.70% by weight 0.10 wt% 0.10 wt% 0.10 wt% - Example 5-2 99.31 wt% 0.23 wt% 0.23 wt% 0.23 wt% - Example 5-3 99.01 wt% 0.33 wt% 0.33 wt% 0.33 wt% - Example 5-4 99.40 wt% 0.10 wt% 0.10 wt% 0.10 wt% 0.3 parts by weight Comparative Example 5-1 100.00 wt% - - - - Comparative Example 5-2 100.00 wt% - - - 0.3 parts by weight
  • the polyester resin pellets (10 mg) of Examples 5-1 to 5-4, Comparative Examples 5-1 and 5-2 prepared above were each in ortho-chlorophenol at 100° C. After dissolution, the falling time of the sample was calculated using an Ostwald viscometer in a constant temperature bath at 35° C., and the relative viscosity was measured. The obtained relative viscosity was converted to intrinsic viscosity (IV) based on the relative viscosity-intrinsic viscosity conversion table, and the value rounded to the third decimal place is shown in Table 9 below.
  • Example 5-1 1.24 59.98 -0.83 4.42 0.641
  • Example 5-2 0.99 59.54 -0.78 4.05 0.628
  • Example 5-3 0.76 61.62 -0.76 4.34 0.626
  • Example 5-4 1.02 57.65 -1.86 0.79 0.659
  • Comparative Example 5-1 4.50 51.69 -0.14 8.59 0.639
  • Comparative Example 5-2 4.10 53.01 -1.79 4.55 0.633
  • polyester resin pellets of Examples 5-1 to 5-4 had superior color and intrinsic viscosity characteristics compared to the pellets of Comparative Examples 5-1 and 5-2.
  • the polyester resin pellets of Examples 5-1 to 5-4 include a first antioxidant, a second antioxidant represented by Formula 2, and a third antioxidant represented by Formula 3,
  • a first antioxidant a second antioxidant represented by Formula 2
  • a third antioxidant represented by Formula 3
  • the yellowness was very low and the color characteristics were excellent.
  • Comparative Examples 5-1 and 5-2 the pellets containing only the polyester resin, specifically waste polyester, and not including the first to third antioxidants had very low color quality. In particular, it was confirmed that in Comparative Example 5-2, yellowing occurred due to high yellowness despite the addition of the blue pigment.
  • the pulverized waste polyester contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the raw material resin contained 100 mol% of cyclohexanedimethanol as a diol component, and contained 88 mol% of terephthalic acid and 12 mol% of isophthalic acid as a dicarboxylic acid component.
  • the secondary mixture was put into the extruder, it was melt-extruded at 290°C with a T-die, and then cooled to obtain an unstretched sheet.
  • the unstretched sheet was first stretched in the MD direction at 95° C. at a 3.3 times elongation, and preheated to 105° C. while being transferred at a speed of 30 m/min, followed by a second stretch in the TD direction at 120° C.
  • a polyester film having a thickness of 40 ⁇ m was prepared by stretching and heat setting at 240° C. for 0.1 minutes.
  • a polyester film was prepared in the same manner as in Example 6-1, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 6-1, except that 0.3 parts by weight of the pigment blue pigment was further added to the first mixture.
  • a polyester film was prepared in the same manner as in Example 6-3, except that 30 parts by weight of the first mixture was used.
  • a polyester film was prepared in the same manner as in Example 6-1, except that the first to third antioxidants were not added, and 100 parts by weight of the pulverized waste polyester was used as the primary mixture.
  • a polyester film was prepared in the same manner as in Comparative Example 6-1, except that 0.3 parts by weight of the pigment blue pigment was additionally added to the first mixture.
  • Example 6-1 1.36 11.3 253.4 5.89
  • Example 6-2 1.05 11.5 259.6 5.23
  • Example 6-3 0.73 12.2 269.8 4.23
  • Example 6-4 1.15 10.8 248.1 5.99 Comparative Example 6-1 5.50 9.5 220.7 6.20 Comparative Example 6-2 4.90 9.6 223.5 6.11
  • polyester films of Examples 6-1 to 6-4 were superior to the films of Comparative Examples 6-1 and 6-2 in yellowness, tensile strength, modulus and haze characteristics.
  • the polyester films of Examples 6-1 to 6-4 were prepared using the first antioxidant, the second antioxidant represented by Chemical Formula 2, and the third antioxidant represented by Chemical Formula 3. Therefore, as in Examples 6-3 and 6-4, the polyester films prepared by adding a pigment as well as the polyester films of Examples 6-1 and 6-2 prepared without adding a pigment have tensile strength, modulus As well as mechanical properties such as , the yellowness was very low and the color characteristics were excellent.
  • the mixture was put into the extruder, it was melt-extruded at 290°C with a T-die, and then cooled to obtain an unstretched sheet.
  • the unstretched sheet is first stretched in the MD direction at 95° C. at a 3.3 times elongation, and preheated to 105° C. while being transferred at a speed of 30 m/min.
  • a polyester film having a thickness of 38 ⁇ m was prepared by stretching and heat setting at 240° C. for 0.1 minutes.
  • a polyester film was prepared in the same manner as in Example 7-1, except that the first to third antioxidants were not added. At this time, the thickness of the polyester film of Comparative Example 7-1 was 50 ⁇ m.
  • Example 7-1 For the polyester films of Example 7-1, Example 7-2 and Comparative Example 7-1 prepared above, the modulus was measured according to KS B 5521.
  • polyester films of Examples 7-1, 7-2 and Comparative Example 7-1 prepared above were cut to 4 cm in width and 1 cm in length, and INSTRON's universal tester (4206-001, After measuring the maximum amount of deformation immediately before fracture at a speed of 50 mm/min using a manufacturer: UTM), the ratio of the maximum amount of deformation to the initial length was calculated as the elongation.
  • haze was measured using a haze meter (SEP-H, manufactured by Nihon Semitsu Kogaku).
  • HT1 is a measurement value before heat treatment of the polyester film at 250° C. for 30 minutes
  • HT2 is a measurement value after heat treatment of the polyester film at 250° C. for 30 minutes.
  • polyester films of Examples 7-1 and 7-2 were excellent in heat resistance, tensile strength, modulus, elongation, yellowness and haze characteristics, compared to the films of Comparative Example 7-1. .
  • polyester films of Examples 7-1 and 7-2 were prepared by using the first antioxidant, the second antioxidant represented by Formula 2, and the third antioxidant represented by Formula 3, thereby providing durability and heat resistance It was excellent in color characteristics, and the yellowness was very low. In addition, it can be seen that the polyester films of Examples 7-1 and 7-2 are excellent in quality even after heat treatment due to low change rates of tensile strength, modulus, elongation, yellowness and haze.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

구현예는 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법에 관한 것으로서, 상기 폴리에스테르 수지 펠릿은 페놀계 제 1 산화방지제, 및 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함함으로써, 고유점도 및 색상 특성이 우수하며, 폐폴리에스테르를 이용하여 제조되는 경우에도 색상 특성이 저하되지 않아 품질이 우수하므로 환경 문제를 해결할 수 있으면서 재활용성 또한 뛰어나다.

Description

폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
구현예는 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법에 관한 것이다.
폴리에스테르는 섬유, 필름, 용기 등에서 가장 폭 넓게 사용되고 있는 합성 수지이다. 특히, 폴리에스테르 필름은 광투과성, 내열성 등이 우수하여 포장용, 캐리어용, 광학용, 편광용 등을 포함한 산업 전반에서 널리 사용된다.
그러나, 폴리에스테르는 구조상 자외선에 노출되면 필름의 열화가 진행되어 황변이 쉽게 발생될 수 있는 문제가 있다. 또한, 광학용이나 편광용 폴리에스테르 필름의 경우, 황변이 발생되면 휘도도 감소할 수 있으므로 품질이 낮아질 수 있다. 이에, 폴리에스테르 필름의 색상 특성을 향상시킬 수 있는 연구가 계속되고 있다.
또한, 최근 환경 문제에 대한 우려가 증가함에 따라 폴리에스테르를 이용하여 제조된 제품들의 재활용 문제에 대한 대책 마련이 요구되고 있다. 폴리에스테르 필름은 용융압출 또는 연신 공정에서 불량품이나 자투리 같은 폴리에스테르 폐기물(이하, 폐폴리에스테르)이 발생된다. 이러한 폐폴리에스테르를 재활용하기 위해 이를 재압출하여 폴리에스테르 필름을 제조하려는 시도가 있었으나, 폴리에스테르는 열에 민감하므로 이러한 폐폴리에스테르를 재활용하는 공정에서 열이나 압력을 가하게 되면 이를 이용하여 제조된 필름의 품질, 특히 색상 특성이 매우 저하된다.
일례로, 일본 공개특허 제2007-092204호는 폐폴리에스테르를 에틸렌글리콜과 혼합용융한 후 해중합하는 방법을 개시하고 있는데, 이러한 공정은 복잡하고 공정 시간이 오래 걸리는 문제가 있다. 또한, 이러한 방법으로 제조된 필름은 기계적 물성은 물론, 색상 면에서 품질이 좋지 않으므로, 재활용성이 낮다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본 공개특허 제2007-092204호
따라서, 구현예는 색상 특성이 우수하면서 폐폴리에스테르를 재활용하여 제조될 수 있는 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법을 제공하고자 한다.
일 구현예에 따른 폴리에스테르 수지 펠릿은 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지; 페놀계 제 1 산화방지제; 및 하기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함한다.
[화학식 1]
Figure PCTKR2022000707-appb-I000001
[화학식 2]
Figure PCTKR2022000707-appb-I000002
상기 화학식 1 및 2에 있어서,
R1 내지 R3는 각각 독립적으로 C1 내지 C10의 알킬기로 치환된 아릴기이고,
R4 및 R5는 각각 독립적으로 C1 내지 C20의 아릴알킬기로 치환된 아릴기이다.
다른 구현예에 따른 폴리에스테르 필름의 제조 방법은 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지를 제조하는 단계; 상기 폴리에스테르 수지에 페놀계 제 1 산화방지제, 및 상기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 혼합하는 단계; 상기 혼합물을 용융압출하여 미연신 시트를 제조하는 단계; 상기 미연신 시트를 제 1 방향으로 1차 연신하고, 상기 제 1 방향과 수직한 제 2 방향으로 2차 연신하여 연신 시트를 제조하는 단계; 및 상기 연신 시트를 200℃ 내지 260℃에서 열고정하는 단계를 포함한다.
또 다른 구현예에 따른 폴리에스테르 필름은 디올 성분으로 70 몰% 이상의 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 70 몰% 내지 99 몰%의 테레프탈산 및 1 몰% 내지 30 몰%의 이소프탈산을 포함하는 폴리에스테르 수지를 포함하고, 90 이상의 L*, 0.1 이하의 a* 및 4.0 이하의 b*을 갖거나, 3 이하의 황색도(Y.I.)를 갖는다.
구현예에 따른 폴리에스테르 수지 펠릿은 페놀계 제 1 산화방지제, 및 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함함으로써, 고유점도 및 색상 특성이 우수하다. 또한, 상기 폴리에스테르 수지 펠릿은 복잡한 공정 없이 폐폴리에스테를 이용하여 제조될 수 있으며, 폐폴리에스테르를 이용하여 제조되는 경우에도 색상 특성이 저하되지 않아 품질이 우수하므로 환경 문제를 해결할 수 있으면서 재활용성 또한 뛰어나다.
나아가, 또 다른 구현예에 따른 폴리에스테르 필름은 제 1 산화방지제 및 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함하는 혼합물을 이용하여 제조됨으로써, 인장강도와 같은 기계적 물성은 물론, 색상 특성이 우수하다. 또한, 상기 폴리에스테르 필름은 상기 폴리에스테르 수지 펠릿 또는 폐폴리에스테르를 이용하여 제조될 수 있으며, 폐폴리에스테르를 이용하여 제조되는 경우에도 색상 특성이 저하되지 않아 품질이 우수하므로 환경 문제를 해결할 수 있으면서 재활용성 또한 뛰어나다.
이하, 구현예를 통해 발명을 상세하게 설명한다. 구현예는 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
본 명세서에서 제 1, 제 2, 1차, 2차 등의 용어는 다양한 구성요소를 설명하기 위해 사용되는 것이고, 상기 구성요소들은 상기 용어에 의해 한정되지 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로 구별하는 목적으로만 사용된다.
폴리에스테르 수지 펠릿
일 구현예에 따른 폴리에스테르 수지 펠릿은 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지; 페놀계 제 1 산화방지제; 및 하기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함한다.
