WO2013048156A9 - 수분산 조성물 및 이를 이용한 광학필름 - Google Patents

수분산 조성물 및 이를 이용한 광학필름 Download PDF

Info

Publication number
WO2013048156A9
WO2013048156A9 PCT/KR2012/007839 KR2012007839W WO2013048156A9 WO 2013048156 A9 WO2013048156 A9 WO 2013048156A9 KR 2012007839 W KR2012007839 W KR 2012007839W WO 2013048156 A9 WO2013048156 A9 WO 2013048156A9
Authority
WO
WIPO (PCT)
Prior art keywords
weight
water
dispersion composition
film
water dispersion
Prior art date
Application number
PCT/KR2012/007839
Other languages
English (en)
French (fr)
Other versions
WO2013048156A3 (ko
WO2013048156A2 (ko
Inventor
임미소
최성란
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110100026A external-priority patent/KR101557938B1/ko
Priority claimed from KR1020110100075A external-priority patent/KR101656267B1/ko
Priority claimed from KR1020120070530A external-priority patent/KR101923938B1/ko
Priority claimed from KR1020120106469A external-priority patent/KR101945844B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2014533207A priority Critical patent/JP5864760B2/ja
Priority to CN201280048254.XA priority patent/CN103842854B/zh
Publication of WO2013048156A2 publication Critical patent/WO2013048156A2/ko
Publication of WO2013048156A9 publication Critical patent/WO2013048156A9/ko
Publication of WO2013048156A3 publication Critical patent/WO2013048156A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to an aqueous dispersion composition and an optical film using the same. More particularly, the present invention relates to an aqueous dispersion composition and an optical film using the same having high refractive index, improved rainbow phenomenon, and excellent adhesion under high temperature and high humidity. In addition, the present invention relates to an optical film having no interference fringe phenomenon and having a high transmittance and a low haze.
  • An optical film is a film used as an optical member for display, and is used as an optical material for LCD BLU, or as an optical member for protecting a surface of various displays such as LCD, PDP, and touch panel.
  • Such optical films require excellent transparency and visibility, and use biaxially stretched polyester films having excellent mechanical and electrical properties as base films.
  • biaxially stretched polyester films have excellent dimensional stability, thickness uniformity, and optical transparency, so that they are widely used not only for optics but also for various industrial materials.
  • the surface hardness is low, and the wear resistance or scratch resistance is insufficient, so that the surface damage is easily caused by friction or contact with an object when used as an optical member of various displays.
  • a hard coating layer is laminated on the film surface, and a primer layer is formed as an intermediate layer in order to improve adhesion between the polyester film as a substrate and the hard coating layer.
  • the primer layer is generally formed of a copolyester-based resin having excellent adhesion with a polyester film to form a primer layer.
  • the copolyester-based resin when used alone, the adhesion with the polyester base film is sufficient, but when used after various post-processing treatments such as a prism lens, an antireflection layer, or a hard coating layer, the copolyester-based resin is used. Insufficient In order to compensate for this, it is excellent in easily adhesiveness, flexibility and abrasion resistance when producing polyester, and has a strong adhesiveness, so that the adhesive layer is improved by coating a primer layer using a polyurethane-based resin which is used in many fields requiring adhesiveness. How to make is studied.
  • Patent Document 1 Republic of Korea Patent No. 10-1050216 was to improve the durability by forming a polymer network by applying a crosslinking agent.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-110091 uses a water dispersion of a polyester resin, and at this time, a fluorene-based compound is used to improve the adhesion with the base film Is disclosed.
  • the glass transition temperature (Tg) rises rapidly, so that the film is not sufficiently deteriorated at the heat treatment temperature when the film is manufactured. Cracks in or left as domains, clouding occurs in the film, making it unsuitable for use as an optical film.
  • an acrylic resin or a urethane resin is commonly used as an intermediate layer.
  • the above resin when the primer coating layer is formed, since the refractive index is about 1.5, it is biased toward the refractive index of the hard coating layer at 1.64 which is the surface refractive index of the biaxially stretched polyester film and 1.52 which is the refractive index of the conventional hard coating layer. Accordingly, the optical interference phenomenon caused by the high refractive index difference between the hard coating layer and the polyester film cannot be removed, and the optical interference phenomenon reduces eye fatigue and screen visibility when applied to the display member.
  • the present applicant coats a polyurethane coating composition including a polyurethane binder having a refractive index of 1.54 to 1.59 in one surface of a base film in Korean Laid-Open Patent No. 10-2011-0034784.
  • a polyurethane coating composition including a polyurethane binder having a refractive index of 1.54 to 1.59 in one surface of a base film in Korean Laid-Open Patent No. 10-2011-0034784.
  • an optical film coated with an acrylic coating composition comprising an acrylic binder having a refractive index of 1.4 to 1.5 on a surface.
  • the preceding invention is to adjust the refractive index by changing the structure of the isocyanate used in the polyurethane coating composition, it was confirmed that the rainbow phenomenon is improved.
  • Korean Patent No. 10-0994051 includes a hard coating layer coated with a hard coating composition containing particles having an average particle diameter of 1 ⁇ 30 ⁇ m, the hard coating layer is 500 A hard coating film having a reflectance minimum wavelength of ⁇ ⁇ 50 ⁇ and a refractive index of 1.58 ⁇ 0.1 is disclosed.
  • the above-described invention is to adjust the refractive index by adding an organic bead selected from silicone resin and acrylic resin beads to the hard coating layer.
  • the organic bead is used for the hard coating layer, the transparency of the hard coating layer itself may be degraded, thereby causing a problem of poor visibility.
  • An object of the present invention is to provide an aqueous dispersion composition having excellent adhesion at high temperature and high humidity, a high refractive index and low glass transition temperature, and an optical film coated with the aqueous dispersion composition.
  • the present invention is to provide an aqueous dispersion composition having excellent adhesive strength and improved rainbow phenomenon and optical properties by increasing the crosslinking density without using a crosslinking agent and an optical film coated with the aqueous dispersion composition.
  • the present invention is to provide a polyester optical film having no primer, cracks, domains on the surface of the film during the film, in particular, optical properties such as rainbow phenomenon, and has excellent adhesion under high temperature and high humidity.
  • the present invention is to provide a primer coating composition having a medium refractive index of the polyester film and the hard coating layer having a refractive index of the base film by combining the polyester resin and the inorganic particles, and on one or both sides of the polyester base film By applying to form a primer coating layer to provide an optical film with improved rainbow phenomenon.
  • the present invention relates to a water dispersion composition and an optical film using the same.
  • the present invention provides a primer coating layer coated with a coating composition having a total refractive index of 1.56 to 1.6, including a polyester base film, a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2 on one or both surfaces thereof. It includes, and relates to an optical film having a dry coating thickness of 50 ⁇ 150nm of the primer coating layer.
  • the inorganic particles are preferably used having an average particle diameter of 1 ⁇ 50nm.
  • the inorganic particles in the present invention it is preferable to use a surface-modified zirconia.
  • the surface-modified zirconia has an acyl group or an alkylate group on its surface, and Na + is preferably used as the counter ion.
  • the present invention may further include an acrylic resin coating layer having a refractive index of 1.51 to 1.53 on one or both surfaces of the primer coating layer.
  • the thickness of the acrylic resin coating layer in the present invention is preferably 1 ⁇ 10 ⁇ m.
  • haze when the acrylic resin coating layer is formed on one surface, haze is 1.0 or less, total light transmittance is 91% or more, and when the acrylic resin coating layer is formed on both surfaces, haze is 0.5% or less, and the total light transmittance is 92% or more. Can be satisfied.
  • the present invention is a first water dispersion composition
  • a water-dispersible polyurethane resin consisting of 10 to 75% by weight of a linear polymer having two terminal groups and 25 to 90% by weight of a branched polymer having three or more terminal groups
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • It relates to a water dispersion composition for primer coating selected from the third water dispersion composition in which the first water dispersion composition and the second water dispersion composition are mixed.
  • the terminal group of the water-dispersible polyurethane resin may be one part or all blocked by the inorganic acid salt group.
  • the water-dispersible polyurethane resin is prepared by reacting 39 to 45% by weight of polyol, 0.3 to 1.2% by weight of trimethylol propane and 50 to 57% by weight of isocyanate compound to prepare a prepolymer having an isocyanate as a terminal group, and then preparing an inorganic acid salt of 3 to 3%. By reacting 4% by weight may be prepared by blocking the ionic group at the end of the isocyanate.
  • the water dispersible polyurethane resin may have a weight average molecular weight of 10,000 ⁇ 20,000.
  • the first water dispersion composition is a water dispersible polyurethane binder including the water-dispersible polyurethane resin and water 5 to 10% by weight of a water-dispersible polyurethane binder having a solid content of 10 to 30% by weight, 0.1 to 0.5% by weight of a silicone-based wetting agent, colloidal silica particles 0.1 to 0.5% by weight and may include a balance of water.
  • the colloidal silica particles may have an average particle diameter of 50 ⁇ 1000nm.
  • the aromatic dicarboxylic acid is dimethyl terephthalate, terephthalic acid, isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,3-cyclo Any one or a mixture of two or more selected from pentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, and the aromatic dicarboxylic acid comprising the sulfonate is sodium 2,5-dicarboxybenzenesulfonate, 5 -Any one or a mixture of two or more selected from sulfone isophthalic acid, 2-sulfone isophthalic acid, 4-sulfone isophthalic acid, 4-sulfone naphthalene-2,6-dicarboxylic acid, and the diol compound is ethylene glycol, diethylene Glycol, triethylene glycol, tetraethylene glycol,
  • the polyester resin may have a refractive index of 1.58 to 1.64 and a glass transition temperature of 40 to 60 ° C.
  • the second water dispersion composition comprises 10 to 40% by weight of the water dispersible polyester binder having a solid content of 10 to 40% by weight, including the polyester resin and water, 0.1 to 0.5% by weight of the wetting agent, and an average particle diameter of 100 to 200 nm. Including 0.1 to 1.0% by weight of phosphorus silica, the total solid content may be 2 to 10% by weight.
  • the second water dispersion composition may further include a hydrophilic organic solvent and a surfactant.
  • the third water dispersion composition includes 5 to 10% by weight of the mixture of the first and second water dispersion compositions, 0.1 to 0.5% by weight of the silicone-based wetting agent, 0.1 to 0.5% by weight of colloidal silica particles, and the balance of water. It may be.
  • the mixture of the first water dispersion composition and the second water dispersion composition may be a mixture of a first water dispersion composition: a second water dispersion composition in a weight ratio of 1: 9 to 5: 5.
  • the colloidal silica particles may have an average particle diameter of 50 ⁇ 1000nm.
  • the third water dispersion composition may have a refractive index of 1.57 to 1.62.
  • the present invention also relates to an optical film including a primer coating layer formed by applying any one of the water dispersion composition selected from the first water dispersion composition, the second water dispersion composition, or the third water dispersion composition.
  • the dry coating thickness of the primer coating layer may be 50 ⁇ 100 nm.
  • the primer coating layer has a swelling degree of 35 to 100 measured by the following formula 1, the gel fraction (gel fraction) measured by the following formula 2 is 75 to 85, the glass transition temperature satisfies all the physical properties of 60 °C or more Can be.
  • the weight after standing means the weight measured after soaking the dry coating film of about 1g in 50g of distilled water and left at 70 °C for 24 hours.
  • the weight after drying refers to the weight measured after soaking about 1g of the dry coating film in 50g of distilled water, and leaving it at 70 ° C. for 24 hours, and drying the left coating film at 120 ° C. for 3 hours.
  • the optical film according to the present invention has an adhesive force suitable for use as a hard coating film and has a rainbow improving effect.
  • the present invention can satisfy the excellent optical properties because the total light transmittance is higher than 91%, and the haze is lower than 1% when the hard coating layer further comprises.
  • the water dispersion composition according to the present invention has a high refractive index, excellent moisture resistance under high temperature and high humidity, and has an effect of improving the rainbow phenomenon.
  • the optical film according to the present invention can adjust the refractive index and adhesive force by adjusting the content ratio of the first water dispersion composition and the second water dispersion composition, when applying the coating composition by the in-line process, by the stretching process
  • the coating thickness can be adjusted to the advantage of the process.
  • the refractive index can be adjusted to improve the rainbow phenomenon, and by introducing a prepolymer having a trifunctional group of the polyurethane composition to increase the crosslinking density, there is an effect excellent in moisture resistance under high temperature and high humidity.
  • FIG. 2 is a cross-sectional view showing a second specific example of the optical film of the first aspect of the present invention.
  • FIG 3 is a cross-sectional view showing a third specific example of the optical film of the first aspect of the present invention.
  • FIG. 4 is a cross-sectional view showing a fourth specific example of the optical film of the first aspect of the present invention.
  • FIG. 5 is a photograph showing the evaluation criteria according to the blocking evaluation method of the present invention.
  • a first aspect of the present invention is a coating composition having a total refractive index of 1.56 to 1.6, including a polyester base film, a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2 on one or both surfaces thereof. It includes an primer coating layer, and relates to an optical film having a dry coating thickness of the primer coating layer is 50 ⁇ 150nm.