[화학식 1]
Figure PCTKR2022000707-appb-I000003
[화학식 2]
Figure PCTKR2022000707-appb-I000004
상기 화학식 1 및 2에 있어서,
R1 내지 R3는 각각 독립적으로 C1 내지 C10의 알킬기로 치환된 아릴기이고,
R4 및 R5는 각각 독립적으로 C1 내지 C20의 아릴알킬기로 치환된 아릴기이다.
상기 폴리에스테르 수지 펠릿은 폴리에스테르 수지를 포함한다. 구체적으로, 상기 폴리에스테르 수지 펠릿은 디올 성분 및 디카르복실산 성분이 공중합된 공중합 폴리에스테르 수지를 포함할 수 있다.
상기 디올 성분은 시클로헥산디메탄올 또는 이의 유도체를 포함한다. 예를 들어, 상기 디올 성분은 1,2-시클로헥산디메탄올, 1,3-시클로헥산디메탄올 또는 1,4-시클로헥산디메탄올을 포함할 수 있고, 바람직하게는 1,4-시클로헥산디메탄올을 포함할 수 있다.
또한, 상기 디올 성분은 시클로헥산디메탄올 또는 이의 유도체를 70 몰% 이상으로 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지는 상기 디올 성분의 총 몰수를 기준으로 시클로헥산디메탄올 또는 이의 유도체를 72 몰% 이상, 75 몰% 이상, 85 몰% 이상, 88 몰% 이상, 90 몰% 이상, 93 몰% 이상, 95 몰% 이상, 97 몰% 이상, 99 몰% 이상 또는 100 몰%로 포함할 수 있다.
상기 디올 성분이 시클로헥산디메탄올 또는 이의 유도체를 포함함으로써 유연성, 밀착성, 내구성 및 내가수분해성을 향상시킬 수 있으며, 상기 디올이 시클로헥산디메탄올로만 구성되는 경우, 내열성 및 내가수분해성을 극대화할 수 있다.
또한, 상기 디올 성분은 필요에 따라 에틸렌글리콜, 네오펜틸글리콜 및 디에틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지는 상기 디올 성분의 총 몰수를 기준으로 에틸렌글리콜, 네오펜틸글리콜 및 디에틸렌글리콜로 이루어진 군으로부터 선택된 1종 이상을 1 몰% 내지 30 몰%, 1 몰% 내지 20 몰%, 1 몰% 내지 15 몰%, 1 몰% 내지 10 몰% 또는 1 몰% 내지 5 몰%로 포함할 수 있다.
상기 디카르복실산 성분은 70 몰% 내지 99 몰%의 테레프탈산 및 1 몰% 내지 30 몰%의 이소프탈산을 포함한다. 예를 들어, 상기 폴리에스테르 수지는 상기 디카르복실산 성분의 총 몰수를 기준으로 테레프탈산을 72 몰% 내지 99 몰%, 75 몰% 내지 99 몰%, 80 몰% 내지 98 몰%, 83 몰% 내지 98 몰% 또는 85 몰% 내지 98 몰%로 포함할 수 있고, 이소프탈산을 1 몰% 내지 28 몰%, 1 몰% 내지 25 몰%, 1 몰% 내지 20 몰%, 2 몰% 내지 15 몰% 또는 3 몰% 내지 13 몰%로 포함할 수 있다. 테레프탈산 및 이소프탈산의 함량이 상기 범위를 만족함으로써, 유연성, 내구성, 내열성 및 내가수분해성을 향상시킬 수 있다.
또한, 상기 폴리에스테르 수지는 상기 디카르복실산 성분으로 디메틸테레프탈산을 추가로 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지는 상기 디카르복실산 성분의 총 몰수를 기준으로 1 몰% 내지 15 몰%, 1 몰% 내지 10 몰% 또는 3 몰% 내지 7 몰%의 디메틸테레프탈산을 추가로 포함할 수 있다.
구현예에 따른 폴리에스테르 수지는 폴리사이클로헥실렌디메틸렌 테레프탈레이트(PCT) 수지일 수 있다.
상기 폴리에스테르 수지는 폐폴리에스테르를 포함할 수 있다. 구체적으로, 상기 폴리에스테르는 폐폴리에스테르 수지 시트를 분쇄한 것일 수 있다. 상기 폐폴리에스테르는 폴리에스테르 필름의 제조 공정에서 발생될 수 있는 불량품이나 자투리 같은 폴리에스테르 폐기물일 수 있고, 시트의 형상일 수 있으나, 이에 한정되는 것은 아니다.
구체적으로, 상기 폴리에스테르 수지는 폐폴리에스테르를 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 98 중량% 내지 99.9 중량%로 포함할 수 있다. 예를 들어, 상기 폐폴리에스테르의 함량은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 98.1 중량% 내지 99.9 중량%, 98.6 중량% 내지 99.9 중량% 또는 98.8 중량% 내지 99.8 중량%일 수 있다.
폴리에스테르 필름은 용융압출 또는 연신 공정에서 불량품이나 자투리 같은 폐폴리에스테르가 발생된다. 이러한 폐폴리에스테르를 재활용하기 위해 이를 재압출하여 폴리에스테르 필름을 제조하려는 시도가 있었으나, 폴리에스테르는 열에 민감하므로 이러한 폐폴리에스테르를 재활용하는 공정에서 열이나 압력을 가하게 되면 이를 이용하여 제조된 필름의 품질, 특히 색상 특성이 매우 저하되어 황변이 발생한다.
그러나, 구현예에 따른 폴리에스테르 수지 펠릿은 이러한 폐폴리에스테르를 상기와 같이 98 중량% 내지 99.9 중량%로 다량 포함하는 경우에도 광투과성이나 내열성 같은 기계적 물성이 우수하면서 색상 특성도 저하되지 않아 품질이 우수하다.
상기 폐폴리에스테르는 디올 성분 및 디카르복실산 성분을 포함할 수 있다. 상기 디올 성분 및 디카르복실산에 대한 설명은 전술한 바와 같다.
구현예에 따른 폴리에스테르 수지 펠릿은 페놀계 제 1 산화방지제를 포함한다. 구체적으로, 상기 폴리에스테르 수지 펠릿은 페놀계 에스테르 구조를 갖는 제 1 산화방지제를 포함한다.
상기 제 1 산화방지제는 하기 화학식 A의 구조를 포함할 수 있다.
[화학식 A]
Figure PCTKR2022000707-appb-I000005
상기 화학식 A에 있어서,
R11 내지 R14는 각각 독립적으로 수소; 또는 C1 내지 C10의 알킬기이고,
X11은 C(R15)b이고,
R15는 수소; 또는 C1 내지 C10의 알킬기이고,
a는 1 내지 4의 정수이고, b는 0 내지 3의 정수이고, a + b = 4이다.
구체적으로, 상기 R11 내지 R14는 각각 독립적으로, 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기 또는 tert-부틸기일 수 있다. 더욱 구체적으로, 상기 R11 및 R14는 각각 독립적으로 tert-부틸기일 수 있고, 상기 R12 및 R13은 각각 독립적으로 수소일 수 있다.
또한, 상기 X11은 C(R15)b일 수 있고, 상기 R15는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기 또는 tert-부틸기일 수 있다.
또한, 상기 a는 1 내지 4의 정수이며, 상기 b는 0 내지 3의 정수이고, a + b = 4이다. 상기 a가 2 이상일 때 2 이상의 R11 내지 R14는 각각 서로 같거나 상이하고, 상기 b가 2 이상일 때 2 이상의 R15는 각각 서로 같거나 상이하다. 더욱 구체적으로, 상기 a는 4이며, 상기 b는 0일 수 있다.
구체적으로, 상기 제 1 산화방지제는 하기 화학식 A-1로 표시될 수 있다.
[화학식 A-1]
Figure PCTKR2022000707-appb-I000006
구현예에 따른 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 1 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 1 산화방지제를 0.05 중량% 내지 0.95 중량%, 0.05 중량% 내지 0.7 중량%, 0.1 중량% 내지 0.6 중량% 또는 0.15 중량% 내지 0.55 중량%로 포함할 수 있다. 제 1 산화방지제의 함량이 상기 범위를 만족함으로써, 폴리에스테르 수지 펠릿의 황변 방지 효과를 향상시킬 수 있으므로 우수한 색상 특성을 가질 수 있다.
일 구현예에 따른 폴리에스테르 수지 펠릿은 하기 화학식 1로 표시되는 제 2 산화방지제를 포함할 수 있다.
[화학식 1]
Figure PCTKR2022000707-appb-I000007
상기 R1 내지 R3는 각각 독립적으로 C1 내지 C10의 알킬기로 치환된 아릴기이다. 구체적으로, 상기 R1 내지 R3는 각각 독립적으로 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, tert-부틸기, 펜틸기 또는 헥실기로 치환된 페닐기일 수 있다. 더욱 구체적으로, 상기 R1 내지 R3는 각각 독립적으로 tert-부틸기로 치환된 페닐기일 수 있고, 2,4-tert-부틸페닐기, 2,5-tert-부틸페닐기 또는 3,5-tert-부틸페닐기일 수 있다. 또한, 상기 R1 내지 R3은 동일할 수 있다.
상기 제 2 산화방지제는 하기 화학식 1-1 내지 1-3으로 표시되는 그룹으로부터 선택될 수 있다.
[화학식 1-1]
Figure PCTKR2022000707-appb-I000008
[화학식 1-2]
Figure PCTKR2022000707-appb-I000009
[화학식 1-3]
Figure PCTKR2022000707-appb-I000010
다른 구현예에 따른 폴리에스테르 수지 펠릿은 하기 화학식 2로 표시되는 제 2 산화방지제를 포함할 수 있다.
[화학식 2]
Figure PCTKR2022000707-appb-I000011
상기 R4 및 R5는 각각 독립적으로 C1 내지 C20의 아릴알킬기로 치환된 아릴기이다. 구체적으로, 상기 R4 및 R5는 각각 독립적으로 아릴알킬기로 치환된 페닐기일 수 있다. 더욱 구체적으로, 상기 R4 및 R5는 각각 독립적으로 페닐메틸기, 페닐에틸기, 페닐프로필기, 페닐이소프로필기, 페닐부틸기 또는 페닐-tert-부틸기로 치환된 페닐기일 수 있다. 또한, 상기 R4 및 R5는 서로 동일할 수 있다.
상기 제 2 산화방지제는 하기 화학식 2-1 내지 2-3으로 표시되는 그룹으로부터 선택될 수 있다.
[화학식 2-1]
Figure PCTKR2022000707-appb-I000012
[화학식 2-2]
Figure PCTKR2022000707-appb-I000013
[화학식 2-3]
Figure PCTKR2022000707-appb-I000014
상기 화학식 2-1 내지 2-3에서,
상기 R6 내지 R9는 각각 독립적으로 C1 내지 C10의 아릴기로 치환된 알킬기일 수 있다. 구체적으로, 상기 R6 내지 R9는 각각 독립적으로 페닐기로 치환된 메틸기, 페닐기로 치환된 에틸기, 페닐기로 치환된 프로필기, 페닐기로 치환된 이소프로필기 또는 페닐기로 치환된 부틸기일 수 있다. 또한, 상기 R6 내지 R9는 모두 동일할 수 있다.
또한, 상기 제 2 산화방지제는 하기 화학식 2-4 내지 2-6으로 표시되는 그룹으로부터 선택될 수 있다.
[화학식 2-4]
Figure PCTKR2022000707-appb-I000015
[화학식 2-5]
Figure PCTKR2022000707-appb-I000016
[화학식 2-6]
Figure PCTKR2022000707-appb-I000017
구현예에 따른 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 제 2 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 2 산화방지제를 0.05 중량% 내지 0.95 중량%, 0.05 중량% 내지 0.7 중량%, 0.1 중량% 내지 0.6 중량% 또는 0.15 중량% 내지 0.55 중량%로 포함할 수 있다. 제 2 산화방지제의 함량이 상기 범위를 만족함으로써, 폴리에스테르 수지 펠릿의 황변 방지 효과를 향상시킬 수 있으므로 우수한 색상 특성을 가질 수 있다.