  • the inorganic particles may have an average particle diameter of 1 ⁇ 50nm.
  • the inorganic particles may be surface modified zirconia.
  • the surface-modified zirconia may have an acyl group or an alkylate group on its surface, and Na + may be used as the counter ion.
  • the coating composition is 5 to 30% by weight of the polyester resin having a refractive index of 1.4 to 1.6, 0.1 to 0.4% by weight of the wetting agent, 0.1 to 0.5% by weight of silica having an average particle diameter of 100 to 200nm and solid content
  • the total solids content may be 2 to 10 wt%, including 0.5 to 30 wt% of the dispersed inorganic particles having a content of 5 to 40 wt%.
  • first aspect of the present invention may further include an acrylic resin coating layer having a refractive index of 1.51 ⁇ 1.53 on one side or both sides of the primer coating layer.
  • the dry coating thickness of the acrylic resin coating layer may be 1 ⁇ 10 ⁇ m.
  • haze when the acrylic resin coating layer is formed on one surface, haze is 1.0 or less, total light transmittance is 91% or more, and when the acrylic resin coating layer is formed on both sides, haze is 0.5% or less, and the total light transmittance is It may be more than 92%.
  • the inventors of the present invention have an organic binder having a refractive index of 1.4 to 1.6 and a refractive index of 1.8 in order to have a refractive index of 1.64 which is a refractive index of a polyester film as a base film and a refractive index of 1.52 which is a refractive index of a hard coating layer.
  • the coating composition is adjusted so that the total refractive index of the coating composition is 1.56 to 1.6, more preferably 1.58, including the inorganic particles of ⁇ 2.2, the rainbow phenomenon is improved because the refractive index of the primer coating layer shows a refractive index range similar to that of the base film.
  • the discovery has completed the first aspect of the invention.
  • the average particle diameter of the inorganic particles when used in the range of 50 nm or less, specifically 1 to 50 nm, when the hard coat layer is formed on one surface after the manufacture of the polyester film, the total light transmittance is 91% or more, and the haze is 1%.
  • the first aspect of the present invention was found to satisfy the following physical properties, and to find that the optical properties of the optical coating were improved by more than 92% when the hard coating layer was formed on both surfaces, and the haze was 0.5% or less. To complete.
  • the first embodiment of the present invention uses polyester resin as the organic binder, zirconia sol as the inorganic particles, and improves the coagulation with Binder by using surface-modified zirconia.
  • the pot life of the coating composition was found to be suitable for the ester film manufacturing process to complete the first aspect of the present invention.
  • the first embodiment of the first embodiment of the present invention is a polyester base film 10, as shown in Figure 1 and its refractive index is 1.4 ⁇ 1.6 on one surface thereof It relates to an optical polyester film comprising a primer coating layer 20 coated with a composition having a total refractive index of 1.56 to 1.6, including a phosphorus polyester resin and inorganic particles having a refractive index of 1.8 to 2.2.
  • the second embodiment of the first aspect of the present invention is a polyester base film 10, a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2 on both surfaces thereof. It relates to an optical polyester film comprising a primer coating layer (20a, 20b) coated with a composition having a total refractive index of 1.56 ⁇ 1.6, including.
  • the third embodiment of the first aspect of the present invention includes a base film 10, a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2 on one surface thereof. It relates to an optical polyester film comprising a primer coating layer 20 and an acrylic resin coating layer 30 coated with a composition having a total refractive index of 1.56 to 1.6.
  • the polyester base film 10 As a fourth embodiment of the first aspect of the present invention, as shown in Figure 4, the polyester base film 10, a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2 on both sides thereof It relates to an optical polyester film comprising a primer coating layer (20a, 20b) and the acrylic resin coating layer (30a, 30b) coated with a composition having a total refractive index of 1.56 ⁇ 1.6, including.
  • the base film used in the first aspect of the present invention is preferably a polyester film, more specifically, a polyethylene terephthalate film because of its excellent light transmittance.
  • the polyethylene terephthalate film is preferably a stretched film, it is possible to use a uniaxial or biaxially stretched film.
  • the base film may have a thickness of 25 ⁇ m to 250 ⁇ m, but is not limited thereto.
  • the primer coating layer comprises a coating composition having a total refractive index of 1.56 to 1.6, including a polyester resin having a refractive index of 1.4 to 1.6 and inorganic particles having a refractive index of 1.8 to 2.2. Since the refractive index is in the range of 1.56 to 1.6, other additives added during the preparation of the water dispersion emulsion may be prepared and applied to the water dispersion emulsion having a refractive index similar to that of the polyester base film.
  • the polyester resin is preferably used in the range of the refractive index is 1.4 ⁇ 1.6.
  • the adhesion to the base film can be improved, and the use of inorganic particles can be reduced by reducing the amount of inorganic particles as a result of having a higher refractive index value than other resin compositions, and the defective products generated in the film manufacturing process can be reduced.
  • the color change of the chip and the deterioration of physical properties are small, which reduces the cost of the film.
  • the inorganic particles preferably use inorganic particles having a refractive index of 1.8 to 2.2, and are not limited, but specifically, for example, one or two or more of ZnO, TiO 2 , CeO 2 , SnO 2 , ZrO 2 .
  • zirconia (ZrO 2 ) is used.
  • the use of surface-modified zirconia may improve the coagulation phenomenon with the polyester resin, which is a binder resin, and increase the stability of the crude liquid.
  • the surface modified zirconia preferably has an acyl group or an alkylate group on its surface, and Na + is preferably used as the counter ion.
  • the acyl group includes an acetyl group, propionyl group, malonyl group, benzoyl group and the like.
  • the method for producing the surface-modified zirconia is a zirconium salt (oxy zirconium chloride, etc.) is reacted with an alkali such as sodium hydroxide, potassium hydroxide, ammonia in water at 10 ⁇ 50 °C, to obtain a slurry of zirconium oxide particles Subsequently, the slurry is filtered and washed, and 1 to 3 mol of organic acids such as carboxylic acid, hydroxycarboxylic acid, formic acid and acetic acid are added to 1 mol of zirconium, and the surface may be heat treated at a water temperature of 170 ° C. or higher.
  • an alkali such as sodium hydroxide, potassium hydroxide, ammonia in water at 10 ⁇ 50 °C
  • Na + is not limited to the counter ions. Since the ionizer of the polyester binder used as the main binder is NaSO 3 , it is preferable to use Na + ions to prevent the ion balance from being broken. Aggregation of the polyester binder may occur when other ionizers enter.
  • the thing whose average particle diameter is 1-50 nm. More preferably, the average particle diameter is 1 to 10 nm. If less than 1nm, the particle aggregation phenomenon is further accelerated to decrease the pot life of the composition, if the size of the inorganic particles exceeds 50nm may increase the optical properties, especially haze of the optical film.
  • the inorganic particles may be used in the form of a water-dispersed sol having a solid content of 5 to 40% by weight, wherein the pH is preferably 7 to 9, more preferably 8 to 8.5.
  • the solid content is 5% by weight or less, it is difficult to add a sufficient amount of inorganic particles, and when the content is 40% by weight or more, agglomeration may occur in the inorganic particle raw material itself.
  • the first aspect of the present invention is characterized in that the coating composition including the polyester resin and the inorganic particles has a total refractive index of 1.56 to 1.6.
  • the refractive index is less than 1.56, the rainbow phenomenon is severe due to a large difference in refractive index with the base film.
  • the content of the high refractive particles must be higher than the range of the present invention, so that the appearance of the coating appearance is severe when the film is produced, and the commercialization is deteriorated due to the cost increase.
  • the refractive index is greater than 1.6, the optical interference phenomenon (Rainbow phenomenon) may become severe as the difference in refractive index with the hard coating layer increases.
  • the coating composition for forming the primer coating layer is water containing polyester resin, wetting agent, silica having an average particle diameter of 100 to 200 nm, and dispersed inorganic particles having a solid content of 5 to 40% by weight. It is preferably an acidic or water soluble composition.
  • the coating composition for primer coating is 5 to 30% by weight of polyester resin having a refractive index of 1.4 to 1.6, 0.1 to 0.4% by weight of wetting agent, 0.1 to 0.5% by weight of silica having an average particle diameter of 100 to 200 nm, and a solid content It is preferable to use a water dispersible or water soluble composition having a total solid content of 2 to 10% by weight, including 0.5 to 30% by weight of the dispersed inorganic particles of 5 to 40% by weight.
  • the coating method of the coating composition for forming the primer coating layer may be coated in an in-line coating applied to the surface during the stretching process of the polyester film, or the off-line coating after film production It is possible. It is also possible to combine both.
  • in-line coating is applied at the same time as the film forming, and thus manufacturing cost is reduced, and the thickness of the coating layer may be changed by extension magnification.
  • the first aspect of the present invention may further include an acrylic resin coating layer having a refractive index of 1.50 to 1.54, more preferably 1.51 to 1.53, on one or both surfaces of the primer coating layer as necessary.
  • the thickness of the acrylic resin coating layer is preferably 1 ⁇ 10 ⁇ m.
  • the acrylic resin coating layer may be used without limitation as long as the component to form a hard coating layer, specifically commercialized, for example, AIKA Z-711, etc. may be used, but is not limited thereto.
  • the present invention by satisfying the refractive index and thickness of the present invention when forming the primer coating layer, when the acrylic resin coating layer is formed on one side, haze is 1.0 or less, total light transmittance is 91% or more, the acrylic resin coating layer is formed on both sides In this case, the haze of 0.5% or less, the total light transmittance can satisfy the physical properties of 92% or more.
  • the total light transmittance of the entire film was measured using a total light transmittance meter (Nippon Denshoku 300A).
  • the water-dispersed polyester resin composition was applied to a polycarbonate film, dried, and measured at room temperature using an ABBE refractometer (DRGO, AT-550).
  • Liquid inorganic particles were added to 10-50% by weight in an aqueous resin having a refractive index of 1.52 in units of 10% by weight, coated on a polycarbonate film, dried, and then measured on a refractive index meter ABBE refractometer (ATAGO, DR-M2, @). 550) was measured at room temperature.
  • a refractive index meter ABBE refractometer ATAGO, DR-M2, @. 550
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength ranges from 500 to 600 nm, and the ripple amplitude is less than 1%.
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength bands from 500 to 600 nm, and the ripple amplitude is less than 3%.
  • the adhesive strength at room temperature after the hard coating treatment on one surface coated with the coating composition and the adhesive strength between the hard coating layer and the easily adhesive layer after high temperature hot water treatment was evaluated.
  • the cross section of the film was measured by SEM (Hitachi S-4300) by specifying 5 points at 1m intervals in the vertical direction (TD) of the machine direction. was calculated.
  • Nikkiso UPA-UT151 1% of the liquid sample was measured by the average value.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the coating composition 1 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C. and stretched 3.5 times in a transverse direction (TD) through preheating and drying.
  • heat treatment was performed at 235 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a 188 ⁇ m biaxially oriented film in which a primer coating layer was formed on both sides as shown in FIG.
  • the primer coating layer had a thickness of 90 nm for the first coating layer and 90 nm for the second coating layer, and their refractive index was 1.58.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 80 nm for the first coating layer and 80 nm for the second coating layer, and their refractive index was 1.59.
  • aqueous polyester binder 22 wt% of aqueous polyester binder (refractive index 1.54), 0.3 wt% of silicone wetting agent (Dow Corning, polyester siloxane copolymer), Zirconia Sol (solid content of 30 wt%) with an average particle diameter of 6 nm and a refractive index of 2.1 %, Surface treatment using Soduim Citrate) 4% by weight, 0.3% by weight of colloidal silica particles having an average particle diameter of 140 nm were added to water, followed by stirring for 3 hours to prepare a polyester coating composition having a total solid content of 6% by weight. It was.
  • the refractive index of the composition was 1.57.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 104 nm for the first coating layer and 104 nm for the second coating layer, and their refractive index was 1.57.
  • the physical properties of the optical film thus obtained are shown in Table 1 below.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 62 nm for the first coating layer and 62 nm for the second coating layer, and their refractive index was 1.6.
  • the physical properties of the optical film thus obtained are shown in Table 1 below.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the coating composition (1) prepared in Example 1 was coated on one surface by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, followed by a transverse direction (TD). Stretched 3.5 times.
  • the primer coating layer had a thickness of 92 nm and a refractive index of 1.58.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the coating composition 2 prepared in Example 2 was coated on one surface by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and then to a transverse direction (TD). Stretched 3.5 times.
  • the primer coating layer had a thickness of 85 nm and a refractive index of 1.59.
  • aqueous polyester binder 20% by weight of an aqueous polyester binder (refractive index 1.54), 0.3% by weight of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer), a zirconia sol having a mean particle size of 65 nm and a refractive index of 2.1, Zirconia Sol (CIK), ZRW E-15) 8 wt%, 0.3 wt% of colloidal silica particles having an average particle diameter of 140nm was added to water, followed by stirring for 3 hours to prepare a polyester coating composition having a total solid content of 5.5 wt%.
  • the refractive index of the composition was 1.58.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 89 nm for the first coating layer and 89 nm for the second coating layer, and their refractive index was 1.58.
  • the physical properties of the optical film thus obtained are shown in Table 1 below.
  • aqueous polyester binder 20 wt% of aqueous polyester binder (refractive index 1.54), 0.3 wt% of silicone wetting agent (Dow Corning, polyester siloxane copolymer), Zirconia Sol (solid content of 30 wt%) with an average particle diameter of 50 nm and a refractive index of 2.1 %, Surface treatment using Soduim Citrate) 8% by weight, 0.3% by weight of colloidal silica particles having an average particle diameter of 140 nm were added to water and stirred for 3 hours to prepare a polyester coating composition having a total solid content of 5.5% by weight. It was.
  • the refractive index of the composition was 1.58.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 89 nm for the first coating layer and 89 nm for the second coating layer, and their refractive index was 1.58.
  • the physical properties of the optical film thus obtained are shown in Table 1 below.
  • aqueous polyester binder 22 wt% of aqueous polyester binder (refractive index 1.54), 0.3 wt% of silicone wetting agent (Dow Corning, polyester siloxane copolymer), Zirconia Sol (solid content of 30 wt%) with an average particle diameter of 6 nm and a refractive index of 2.1 %, Surface treatment using Soduim Citrate) 3% by weight, 0.3% by weight of colloidal silica particles having an average particle diameter of 140 nm were added to water, followed by stirring for 3 hours to prepare a polyester coating composition having a total solid content of 6% by weight. It was.
  • the refractive index of the composition was 1.56.
  • a double-coated polyester film was prepared in the same manner as in Example 1, and the thickness of the primer coating layer was 95 nm for the first coating layer and 95 nm for the second coating layer, and their refractive index was 1.56.
  • the physical properties of the optical film thus obtained are shown in Table 1 below.
  • Example 1 Using the coating composition (1) prepared in Example 1, a double-coated polyester film was prepared in the same manner as in Example 1, the thickness of the primer coating layer was 50nm in the first coating layer, 50nm in the second coating layer, Their refractive index was 1.58. The physical properties of the optical film thus obtained are shown in Table 1 below.
  • Example 1 Using the coating composition (1) prepared in Example 1, a double-coated polyester film was prepared in the same manner as in Example 1, the thickness of the primer coating layer was 70nm in the first coating layer, 70nm in the second coating layer, Their refractive index was 1.58. The physical properties of the optical film thus obtained are shown in Table 1 below.
  • Example 1 Using the coating composition (1) prepared in Example 1, a double-coated polyester film was prepared in the same manner as in Example 1, the thickness of the primer coating layer was 120nm in the first coating layer, 120nm in the second coating layer, Their refractive index was 1.58. The physical properties of the optical film thus obtained are shown in Table 1 below.
  • Example 1 Using the coating composition (1) prepared in Example 1, a double-coated polyester film was prepared in the same manner as in Example 1, the thickness of the primer coating layer was 150nm in the first coating layer, 150nm in the second coating layer, Their refractive index was 1.58. The physical properties of the optical film thus obtained are shown in Table 1 below.
  • an aqueous acrylic binder (refractive index 1.44), 0.3% by weight of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer), Zirconia Sol (solid content 30% by weight) with an average particle diameter of 6 nm and a refractive index of 2.1 Surface treatment using, Soduim Citrate) 5% by weight, 0.3% by weight of colloidal silica particles having an average particle diameter of 140nm was added to water and stirred for 3 hours to prepare an acrylic coating composition having a total solid content of 5% by weight.
  • the refractive index of the composition was 1.53.
  • the total light transmittance (TT) of the polyester film coated with the primer coating composition of the present invention was 90.1 to 91.7%, and the haze was 0.73 to 1.74.
  • the haze was somewhat increased when the particle size was 65 ⁇ m.
  • a hard coating layer was formed on the primer coating layer of the film prepared in Examples 1 to 8.
  • the hard coating layer was used acrylic resin (AIKA, Z-711), the refractive index and the thickness was adjusted as shown in Table 2.
  • a hard coating layer was formed on the primer coating layer of the film prepared in Comparative Examples 1 to 3.
  • the hard coating layer was used acrylic resin (AIKA, KY-11), the refractive index and the thickness was adjusted as shown in Table 2.
  • a second aspect of the present invention is a polyurethane coating composition
  • a polyurethane coating composition comprising a water-dispersible polyurethane resin composed of 10 to 75% by weight of a linear polymer having two terminal groups and 25 to 90% by weight of a branched polymer having three or more terminal groups (hereinafter, ' A first water dispersion composition ').
  • the present invention is a water-dispersible polyurethane resin consisting of a polyester base film, 10 to 75% by weight linear polymer having two end groups on one or both sides of the base film and 25 to 90% by weight of a branched polymer having three or more end groups. It relates to an optical film comprising a primer layer formed by applying a polyurethane coating composition comprising a.
  • the terminal group is preferable because it includes an isocyanate group in which some or all of the terminal groups are blocked with an inorganic acid salt group, and thus has excellent water dispersibility.
  • the water-dispersible polyurethane resin is prepared by reacting 39 to 45% by weight of polyol, 0.3 to 1.2% by weight of trimethylol propane and 50 to 57% by weight of isocyanate compound to prepare a prepolymer having an isocyanate as an end group. Thereafter, it is preferable to use an inorganic acid salt prepared by reacting 3 to 4% by weight to block an ionic group at an isocyanate terminal.
  • the water-dispersible polyurethane resin has a weight average molecular weight of 10,000 to 20,000.
  • the polyurethane coating composition may include 5-10 wt% of a water-dispersible polyurethane binder having a solid content of 10-30 wt%, including the water-dispersible polyurethane resin and water, and a silicone-based wetting agent 0.1-0.5. Wt%, colloidal silica particles 0.1-0.5 wt% and the balance of water.
  • the colloidal silica particles use those having an average particle diameter of 50 to 1000 nm.
  • the dry coating thickness of the primer coating layer is preferably 50 to 100 nm.
  • Optical film according to the second aspect of the present invention has a swelling ratio (Swelling Ratio) measured by the following formula 1 35 ⁇ 100, the gel fraction (gel fraction) measured by the following formula 2 is 75 ⁇ 85, the glass transition It satisfies all the physical properties whose temperature is 60 degreeC or more. Since it is not swelled within the range of satisfying the physical properties, it has excellent adhesion between the base film and the primer coating layer, and afterwards, the adhesion with the process after laminating the functional layer shows excellent physical properties. That is, it is possible to form a primer coating layer excellent in adhesion even at high temperature and high humidity environment.
  • the weight after standing means the weight measured after soaking the dry coating film of about 1g in 50g of distilled water and left at 70 °C for 24 hours.
  • the weight after drying refers to the weight measured after soaking about 1g of the dry coating film in 50g of distilled water, and leaving it at 70 ° C. for 24 hours, and drying the left coating film at 120 ° C. for 3 hours.
  • the base film used in the second aspect of the present invention is preferably a polyester film, more specifically, polyethylene terephthalate or polyethylene naphthalate film because it is excellent in light transmittance, and may include additives or particles.
  • the polyethylene terephthalate film is preferably a stretched film, it is possible to use a uniaxial or biaxially stretched film.
  • the base film may have a thickness of 50 ⁇ m to 250 ⁇ m, but is not limited thereto.
  • the primer layer is formed on one side or both sides of the optical polymer substrate film, and exhibits excellent adhesion and easy adhesion to facilitate adhesion to other substrates.
  • the primer layer is characterized by using a polyurethane coating composition comprising a water-dispersible polyurethane resin.
  • the water-dispersible polyurethane resin is a branched polymer having at least three isocyanate functional groups as terminal groups, part or all of the isocyanate groups are blocked with an inorganic acid salt group, and more specifically, blocked with an inorganic salt such as sulfate, Two isocyanate functional groups are included, in which some or all of the isocyanate groups are blocked with inorganic acid groups, and more particularly include linear polymers blocked with inorganic salts such as sulfate.
  • the water-dispersible polyurethane resin is preferably used 10 to 75% by weight of the linear polymer and 25 to 90% by weight of the branched polymer.
  • the content of the branched polymer is less than 25% by weight, the swelling degree and gel fraction, which are the objects of the present invention, cannot be satisfied, and it is difficult to obtain a coating film having excellent adhesion under high temperature and high humidity.
  • the content of the branched polymer exceeds 90% by weight, the viscosity rises rapidly due to excessive gelation, making it difficult to prepare the water dispersion composition, and defects in surface appearance such as cracking on the surface when coating on the film surface This can happen.
  • the branched polymer means a resin having 3 or 3 or more isocyanate functional groups.
  • Polyurethane coating composition of the second aspect of the present invention includes the water-dispersible polyurethane resin and water 5-10% by weight of water-dispersible polyurethane binder having a solid content of 10-30% by weight, 0.1-0.5% by weight of silicone-based wetting agent %, Colloidal silica particles 0.1-0.5% by weight and the balance of water.
  • the water-dispersible polyurethane binder is preferably used to adjust the coating thickness to include a water-dispersible polyurethane resin and water in a solid content of 10 to 30% by weight, the content of which is poly It is preferable to use 5 to 10% by weight of the urethane coating composition.
  • the coating property is good at less than 5% by weight, it is difficult to implement the adhesive force, when more than 10% by weight may be excellent adhesion but difficult to implement the appearance and transparency of the coating.
  • a method of preparing the water-dispersible polyurethane resin may include preparing a prepolymer having an isocyanate as an end group by reacting 39 to 45 wt% of a polyol, 0.3 to 1.2 wt% of a trimethylol propane, and 50 to 57 wt% of an isocyanate compound. After that, it is preferable to use an inorganic acid salt prepared by blocking 3 to 4% by weight of an ionic group of sulfate at an isocyanate end, and the inorganic acid salt is not limited thereto.
  • the weight average molecular weight is not gelled in the range of 10,000 to 20,000, it is preferable because it is possible to obtain a coating film that is water dispersible and excellent in physical properties at high temperature and high humidity.
  • the weight average molecular weight can be measured using a GPC-MALS (Multi Angle Light Scattering) system (Wyatt, Inc.), the configuration of the MALS system is as follows.
  • GPC-MALS Multi Angle Light Scattering
  • the polyol may be a polyester-based polyol or a polyether-based polyol, preferably a polyester-based polyol.
  • Polyester-based polyols are polyols prepared from the reaction of carboxylic acids, sebacic acids or acid anhydrides with polyhydric alcohols. The type of the polyol is not limited, and it is preferable to use a polyester polyol having a weight average molecular weight of 600 to 3000.
  • Polyester-based polyols include polyols prepared from the reaction of carboxylic acid, sebacic acid or an acid anhydride with a polyhydric alcohol. The type of the polyol is not limited, and it is preferable to use a polyester polyol having a weight average molecular weight of 600 to 3000.
  • Its content is preferably 39 to 45% by weight.
  • the molecular weight is small, the primer layer is too hard, it is difficult to stretch, the coating appearance is not excellent, and when more than 45% by weight, the ILC layer is too soft (Soft) is poor blocking properties Can be.
  • the trimethylol propane is used to prepare a prepolymer having a trifunctional group, and it is preferable to use 0.3 to 1.2% by weight. In case of using less than 0.3% by weight, the crosslinking density decreases, and anti-blocking property is inferior, and in the case of using more than 1.2% by weight, the crosslinking density becomes too high and elongation deteriorates. This is not excellent and the adhesion may be bad.
  • the isocyanate compound is not limited but preferably hexamethylene diisocyanate is used.
  • the content can be prepared a prepolymer having a trifunctional group in the range using 50 to 57% by weight.
  • the inorganic acid salt is preferably used sodium hydrogen sulfate (Sodium Hydrogen Sulfate), the content is preferably used 3 to 4% by weight.
  • a silicone-based wetting agent and colloidal silica particles may be further used as an additive to facilitate heat-resistant processing on the coating property and the primer layer on the optical polymer base film.
  • colloidal silica particles are preferably used having an average particle diameter of 50 ⁇ 1000 nm.
  • the dry coating thickness of the primer layer is preferably 50 to 100 nm.
  • the coating method may be coated on an in-line coating applied to the surface during the stretching process of the polyester film, or may be off-line coating after film production. It is also possible to combine both.
  • in-line coating is applied at the same time as the film forming, and thus manufacturing cost is reduced, and the thickness of the coating layer may be changed by extension magnification.
  • 15 g of water-dispersible polyurethane binder is placed in a round bowl of 80 mm diameter and 15 mm height, and dried at 65 ° C. for 72 hours and 120 ° C. for 3 hours. After dipping 1 g of the dry coating film in 50 g of distilled water, the film was left for 24 hours at 70 ° C., and the swelling ratio was measured. Gel Fraction is measured by drying the coated film for 3 hours at 120 °C and recording the weight.