또한, 상기 제 1 산화방지제 : 상기 제 2 산화방지제의 중량비는 1 : 0.5 내지 4.0일 수 있다. 예를 들어, 상기 제 1 산화방지제 : 상기 제 2 산화방지제의 중량비는 1 : 0.5 내지 3.8, 1 : 0.5 내지 3.5, 1 : 0.5 내지 3.0, 1 : 0.6 내지 2.5, 1 : 0.6 내지 2.3, 1 : 0.6 내지 2.0, 1 : 0.65 내지 1.8, 1 : 0.65 내지 1.5 또는 1 : 0.7 내지 1.2일 수 있다. 상기 제 1 산화방지제 및 상기 제 2 산화방지제의 중량비가 상기 범위를 만족함으로써, 내구성 및 내열성과 같은 기계적 물성이 저하되지 않으면서 우수한 색상 특성을 가질 수 있다.
또 다른 구현예에 따른 폴리에스테르 수지 펠릿은 하기 화학식 3으로 표시되는 제 3 산화방지제를 추가로 포함할 수 있다.
[화학식 3]
Figure PCTKR2022000707-appb-I000018
상기 화학식 3에 있어서,
R10은 C1 내지 C20의 알킬기이고,
X1은 C(RA)m이고,
RA는 수소; 또는 C1 내지 C10의 알킬기이고,
n은 1 내지 4의 정수이고, m은 0 내지 3의 정수이고, n + m = 4이다.
구체적으로, 상기 R10은 C1 내지 C20의 알킬기이다. 구체적으로, 상기 R10은 C1 내지 C15의 알킬기, C5 내지 C15의 알킬기 또는 C10 내지 C15의 알킬기일 수 있다. 더욱 구체적으로, 상기 R10은 C12의 알킬기일 수 있다.
또한, 상기 X1은 C(RA)m이고, 상기 RA는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기 또는 tert-부틸기일 수 있다.
또한, 상기 n은 1 내지 4의 정수이며, 상기 m은 0 내지 3의 정수이고, n + m = 4이다. 상기 n이 2 이상일 때 2 이상의 R10은 각각 서로 같거나 상이하고, 상기 m이 2 이상일 때 2 이상의 RA는 각각 서로 같거나 상이하다. 더욱 구체적으로, 상기 a는 4이며, 상기 b는 0일 수 있다.
구체적으로, 상기 제 3 산화방지제는 하기 화학식 3-1 내지 3-3으로 표시되는 그룹으로부터 선택될 수 있다.
[화학식 3-1]
Figure PCTKR2022000707-appb-I000019
[화학식 3-2]
Figure PCTKR2022000707-appb-I000020
[화학식 3-3]
Figure PCTKR2022000707-appb-I000021
또한, 상기 제 3 산화방지제는 하기 화학식 3-4로 표시될 수 있다.
[화학식 3-4]
Figure PCTKR2022000707-appb-I000022
구현예에 따른 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 제 3 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함할 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿은 상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 3 산화방지제를 0.05 중량% 내지 0.95 중량%, 0.06 중량% 내지 0.95 중량%, 0.08 중량% 내지 0.8 중량%, 0.08 중량% 내지 0.6 중량% 또는 0.08 중량% 내지 0.5 중량%로 포함할 수 있다. 제 3 산화방지제의 함량이 상기 범위를 만족함으로써, 폴리에스테르 수지 펠릿의 황변 방지 효과를 향상시킬 수 있으므로 우수한 색상 특성을 가질 수 있다.
또한, 상기 제 1 산화방지제 : 제 2 산화방지제 : 제 3 산화방지제의 중량비는 1 : 0.5 내지 1.5 : 0.5 내지 1.5일 수 있다. 예를 들어, 상기 제 1 산화방지제 : 제 2 산화방지제 : 제 3 산화방지제의 중량비는 1 : 0.7 내지 1.5 : 0.7 내지 1.5 또는 1 : 0.7 내지 1.2 : 0.7 내지 1.2일 수 있다. 더욱 구체적으로, 상기 제 1 산화방지제 내지 상기 제 3 산화방지제의 중량비는 1 : 1 : 1일 수 있다. 상기 제 1 산화방지제 내지 상기 제 3 산화방지제의 중량비가 만족함으로써, 내구성 및 내열성과 같은 기계적 물성이 저하되지 않으면서 우수한 색상 특성을 가질 수 있다.
상기 폴리에스테르 수지 펠릿은 카본블랙, 산화 티타늄, 불용성 아조계, 프탈로시아닌계 및 폴리아조계로 이루어진 군으로부터 선택된 1종 이상의 안료를 추가로 포함할 수 있다. 또한, 상기 폴리에스테르 수지 펠릿은 가시광선 흡수 파장대가 560 nm 내지 680 nm인 블루 계열의 안료를 추가로 포함할 수 있다. 상기 안료를 추가로 포함함으로써, 폴리에스테르 수지 펠릿의 황변 방지 효과를 더욱 향상시켜 우수한 색상 특성을 가질 수 있다. 특히, 상기 블루 계열의 안료를 추가로 포함하는 경우, 황변 방지 효과를 극대화하여 색상 특성이 더욱 우수하다.
상기 폴리에스테르 수지 펠릿은 상기 안료를 0.01 중량부 내지 1.0 중량부로 추가로 포함할 수 있다. 예를 들어, 상기 안료의 함량은 0.01 중량부 내지 0.8 중량부, 0.01 중량부 내지 0.7 중량부, 0.03 중량부 0.7 중량부, 0.05 중량부 내지 0.5 중량부, 0.1 중량부 내지 0.5 중량부 또는 0.2 중량부 내지 0.4 중량부일 수 있다.
또한, 상기 폴리에스테르 수지 펠릿은 자외선안정제, 열안정제, 대전방지제 및 분산제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
상기 자외선안정제는 벤조페논계 화합물, 벤조트리아졸계 화합물, 시아노아크릴레이트계 화합물 및 살리실산에스테르계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 폴리에스테르 수지 펠릿은 0.5 중량부 내지 2.5 중량부, 0.5 중량부 내지 2.0 중량부, 1.0 중량부 내지 2.0 중량부 또는 1.5 중량부 내지 2.0 중량부의 상기 자외선 안정제를 추가로 포함할 수 있다.
상기 열안정제는 요오드계 화합물일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 폴리에스테르 수지 펠릿은 0.01 중량부 내지 5 중량부, 0.05 중량부 내지 4 중량부, 0.1 중량부 내지 3 중량부, 0.15 중량부 내지 3 중량부, 0.3 중량부 내지 2.5 중량부 또는 0.5 중량부 내지 2.5 중량부의 상기 열안정제를 추가로 포함할 수 있다.
상기 대전방지제는 4차 암모늄염, 금속염, 전도성 고분자, 금속 산화물, 계면활성제 및 탄소나노튜브로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 폴리에스테르 수지 펠릿은 0.01 중량부 내지 5 중량부, 0.05 중량부 내지 4 중량부, 0.1 중량부 내지 3 중량부, 0.15 중량부 내지 3 중량부, 0.3 중량부 내지 2.5 중량부 또는 0.5 중량부 내지 2.5 중량부의 대전방지제를 추가로 포함할 수 있다.
상기 분산제는 폴리아크릴레이트계, 폴리우레탄계 및 폴리에스테르계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 폴리에스테르 수지 펠릿은 0.25 중량부 내지 10 중량부, 0.3 중량부 내지 7 중량부, 0.3 중량부 내지 5 중량부, 0.5 중량부 내지 3 중량부, 1 중량부 내지 3 중량부 또는 1.5 중량부 내지 2.5 중량부의 상기 분산제를 추가로 포함할 수 있다.
또한, 상기 폴리에스테르 수지 펠릿의 황색도(Y.I.)는 6 이하일 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿의 황색도는 5.5 이하, 5 이하, 4.5 이하, 4 이하, 3 이하, 2 이하 또는 1.5 이하일 수 있다.
상기 폴리에스테르 수지 펠릿의 L*은 55 이상일 수 있고, a*은 -0.5 이하일 수 있고, b*이 8 이하일 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿의 L*은 55.5 이상, 56 이상 또는 57 이상일 수 있고, a*은 -0.55 이하, -0.6 이하 또는 -0.8 이하일 수 있고, b*이 7.5 이하, 7 이하, 6.7 이하, 6.5 이하, 6.3 이하 또는 6.1 이하일 수 있다.
상기 L*, 상기 a* 및 상기 b*은 국제 표준 컬러 측정 기구(CIE(Commission International d'Eclairage)에 의해 정립된 컬러 체계로서, Color를 L(명도), a(녹색에서 적색의 보색), b(황색에서 청색의 보색)로 표기하여 색상을 표현하며, UltraScan PRO(제조사: Hunterlab)를 이용하여 측정할 수 있다. 필름에 황변이 발생하는 경우, b*의 수치가 증가할 수 있다.
상기 폴리에스테르 수지 펠릿의 고유점도(IV)는 0.60 dl/g 이상일 수 있다. 예를 들어, 상기 폴리에스테르 수지 펠릿의 고유점도(IV)는 0.60 dl/g 이상, 0.61 dl/g 이상 또는 0.62 dl/g 이상일 수 있다.
폴리에스테르 수지 펠릿의 제조 방법
또 다른 구현예에 따른 폴리에스테르 수지 펠릿의 제조 방법은 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지를 제조하는 단계; 상기 폴리에스테르 수지를 페놀계 제 1 산화방지제, 및 상기 화학식 1 또는 2로 표시되는 제 2 산화방지제와 혼합하는 단계; 및 상기 혼합물을 용융압출하는 단계를 포함한다.
먼저, 폴리에스테르 수지를 제조한다.
상기 폴리에스테르 수지에 대한 설명은 전술한 바와 같다.
상기 폴리에스테르 수지는 칩 형태일 수 있다. 구체적으로, 상기 디올 성분 및 디카르복실산 성분의 혼합물을 260℃ 내지 320℃, 270℃ 내지 310℃ 또는 270℃ 내지 295℃에서 2시간 내지 8시간, 3시간 내지 7시간 또는 4시간 내지 7시간 동안 반응시켜 칩 형태의 폴리에스테르계 수지를 제조할 수 있다.
또한, 상기 폴리에스테르 수지로서 폐폴리에스테르를 사용할 수 있으며, 폐폴리에스테르에 대한 설명은 전술한 바와 같다.
상기 폴리에스테르 수지로서 폐폴리에스테르를 사용하는 경우, 상기 폐폴리에스테르는 분쇄된 폐폴리에스테르일 수 있다. 구체적으로, 상기 폴리에스테르 수지는 폐폴리에스테르 수지 시트를 분쇄한 것일 수 있다.
더욱 구체적으로, 상기 폴리에스테르 수지는 폐폴리에스테르 또는 폐폴리에스테르 시트를 5 mm 내지 25 mm의 크기로 분쇄한 것일 수 있다. 예를 들어, 상기 분쇄된 폐폴리에스테르의 크기는 5 mm 내지 23 mm, 5 mm 내지 20 mm, 5 mm 내지 18 mm, 7 mm 내지 15 mm, 7 mm 내지 13 mm 또는 9 mm 내지 13 mm일 수 있다. 분쇄된 폐폴리에스테르의 크기가 상기 범위를 만족함으로써, 균질성을 향상시킬 수 있으므로 폴리에스테르 수지 펠릿의 품질을 향상시킬 수 있다.
이후, 상기 폴리에스테르 수지를 페놀계 제 1 산화방지제, 및 화학식 1 또는 2로 표시되는 제 2 산화방지제와 혼합한다.
상기 제 1 산화방지제 및 상기 제 2 산화방지제에 대한 설명은 전술한 바와 같다.
구체적으로, 상기에서 제조한 폴리에스테르 수지를 페놀계 제 1 산화방지제 및 제 2 산화방지제와 혼합한다. 이때, 첨가제로서 안료, 자외선안정제, 열안정제, 대전방지제 및 분산제로 이루어진 군으로부터 선택된 1종 이상을 추가로 첨가할 수 있다. 상기 첨가제에 대한 설명은 전술한 바와 같다.
또 다른 구현예에 따르면, 상기에서 제조한 폴리에스테르 수지를 페놀계 제 1 산화방지제, 제 2 산화방지제 및 화학식 3으로 표시되는 제 3 산화방지제와 혼합할 수 있다. 상기 제 3 산화방지제에 대한 설명은 전술한 바와 같다.
마지막으로, 상기 혼합물을 용융압출하여 펠릿을 제조한다.
구체적으로, 상기 혼합물을 용융압출하고, 건조 및 냉각시킨 후, 펠릿 커팅기로 커팅하여 펠릿을 제조할 수 있다.
상기 용융압출은 260℃ 내지 300℃에서 수행될 수 있다. 예를 들어, 상기 용융압출은 260℃ 내지 298℃, 265℃ 내지 300℃, 270℃ 내지 295℃ 또는 275℃ 내지 295℃에서 수행될 수 있다.