  • Tg measurement Using a DSC (using PerkinElmer DSC 7) instrument, measure in 2nd Run mode. 10-11 mg dry coating is measured using PerkinElmer DSC7.
  • 2nd Run. -40 degreeC-200 degreeC, and it measures on 20 degree-C / min conditions.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the polyurethane coating composition 1 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). . Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the polyurethane coating layer was 80 nm in the first coating layer, 80 nm in the second coating layer.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the polyurethane coating composition 2 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). . Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the polyurethane coating layer was 80 nm in the first coating layer, 80 nm in the second coating layer.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the polyurethane coating composition 3 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). . Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the polyurethane coating layer was 80 nm in the first coating layer, 80 nm in the second coating layer.
  • Example 23 according to the present invention was confirmed that the blocking is lowered at 100 °C or more in the normal humidity conditions, Example 24 and Example 25 is the blocking property up to 120 °C in the normal humidity conditions It was found that this was excellent.
  • Examples 23 and 24 according to the present invention had excellent blocking property up to 80 ° C., and Example 25 showed excellent blocking property up to 110 ° C.
  • a third aspect of the present invention relates to a polyester coating composition and a polyester film using the same.
  • the third aspect of the present invention provides 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, 1 to 10 mol% of aromatic dicarboxylic acid, and 1 to 10 mol of aromatic dicarboxylic acid including sulfonate %, 10 to 30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene of Formula 1, 30 to 60 mol% of diol compound, and 1 to 10 mol% of triglyceride compound represented by Formula 2
  • the present invention relates to a polyester coating composition containing a polycondensed polyester resin (hereinafter referred to as a 'second water dispersion composition').
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the inventors of the present invention are excellent in the adhesive strength with the polyester base film, and researched to introduce a primer layer with controlled interference fringe, polyester resin emulsion of the same series in order to increase the adhesive force with the polyester film as the base film
  • a refractive index of 1.58 or more, more preferably, a polyester ester having a refractive index of 1.58 to 1.64 was prepared.
  • the refractive index can be increased by using a compound having an aromatic structure as the carboxylic acid component and the glycol component when synthesizing the polyester resin. Specifically, when synthesized by adding bis [4 (2-hydroxyethoxy) phenyl] fluorene of Chemical Formula 1, it was confirmed that the refractive index was increased.
  • the aromatic compound can increase the refractive index, but at the same time, the glass transition temperature of the resin is increased, so that when the aqueous dispersion emulsion is prepared and used during film formation, the film is not sufficiently deteriorated at the stretching and heat treatment temperature of the film, so It has been found that cracks occur or cloudiness occurs due to the formation of domains.
  • the triglyceride compound represented by the formula (2) when synthesized by adding the triglyceride compound represented by the formula (2) to form a branch (branch) structure can lower the glass transition temperature, more preferably 1 It has been found that the refractive index is 1.58 to 1.64 in the range of ⁇ 10 mol%, and the polyester resin having a glass transition temperature of 40 to 60 ° C. can be synthesized.
  • the third aspect of the present invention was completed by discovering that an emulsion may be prepared and a primer coating layer may be used to prepare a polyester film, thereby providing a polyester film having excellent optical properties.
  • the aromatic dicarboxylic acid is dimethyl terephthalate, terephthalic acid, isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene Any one or a mixture of two or more selected from dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid can be used.
  • the aromatic dicarboxylic acid including the sulfonate is sodium 2,5-dicarboxy benzene sulfonate, 5-sulfoi isophthalic acid, 2-sulfon isophthalic acid (2- one or more selected from sulfoisophtalic acid, 4-sulfoisophtalic acid, 4-sulfo naphtalene-2,6-dicarboxylic acid Mixtures can be used.
  • the diol compound is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, propylene glycol, tripropylene glycol, 1,3-propane diol, 1,3-butane diol, propane diol , Bisphenol A, bisphenol B and the like can be used any one or a mixture of two or more.
  • the polyester resin may satisfy physical properties of having a refractive index of 1.58 to 1.64 and a glass transition temperature of 40 to 60 ° C.
  • the polyester coating composition may include a water dispersible polyester binder having a solid content of 10 to 40 wt%, including the polyester resin and water.
  • the polyester coating composition includes 10 to 40 wt% of a water dispersible polyester binder having a solid content of 10 to 40 wt%, including a polyester resin and water, and a wetting agent 0.1 to 0.5 wt% %, 0.1 to 1.0% by weight of silica having an average particle diameter of 100 to 200 nm, and the total solid content is preferably 2 to 10% by weight.
  • the water dispersion composition of the third aspect of the present invention may further include a hydrophilic organic solvent and a surfactant as necessary.
  • the polyester film comprising a primer coating layer coated with the water dispersion composition, more specifically, the polyester base film, and one or both of the poly It is a polyester film comprising a primer coating layer coated with an ester coating composition.
  • the water dispersion composition has a refractive index of 1.58 to 1.64, and a glass transition temperature of 40 to 60 ° C. If the refractive index is less than 1.58 or more than 1.64, the refractive index difference with the polyester film, which is a base film, is large, and thus may cause optical interference (Rainbow phenomenon), which is not suitable for use as an optical film. In addition, when the glass transition temperature exceeds 60 °C may not be sufficiently deteriorated in the stretching and heat treatment process during the production of the polyester film may cause turbidity in the film.
  • Polyester coating composition of the present invention to satisfy the refractive index and glass transition temperature is 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, aromatic dicarboxylic acid containing sulfonate 1 to 10 mol%, aromatic Triglyceride compound 1 represented by the acid component containing 1 to 10 mol% of dicarboxylic acid, and 10 to 30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene represented by the following Chemical Formula 1 Polyester resin which polycondensed the glycol component containing -10 mol% and the diol compound 30-60 mol% is included.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the 2,6-naphthalenedicarboxylic acid is preferably a dicarboxylic acid component because it can increase the refractive index by containing two aromatic rings as shown in the following formula (3). Is used.
  • the 2,6-naphthalenedicarboxylic acid is preferably used 20 to 40 mol%, when using less than 20 mol% it is difficult to give a high refractive index to the polyester resin, used in excess of 40 mol% This can be difficult to disperse.
  • the aromatic dicarboxylic acid containing the sulfonate is used to ensure dispersibility in water, but is not limited to sodium 2,5-dicarboxybenzenesulfonate, 5-sulfon isophthalic acid, sulfone One or a mixture of two or more selected from terephthalic acid, 4-sulfon naphthalene-2,6-dicarboxylic acid and the like can be used. More preferably, sodium 2,5-dicarboxybenzenesulfonate represented by the following general formula (4) is used. It is preferable to use 1 to 10 mol%, when using less than 1 mol%, the water dispersibility may be lowered, and when using more than 10 mol%, the hydrophilicity becomes stronger and the handleability becomes worse or Can cause blocking
  • the aromatic dicarboxylic acid means a dicarboxylic acid component except an aromatic dicarboxylic acid including 2,6-naphthalenedicarboxylic acid and sulfonate, and is not limited, but preferably dimethyl terephthalate, terephthalic acid , Isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclo Any one or a mixture of two or more selected from hexane dicarboxylic acids can be used.
  • bis [4 (2-hydroxyethoxy) phenyl] fluorene of the following Chemical Formula 1 is used to exhibit high transparency while increasing the refractive index, 10 to 30 It is preferable to use mol%, and when using less than 10 mol%, it is difficult to raise refractive index, and when using more than 30 mol%, dispersion to water is difficult.
  • the triglyceride compound represented by the following formula (2) has a glass transition temperature increases with the increase of the refractive index, surface cracks during coating and stretching after coating on the film surface improves the domain formation due to unmelting, uniform coating film and refractive index It is used to lower the glass transition temperature and plays a role of introducing the side chain of the long chain. It is preferable to use 1 to 10 mol%, and when it is used below 1 mol%, it may not lower T g sufficiently, and when it is used more than 10 mol%, the refractive index may fall and blocking of a film may occur.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the diol compound is not limited, but specifically, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, propylene glycol, tripropylene glycol, 1,3- Any one or a mixture of two or more selected from propane diol, 1,3-butane diol, propane diol, bisphenol A, bisphenol B and the like can be used. It is preferable to use 30 to 60 mol%, when using less than 30 mol%, the esterification reaction is not sufficiently achieved, when using more than 60 mol%, blocking of the film occurs and the heat resistance is lowered, The refractive index may be lowered.
  • the polycondensation polyester resin which polycondenses the said components of 3rd aspect of this invention is 0.1-1.0, More preferably, it is 0.1-1.6.
  • the polyester resin may be dissolved or dispersed in water or an aqueous solvent to prepare a polyester emulsion.
  • the polyester resin of the third aspect of the present invention can be prepared according to a conventional polyester resin synthesis method, for example, 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, aromatic containing sulfonate Acid component containing 1-10 mol% of dicarboxylic acids, 1-10 mol% of aromatic dicarboxylic acids, 10-30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene, a triglyceride compound
  • the glycol components containing 1 to 10 mol% and 30 to 60 mol% of the diol compound are mixed in a solventless state and placed in a reactor, and the esterification reaction is performed while removing water or methanol, which is a by-product generated by heating. Thereafter, the polycondensation reaction proceeds while the temperature is raised and the pressure in the reactor is reduced under pressure to recover the diol component as a by-product.
  • a catalyst for promoting a polycondensation reaction for example, an esterification catalyst, a transesterification catalyst, a polycondensation catalyst, or the like can be used, and various additives such as stabilizers, inorganic particles, and the like can be added.
  • the coating composition for forming the primer coating layer is water containing polyester resin, wetting agent, silica having an average particle diameter of 100 to 200 nm, and dispersed inorganic particles having a solid content of 5 to 40% by weight. It is preferably an acidic or water soluble composition.
  • the polyester coating composition of the third aspect of the present invention comprises 10 to 40% by weight of the polyester resin, 0.1 to 0.5% by weight of the wetting agent, and 0.1 to 1.0% by weight of silica having an average particle diameter of 100 to 200 nm. It is preferable to prepare so that the total solid content is 2 to 10% by weight. It is preferable to adjust the coating thickness in the range of 2 to 10 weight% of solid content.
  • the polyester coating composition may further include a hydrophilic organic solvent and a surfactant as necessary to increase dispersion stability.
  • hydrophilic organic solvent dioxane, acetone, tetrahydrofuran, methyl ethyl ketone, or the like can be used.
  • surfactant anionic surfactants or nonionic surfactants can be used to improve dispersion stability. Preferably 0.1 to 5% by weight is used.
  • the coating method of the polyester coating composition for forming the primer coating layer may be coated in an in-line coating applied to the surface during the stretching process of the polyester film, the off-line coating after film production It is also possible. It is also possible to combine both.
  • in-line coating is applied at the same time as the film forming, and thus manufacturing cost is reduced, and the thickness of the coating layer may be changed by extension magnification.
  • the polyester film formed by coating the polyester coating composition on one or both sides of the base film to form a primer coating layer is also included in the scope of the present invention, and the base film used in the third embodiment of the present invention.
  • a silver polyester film more specifically a polyethylene terephthalate film, because it is excellent in light transmittance.
  • the polyethylene terephthalate film is preferably a stretched film, it is possible to use a uniaxial or biaxially stretched film.
  • the base film may have a thickness of 25 to 188 ⁇ m, but is not limited thereto.
  • the total light transmittance of the entire film was measured using a total light transmittance meter (Nippon Denshoku 300A).
  • Refractive Index Measurement The composition was applied to a polycarbonate film, dried, and measured at room temperature using an ABBE refractometer (DRGO, AT-550, 550).
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength ranges from 500 to 600 nm, and the ripple amplitude is less than 1%.
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength bands from 500 to 600 nm, and the ripple amplitude is less than 3%.
  • Dry coating thickness measurement Specify the full width of the base film coated with the polyurethane coating composition 5 points (1 point) at 1m interval in the vertical direction (TD) of the machine direction to the cross section of the film SEM (Hitachi S-4300) The average value was calculated after measuring 30 points in the section.
  • a primer coating composition (1) having a content of 5.5 wt% was prepared.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • a primer coating composition (2) having a content of 5.5 wt% was prepared.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition (2) is coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • a primer coating composition (3) having a content of 5.5 wt% was prepared.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition (3) is coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the coating composition 1 was coated on one surface by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C. and stretched 3.5 times in a transverse direction (TD) through preheating and drying. Thereafter, heat treatment was performed at 235 ° C.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the coating composition 2 was coated on one surface by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C. and stretched 3.5 times in a transverse direction (TD) through preheating and drying. Thereafter, heat treatment was performed at 235 ° C.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the coating composition 3 was coated on one surface by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C. and stretched 3.5 times in a transverse direction (TD) through preheating and drying. Thereafter, heat treatment was performed at 235 ° C.
  • aqueous polyester binder To 20% by weight of the aqueous polyester binder, 0.3% by weight of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer), and 0.3% by weight of colloidal silica particles having an average particle diameter of 140 nm were added to water, followed by stirring for 3 hours to provide a total solid content.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition 4 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • a primer coating composition (5) having a content of 5.5 wt% was prepared.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition 5 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • aqueous polyester binder To 20% by weight of the aqueous polyester binder, 0.3% by weight of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer), and 0.3% by weight of colloidal silica particles having an average particle diameter of 140 nm were added to water, followed by stirring for 3 hours to provide a total solid content.
  • the polyethylene terephthalate chip from which moisture was removed was placed in an extruder, melt-extruded, and then quenched and solidified with a casting drum having a surface temperature of 20 ° C. to prepare a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared primer coating composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretching 3.5 times in the transverse direction (TD). It was. Thereafter, heat treatment was performed at 235 ° C.
  • the polyester binder resin according to the present invention was found to have a high refractive index of 1.58 ⁇ 1.62, the glass transition temperature was found to be low as 43 ⁇ 55 °C.
  • the film has a high transmittance and a low haze.
  • the film is excellent in appearance without the occurrence of cloudiness during film formation, and no rainbow phenomenon occurs, and thus it is found that the film is suitable for use as an optical film.
  • a fourth aspect of the invention is an aqueous dispersion composition comprising a mixture of a first aqueous dispersion composition and a second aqueous dispersion composition,
  • the first water dispersion composition comprises a water-dispersible polyurethane resin consisting of 10 to 75% by weight of a linear polymer having two terminal groups and 25 to 90% by weight of a branched polymer having three or more terminal groups,
  • the second water dispersion composition is 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, 1 to 10 mol% of aromatic dicarboxylic acid containing sulfonate, 1 to 10 mol% of aromatic dicarboxylic acid, Polycondensation of 10-30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene of Formula 1, 1-10 mol% of triglyceride compounds represented by the following Formula 2, and 30-60 mol% of diol compounds Ester resins.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the water dispersion composition of the fourth aspect of the present invention is 5 to 10% by weight of the mixture of the first and second water dispersion composition, 0.1 to 0.5% by weight silicone-based wetting agent, colloidal silica particles 0.1 to 0.5% by weight and the balance of water may be included.
  • the mixture of the first water dispersion composition and the second water dispersion composition is mixed in a weight ratio of 1: 9 to 5: 5 by weight of the first water dispersion composition and the second water dispersion composition. It may have been.
  • the first water dispersion composition may be a solid content of 10 to 30% by weight, including the water-dispersible polyurethane resin and water.
  • the linear polymer of the first water dispersion composition may be a part or all of the terminal group is blocked with an inorganic acid salt group.
  • the water-dispersible polyurethane resin of the first water dispersion composition comprises 39 to 45% by weight of polyol, 0.3 to 1.2% by weight of trimethylol propane and 50 to 57% by weight of isocyanate compound.
  • 3 to 4% by weight of the inorganic acid salt may be reacted to prepare an ionic group at the end of the isocyanate.
  • the water dispersible polyurethane resin may have a weight average molecular weight of 10,000 to 20,000.
  • the second water dispersion composition may be a solid content of 10 to 40% by weight, including the polyester resin and water.
  • the aromatic dicarboxylic acid is dimethyl terephthalate, terephthalic acid, isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1, Aromatic dicarboxyl comprising any one or two or more selected from 5-naphthalene dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, and containing the sulfonate
  • the acid is any one or two selected from sodium 2,5-dicarboxybenzenesulfonate, 5-sulfone isophthalic acid, 2-sulfone isophthalic acid, 4-sulfone isophthalic acid, 4-sulfone naphthalene-2,6-dicarboxylic acid
  • the diol compound is ethylene glycol, diethylene glycol, triethylene glycol, tetra
  • the polyester resin of the second water dispersion composition may have a refractive index of 1.58 to 1.64 and a glass transition temperature of 40 to 60 ° C.
  • the colloidal silica particles may have an average particle diameter of 50 ⁇ 1000nm.
  • the water dispersion composition of the fourth aspect of the present invention may have a refractive index of 1.57 to 1.62.
  • an optical film including a primer coating layer formed by applying the water dispersion composition is also included in the scope of the present invention.
  • the optical film may include a polyester base film and a primer coating layer formed by coating the water dispersion composition on one or both surfaces thereof.
  • the dry coating thickness of the primer coating layer may be 50 ⁇ 100 nm.
  • the inventors of the present invention are excellent in the adhesive strength with the polyester base film, and researched to introduce a primer layer with controlled interference fringe, polyester resin emulsion of the same series in order to increase the adhesive force with the polyester film as the base film In this case, in order to control the interference fringes to prepare a polyester emulsion having a refractive index of 1.57 ⁇ 1.62.
  • the rainbow properties are excellent, and high temperature and high humidity.
  • Moisture resistance was improved in the harsh conditions of to confirm the excellent adhesion to the optical polymer substrate film, such as a hard coating film during post-processing to complete the fourth aspect of the present invention.
  • a fourth aspect of the present invention is directed to an aqueous dispersion composition
  • a aqueous dispersion composition comprising a mixture of a first aqueous dispersion composition for controlling refractive index and a second aqueous dispersion composition for improving moisture resistance under severe conditions of high temperature and high humidity to improve adhesion. It is about.
  • one aspect of the fourth aspect of the present invention is an aqueous dispersion composition comprising a mixture of a first water dispersion composition and a second water dispersion composition,
  • the first water dispersion composition comprises a water-dispersible polyurethane resin consisting of 10 to 75% by weight of a linear polymer having two terminal groups and 25 to 90% by weight of a branched polymer having three or more terminal groups,
  • the second water dispersion composition is 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, 1 to 10 mol% of aromatic dicarboxylic acid containing sulfonate, 1 to 10 mol% of aromatic dicarboxylic acid, Polycondensation of 10-30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene of Formula 1, 1-10 mol% of triglyceride compounds represented by the following Formula 2, and 30-60 mol% of diol compounds Ester resins.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the water-dispersing composition is a silicone-based wetting agent
  • colloidal silica particles are further used as an additive to facilitate heat-resistant processing on the coating and primer layer on the optical polymer substrate film Can be.
  • the water dispersion composition is 5 to 10% by weight of the mixture of the first and second water dispersion composition, 0.1 to 0.5% by weight silicone-based wetting agent, colloidal silica 0.1 to 0.5% by weight of particles and the balance of water may be included.
  • the aqueous dispersion composition may further include a hydrophilic organic solvent and a surfactant as needed to enhance dispersion stability.
  • hydrophilic organic solvent dioxane, acetone, tetrahydrofuran, methyl ethyl ketone, or the like can be used.
  • surfactant anionic surfactants or nonionic surfactants can be used to improve dispersion stability. Preferably 0.1 to 5% by weight is used.
  • the mixture of the first and second water dispersion compositions is mixed at a weight ratio of 1: 9 to 5: 5 by weight of the first water dispersion composition: the second water dispersion composition. It is desirable to. Compared to the case where the first water dispersion composition and the second water dispersion composition are used, the mixture and the refractive index can be easily adjusted, and the optical properties such as the rainbow phenomenon can be improved. When the mixing ratio of the first water dispersion composition is less than 1 weight ratio, the effect of improving the adhesive strength is insignificant, and when using more than 5 weight ratios, the effect of improving the rainbow phenomenon may be reduced.
  • the coating property is good at less than 5% by weight, it is difficult to implement the adhesive force, when more than 10% by weight may be excellent adhesion but difficult to implement the appearance and transparency of the coating.
  • the silicon-based wetting agent is preferably used 0.1 to 0.5% by weight
  • the colloidal silica particles preferably contain 0.1 to 0.5% by weight.
  • the colloidal silica particles are preferably used having an average particle diameter of 50 ⁇ 1000 nm. If the thickness is less than 50 nm, the antiblocking agent may not be expected. If the thickness is more than 1000 nm, optical properties may be degraded due to haze increase.
  • the first water dispersion composition is a water-dispersible polyurethane resin composed of 10 to 75% by weight of a linear polymer having two terminal groups and 25 to 90% by weight of a branched polymer having three or more terminal groups. Solid content may include 10 to 30% by weight, including water.
  • the linear polymer is a linear polyurethane resin
  • the branched polymer means a branched polyurethane resin.
  • the water-dispersible polyurethane resin is a branched polymer having at least three isocyanate functional groups as terminal groups, part or all of the isocyanate groups are blocked with an inorganic acid salt group, and more specifically, blocked with an inorganic salt such as sulfate, Two isocyanate functional groups are included, in which some or all of the isocyanate groups are blocked with inorganic acid groups, and more particularly include linear polymers blocked with inorganic salts such as sulfate.
  • the water-dispersible polyurethane resin is preferably used 10 to 75% by weight of the linear polymer and 25 to 90% by weight of the branched polymer.
  • the content of the branched polymer is less than 25% by weight, the swelling degree and the gel fraction cannot be satisfied, and it is difficult to obtain a coating film having excellent adhesion under high temperature and high humidity.
  • the content of the branched polymer exceeds 90% by weight, the viscosity rises rapidly due to excessive gelation, making it difficult to prepare the water dispersion composition, and defects in surface appearance such as cracking on the surface when coating on the film surface This can happen.
  • the branched polymer means a resin having 3 or 3 or more isocyanate functional groups.
  • the water-dispersible polyurethane binder may be easily mixed so as to have a solid content of 10 to 30% by weight, including the water-dispersible polyurethane resin and water. Easy to adjust thickness
  • a method of preparing the water-dispersible polyurethane resin may include preparing a prepolymer having an isocyanate as an end group by reacting 39 to 45 wt% of a polyol, 0.3 to 1.2 wt% of a trimethylol propane, and 50 to 57 wt% of an isocyanate compound.
  • the inorganic acid may be prepared by blocking 3 to 4% by weight of an ionic group of sulfate at the isocyanate terminal, but is not limited thereto.
  • the water-dispersible polyurethane resin is preferred because it does not gelate in the range of the weight average molecular weight 10,000 ⁇ 20,000, can be obtained water dispersion and excellent coating properties at high temperature and high humidity.
  • the weight average molecular weight can be measured using a GPC-MALS (Multi Angle Light Scattering) system (Wyatt, Inc.), the configuration of the MALS system is as follows.
  • GPC-MALS Multi Angle Light Scattering
  • the polyol may be a polyester-based polyol or a polyether-based polyol, preferably a polyester-based polyol.
  • Polyester-based polyols include polyols prepared from the reaction of carboxylic acid, sebacic acid or an acid anhydride with a polyhydric alcohol.
  • the type of the polyol is not limited, and it is preferable to use a polyester polyol having a weight average molecular weight of 600 to 3000. Its content is preferably 39 to 45% by weight. When used at less than 39% by weight, the molecular weight is small, the primer layer is too hard, it is difficult to stretch, the coating appearance is not excellent, and when more than 45% by weight, the ILC layer is too soft (Soft) is poor blocking properties Can be.
  • the trimethylol propane is used to prepare a prepolymer having a trifunctional group, and it is preferable to use 0.3 to 1.2% by weight. In case of using less than 0.3% by weight, the crosslinking density decreases, and anti-blocking property is inferior, and in the case of using more than 1.2% by weight, the crosslinking density becomes too high and elongation deteriorates. This is not excellent and the adhesion may be bad.
  • the isocyanate compound is not limited but preferably hexamethylene diisocyanate is used.
  • the content can be prepared a prepolymer having a trifunctional group in the range using 50 to 57% by weight.
  • the inorganic acid salt is preferably used sodium hydrogen sulfate (Sodium Hydrogen Sulfate), the content is preferably used 3 to 4% by weight.
  • the second water dispersion composition has a high refractive index and low glass transition temperature, and thus does not have cracks or domains on the surface of the film during stretching after film production, and in particular, expresses optical characteristics such as rainbow phenomenon.
  • the refractive index is 1.58 to 1.64
  • the glass transition temperature is preferably 40 to 60 ° C.
  • the glass transition temperature is 40 ⁇ 60 °C in the process of coating the aqueous dispersion composition before stretching when the polyester film is produced through the in-line process, and when subjected to the stretching and heat treatment process is sufficiently deteriorated may not cause turbidity in the film. .
  • the second aqueous dispersion composition is 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid, 1 to 10 mol% of aromatic dicarboxylic acid including sulfonate, and aromatic dicar 10 to 30 mol% of an acid component containing 1 to 10 mol% of an acid, and a bis [4 (2-hydroxyethoxy) phenyl] fluorene of the formula (1), and a triglyceride compound represented by the following formula (2): Polyester resin which polycondensed the glycol component containing mol% and 30-60 mol% of diol compounds is included.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the aromatic dicarboxylic acid is dimethyl terephthalate, terephthalic acid, isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,3-cyclo Any one or a mixture of two or more selected from pentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid can be used.
  • the aromatic dicarboxylic acid including the sulfonate is sodium 2,5-dicarboxy benzene sulfonate, 5-sulfoi isophthalic acid, 2-sulfon isophthalic acid (2- one or more selected from sulfoisophtalic acid, 4-sulfoisophtalic acid, 4-sulfo naphtalene-2,6-dicarboxylic acid Mixtures can be used.