또한, 상기 건조는 60℃ 내지 100℃에서 2시간 내지 12시간 동안 수행될 수 있다. 구체적으로, 상기 건조는 65℃ 내지 95℃, 70℃ 내지 90℃ 또는 75℃ 내지 85℃에서 3시간 내지 12시간, 3시간 내지 10시간 또는 4시간 내지 8시간 동안 수행될 수 있다. 펠릿의 건조 공정 조건이 상기 범위를 만족함으로써, 제조되는 펠릿의 품질을 더욱 향상시킬 수 있다.
이후, 상기 건조된 펠릿을 15 ℃ 이하, 10℃ 이하 또는 6℃ 이하로 냉각시킨 후, 펠릿 커팅기로 커팅하여 펠릿을 제조할 수 있다.
상기 폴리에스테르 수지 펠릿은 구형, 원통형 또는 다각형의 기둥 형상일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 폴리에스테르 수지 펠릿은 단면적이 원형, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 별과 같은 기하학적 형태일 수 있으나, 이에 한정되는 것은 아니다.
폴리에스테르 필름의 제조 방법
다른 구현예에 따른 폴리에스테르 필름의 제조 방법은 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지를 제조하는 단계; 상기 폴리에스테르 수지에 페놀계 제 1 산화방지제, 및 상기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 혼합하는 단계; 상기 혼합물을 용융압출하여 미연신 시트를 제조하는 단계; 상기 미연신 시트를 제 1 방향으로 1차 연신하고, 상기 제 1 방향과 수직한 제 2 방향으로 2차 연신하여 연신 시트를 제조하는 단계; 및 상기 연신 시트를 200℃ 내지 260℃에서 열고정하는 단계를 포함한다.
먼저, 폴리에스테르 수지를 제조한다.
구체적으로, 폴리에스테르 수지를 제조하는 단계는 상기 폴리에스테르 펠릿을 제조하는 방법에서 설명한 바와 같다.
이후, 상기 폴리에스테르 수지를 페놀계 제 1 산화방지제, 및 화학식 1 또는 2로 표시되는 제 2 산화방지제와 혼합한다.
상기 제 1 산화방지제 및 상기 제 2 산화방지제에 대한 설명은 전술한 바와 같다.
구체적으로, 상기에서 제조한 폴리에스테르 수지를 페놀계 제 1 산화방지제 및 제 2 산화방지제를 혼합한다. 이때, 첨가제로서 안료, 자외선안정제, 열안정제, 대전방지제 및 분산제로 이루어진 군으로부터 선택된 1종 이상을 추가로 첨가할 수 있다. 상기 첨가제에 대한 설명은 전술한 바와 같다.
또 다른 구현예에 따르면, 상기에서 제조한 폴리에스테르 수지를 페놀계 제 1 산화방지제, 제 2 산화방지제 및 화학식 3으로 표시되는 제 3 산화방지제와 혼합할 수 있다. 상기 제 3 산화방지제에 대한 설명은 전술한 바와 같다.
또한, 상기 혼합 단계가, 상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제 및 상기 제 2 산화방지제와 1차 혼합하거나, 상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제, 상기 제 2 산화방지제 및 상기 제 3 산화방지제와 1차 혼합하는 단계; 및 원료 수지(base resin)에 상기 1차 혼합물을 2차 혼합하는 단계를 포함할 수 있다.
상기 폴리에스테르 수지가 분쇄된 폐폴리에스테르일 경우, 폐폴리에스테르만을 사용하면 제조되는 폴리에스테르 필름의 품질이 낮아질 수 있다. 따라서, 분쇄된 폐폴리에스테르의 성분 및 함량과 동일한 원료 수지를 추가로 사용함으로써 제조되는 폴리에스테르 필름의 품질을 향상시킬 수 있다.
구체적으로, 상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제 및 상기 제 2 산화방지제와 1차 혼합하거나, 상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제, 제 2 산화방지제, 및 상기 제 3 산화방지제와 1차 혼합하여 제조된 1차 혼합물을 원료 수지와 2차 혼합함으로써 제조되는 폴리에스테르 필름의 품질을 향상시킬 수 있다.
상기 원료 수지는 디올 성분 및 디카르복실산 성분을 포함할 수 있다. 구체적으로, 상기 원료수지의 디올 성분 및 디카르복실산 성분은 상기 폐폴리에스테르의 디올 성분 및 디카르복실산 성분과 그 종류 및 함량이 동일할 수 있다. 상기 원료수지와 상기 폐폴리에스테르 시트의 디올 성분 및 디카르복실산 성분의 종류 및 함량이 동일할 경우, 폐폴리에스테르의 재활용성을 높이면서 폴리에스테르 필름의 품질을 더욱 향상시킬 수 있다.
상기 2차 혼합 단계는 상기 1차 혼합물을 5 중량부 내지 50 중량부로 혼합할 수 있다. 예를 들어, 상기 2차 혼합 단계는 상기 원료 수지 100 중량부에 상기 1차 혼합물을 5 중량부 내지 48 중량부, 5 중량부 내지 45 중량부, 7 중량부 내지 35 중량부, 7 중량부 내지 32 중량부 또는 10 중량부 내지 30 중량부로 첨가하여 혼합할 수 있다. 1차 혼합물의 함량이 상기 범위를 만족함으로써, 제조되는 폴리에스테르 수지 필름의 광투과율, 헤이즈, 인장강도, 고유점도와 같은 기계적 물성과 색상 특성을 모두 향상시킬 수 있다.
또 다른 구현예에 따르면, 상기 2차 혼합 단계는 상기에서 제조된 폴리에스테르 수지 펠릿을 상기 원료 수지와 혼합하여 수행될 수 있다. 구체적으로, 상기에서 제조된 폴리에스테르 수지 펠릿을 1차 혼합물로서 사용하고, 이를 상기 원료 수지와 혼합함으로써 2차 혼합 단계가 수행될 수 있다. 이때, 상기 폴리에스테르 수지 펠릿의 디올 성분 및 디카르복실산 성분의 종류 및 함량은 상기 원료 수지와 동일할 수 있다.
이후, 상기 혼합물을 용융압출하여 미연신 시트를 제조한다.
구체적으로, 상기 혼합물 또는 2차 혼합물을 T-다이(T-die)로 용융압출한 후, 냉각시켜 미연신 시트를 제조할 수 있다.
상기 용융압출 단계는 Tm+5℃ 내지 Tm+70℃, Tm+5℃ 내지 Tm+50℃ 또는 Tm+7℃ 내지 Tm+35℃의 온도에서 수행될 수 있고, 상기 냉각 단계는 Tg-120℃ 내지 Tg+20℃, Tg-110℃ 내지 Tg+10℃, Tg-105℃ 내지 Tg-30℃, Tg-105℃ 내지 Tg-50℃, Tg-105℃ 내지 Tg-65℃, Tg-105℃ 내지 Tg-80℃의 온도에서 수행될 수 있다.
예를 들어, 상기 용융압출 온도는 260℃ 내지 320℃, 270℃ 내지 310℃ 또는 270℃ 내지 295℃일 수 있고, 상기 냉각 온도는 -20℃ 내지 100℃, 0℃ 내지 90℃, 5℃ 내지 75℃, 10℃ 내지 60℃, 10℃ 내지 50℃ 또는 15℃ 내지 45℃일 수 있다. 용융압출 온도가 상기 범위를 만족함으로써, 용융이 원활하면서 압출물의 점도가 적절하게 유지될 수 있다.
이후, 상기 미연신 시트를 제 1 방향으로 1차 연신하고, 상기 제 1 방향과 수직한 제 2 방향으로 2차 연신하여 연신 시트를 제조한다.
상기 1차 연신은 60℃ 내지 120℃의 온도에서 2배 내지 5배의 연신율로 수행될 수 있다. 예를 들어, 상기 1차 연신 단계는 70℃ 내지 110℃, 75℃ 내지 105℃, 80℃ 내지 100℃ 또는 85℃ 내지 100℃의 온도에서 2배 내지 4.8배, 2.5배 내지 4.5배, 2.5배 내지 4배 또는 3배 내지 3.5배의 연신율로 수행될 수 있다. 1차 연신의 온도 및 연신율이 상기 범위를 만족함으로써, 내열성 및 내가수분해성을 향상시킬 수 있다.
본 명세서에 있어서, 상기 제 1 방향은 폭 방향(TD) 또는 길이 방향(MD)일 수 있다. 구체적으로, 상기 제 1 방향은 길이 방향(MD)일 수 있고, 상기 제 1 방향과 수직한 제 2 방향은 폭 방향(TD)일 수 있다.
상기 1차 연신 이후에 상기 제 1 방향과 수직한 제 2 방향으로 2차 연신한다. 상기 2차 연신은 2배 내지 5배의 연신율로 수행될 수 있다. 예를 들어, 상기 2차 연신은 70℃ 내지 140℃, 80℃ 내지 140℃, 90℃ 내지 135℃, 100℃ 내지 130℃ 또는 115℃ 내지 125℃의 온도에서 2.5배 내지 5배, 3배 내지 4.5배 또는 3.5배 내지 4.5배의 연신율로 수행될 수 있다.
또한, 상기 2차 연신 이전에 예열 단계 또는 코팅 단계가 추가로 수행될 수 있다.
상기 예열 단계는 70℃ 내지 120℃에서 0.01 내지 1분 동안 수행될 수 있다. 예를 들어, 상기 예열 온도는 75℃ 내지 115℃ 또는 80℃ 내지 110℃일 수 있고, 상기 예열 시간은 0.05분 내지 0.5분, 0.08분 내지 0.2분일 수 있다.
상기 코팅 단계는 폴리에스테르 필름에 대전방지 등과 같은 기능성을 부여할 수 있는 단계로서 스핀 코팅 또는 인라인 코팅으로 수행될 수 있으나 이에 한정되는 것은 아니다.
상기 제 1 방향의 연신비(d1) 및 상기 제 2 방향의 연신비(d2)의 비율(d1/d2)은 0.5 내지 1일 수 있다. 예를 들어, 상기 제 1 방향의 연신비(d1) 및 상기 제 2 방향의 연신비(d2)의 비율(d1/d2)은 0.5 내지 0.95, 0.65 내지 0.95 또는 0.7 내지 0.9일 수 있다.
마지막으로, 상기 연신 시트를 200℃ 내지 260℃에서 열고정하여 폴리에스테르 필름을 제조한다.
상기 열고정은 어닐링일 수 있고, 200℃ 내지 260℃에서 0.01분 내지 1분 동안 수행될 수 있다. 예를 들어, 상기 열고정 온도(T2)는 205℃ 내지 260℃, 210℃ 내지 250℃, 225℃ 내지 250℃ 또는 235℃ 내지 245℃일 수 있고, 상기 열고정 시간은 0.05분 내지 0.5분 또는 0.08분 내지 0.2분일 수 있으나, 이에 한정되는 것은 아니다.
폴리에스테르 필름
또 다른 구현예에 따른 폴리에스테르 필름은 디올 성분으로 70 몰% 이상의 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 70 몰% 내지 99 몰%의 테레프탈산 및 1 몰% 내지 30 몰%의 이소프탈산을 포함하는 폴리에스테르 수지를 포함하고, 90 이상의 L*, 0.1 이하의 a* 및 4.0 이하의 b*을 갖거나, 3 이하의 황색도(Y.I.)를 갖는다.
상기 폴리에스테르 수지에 대한 설명은 전술한 바와 같다.
구체적으로, 상기 폴리에스테르 필름은 상기 폴리에스테르 필름의 제조 방법에 의해 제조된 것일 수 있다.
구현예에 따른 폴리에스테르 필름은 폴리사이클로헥실렌디메틸렌 테레프탈레이트(PCT) 필름일 수 있다.
상기 폴리에스테르 필름의 L*이 90 이상이고, a*이 0.1 이하이고, b*이 4.0 이하이다. 예를 들어, 상기 폴리에스테르 필름의 L*은 91 이상, 92 이상, 95 이상 또는 96 이상일 수 있고, a*은 0.09 이하, 0.07 이하 또는 0.05 이하일 수 있으며, b*은 3.8 이하, 3.5 이하, 2.8 이하, 2.5 이하, 1.8 이하, 1.3 이하, 1.0 이하 또는 0.7 이하일 수 있다. L*, a* 및 b*이 각각 상기 범위를 만족함으로써, 색상 특성이 우수하다. 특히, b*이 매우 낮으므로, 황변 방지 효과가 우수하여 색 변형이 거의 발생하지 않는다.
또한, 상기 폴리에스테르 필름의 황색도(Y.I.)는 3 이하일 수 있다. 예를 들어, 상기 폴리에스테르 필름의 황색도는 2.5 이하, 2 이하, 1.8 이하, 1.5 이하, 1.4 이하, 1.2 이하, 1 이하, 0.8 이하 또는 0.5 이하일 수 있다.
상기 폴리에스테르 필름의 고유점도(IV)는 0.65 dl/g 이상일 수 있다. 예를 들어, 상기 폴리에스테르 필름의 고유점도(IV)는 0.67 dl/g 이상 또는 0.70 dl/g 이상일 수 있다.
또한, 상기 폴리에스테르 필름의 인장강도는 3.5 kgf/mm2 이상일 수 있다. 구체적으로, 상기 폴리에스테르 필름의 제 1 방향의 인장강도는 3.6 kgf/mm2 이상, 3.8 kgf/mm2 이상, 4.0 kgf/mm2 이상, 5.5 kgf/mm2 이상, 6.5 kgf/mm2 이상, 8.5 kgf/mm2 이상, 9.0 kgf/mm2 이상, 9.5 kgf/mm2 이상 또는 10 kgf/mm2 이상일 수 있다. 또한, 상기 제 1 방향과 수직한 제 2 방향의 인장강도는 3.5 kgf/mm2 이상, 3.8 kgf/mm2 이상, 4.0 kgf/mm2 이상, 5.5 kgf/mm2 이상, 6.5 kgf/mm2 이상, 8.5 kgf/mm2 이상, 9.0 kgf/mm2 이상, 9.5 kgf/mm2 이상 또는 10 kgf/mm2 이상일 수 있다.
또 다른 구현예에 따르면, 상기 폴리에스테르 필름의 제 1 방향의 인장강도는 9 kgf/mm2 이상일 수 있고, 상기 제 1 방향과 수직한 제 2 방향의 인장강도는 225 kgf/mm2 이상일 수 있다. 예를 들어, 상기 폴리에스테르 필름의 MD 방향의 인장강도는 9.2 kgf/mm2 이상, 9.5 kgf/mm2 이상 또는 10 kgf/mm2 이상일 수 있고, TD 방향의 인장강도는 228 kgf/mm2 이상, 230 kgf/mm2 이상, 240 kgf/mm2 이상, 245 kgf/mm2 이상 또는 250 kgf/mm2 이상일 수 있다.
상기 폴리에스테르 필름의 모듈러스는 220 kgf/mm2 이상일 수 있다. 구체적으로, 상기 폴리에스테르 필름의 제 1 방향의 모듈러스는 220 kgf/mm2 이상, 225 kgf/mm2 이상, 230 kgf/mm2 이상, 235 kgf/mm2 이상 또는 240 kgf/mm2 이상일 수 있다.
또한, 상기 폴리에스테르 필름의 헤이즈는 11% 이하일 수 있다. 예를 들어, 상기 폴리에스테르 필름의 헤이즈는 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5.8% 이하, 5% 이하, 4.5% 이하 또는 4% 이하일 수 있다.
상기 폴리에스테르 필름의 광투과율은 60% 이상일 수 있다. 예를 들어, 상기 폴리에스테르 필름의 광투과율은 60% 이상, 70% 이상, 80% 이상, 85% 이상, 90% 이상, 90.5% 이상, 91% 이상 또는 91.4% 이상일 수 있다.
또한, 상기 폴리에스테르 필름은 하기 식 1에 따른 황색도의 변화율이 1,000% 이하일 수 있다.
[식 1]
Figure PCTKR2022000707-appb-I000023
상기 식 1에 있에서,
HT1은 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리하기 전의 측정값이고, HT2는 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리한 후의 측정값이다.
예를 들어, 상기 폴리에스테르 필름은 상기 식 1에 따른 황색도 변화율이 985% 이하, 950% 이하, 850% 이하, 700% 이하, 600% 이하 또는 550% 이하일 수 있다. 상기 폴리에스테르 필름은 내열성이 우수하여 식 1에 따른 황색도 변화율이 상기 범위를 만족함으로써, 열처리한 후에도 색상 특성이 저하되지 않아 품질이 우수하다.
또한, 상기 폴리에스테르 필름은 상기 식 1에 따른 인장강도 변화율이 -80% 이상일 수 있다. 예를 들어, 상기 폴리에스테르 필름은 상기 식 1에 따른 제 1 방향의 인장강도 변화율이 -70% 이상, -60% 이상, -55% 이상 또는 -50% 이상일 수 있다. 상기 폴리에스테르 필름은 내열성이 우수하여 식 1에 따른 인장강도 변화율이 상기 범위를 만족함으로써, 열처리한 후에도 기계적 물성이 저하되지 않아 품질이 우수하다.
또한, 상기 폴리에스테르 필름은 상기 식 1에 따른 모듈러스의 변화율이 -10% 이상일 수 있다. 예를 들어, 상기 폴리에스테르 필름은 상기 식 1에 따른 제 1 방향의 모듈러스의 변화율이 -9% 이상, -8.5% 이상, -8% 이상, -6% 이상, -4% 이상, -3.5% 이상 또는 -2% 이상일 수 있다. 상기 폴리에스테르 필름은 내열성이 우수하여 식 1에 따른 모듈러스의 변화율이 상기 범위를 만족함으로써, 열처리한 후에도 기계적 물성이 저하되지 않아 품질이 우수하다.
상기 내용을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 실시예의 범위가 이들만으로 한정되는 것은 아니다.
[실시예]
폴리에스테르 수지 펠릿의 제조
실시예 1-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.15 중량% 및 화학식 1로 표시되는 제 2 산화방지제(Songnox 1680, 제조사: 송원산업) 0.15 중량%를 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 상기 혼합물을 280℃에서 용융압출하고, 80℃에서 5시간 동안 건조시킨 후, 5℃로 냉각시키고, 펠릿 커팅기로 커팅하여 폴리에스테르 수지 펠릿을 제조하였다.
실시예 1-2 내지 1-4 및 비교예 1-1
각각의 구성 및 함량을 하기 표 1과 같이 변화시킨 것을 제외하고, 상기 실시예 1-1과 동일한 방법으로 폴리에스테르 수지 펠릿을 제조하였다. 이때, 실시예 1-4는 상기 혼합물 총 중량을 기준으로 피그먼트 블루 안료 0.3 중량부를 추가로 첨가하였다.
구분 혼합물 첨가제
폐폴리에스테르 제 1 산화방지제 제 2 산화방지제 블루 안료
실시예 1-1 99.70 중량% 0.15 중량% 0.15 중량% -
실시예 1-2 99.30 중량% 0.35 중량% 0.35 중량% -
실시예 1-3 99.00 중량% 0.50 중량% 0.50 중량% -
실시예 1-4 99.70 중량% 0.15 중량% 0.15 중량% 0.30 중량부
비교예 1-1 100.00 중량% - - -
실험예 1-1: 색상(color)
상기에서 제조한 실시예 1-1 내지 1-4 및 비교예 1-1의 폴리에스테르 수지 펠릿에 대하여, UltraScan PRO(제조사: Hunterlab)를 이용하여 색상 특성인 L*, a* 및 b*을 측정하였다.
실험예 1-2: 고유점도(IV)
상기에서 제조한 실시예 1-1 내지 1-4 및 비교예 1-1의 폴리에스테르 수지 펠릿(10 mg)을 각각 100℃의 오르쏘-클로로페놀(Ortho-Chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(Ostwald) 점도계로 시료의 낙하 시간을 구하여 상대점도를 측정하였다. 얻어진 상대점도는 상대점도-고유점도 환산표에 의거하여 고유점도(IV)로 변환하였으며, 이때 소수점 셋째자리에서 반올림한 값을 하기 표 2에 기재하였다.
구분 L* a* b* 고유점도(dl/g)
실시예 1-1 58.56 -0.86 5.33 0.628
실시예 1-2 59.84 -0.81 6.39 0.623
실시예 1-3 61.80 -1.05 6.65 0.620
실시예 1-4 57.54 -1.83 0.62 0.659
비교예 1-1 51.69 -0.14 8.59 0.639
상기 표 2에서 보는 바와 같이, 실시예 1-1 내지 1-4의 폴리에스테르 수지 펠릿은 비교예 1-1의 펠릿에 비하여 색상 및 고유점도 특성이 모두 우수하였다.
구체적으로, 실시예 1-1 내지 1-4의 폴리에스테르 수지 펠릿은 제 1 산화 방지제 및 화학식 1로 표시되는 제 2 산화방지제를 포함함으로써, 실시예 1-4와 같이 안료가 첨가된 경우는 물론, 안료가 첨가되지 않은 실시예 1-1 내지 1-3의 경우에도 색상 특성이 우수했다. 특히, b*값이 낮아 황변 방지 효과가 우수함을 알 수 있다.
반면, 비교예 1-1과 같이 폴리에스테르 수지, 구체적으로 폐폴리에스테르만을 포함하고, 제 1 산화방지제 및 화학식 1로 표시되는 제 2 산화방지제를 포함하지 않은 펠릿은 색상의 품질이 매우 낮았다.
폴리에스테르 필름의 제조
실시예 2-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.15 중량% 및 제 2 산화방지제(Songnox 1680, 제조사: 송원산업) 0.15 중량%를 1차 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 원료 수지(base resin) 100 중량부에 상기 1차 혼합물 10 중량부를 2차 혼합했다. 이때, 상기 원료 수지는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
상기 2차 혼합물을 압출기에 투입한 후, T-다이(T-Die)로 290℃에서 용융압출한 후, 냉각하여 미연신 시트를 얻었다. 상기 미연신 시트를 95℃에서 3.3배의 연신율로 MD 방향으로 1차 연신하고, 30 m/분의 속도로 이송하면서 105℃로 예열한 후, 120℃에서 3.9배의 연신율로 TD 방향으로 2차 연신하고, 240℃에서 0.1분 동안 열고정하여 두께가 40 ㎛인 폴리에스테르 필름을 제조하였다.
실시예 2-2
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 2-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 2-3
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 실시예 2-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 2-4
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 2-3과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 2-1
제 1 산화방지제 및 제 2 산화방지제를 첨가하지 않고, 상기 분쇄된 폐폴리에스테르 100 중량부를 1차 혼합물로 사용한 것을 제외하고, 실시예 2-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 2-2
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 비교예 2-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실험예 2-1: 색상(color)
상기에서 제조한 실시예 2-1 내지 2-4, 비교예 2-1 및 비교예 2-2의 폴리에스테르 필름에 대하여, UltraScan PRO(제조사: Hunterlab)를 이용하여, 색상 특성인 L*, a* 및 b*을 측정하였다.
실험예 2-2: 고유점도(IV)
상기에서 제조한 실시예 2-1 내지 2-4, 비교예 2-1 및 비교예 2-2의 폴리에스테르 필름(10 mg)을 각각 100℃의 오르쏘-클로로페놀(Ortho-Chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(Ostwald) 점도계로 시료의 낙하 시간을 구하여 상대점도를 측정하였다. 얻어진 상대점도는 상대점도-고유점도 환산표에 의거하여 고유점도(IV)로 변환하였으며, 이때 소수점 셋째자리에서 반올림한 값을 하기 표 3에 기재하였다.
실험예 2-3: 인장 강도
상기에서 제조한 실시예 2-1 내지 2-4, 비교예 2-1 및 비교예 2-2의 폴리에스테르 필름에 대하여, ASTM D 882에 따라 인스트론(INSTRON)사의 만능시험기(4206-001, 제조사: UTM)을 이용하여 척간 간격이 50 mm가 되도록 장착하고 인장속도 500 mm/분의 속도로 실험한 후, 설비에 내장된 프로그램으로 인장강도를 측정하였다.
실험예 2-4: 헤이즈
상기에서 제조한 실시예 2-1 내지 2-4, 비교예 2-1 및 비교예 2-2의 폴리에스테르 필름에 대하여, 헤이즈미터(SEP-H, 제조사: Nihon Semitsu Kogaku)를 이용하여 헤이즈를 측정하였다.
실험예 2-5: 광투과율
상기에서 제조한 실시예 2-1 내지 2-4, 비교예 2-1 및 비교예 2-2의 폴리에스테르 필름에 대하여, UltraScan PRO(제조사: Hunterlab)를 이용하여, 380 nm에서의 광투과율을 측정하였다.