  • the diol compound is ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, propylene glycol, tripropylene glycol, 1,3-propane diol, 1,3-butane diol, propane diol , Bisphenol A, bisphenol B and the like can be used any one or a mixture of two or more.
  • the polyester resin may satisfy physical properties of having a refractive index of 1.58 to 1.64 and a glass transition temperature of 40 to 60 ° C.
  • the second water dispersion composition may include a water dispersible polyester binder having a solid content of 10 to 40 wt%, including the polyester resin and water.
  • the 2,6-naphthalenedicarboxylic acid is preferably a dicarboxylic acid component, since the refractive index can be increased by containing two aromatic rings as shown in the following formula (3). Is used.
  • the 2,6-naphthalenedicarboxylic acid is preferably used 20 to 40 mol%, when using less than 20 mol% it is difficult to give a high refractive index to the polyester resin, used in excess of 40 mol% This can be difficult to disperse.
  • the aromatic dicarboxylic acid containing the sulfonate is used to ensure dispersibility in water, but is not limited to sodium 2,5-dicarboxybenzenesulfonate, 5-sulfon isophthalic acid, sulfone One or a mixture of two or more selected from terephthalic acid, 4-sulfon naphthalene-2,6-dicarboxylic acid and the like can be used. More preferably, sodium 2,5-dicarboxybenzenesulfonate represented by the following general formula (4) is used. It is preferable to use 1 to 10 mol%, when using less than 1 mol%, the water dispersibility may be lowered, and when using more than 10 mol%, the hydrophilicity becomes stronger and the handleability becomes worse or Can cause blocking
  • the aromatic dicarboxylic acid means a dicarboxylic acid component except an aromatic dicarboxylic acid including 2,6-naphthalenedicarboxylic acid and sulfonate, and is not limited, but preferably dimethyl terephthalate, terephthalic acid , Isophthalic acid, 1,2-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclo Any one or a mixture of two or more selected from hexane dicarboxylic acids can be used.
  • bis [4 (2-hydroxyethoxy) phenyl] fluorene of the following Chemical Formula 1 is used to exhibit high transparency while increasing the refractive index, 10 to 30 It is preferable to use mol%, and when using less than 10 mol%, it is difficult to raise refractive index, and when using more than 30 mol%, dispersion to water is difficult.
  • the triglyceride compound represented by the following formula (2) has a glass transition temperature increases with the increase of the refractive index, surface cracks during coating and stretching after coating on the film surface improves the domain formation due to unmelting, uniform coating film and refractive index It is used to lower the glass transition temperature and plays a role of introducing the side chain of the long chain. It is preferable to use 1 to 10 mol%, and when it is used below 1 mol%, it may not lower T g sufficiently, and when it is used more than 10 mol%, the refractive index may fall and blocking of a film may occur.
  • R 1 to R 3 are each independently selected from (C 1 -C 30) alkyl including or without hydrogen, unsaturated hydrocarbons.)
  • the diol compound is not limited, but specifically, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, propylene glycol, tripropylene glycol, 1,3- Any one or a mixture of two or more selected from propane diol, 1,3-butane diol, propane diol, bisphenol A, bisphenol B and the like can be used. It is preferable to use 30 to 60 mol%, when using less than 30 mol%, the esterification reaction is not sufficiently achieved, when using more than 60 mol%, blocking of the film occurs and the heat resistance is lowered, The refractive index may be lowered.
  • the polyester resin which polycondensed the said component of 4th aspect of this invention is 0.1-1.0, More preferably, it is 0.1-1.6.
  • the polyester resin may be dissolved or dispersed in water or an aqueous solvent to prepare a polyester emulsion.
  • the polyester resin of the fourth aspect of the present invention can be produced according to a conventional polyester resin synthesis method, for example, 20 to 40 mol% of 2,6-naphthalenedicarboxylic acid and an aromatic containing sulfonate Acid component containing 1-10 mol% of dicarboxylic acids, 1-10 mol% of aromatic dicarboxylic acids, 10-30 mol% of bis [4 (2-hydroxyethoxy) phenyl] fluorene, a triglyceride compound
  • the glycol components containing 1 to 10 mol% and 30 to 60 mol% of the diol compound are mixed in a solventless state and placed in a reactor, and the esterification reaction is performed while removing water or methanol, which is a by-product generated by heating. Thereafter, the polycondensation reaction proceeds while the temperature is raised and the pressure in the reactor is reduced under pressure to recover the diol component as a by-product.
  • a catalyst for promoting a polycondensation reaction for example, an esterification catalyst, a transesterification catalyst, a polycondensation catalyst, or the like can be used, and various additives such as stabilizers, inorganic particles, and the like can be added.
  • the water dispersion composition may have a refractive index of 1.57 to 1.62 of the mixture of the first water dispersion composition and the second water dispersion composition.
  • refractive index When the refractive index is applied to the polyester base film within the above range can improve the rainbow improvement effect and optical properties.
  • Still another aspect of the fourth aspect of the present invention relates to an optical film comprising a primer coating layer formed by applying the aqueous dispersion composition.
  • the optical film according to an aspect of the fourth aspect of the present invention may include a polyester base film and a primer coating layer formed by coating the water dispersion composition on one or both surfaces thereof.
  • the dry coating thickness of the primer coating layer may be 50 ⁇ 100 nm.
  • the base film is preferably a polyester film, more specifically, a polyethylene terephthalate or polyethylene naphthalate film, because it is excellent in light transmittance. It may include.
  • the polyethylene terephthalate film is preferably a stretched film, it is possible to use a uniaxial or biaxially stretched film.
  • the base film may have a thickness of 50 ⁇ m to 250 ⁇ m, but is not limited thereto.
  • the primer layer is formed on one side or both sides of the optical polymer substrate film, and has excellent adhesiveness to facilitate adhesion to other substrates. Indicates the last name.
  • the dry coating thickness of the primer layer is preferably 50 to 100 nm.
  • the coating method may be coated on an in-line coating applied to the surface during the stretching process of the polyester film, or may be off-line coating after film production. It is also possible to combine both.
  • in-line coating is applied at the same time as the film forming, and thus manufacturing cost is reduced, and the thickness of the coating layer may be changed by extension magnification.
  • the primer coating layer has a swelling degree of 35 to 100 as measured by Equation 1 below, and a gel fraction measured by Equation 2 to 75 to 85, All of the physical properties of the refractive index 1.54 ⁇ 1.62 can be satisfied.
  • the weight after standing means the weight measured after soaking the dry coating film of about 1g in 50g of distilled water and left at 70 °C for 24 hours.
  • the weight after drying refers to the weight measured after soaking about 1g of the dry coating film in 50g of distilled water, and leaving it at 70 ° C. for 24 hours, and drying the left coating film at 120 ° C. for 3 hours.
  • 15 g of the mixture of the first water dispersion composition and the second water dispersion composition is placed in a round bowl having a diameter of 80 mm and a height of 15 mm, and dried at 65 ° C. for 72 hours and 120 ° C. for 3 hours. After dipping 1 g of the dry coating film in 50 g of distilled water, the film was left for 24 hours at 70 ° C., and the swelling ratio was measured. Gel Fraction is measured by drying the coated film for 3 hours at 120 °C and recording the weight.
  • Tg measurement Using a DSC (using PerkinElmer DSC 7) instrument, measure in 2nd Run mode. 10-11 mg dry coating is measured using PerkinElmer DSC7.
  • 2nd Run. -40 degreeC-200 degreeC, and it measures on 20 degree-C / min conditions.
  • the mixture of the first water dispersion composition and the second water dispersion composition was applied to a polycarbonate film, dried, and measured at room temperature using an ABBE refractometer (DR-M2, @ 550).
  • the total light transmittance of the entire film was measured using a total light transmittance meter (NDH-5000, Nippon Denshoku).
  • Water dispersion composition according to Examples and Comparative Examples was applied to one surface of the polyester base film (188 ⁇ m polyethylene terephthalate film) 200nm thickness to prepare an optical film, and then hard coating on one surface (refractive index 1.52) The other side was blackened to determine whether rainbows occurred with the naked eye. Visual evaluation was performed under a three-wavelength lamp in the dark room.
  • Water dispersion composition according to Examples and Comparative Examples was applied to one surface of the polyester base film (188 ⁇ m polyethylene terephthalate film) 200nm thickness to prepare an optical film, and then hard coating treatment (refractive index 1.52) on one surface thereof The other side was blackened to measure the reflection pattern of the visible region through UV-Visible (CARY 5000).
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength ranges from 500 to 600 nm, and the ripple amplitude is less than 1%.
  • the ripple amplitude is reduced compared to the ripple amplitude in other wavelength bands from 500 to 600 nm, and the ripple amplitude is less than 3%.
  • the adhesive strength at room temperature in 1cm X 1cm compartment using Cross Hatch Cutter (YCC-230 / 1) Draw 100 squares and use the Adhesive Evaluation Tape (nichban No. 405) to tear three times.
  • the adhesive strength between the hard coating layer and the easily adhesive layer was evaluated by the above method.
  • the full width of the base film coated with the water dispersion composition according to Examples and Comparative Examples was designated at 5 points (1 point) at intervals of 1 m in the vertical direction (TD) of the machine direction, so that the cross section of the film was SEM (Hitachi S-4300). It was measured and magnified 50,000 times to calculate the average value after measuring 30 points in the interval.
  • 80 wt% of water was added to 20 wt% of the polyester resin prepared above, and dispersed to prepare a second water dispersion composition having a solid content of 20 wt%.
  • aqueous dispersion composition (1) 0.6 wt% of the first water dispersion composition prepared in Preparation Example 4, 5.4 wt% of the second water dispersion composition prepared in Preparation Example 5, and 0.3 wt% of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer). 0.3 wt% of colloidal silica particles having a particle diameter of 140 nm were added to water, followed by stirring for 2 hours to prepare an aqueous dispersion composition (1).
  • a silicone-based wetting agent Dow Corning, polyester siloxane copolymer
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the water dispersion composition 1 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the primer coating layer by the water dispersion composition (1) was 100 nm.
  • aqueous dispersion composition (2) 1.2 wt% of the first water dispersion composition prepared in Preparation Example 4, 4.8 wt% of the second water dispersion composition prepared in Preparation Example 5, and 0.3 wt% of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer). 0.3 wt% of colloidal silica particles having a particle diameter of 140 nm were added to water, followed by stirring for 2 hours to prepare an aqueous dispersion composition (2).
  • a silicone-based wetting agent Dow Corning, polyester siloxane copolymer
  • the physical properties of the coating film was measured by mixing the first water dispersion composition and the second water dispersion composition in a weight ratio of 2: 8, and the results are shown in Table 7 below.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the water dispersion composition 2 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the primer coating layer by the water dispersion composition (2) was 100 nm.
  • aqueous dispersion composition (3) 1.8 wt% of the first water dispersion composition prepared in Preparation Example 4, 4.2 wt% of the second water dispersion composition prepared in Preparation Example 5, and 0.3 wt% of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer). 0.3 wt% of colloidal silica particles having a particle diameter of 140 nm were added to water, followed by stirring for 2 hours to prepare an aqueous dispersion composition (3).
  • a silicone-based wetting agent Dow Corning, polyester siloxane copolymer
  • the physical properties of the coating film was measured by mixing the first water dispersion composition and the second water dispersion composition in a weight ratio of 7: 7, and the results are shown in Table 7 below.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the water dispersion composition 3 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the primer coating layer by the water dispersion composition (3) was 100 nm.
  • aqueous dispersion composition (4) 2.4 wt% of the first water dispersion composition prepared in Preparation Example 4, 3.6 wt% of the second water dispersion composition prepared in Preparation Example 5, and 0.3 wt% of a silicone-based wetting agent (Dow Corning, polyester siloxane copolymer). 0.3 wt% of colloidal silica particles having a particle diameter of 140 nm were added to water, followed by stirring for 2 hours to prepare an aqueous dispersion composition (4).
  • a silicone-based wetting agent Dow Corning, polyester siloxane copolymer
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the water dispersion composition 4 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., and stretched 3.5 times in a transverse direction (TD) through preheating and drying. Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the primer coating layer by the water dispersion composition 4 was 100 nm.
  • the first water dispersion composition and the second water dispersion composition were mixed at a weight ratio of 5: 5 to measure physical properties of the coating film, and the results are shown in Table 7 below.
  • a polyethylene terephthalate sheet having a thickness of 2000 ⁇ m was prepared by quenching and solidifying with a casting drum having a surface temperature of 20 °C.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature.
  • the water dispersion composition 5 was coated on both sides by a bar coating method, and heated to 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying, and stretched 3.5 times in the transverse direction (TD). Thereafter, heat treatment was performed at 230 ° C.
  • the dry coating thickness of the primer coating layer by the water dispersion composition (5) was 100 nm.
  • the refractive index is higher than 1.57 and the refractive index is high while the glass transition temperature is lower than 48 °C, excellent moisture resistance could know.