구분 L* a* b* 고유점도(dl/g)
실시예 2-1 96.19 0.04 0.59 0.748
실시예 2-2 96.15 0 0.69 0.720
실시예 2-3 96.18 0.01 0.49 0.743
실시예 2-4 96.11 -0.03 0.51 0.720
비교예 2-1 51.69 -0.14 8.59 0.639
비교예 2-2 53.01 -1.79 4.55 0.633
구분 인장강도 (kgf/mm2) 헤이즈(%) 광투과율(%)
MD TD
실시예 2-1 4.08 4.10 2.88 91.60
실시예 2-2 4.13 4.11 3.42 91.54
실시예 2-3 4.05 4.10 3.03 91.47
실시예 2-4 4.12 4.09 3.96 91.56
비교예 2-1 3.57 3.69 4.50 90.60
비교예 2-2 3.60 3.65 4.40 90.50
상기 표 3 및 4에서 보는 바와 같이, 실시예 2-1 내지 2-4의 폴리에스테르 필름은 비교예 2-1 및 2-2의 필름에 비하여 색상, 고유점도, 인장강도, 헤이즈 및 광투과율 특성이 모두 우수하였다.
구체적으로, 실시예 2-1 내지 2-4의 폴리에스테르 필름은 제 1 산화 방지제 및 화학식 1로 표시되는 제 2 산화방지제를 사용하여 제조되었다. 따라서, 실시예 2-3 및 2-4와 같이 안료를 첨가하여 제조된 폴리에스테르 필름은 물론, 안료를 첨가하지 않고 제조된 실시예 2-1 및 2-2의 폴리에스테르 필름은 인장강도와 같은 기계적 물성은 물론, 색상 특성이 우수했다. 특히, 실시예 2-1 내지 2-4의 폴리에스테르 필름은 b*값이 매우 낮아 황변 방지 효과가 우수함을 알 수 있다.
반면, 비교예 2-1 및 2-2와 같이 제 1 산화 방지제 및 화학식 1로 표시되는 제 2 산화방지제를 사용하지 않고 제조된 필름의 경우, 인장강도와 같은 기계적 물성은 물론, 색상의 품질이 매우 낮았다. 특히, 비교예 2-2는 안료를 추가로 첨가하여 제조되었음에도 불구하고, 실시예 2-1 내지 2-4의 필름에 비하여 b*값이 매우 높아, 황변이 발생했음을 확인하였다.
폴리에스테르 수지 펠릿의 제조
실시예 3-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.15 중량% 및 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.15 중량%를 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 상기 혼합물을 280℃에서 용융압출하고, 80℃에서 5시간 동안 건조시킨 후, 5℃로 냉각시키고, 펠릿 커팅기로 커팅하여 폴리에스테르 수지 펠릿을 제조하였다.
실시예 3-2 내지 3-4, 비교예 3-1 및 비교예 3-2
각각의 구성 및 함량을 하기 표 5와 같이 변화시킨 것을 제외하고, 상기 실시예 3-1과 동일한 방법으로 폴리에스테르 수지 펠릿을 제조하였다. 이때, 실시예 3-4 및 비교예 3-2는 각각 상기 혼합물 총 중량을 기준으로 피그먼트 블루 안료 0.3 중량부를 추가로 첨가하였다.
구분 혼합물 첨가제
폐폴리에스테르 제 1 산화방지제 제 2 산화방지제 블루 안료
실시예 3-1 99.70 중량% 0.15 중량% 0.15 중량% -
실시예 3-2 99.30 중량% 0.35 중량% 0.35 중량% -
실시예 3-3 99.00 중량% 0.50 중량% 0.50 중량% -
실시예 3-4 99.70 중량% 0.15 중량% 0.15 중량% 0.30 중량부
비교예 3-1 100.00 중량% - - -
비교예 3-2 100.00 중량% - - 0.30 중량부
실험예 3-1: 황색도(Y.I.)
상기에서 제조한 실시예 3-1 내지 3-4, 비교예 3-1 및 비교예 3-2의 폴리에스테르 수지 펠릿에 대하여, UltraScan PRO(제조사: Hunterlab)을 이용하여 황색도(Y.I.)를 측정하였다.
실험예 3-2: 색상(color)
상기에서 제조한 실시예 3-1 내지 3-4, 비교예 3-1 및 비교예 3-2의 폴리에스테르 수지 펠릿에 대하여, UltraScan PRO(제조사: Hunterlab)를 이용하여 색상 특성인 L*, a* 및 b*을 측정하였다.
실험예 3-3: 고유점도(IV)
상기에서 제조한 실시예 3-1 내지 3-4, 비교예 3-1 및 비교예 3-2의 폴리에스테르 수지 펠릿(10 mg)을 각각 100℃의 오르쏘-클로로페놀(Ortho-Chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(Ostwald) 점도계로 시료의 낙하 시간을 구하여 상대점도를 측정하였다. 얻어진 상대점도는 상대점도-고유점도 환산표에 의거하여 고유점도(IV)로 변환하였으며, 이때 소수점 셋째자리에서 반올림한 값을 하기 표 6에 기재하였다.
구분 황색도(Y.I.) L* a* b* 고유점도(dl/g)
실시예 3-1 1.27 59.10 -0.95 6.02 0.628
실시예 3-2 1.03 59.47 -0.81 5.00 0.627
실시예 3-3 0.81 61.33 -0.68 4.26 0.620
실시예 3-4 1.11 57.54 -1.83 0.62 0.659
비교예 3-1 4.50 51.69 -0.14 8.59 0.639
비교예 3-2 4.10 53.01 -1.79 4.55 0.633
상기 표 6에서 보는 바와 같이, 실시예 3-1 내지 3-4의 폴리에스테르 수지 펠릿은 비교예 3-1 및 비교예 3-2의 펠릿에 비하여 색상 및 고유점도 특성이 모두 우수하였다.
구체적으로, 실시예 3-1 내지 3-4의 폴리에스테르 수지 펠릿은 제 1 산화 방지제 및 화학식 2로 표시되는 제 2 산화방지제를 포함함으로써, 실시예 3-4와 같이 안료가 첨가된 경우는 물론, 안료가 첨가되지 않은 실시예 3-1 내지 3-3의 경우에도 황색도가 매우 낮으면서 색상 특성이 우수했다.
반면, 비교예 3-1 및 3-2와 같이 폴리에스테르 수지, 구체적으로 폐폴리에스테르만을 포함하고, 제 1 산화방지제 및 화학식 2로 표시되는 제 2 산화방지제를 포함하지 않은 펠릿은 색상의 품질이 매우 낮았다. 특히, 비교예 3-2는 블루 안료를 첨가했음에도 불구하고 황색도가 높아 황변이 발생했음을 확인하였다.
폴리에스테르 필름의 제조
실시예 4-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.15 중량% 및 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.15 중량%를 1차 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 원료 수지(base resin) 100 중량부에 상기 1차 혼합물 10 중량부를 2차 혼합했다. 이때, 상기 원료 수지는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
상기 2차 혼합물을 압출기에 투입한 후, T-다이(T-Die)로 290℃에서 용융압출한 후, 냉각하여 미연신 시트를 얻었다. 상기 미연신 시트를 95℃에서 3.3배의 연신율로 MD 방향으로 1차 연신하고, 30 m/분의 속도로 이송하면서 105℃로 예열한 후, 120℃에서 3.9배의 연신율로 TD 방향으로 2차 연신하고, 240℃에서 0.1분 동안 열고정하여 두께가 40 ㎛인 폴리에스테르 필름을 제조하였다.
실시예 4-2
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 4-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 4-3
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 실시예 4-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 4-4
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 4-3과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 4-1
제 1 산화방지제 및 제 2 산화방지제를 첨가하지 않고, 상기 분쇄된 폐폴리에스테르 100 중량부를 1차 혼합물로 사용한 것을 제외하고, 실시예 4-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 4-2
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 비교예 4-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실험예 4-1: 황색도(Y.I.)
상기에서 제조한 실시예 4-1 내지 4-4, 비교예 4-1 및 비교예 4-2의 폴리에스테르 필름에 대하여, UltraScan PRO(제조사: Hunterlab)을 이용하여 황색도(Y.I.)를 측정하였다.
실험예 4-2: 인장 강도
상기에서 제조한 실시예 4-1 내지 4-4, 비교예 4-1 및 비교예 4-2의 폴리에스테르 필름에 대하여, ASTM D 882에 따라 인스트론(INSTRON)사의 만능시험기(4206-001, 제조사: UTM)을 이용하여 척간 간격이 50 mm가 되도록 장착하고 인장속도 500 mm/분의 속도로 실험한 후, 설비에 내장된 프로그램으로 인장강도를 측정하였다.
실험예 4-3: 모듈러스
상기에서 제조한 실시예 4-1 내지 4-4, 비교예 4-1 및 비교예 4-2의 폴리에스테르 필름에 대하여, KS B 5521에 따라 모듈러스를 측정하였다.
실험예 4-4: 헤이즈
상기에서 제조한 실시예 4-1 내지 4-4, 비교예 4-1 및 비교예 4-2의 폴리에스테르 필름에 대하여, 헤이즈미터(SEP-H, 제조사: Nihon Semitsu Kogaku)를 이용하여 헤이즈를 측정하였다.
구분 황색도
(Y.I.)
MD
인장강도(kgf/mm2)
MD
모듈러스(kgf/ mm2)
헤이즈(%)
실시예 4-1 1.46 10.3 243.4 5.35
실시예 4-2 1.13 10.7 250.6 4.94
실시예 4-3 0.81 11.6 265.8 3.91
실시예 4-4 1.25 10.2 242.1 5.65
비교예 4-1 5.50 9.50 220.7 6.20
비교예 4-2 4.90 9.60 223.5 6.11
상기 표 7에서 보는 바와 같이, 실시예 4-1 내지 4-4의 폴리에스테르 필름은 비교예 4-1 및 4-2의 필름에 비하여 황색도, 인장강도, 모듈러스 및 헤이즈 특성이 모두 우수하였다.
구체적으로, 실시예 4-1 내지 4-4의 폴리에스테르 필름은 제 1 산화 방지제 및 화학식 2로 표시되는 제 2 산화방지제를 사용하여 제조되었다. 따라서, 실시예 4-3 및 4-4와 같이 안료를 첨가하여 제조된 폴리에스테르 필름은 물론, 안료를 첨가하지 않고 제조된 실시예 4-1 및 4-2의 폴리에스테르 필름은 인장강도, 모듈러스와 같은 기계적 물성은 물론, 황색도가 매우 낮아 색상 특성이 우수했다.
반면, 비교예 4-1 및 4-2와 같이 제 1 산화 방지제 및 화학식 2로 표시되는 제 2 산화방지제를 사용하지 않고 제조된 필름의 경우, 인장강도 및 모듈러스와 같은 기계적 물성은 물론, 황색도가 매우 높아 색상의 품질이 매우 낮았다.
폴리에스테르 수지 펠릿의 제조
실시예 5-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.1 중량%, 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.1 중량% 및 화학식 3으로 표시되는 제 3 산화방지제(ADK STAB 412S, 제조사: EDEKA) 0.1 중량%를 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 상기 혼합물을 280℃에서 용융압출하고, 80℃에서 5시간 동안 건조시킨 후, 5℃로 냉각시키고, 펠릿 커팅기로 커팅하여 폴리에스테르 수지 펠릿을 제조하였다.
실시예 5-2 내지 5-4, 비교예 5-1 및 비교예 5-2
각각의 구성 및 함량을 하기 표 8과 같이 변화시킨 것을 제외하고, 상기 실시예 5-1과 동일한 방법으로 폴리에스테르 수지 펠릿을 제조하였다. 이때, 실시예 5-4 및 비교예 5-2는 각각 상기 혼합물 총 중량을 기준으로 피그먼트 블루 안료 0.3 중량부를 추가로 첨가하였다.
구분 폐폴리에스테르 제 1
산화방지제
제 2
산화방지제
제 3
산화방지제
블루 안료
실시예 5-1 99.70 중량% 0.10 중량% 0.10 중량% 0.10 중량% -
실시예 5-2 99.31 중량% 0.23 중량% 0.23 중량% 0.23 중량% -
실시예 5-3 99.01 중량% 0.33 중량% 0.33 중량% 0.33 중량% -
실시예 5-4 99.40 중량% 0.10 중량% 0.10 중량% 0.10 중량% 0.3 중량부
비교예 5-1 100.00 중량% - - - -
비교예 5-2 100.00 중량% - - - 0.3 중량부
실험예 5-1: 황색도(Y.I.)
상기에서 제조한 실시예 5-1 내지 5-4, 비교예 5-1 및 비교예 5-2의 폴리에스테르 수지 펠릿에 대하여, UltraScan PRO(제조사: Hunterlab)을 이용하여 황색도(Y.I.)를 측정하였다.
실험예 5-2: 색상(color)
상기에서 제조한 실시예 5-1 내지 5-4, 비교예 5-1 및 비교예 5-2의 폴리에스테르 수지 펠릿에 대하여, UltraScan PRO(제조사: Hunterlab)를 이용하여 색상 특성인 L*, a* 및 b*을 측정하였다.
실험예 5-3: 고유점도(IV)
상기에서 제조한 실시예 5-1 내지 5-4, 비교예 5-1 및 비교예 5-2의 폴리에스테르 수지 펠릿(10 mg)을 각각 100℃의 오르쏘-클로로페놀(Ortho-Chlorophenol)에 용해시킨 후, 35℃의 항온조에서 오스트발트(Ostwald) 점도계로 시료의 낙하 시간을 구하여 상대점도를 측정하였다. 얻어진 상대점도는 상대점도-고유점도 환산표에 의거하여 고유점도(IV)로 변환하였으며, 이때 소수점 셋째자리에서 반올림한 값을 하기 표 9에 기재하였다.
구분 황색도(Y.I.) L* a* b* 고유점도(dl/g)
실시예 5-1 1.24 59.98 -0.83 4.42 0.641
실시예 5-2 0.99 59.54 -0.78 4.05 0.628
실시예 5-3 0.76 61.62 -0.76 4.34 0.626
실시예 5-4 1.02 57.65 -1.86 0.79 0.659
비교예 5-1 4.50 51.69 -0.14 8.59 0.639
비교예 5-2 4.10 53.01 -1.79 4.55 0.633
상기 표 9에서 보는 바와 같이, 실시예 5-1 내지 5-4의 폴리에스테르 수지 펠릿은 비교예 5-1 및 5-2의 펠릿에 비하여 색상 및 고유점도 특성이 모두 우수하였다.
구체적으로, 실시예 5-1 내지 5-4의 폴리에스테르 수지 펠릿은 제 1 산화 방지제, 화학식 2로 표시되는 제 2 산화방지제, 및 화학식 3으로 표시되는 제 3 산화방지제를 포함함으로써, 실시예 5-4와 같이 안료가 첨가된 경우는 물론, 안료가 첨가되지 않은 실시예 5-1 내지 5-3의 경우에도 황색도가 매우 낮으면서 색상 특성이 우수했다.
반면, 비교예 5-1 및 5-2와 같이 폴리에스테르 수지, 구체적으로 폐폴리에스테르만을 포함하고, 상기 제 1 산화 방지제 내지 제 3 산화방지제를 포함하지 않은 펠릿은 색상의 품질이 매우 낮았다. 특히, 비교예 5-2는 블루 안료를 첨가했음에도 불구하고 황색도가 높아 황변이 발생했음을 확인하였다.
폴리에스테르 필름의 제조
실시예 6-1
10 mm의 크기로 분쇄된 폐폴리에스테르 99.7 중량%, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.1 중량%, 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.1 중량% 및 화학식 3으로 표시되는 제 3 산화방지제(ADK STAB 412S, 제조사: EDEKA) 0.1 중량%를 1차 혼합했다. 이때, 상기 분쇄된 폐폴리에스테르는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
이후, 원료 수지(base resin) 100 중량부에 상기 1차 혼합물 10 중량부를 2차 혼합했다. 이때, 상기 원료 수지는 디올 성분으로서 100 몰%의 시클로헥산디메탄올을 포함했고, 디카르복실산 성분으로 88 몰%의 테레프탈산 및 12 몰%의 이소프탈산을 포함했다.
상기 2차 혼합물을 압출기에 투입한 후, T-다이(T-Die)로 290℃에서 용융압출한 후, 냉각하여 미연신 시트를 얻었다. 상기 미연신 시트를 95℃에서 3.3배의 연신율로 MD 방향으로 1차 연신하고, 30 m/분의 속도로 이송하면서 105℃로 예열한 후, 120℃에서 3.9배의 연신율로 TD 방향으로 2차 연신하고, 240℃에서 0.1분 동안 열고정하여 두께가 40 ㎛인 폴리에스테르 필름을 제조하였다.
실시예 6-2
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 6-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 6-3
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 실시예 6-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실시예 6-4
1차 혼합물을 30 중량부로 사용한 것을 제외하고, 실시예 6-3과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 6-1
제 1 산화방지제 내지 제 3 산화방지제를 첨가하지 않고, 상기 분쇄된 폐폴리에스테르 100 중량부를 1차 혼합물로 사용한 것을 제외하고, 실시예 6-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 6-2
1차 혼합물에 피그먼트 블루 안료 0.3 중량부를 추가로 첨가한 것을 제외하고, 비교예 6-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
실험예 6-1: 황색도(Y.I.)
상기에서 제조한 실시예 6-1 내지 6-4, 비교예 6-1 및 비교예 6-2의 폴리에스테르 필름에 대하여, UltraScan PRO(제조사: Hunterlab)을 이용하여 황색도(Y.I.)를 측정하였다.
실험예 6-2: 인장 강도
상기에서 제조한 실시예 6-1 내지 6-4, 비교예 6-1 및 비교예 6-2의 폴리에스테르 필름에 대하여, ASTM D 882에 따라 인스트론(INSTRON)사의 만능시험기(4206-001, 제조사: UTM)을 이용하여 척간 간격이 50 mm가 되도록 장착하고 인장속도 500 mm/분의 속도로 실험한 후, 설비에 내장된 프로그램으로 인장강도를 측정하였다.
실험예 6-3: 헤이즈
상기에서 제조한 실시예 6-1 내지 6-4, 비교예 6-1 및 비교예 6-2의 폴리에스테르 필름에 대하여, 헤이즈미터(SEP-H, 제조사: Nihon Semitsu Kogaku)를 이용하여 헤이즈를 측정하였다.
구분 황색도(Y.I.) 인장강도 (kgf/mm2) 헤이즈(%)
MD TD
실시예 6-1 1.36 11.3 253.4 5.89
실시예 6-2 1.05 11.5 259.6 5.23
실시예 6-3 0.73 12.2 269.8 4.23
실시예 6-4 1.15 10.8 248.1 5.99
비교예 6-1 5.50 9.5 220.7 6.20
비교예 6-2 4.90 9.6 223.5 6.11
상기 표 10에서 보는 바와 같이, 실시예 6-1 내지 6-4의 폴리에스테르 필름은 비교예 6-1 및 6-2의 필름에 비하여 황색도, 인장강도, 모듈러스 및 헤이즈 특성이 모두 우수하였다.
구체적으로, 실시예 6-1 내지 6-4의 폴리에스테르 필름은 제 1 산화 방지제, 화학식 2로 표시되는 제 2 산화방지제, 및 화학식 3으로 표시되는 제 3 산화방지제를 이용하여 제조되었다. 따라서, 실시예 6-3 및 6-4와 같이 안료를 첨가하여 제조된 폴리에스테르 필름은 물론, 안료를 첨가하지 않고 제조된 실시예 6-1 및 6-2의 폴리에스테르 필름은 인장강도, 모듈러스와 같은 기계적 물성은 물론, 황색도가 매우 낮아 색상 특성이 우수했다.
반면, 비교예 6-1 및 6-2와 같이 상기 제 1 산화 방지제 내지 제 3 산화방지제를 사용하지 않고 제조된 필름의 경우, 인장강도 및 모듈러스와 같은 기계적 물성은 물론, 황색도가 매우 높아 색상의 품질이 매우 낮았다.
폴리에스테르 필름의 제조
실시예 7-1
디올 성분으로서 사이클로헥산디메탄올(CHDM) 100 몰%, 및 디카르복실산 성분으로서 테레프탈산(TPA) 96 몰% 및 이소프탈산(IPA) 4 몰%을 혼합하고, 페놀계 제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.15 중량%, 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.15 중량% 및 화학식 3으로 표시되는 제 3 산화방지제(ADK STAB 412S, 제조사: EDEKA) 0.15 중량%를 첨가했다.
상기 혼합물을 압출기에 투입한 후, T-다이(T-Die)로 290℃에서 용융압출한 후, 냉각하여 미연신 시트를 얻었다. 상기 미연신 시트를 95℃에서 3.3배의 연신율로 MD 방향으로 1차 연신하고, 30 m/분의 속도로 이송하면서 105℃로 예열한 후, 120℃에서 3.9배의 연신율로 TD 방향으로 2차 연신하고, 240℃에서 0.1분 동안 열고정하여 두께가 38 ㎛인 폴리에스테르 필름을 제조하였다.
실시예 7-2
제 1 산화방지제(Irganox 1010, 제조사: BASF) 0.06 중량%, 화학식 2로 표시되는 제 2 산화방지제(Doverphos S9228, 제조사: Dover chemical) 0.06 중량% 및 화학식 3으로 표시되는 제 3 산화방지제(ADK STAB 412S, 제조사: EDEKA) 0.06 중량%를 첨가한 것을 제외하고, 상기 실시예 7-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다.
비교예 7-1
제 1 산화방지제 내지 제 3 산화방지제를 첨가하지 않은 것을 제외하고, 상기 실시예 7-1과 동일한 방법으로 폴리에스테르 필름을 제조하였다. 이때, 비교예 7-1의 폴리에스테르 필름의 두께는 50 ㎛이었다.
실험예 7-1: 인장강도
상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름에 대하여, ASTM D 882에 따라 인스트론(INSTRON)사의 만능시험기(4206-001, 제조사: UTM)을 이용하여 척간 간격이 50 mm가 되도록 장착하고 인장속도 500 mm/분의 속도로 실험한 후, 설비에 내장된 프로그램으로 인장강도를 측정하였다.
실험예 7-2: 모듈러스
상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름에 대하여, KS B 5521에 따라 모듈러스를 측정하였다.
실험예 7-3: 신율
상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름을 가로 4 cm 및 세로 1 cm로 절단하고, 인스트론(INSTRON)사의 만능시험기(4206-001, 제조사: UTM)을 이용하여 50 mm/min의 속도에서 파단 직전의 최대 변형량을 측정한 후, 최초 길이 대비 최대 변형량의 비율을 신율로 계산하였다.
실험예 7-4: 황색도(Y.I.)
상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름에 대하여, UltraScan PRO(제조사: Hunterlab)을 이용하여 황색도(Y.I.)를 측정하였다.
실험예 7-5: 헤이즈
상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름에 대하여, 헤이즈미터(SEP-H, 제조사: Nihon Semitsu Kogaku)를 이용하여 헤이즈를 측정하였다.
실험예 7-6: 변화율
상기 실험예 7-1 내지 7-5에 대하여, 상기에서 제조한 실시예 7-1, 실시예 7-2 및 비교예 7-1의 폴리에스테르 필름을 250℃에서 30분 동안 열처리하여, 열처리 전후의 측정값 및 변화율을 하기 표 11에 나타내었다. 이때, 열처리 전후의 변화율은 하기 식 1에 따라 계산하였다.
[식 1]
Figure PCTKR2022000707-appb-I000024
상기 식 1에 있에서,
HT1은 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리하기 전의 측정값이고, HT2는 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리한 후의 측정값이다.
구분 MD
인장강도
(kgf/mm2)
MD
모듈러스
(kgf/mm2)
MD
신율(%)
황색도
(Y.I.)
헤이즈
(%)
실시예 7-1 열처리 전 10.30 243.4 105.4 0.70 4.94
열처리 후 9.10 242.5 117.8 1.36 4.94
변화율 -11.7% -0.4% 11.8% 94.3% 0
실시예 7-2 열처리 전 11.60 265.8 73.8 0.33 3.91
열처리 후 6.20 262.7 3.1 2.04 4.08
변화율 -46.6% -1.2% -95.8% 518.2% 4.3%
비교예 7-1 열처리 전 10.7 250.6 123.6 0.41 5.35
열처리 후 0.15 1.158 0 9.39 5.45
변화율 -98.6% -99.5% -100% 2190.2% 1.9%
상기 표 11에서 보는 바와 같이, 실시예 7-1 및 7-2의 폴리에스테르 필름은 비교예 7-1의 필름에 비하여, 내열성, 인장강도, 모듈러스, 신율, 황색도 및 헤이즈 특성이 모두 우수하였다.