  • the total light transmittance is excellent, 93% or more, low haze, excellent coating appearance And, the rainbow phenomenon is improved, it was confirmed that the adhesive strength is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명은 간섭무늬 현상이 없으며, 투과율이 높고 헤이즈가 낮은 광학필름에 관한 것이다. 또한, 본 발명은 수분산 조성물 및 이를 이용한 광학필름에 관한 것으로, 보다 구체적으로 굴절율이 높으며 레인보우 현상이 개선되고, 고온 고습 하에서 접착성이 우수한 수분산 조성물 및 이를 이용한 광학필름에 관한 것이다.

Description

수분산 조성물 및 이를 이용한 광학필름
본 발명은 수분산 조성물 및 이를 이용한 광학필름에 관한 것으로, 보다 구체적으로 굴절율이 높으며 레인보우 현상이 개선되고, 고온 고습 하에서 접착성이 우수한 수분산 조성물 및 이를 이용한 광학필름에 관한 것이다. 또한, 본 발명은 간섭무늬 현상이 없으며, 투과율이 높고 헤이즈가 낮은 광학필름에 관한 것이다.
광학필름은 디스플레이용 광학부재로 사용되는 필름으로 LCD BLU의 광학 소재로 사용되거나, LCD, PDP, 터치 패널(Touch Panel) 등 각종 디스플레이의 표면 보호용 광학 부재로 사용되고 있다. 이러한 광학필름은 우수한 투명성과 시인성이 요구되며, 기계적 특성 및 전기적 특성이 우수한 2축 연신 폴리에스테르 필름을 기재 필름으로 사용한다.
일반적으로 이축 연신된 폴리에스테르 필름은 치수 안정성, 두께 균일성 및 광학적 투명성이 우수하여 광학용 뿐만 아니라 여러 산업용 재료로 그 이용 범위가 매우 넓다.
이러한 이축 연신 폴리에스테르 적층필름을 광학용으로 사용하는 경우, 표면경도가 낮고, 내마모성 혹은 내스크래치성이 부족하기 때문에 각종 디스플레이의 광학부재로 사용 시 물체와의 마찰 혹은 접촉에 의해 표면 손상이 쉽게 일어나며, 이를 막기 위해 필름 표면에 하드코팅층을 적층하여 사용하게 되며, 기재인 폴리에스테르 필름과 하드 코팅층과의 밀착성을 향상시키기 위해 중간층으로서 프라이머층이 형성되고 있다.
프라이머층은 일반적으로 폴리에스테르필름과 접착성이 우수한 공중합 폴리에스테르계 수지로 프라이머층을 형성한다. 그러나 공중합 폴리에스테르계 수지를 단독으로 사용할 경우, 폴리에스테르계 기재 필름과의 접착성은 충분하지만, 프리즘렌즈, 반사방지층 또는 하드 코팅층 등으로 여러 가지 후가공 처리 후 사용되는 경우에는 공중합 폴리에스테르계 수지로는 불충분하다. 이를 보완하기 위해 폴리에스테르의 제조 시 이접착성, 유연성, 내마모성이 우수하고, 강력한 접착성 등을 지니고 있어 접착성을 요구하는 많은 분야에서 사용되고 있는 폴리우레탄계 수지를 이용한 프라이머층을 코팅하여 접착력을 향상시키는 방법이 연구되고 있다. 그러나 폴리우레탄 수지로 된 프라이머층을 형성한 것으로서는, 하드 코트층 등의 바깥층과의 접착력은 향상하지만, 기재인 폴리에스테르 필름과의 접착력이 충분하지 않아, 결과적으로 바깥층과의 충분한 접착성이 얻어지지 않는 문제가 있었다.
또한, 상기 후가공 처리후의 접착성 평가방법의 하나로, 65℃, 90%습도 조건의 고온고습의 내습성 평가 시, 후 가공 처리한 이면으로의 수분침투에 따른 접착력 불량이 발생하여, 이를 보완하기 위한 연구도 진행되고 있다.
상기의 문제점을 극복하기 위해서 대한민국 등록특허 10-1050216호(특허문헌 1)는 가교제를 적용하여 고분자 네트워크를 형성시켜 내구성을 향상시키고자 하였다.
또한, 기재층과 하드코팅층 간의 밀착성 향상과 하드코팅층과 폴리에스테르 필름 간의 높은 굴절율 차이로 인해 생기는 광간섭 현상(Rainbow 현상)을 제거하기 위하여 프라이머층으로 통상적으로 아크릴수지나 우레탄 수지, 폴리에스테르수지 등이 사용되고 있으며, 선행발명으로 일본공개특허 평10-110091호(특허문헌 2)에는 폴리에스테르수지의 수분산체를 이용하고, 이때 플루오렌계 화합물을 이용하여 기재필름과의 접착성을 높이고자 하는 특허가 개시되어 있다. 그러나, 상기 선행발명과 같이 유리전이온도를 높여 내블로킹성을 향상하기 위해 플루오렌계 화합물을 첨가하는 경우 유리전이온도(Tg)가 급격하게 상승하므로 필름 제조 시, 열처리 온도에서 충분히 열화되지 못해 필름에 크랙이 발생하거나 도메인으로 남고, 필름에 백탁현상이 발생하여 광학필름으로 사용하기에 부적합하였다.
또한, 이러한 기재층과 하드코팅층 간의 밀착성 향상과 하드코팅층과 폴리에스테르 필름 간의 높은 굴절율 차이로 인해 생기는 광간섭 현상(Rainbow 현상)을 제거하기 위하여 중간층으로 통상적으로 아크릴수지나 우레탄 수지 등이 사용되고 있으나, 상기와 같은 수지를 단독으로 사용 하였을 때 프라이머 코팅층을 형성하는 경우는 굴절율이 1.5 전후이므로 2축 연신 폴리에스테르 필름의 표면 굴절율인 1.64와 통상의 하드코팅층의 굴절율인 1.52에서 하드코팅층의 굴절율 쪽에 치우치게 됨에 따라 하드코팅층과 폴리에스테르 필름 간의 높은 굴절율 차이로 인해 생기는 광 간섭 현상을 제거 할 수 없으며, 이러한 광간섭 현상은 표시 부재에 적용되는 경우 눈의 피로와 화면 시인성을 떨어뜨리게 된다.
이러한 눈의 피로를 개선하기 위한 발명으로 본 출원인은 한국공개특허 제10-2011-0034784호에서 굴절율이 1.54 ~ 1.59인 폴리우레탄바인더를 포함하는 폴리우레탄코팅조성물을 기재필름의 일면에 코팅하고, 반대면에 굴절율이 1.4 ~ 1.5인 아크릴바인더를 포함하는 아크릴코팅조성물이 코팅한 광학필름이 개시되어 있다. 상기 선행발명은 폴리우레탄코팅조성물에 사용된 이소시아네이트의 구조를 변경하여 굴절율을 조절한 것으로, 레인보우현상이 개선됨을 확인하였다.
또한, 레인보우 현상을 개선하기 위한 선행발명으로 한국등록특허 제 10-0994051호에는 1 ~ 30㎛의 평균입경을 가진 입자를 포함하는 하드코팅조성물로 코팅된 하드코팅층을 포함하되, 하드코팅전층은 500㎛ ± 50㎛의 반사율 최저파장대와 1.58 ± 0.1의 굴절율을 갖는 하드코팅필름이 개시되어 있다. 상기 선행발명은 실리콘계 수지와 아크릴계 수지 비드에서 선택되는 유기계비드를 하드코팅층에 첨가하여 굴절율을 조절하고 있다. 그러나 하드코팅층에 유기계비드를 사용할 경우 하드코팅층 자체의 투명성이 떨어져서 시인성이 떨어지는 문제가 발생할 수 있다.
이와 같이 하드코팅필름의 레인보우 현상을 개선하기 위하여 하드코팅층을 이루는 코팅조성물 및 유기 또는 무기입자를 조절하여 굴절율을 조절하는 다양한 기술이 개발되고 있으며, 코팅조성물 및 입자의 조합에 따라 굴절율이 차이를 보이므로 원하는 굴절율을 얻기 위한 조합을 찾기 위한 연구들이 진행되고 있다.
본 발명은 고온고습에서의 접착성이 우수하고, 굴절율이 높으면서도 유리전이온도가 낮은 수분산 조성물을 제공하고, 상기 수분산 조성물을 도포한 광학필름을 제공하고자 한다.
또한, 본 발명은 가교제를 사용하지 않고도 가교밀도를 높임으로써 접착력이 우수하면서 레인보우 현상 및 광학적 특성이 개선된 수분산 조성물 및 상기 수분산 조성물을 도포한 광학필름을 제공하고자 한다.
구체적으로 본 발명은 필름 시 필름 표면에 크랙, 도메인 발생이 없으며, 특히 레인보우 현상 등 광학적 특성이 개선되며, 고온 고습 하에서 접착성이 우수한 프라이머층을 갖는 폴리에스테르 광학필름을 제공하고자 한다.
또한, 본 발명은 폴리에스테르 수지와 무기입자를 조합하여 굴절율이 기재필름인 폴리에스테르필름과 하드코팅층의 중간 정도의 굴절율을 갖는 프라이머 코팅조성물을 제공하고자 하며, 이를 폴리에스테르 기재필름의 일면 또는 양면에 도포하여 프라이머 코팅층을 형성함으로써 레인보우 현상이 개선된 광학필름을 제공하고자 한다.
본 발명은 수분산 조성물 및 이를 이용한 광학필름에 관한 것이다.
본 발명은 폴리에스테르 기재필름과, 이의 일면 또는 양면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 코팅조성물을 도포한 프라이머 코팅층을 포함하며, 상기 프라이머 코팅층의 건조도포두께가 50 ~ 150nm인 광학필름에 관한 것이다.
본 발명에서 상기 무기입자는 평균입경이 1 ~ 50nm인 것을 사용하는 것이 바람직하다.
또한, 본 발명에서 상기 무기입자는 표면 개질된 지르코니아를 사용하는 것이 바람직하다.
또한, 본 발명에서 상기 표면 개질된 지르코니아는 표면에 아실기 또는 알킬레이트기를 가지며, 카운터 이온으로 Na+가 사용된 것이 바람직하다.
또한, 본 발명에서 상기 프라이머 코팅층의 일면 또는 양면에 굴절율 1.51 ~ 1.53인 아크릴계 수지 코팅층을 더 포함할 수 있다.
또한, 본 발명에서 상기 아크릴계 수지코팅층의 두께는 1 ~ 10㎛인 것이 바람직하다.
본 발명에서 상기 아크릴계 수지 코팅층이 일면에 형성된 경우, 헤이즈가 1.0 이하, 전광선투과율이 91%이상이고, 상기 아크릴계 수지 코팅층이 양면에 형성된 경우, 헤이즈가 0.5%이하, 전광선투과율이 92% 이상인 물성을 만족할 수 있다.
또한, 본 발명은 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하는 제 1 수분산 조성물,
2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60 몰%를 중축합한 폴리에스테르수지를 포함하는 제 2 수분산 조성물, 또는
[화학식 1]
Figure PCTKR2012007839-appb-I000001
[화학식 2]
Figure PCTKR2012007839-appb-I000002
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
상기 제 1 수분산 조성물과, 제 2 수분산 조성물을 혼합한 제 3 수분산 조성물에서 선택되는 프라이머 코팅용 수분산 조성물에 관한 것이다.
상기 수분산성 폴리우레탄 수지의 말단기는 일부 또는 전부가 무기산염기로 블로킹되어 있는 것일 수 있다.
상기 수분산성 폴리우레탄 수지는 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 이온성기를 블록킹히여 제조된 것일 수 있다.
상기 수분산성 폴리우레탄 수지는 중량평균분자량이 10,000 ~ 20,000인 것일 수 있다.
상기 제 1 수분산 조성물은 상기 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 수분산성 폴리우레탄 바인더 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함하는 것일 수 있다.
상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000nm인 것일 수 있다.
상기 방향족디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 술폰산염을 포함하는 방향족 디카르복실산은 소듐 2,5-디카르복시벤젠설포네이트, 5-설폰 이소프탈산, 2-설폰 이소프탈산, 4-설폰 이소프탈산, 4-설폰 나프탈렌-2,6-디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 디올화합물은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것일 수 있다.
상기 폴리에스테르수지는 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 것일 수 있다.
상기 제 2 수분산 조성물은 상기 폴리에스테르수지와 물을 포함하여 고형분함량이 10 ~ 40 중량%인 수분산성 폴리에스테르 바인더 10 ~ 40 중량%, 웨팅제 0.1 ~ 0.5중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 1.0 중량%를 포함하여 전체 고형분함량이 2 ~ 10 중량%인 것일 수 있다.
상기 제 2 수분산 조성물은 친수성 유기용매, 계면활성제를 더 포함하는 것일 수 있다.
상기 제 3 수분산 조성물은 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함하는 것일 수 있다.
상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물은 제 1 수분산 조성물 : 제 2 수분산 조성물이 1 : 9 ~ 5 : 5 중량비로 혼합된 것일 수 있다.
상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000nm인 것일 수 있다.
상기 제 3 수분산 조성물은 굴절율이 1.57~1.62 인 것일 수 있다.