구체적으로, 실시예 7-1 및 7-2의 폴리에스테르 필름은 제 1 산화방지제, 화학식 2로 표시되는 제 2 산화방지제, 화학식 3으로 표시되는 제 3 산화방지제를 이용하여 제조됨으로써, 내구성 및 내열성이 우수하면서 황색도가 매우 낮아 색상 특성이 우수했다. 또한, 실시예 7-1 및 7-2의 폴리에스테르 필름은 열처리 후에도 인장강도, 모듈러스, 신율, 황색도 및 헤이즈의 변화율이 낮아 품질이 우수함을 알 수 있다.
반면, 비교예 7-1과 같이 상기 제 1 산화방지제 내지 제 3 산화방지제를 사용하지 않고 제조된 필름의 경우, 내구성 및 내열성이 좋지 않아 열처리 후 인장강도 및 모듈러스의 변화율이 높았으며, 특히 황색도가 매우 저하되었다.

Claims (17)

  1. 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지;
    페놀계 제 1 산화방지제; 및
    하기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 포함하는, 폴리에스테르 수지 펠릿(pellet):
    [화학식 1]
    Figure PCTKR2022000707-appb-I000025
    [화학식 2]
    Figure PCTKR2022000707-appb-I000026
    상기 화학식 1 및 2에 있어서,
    R1 내지 R3는 각각 독립적으로 C1 내지 C10의 알킬기로 치환된 아릴기이고,
    R4 및 R5는 각각 독립적으로 C1 내지 C20의 아릴알킬기로 치환된 아릴기이다.
  2. 제 1 항에 있어서,
    상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 1 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함하고, 상기 제 2 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함하는, 폴리에스테르 수지 펠릿.
  3. 제 1 항에 있어서,
    상기 제 1 산화방지제 : 상기 제 2 산화방지제의 중량비가 1 : 0.5 내지 4.0인, 폴리에스테르 수지 펠릿.
  4. 제 1 항에 있어서,
    하기 화학식 3으로 표시되는 제 3 산화방지제를 추가로 포함하는, 폴리에스테르 수지 펠릿:
    [화학식 3]
    Figure PCTKR2022000707-appb-I000027
    상기 화학식 3에 있어서,
    R10은 C1 내지 C20의 알킬기이고,
    X1은 C(RA)m이고,
    RA는 수소; 또는 C1 내지 C10의 알킬기이고,
    n은 1 내지 4의 정수이고, m은 0 내지 3의 정수이고, n + m = 4이다.
  5. 제 4 항에 있어서,
    상기 폴리에스테르 수지 펠릿의 총 중량을 기준으로 상기 제 1 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함하고, 상기 제 2 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함하고, 상기 제 3 산화방지제를 0.05 중량% 내지 1.0 중량%로 포함하는, 폴리에스테르 수지 펠릿.
  6. 제 5 항에 있어서,
    상기 제 1 산화방지제 : 제 2 산화방지제 : 제 3 산화방지제의 중량비가 1 : 0.5 내지 1.5 : 0.5 내지 1.5인, 폴리에스테르 수지 펠릿.
  7. 제 1 항에 있어서,
    상기 디올 성분이 시클로헥산디메탄올 또는 이의 유도체를 70 몰% 이상으로 포함하고,
    상기 디카르복실산 성분이 70 몰% 내지 99 몰%의 테레프탈산 및 1 몰% 내지 30 몰%의 이소프탈산을 포함하는, 폴리에스테르 수지 펠릿.
  8. 제 1 항에 있어서,
    상기 폴리에스테르 수지 펠릿이 카본블랙, 산화 티타늄, 불용성 아조계, 프탈로시아닌계 및 폴리아조계로 이루어진 군으로부터 선택된 1종 이상의 안료를 포함하는, 폴리에스테르 수지 펠릿.
  9. 제 1 항에 있어서,
    황색도(Y.I)가 6 이하이고, L*이 55 이상이고, a*이 -0.5 이하이고, b*이 8 이하인, 폴리에스테르 수지 펠릿.
  10. 디올 성분으로 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 테레프탈산 및 이소프탈산을 포함하는 폴리에스테르 수지를 제조하는 단계;
    상기 폴리에스테르 수지에 페놀계 제 1 산화방지제, 및 하기 화학식 1 또는 2로 표시되는 제 2 산화방지제를 혼합하는 단계;
    상기 혼합물을 용융압출하여 미연신 시트를 제조하는 단계;
    상기 미연신 시트를 제 1 방향으로 1차 연신하고, 상기 제 1 방향과 수직한 제 2 방향으로 2차 연신하여 연신 시트를 제조하는 단계; 및
    상기 연신 시트를 200℃ 내지 260℃에서 열고정하는 단계를 포함하는, 폴리에스테르 필름의 제조 방법:
    [화학식 1]
    Figure PCTKR2022000707-appb-I000028
    [화학식 2]
    Figure PCTKR2022000707-appb-I000029
    상기 화학식 1 및 2에 있어서,
    R1 내지 R3는 각각 독립적으로 C1 내지 C10의 알킬기로 치환된 아릴기이고,
    R4 및 R5는 각각 독립적으로 C1 내지 C20의 아릴알킬기로 치환된 아릴기이다.
  11. 제 10 항에 있어서,
    상기 혼합 단계가,
    상기 폴리에스테르 수지에 페놀계 제 1 산화방지제, 상기 화학식 1 또는 2로 표시되는 제 2 산화방지제, 및 하기 화학식 3으로 표시되는 제 3 산화방지제를 혼합하는, 폴리에스테르 필름의 제조 방법:
    [화학식 3]
    Figure PCTKR2022000707-appb-I000030
    상기 화학식 3에 있어서,
    R10은 C1 내지 C20의 알킬기이고,
    X1은 C(RA)m이고,
    RA는 수소; 또는 C1 내지 C10의 알킬기이고,
    n은 1 내지 4의 정수이고, m은 0 내지 3의 정수이고, n + m = 4이다.
  12. 제 11 항에 있어서,
    상기 혼합 단계가,
    상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제 및 상기 제 2 산화방지제와 1차 혼합하거나, 상기 폴리에스테르 수지를 상기 페놀계 제 1 산화방지제, 상기 제 2 산화방지제 및 상기 제 3 산화방지제와 1차 혼합하는 단계; 및
    원료 수지(base resin)에 상기 1차 혼합물을 2차 혼합하는 단계를 포함하고,
    상기 2차 혼합 단계가 상기 1차 혼합물을 5 중량부 내지 50 중량부로 혼합하는, 폴리에스테르 필름의 제조 방법.
  13. 제 10 항에 있어서,
    상기 폴리에스테르 수지가 폐폴리에스테르 수지 시트를 분쇄한 것인, 폴리에스테르 필름의 제조 방법.
  14. 디올 성분으로 70 몰% 이상의 시클로헥산디메탄올 또는 이의 유도체를 포함하고, 디카르복실산 성분으로 70 몰% 내지 99 몰%의 테레프탈산 및 1 몰% 내지 30 몰%의 이소프탈산을 포함하는 폴리에스테르 수지를 포함하고,
    90 이상의 L*, 0.1 이하의 a* 및 4.0 이하의 b*을 갖거나, 3 이하의 황색도(Y.I.)를 갖는, 폴리에스테르 필름.
  15. 제 14 항에 있어서,
    고유점도(IV)가 0.65 dl/g 이상이고, 인장강도가 3.5 kgf/mm2 이상이고, 모듈러스가 220 kgf/mm2 이상이고, 헤이즈가 11% 이하인, 폴리에스테르 필름.
  16. 제 14 항에 있어서,
    하기 식 1에 따른 황색도의 변화율이 1,000% 이하인, 폴리에스테르 필름:
    [식 1]
    Figure PCTKR2022000707-appb-I000031
    상기 식 1에 있에서,
    HT1은 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리하기 전의 측정값이고, HT2는 상기 폴리에스테르 필름을 250℃에서 30분 동안 열처리한 후의 측정값이다.
  17. 제 16 항에 있어서,
    상기 식 1에 따른 인장강도 변화율이 -80% 이상이고, 상기 식 1 에 따른 모듈러스의 변화율이 -10% 이상인, 폴리에스테르 필름.
PCT/KR2022/000707 2021-02-05 2022-01-14 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법 WO2022169129A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020210017040A KR102514285B1 (ko) 2021-02-05 2021-02-05 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
KR10-2021-0017039 2021-02-05
KR10-2021-0017040 2021-02-05
KR1020210017041A KR102514280B1 (ko) 2021-02-05 2021-02-05 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
KR1020210017039A KR20220113597A (ko) 2021-02-05 2021-02-05 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
KR10-2021-0017041 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022169129A1 true WO2022169129A1 (ko) 2022-08-11

Family

ID=82741334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000707 WO2022169129A1 (ko) 2021-02-05 2022-01-14 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법

Country Status (2)

Country Link
TW (1) TWI804171B (ko)
WO (1) WO2022169129A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067830A (ja) * 2002-08-05 2004-03-04 Mitsubishi Gas Chem Co Inc ポリエステル樹脂組成物
KR20090041974A (ko) * 2007-10-25 2009-04-29 에스케이케미칼주식회사 색상이 우수한 고투명성 1,4-사이클로헥산디메탄올 공중합폴리에스테르 수지 및 그 제조방법
WO2019018340A1 (en) * 2017-07-20 2019-01-24 Eastman Chemical Company POLYMER COMPOSITIONS HAVING IMPROVED THERMAL STABILITY, COLOR AND / OR FLUAGE PROPERTIES
CN110272563A (zh) * 2019-06-27 2019-09-24 江苏极易新材料有限公司 一种具有更好改善聚合物加工及长期老化变黄的复合抗氧剂制备方法
JP2021006639A (ja) * 2018-01-24 2021-01-21 大日本印刷株式会社 ポリエステル樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796764B1 (ko) * 2011-01-31 2017-11-10 에스케이케미칼주식회사 공중합 폴리에스테르 수지 조성물 및 그 제조방법
WO2017086334A1 (ja) * 2015-11-16 2017-05-26 株式会社クラレ Led反射板用ポリエステル組成物、led反射板、該反射板を備える発光装置
KR20200089585A (ko) * 2019-01-17 2020-07-27 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067830A (ja) * 2002-08-05 2004-03-04 Mitsubishi Gas Chem Co Inc ポリエステル樹脂組成物
KR20090041974A (ko) * 2007-10-25 2009-04-29 에스케이케미칼주식회사 색상이 우수한 고투명성 1,4-사이클로헥산디메탄올 공중합폴리에스테르 수지 및 그 제조방법
WO2019018340A1 (en) * 2017-07-20 2019-01-24 Eastman Chemical Company POLYMER COMPOSITIONS HAVING IMPROVED THERMAL STABILITY, COLOR AND / OR FLUAGE PROPERTIES
JP2021006639A (ja) * 2018-01-24 2021-01-21 大日本印刷株式会社 ポリエステル樹脂組成物
CN110272563A (zh) * 2019-06-27 2019-09-24 江苏极易新材料有限公司 一种具有更好改善聚合物加工及长期老化变黄的复合抗氧剂制备方法

Also Published As

Publication number Publication date
TW202235478A (zh) 2022-09-16
TWI804171B (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2020231214A1 (ko) 유기발광소자
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2010147318A2 (ko) 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2023018307A1 (ko) 수지 및 이의 제조방법, 수지 조성물 및 성형품
WO2022265240A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2018124459A1 (ko) 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
WO2013048156A9 (ko) 수분산 조성물 및 이를 이용한 광학필름
WO2016085087A9 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2022169129A1 (ko) 폴리에스테르 수지 펠릿, 폴리에스테르 필름, 및 이의 제조 방법
WO2023033596A1 (ko) 수지, 이의 제조방법, 수지 조성물 및 성형품
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021085938A1 (ko) 폴리에스테르계 필름 및 이를 이용한 폴리에스테르계 용기의 재생 방법
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2023121283A1 (ko) 공중합 폴리에스테르 수지 및 이의 제조 방법
WO2022071675A1 (ko) 폴리아마이드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치
WO2024085502A1 (ko) 폴리에스테르아미드 수지를 포함하는 수지 조성물 및 이의 성형품
WO2023277647A1 (ko) 광학 필름 및 이를 포함하는 패널
WO2024071980A1 (ko) 고굴절률을 갖는 잔텐 유도체 화합물 및 이를 포함하는 (공)중합체
WO2023090677A1 (ko) 재사용 비스-2-히드록시에틸테레프탈레이트를 사용한 폴리에스테르 공중합체의 제조 방법
WO2021261848A1 (ko) 간섭 무늬가 개선된 다층 구조의 필름 및 이를 포함하는 표시장치
WO2024043663A1 (ko) 폴리카보네이트 수지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749883

Country of ref document: EP

Kind code of ref document: A1