또한, 본 발명은 상기 제 1 수분산조성물, 제 2 수분산조성물 또는 제 3 수분산조성물에서 선택되는 어느 하나의 수분산조성물을 도포하여 형성된 프라이머 코팅층을 포함하는 광학필름에 관한 것이다.
상기 프라이머 코팅층의 건조도포두께는 50 ~ 100 nm인 것일 수 있다.
상기 프라이머 코팅층은 하기 식 1에 의해 측정된 팽윤도가 35 ~ 100이고, 하기 식 2에 의해 측정된 겔분율(gel fraction)이 75 ~ 85이고, 유리전이온도가 60℃이상인 물성을 모두 만족하는 것일 수 있다.
[식 1]
팽윤도 = (방치 후 무게 - 초기무게)/초기무게 × 100
(상기 식에서, 방치 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후 측정한 무게를 의미한다.)
[식 2]
Gel fraction = (건조 후 무게 - 초기무게) × 100
(상기 식에서, 건조 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후, 상기 방치했던 도막을 120℃에서 3시간동안 건조한 후 측정한 무게를 의미한다.)
본 발명에 따른 광학 필름은 하드코팅필름으로 사용하기에 적합한 접착력을 가지며 레인보우 개선효과가 있다.
또한 본 발명은 하드코팅층을 더 포함하는 경우 전광선투과율이 91%이상으로 높고, 헤이즈가 1%이하로 낮으므로 우수한 광학물성을 만족할 수 있다.
또한, 본 발명에 따른 수분산 조성물은 굴절률이 높고, 고온 고습 하에서 내습성이 우수하며, 레인보우 현상을 개선하는 효과가 있다.
또한, 본 발명에 따른 광학필름은 제1수분산 조성물과 제2수분산 조성물의 함량비를 조절함에 따라 굴절률 및 접착력을 조절할 수 있으며, 인라인공정에 의해 코팅조성물을 도포하는 경우, 연신공정에 의해 코팅두께를 조절할 수 있어 공정이 유리하다.
또한, 굴절율의 조절이 가능하여 레인보우 현상을 개선하고, 폴리우레탄 조성물의 3관능기를 갖는 프리 폴리머를 도입하여 가교밀도를 높임으로써 고온 고습 하에서 내습성이 우수한 효과가 있다.
도 1은 본 발명의 제 1 양태의 광학필름의 제 1 구체예를 나타낸 단면도이다.
도 2는 본 발명의 제 1 양태의 광학필름의 제 2 구체예를 나타낸 단면도이다.
도 3은 본 발명의 제 1 양태의 광학필름의 제 3 구체예를 나타낸 단면도이다.
도 4는 본 발명의 제 1 양태의 광학필름의 제 4 구체예를 나타낸 단면도이다.
도 5는 본 발명의 블로킹 평가방법에 따른 평가기준을 나타낸 사진이다.
- 부호의 설명-
10 : 폴리에스테르 기재필름
20, 20a, 20b : 프라이머 코팅층
30, 30a, 30b : 하드코팅층
본 발명의 제 1 양태에 대하여 구체적으로 설명한다.
본 발명의 제 1 양태는 폴리에스테르 기재필름과, 이의 일면 또는 양면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 코팅조성물을 도포한 프라이머 코팅층을 포함하며, 상기 프라이머 코팅층의 건조도포두께가 50 ~ 150nm인 광학필름에 관한 것이다.
본 발명의 제 1 양태에서, 상기 무기입자는 평균입경이 1 ~ 50nm인 것일 수 있다.
본 발명의 제 1 양태에서, 상기 무기입자는 표면 개질된 지르코니아인 것일 수 있다.
본 발명의 제 1 양태에서, 상기 표면 개질된 지르코니아는 표면에 아실기 또는 알킬레이트기를 가지며, 카운터 이온으로 Na+가 사용된 것일 수 있다.
본 발명의 제 1 양태에서, 상기 코팅조성물은 굴절율이 1.4 ~ 1.6인 폴리에스테르수지 5 ~ 30 중량%, 웨팅제 0.1 ~ 0.4 중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 0.5 중량% 및 고형분 함량이 5 ~ 40 중량%인 수분산된 무기 입자 0.5 ~ 30중량%를 포함하여 전체 고형분 함량이 2 ~ 10 중량%인 것일 수 있다.
본 발명의 제 1 양태에서 상기 프라이머 코팅층의 일면 또는 양면에 굴절율 1.51 ~ 1.53인 아크릴계 수지 코팅층을 더 포함하는 것일 수 있다.
본 발명의 제 1 양태에서, 상기 아크릴계 수지코팅층의 건조도포두께는 1 ~ 10㎛인 것일 수 있다.
본 발명의 제 1 양태에서, 상기 아크릴계 수지 코팅층이 일면에 형성된 경우, 헤이즈가 1.0 이하, 전광선투과율이 91%이상이고, 상기 아크릴계 수지 코팅층이 양면에 형성된 경우, 헤이즈가 0.5%이하, 전광선투과율이 92% 이상인 것일 수 있다.
본 발명자들은 광학필름의 프라이머 코팅층의 굴절율이 기재필름인 폴리에스테르 필름의 굴절율인 1.64와 하드코팅층의 굴절율인 1.52의 굴절율의 중간값을 갖도록 하기 위하여, 굴절율이 1.4 ~ 1.6인 유기바인더와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 코팅 조성물의 전체 굴절율이 1.56 ~ 1.6, 더욱 바람직하게는 1.58이 되도록 조절하여 코팅하는 경우 프라이머 코팅층의 굴절율이 기재필름과 유사한 굴절율 범위를 나타내므로 레인보우 현상이 개선되는 것을 발견하게 되어 본 발명의 제 1 양태를 완성하였다.
또한, 상기 무기입자의 평균입경 50nm이하, 구체적으로 1 ~ 50nm의 범위로 사용하는 경우는 폴리에스테르 필름제조 후, 일면에 하드코팅층을 형성하였을 때, 전광선투과율이 91%이상이며, 헤이즈가 1%이하인 물성을 만족하며, 양면에 하드코팅층을 형성하였을 때 전광선투과율이 92%이상이며, 헤이즈가 0.5%이하인 물성을 만족하여 더욱 광학물성이 향상되는 것을 알 수 있음을 발견하여 본 발명의 제 1 양태를 완성하였다.
보다 구체적으로 본 발명의 제 1 양태는 상기 유기바인더로 폴리에스테르수지를 사용하고, 무기입자로 지르코니아 졸을 사용하고, 이때 표면 개질된 지르코니아를 사용함으로써 Binder와의 응집현상이 개선되며, 연속 공정인 폴리에스테르 필름 제조 공정에 적합하도록 코팅 조성물의 Pot life가 개선되는 것을 발견하여 본 발명의 제 1 양태를 완성하였다.
본 발명의 제 1 양태를 도면을 참조하여 설명하면, 본 발명의 제 1양태의 제 1 구체예는 도 1에 도시된 바와 같이 폴리에스테르 기재필름(10)과, 이의 일면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 조성물을 도포한 프라이머 코팅층(20)을 포함하는 광학용 폴리에스테르 필름에 관한 것이다.
본 발명의 제 1양태의 제 2 구체예는 도 2에 도시된 바와 같이, 폴리에스테르 기재필름(10)과, 이의 양면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 조성물을 도포한 프라이머 코팅층(20a, 20b)을 포함하는 광학용 폴리에스테르 필름에 관한 것이다.
본 발명의 제 1양태의 제 3 구체예는 도 3에 도시된 바와 같이, 기재필름(10)과, 이의 일면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 조성물을 도포한 프라이머 코팅층(20) 및 아크릴계 수지코팅층(30)을 포함하는 광학용 폴리에스테르 필름에 관한 것이다.
본 발명의 제 1양태의 제 4 구체예는 도 4에 도시된 바와 같이, 폴리에스테르 기재필름(10)과, 이의 양면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 조성물을 도포한 프라이머 코팅층(20a, 20b) 및 아크릴계 수지코팅층(30a, 30b)을 포함하는 광학용 폴리에스테르 필름에 관한 것이다.
그러나 이들 양태는 본 발명의 제 1 양태를 보다 구체적으로 설명하기 위한 것일 뿐 이들에 한정되는 것은 아니다.
이하 본 발명의 제 1 양태에 대하여 보다 구체적으로 설명한다.
본 발명의 제 1 양태에서 사용되는 기재필름은 폴리에스테르필름, 보다 구체적으로는 폴리에틸렌테레프탈레이트 필름을 사용하는 것이 광투과도가 우수하므로 바람직하다. 이러한 폴리에틸렌테레프탈레이트 필름은 연신된 필름을 사용하는 것이 바람직하며, 일축 또는 이축 연신된 필름을 사용할 수 있다. 상기 기재필름의 두께는 25 ~ 250㎛인 것을 사용할 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 제 1 양태에서 상기 프라이머 코팅층은 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 코팅조성물로 이루어진다. 상기 굴절율이 1.56 ~ 1.6인 범위에서 수분산 에멀젼 제조 시 첨가되는 다른 첨가제들에 의해 폴리에스테르 기재필름과 유사한 굴절율을 갖는 수분산 에멀젼으로 제조하여 도포할 수 있으므로 바람직하다.
보다 구체적으로, 상기 폴리에스테르 수지는 굴절율이 1.4 ~ 1.6인 범위를 사용하는 것이 바람직하다. 폴리에스테르 수지를 사용함으로써 기재 필름과의 접착력을 높일 수 있고, 타 수지 조성물에 비하여 높은 굴절율 값을 가짐에 따라 무기 입자 사용량이 감소하여 원가를 절감할 수 있으며, 필름 제조과정에서 발생하는 불량제품을 다시 재사용하는 리클레임(Reclaim) 시 칩의 색상 변화 및 물성 저하가 적어 필름의 원가 감소되는 효과가 있다.
또한, 상기 무기입자는 굴절율이 1.8 ~ 2.2인 무기입자를 사용하는 것이 바람직하며, 제한되는 것은 아니나 구체적으로 예를 들면, ZnO, TiO2, CeO2, SnO2, ZrO2 중 하나 또는 둘 이상을 사용할 수 있다. 보다 바람직하게는 지르코니아(ZrO2)를 사용하는 것이 바람직하다. 더욱 바람직하게는 표면 개질된 지르코니아를 사용하는 것이 바인더수지인 폴리에스테르수지와의 응집현상을 개선하고, 조액 안정성을 높일 수 있으므로 좋다. 상기 표면 개질된 지르코니아는 표면에 아실기 또는 알킬레이트기를 가지며, 카운터 이온으로 Na+가 사용된 것이 바람직하다. 상기 아실기는 아세틸기, 프로피오닐기, 말로닐기, 벤조일기 등을 포함한다.
상기 표면 개질된 지르코니아를 제조하는 방법은 지르코늄 염(옥시 염화 지르코늄 등)을 수중에서 수산화나트륨, 수산화칼륨, 암모니아 등의 알칼리와 10~50℃에서 반응시켜, 산화지르코늄 입자의 슬러리(slurry)를 얻은 뒤, 이 슬러리를 여과, 세척하여 지르코늄 1mol에 카르본산, 하드록시카르본산, 포름산, 초산 등의 유기산 1~3mol을 더하여 170℃ 이상의 물온도에서 열처리 하여 표면처리할 수 있다.
카운터 이온으로 Na+가 사용 되는 것으로 제한되는 것은 아니며, 메인 바인더로 사용되는 폴리에스테르 바인더의 이온화기가 NaSO3이므로 이온 발란스가 깨지지 않도록 하기 위해서는 Na+ 이온을 사용하는 것이 바람직하다. 다른 이온화기들이 들어 갔을 때는 폴리에스테르 바인더의 응집이 발생할 수 있다.
표면개질 된 지르코니아 입자를 사용함으로써 조액 안정성이 높아지고 연속공정인 PET Film 생산 Process에서 안정적인 물성의 ILC Coating 필름을 얻을 수 있다. 또한, 평균입경이 1 ~ 50nm인 것을 사용하는 것이 바람직하다. 보다 바람직하게는 평균입경이 1 ~ 10 nm 것을 사용하는 것이 좋다. 1nm 미만인 경우는 입자 응집현상이 더욱 가속화 되어 조성물의 Pot Life가 떨어지며, 무기입자의 크기가 50nm를 초과하는 경우 광학필름의 광학특성, 특히 헤이즈가 증가할 수 있다.
보다 바람직하게 상기 무기입자는 고형분 함량이 5 ~ 40 중량%인 수분산된 졸 형태로 사용할 수 있으며, 이때 pH는 7 ~ 9, 보다 바람직하게는 8 ~ 8.5인 것을 사용하는 것이 좋다. 고형분 함량이 5 중량% 이하일 때는 충분한 양의 무기 입자 첨가가 어려우며, 40 중량% 이상일 때는 무기 입자 원료 자체에서 응집현상이 일어날 수 있다.
본 발명의 제 1 양태는 상기 폴리에스테르 수지와 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 코팅조성물을 사용하는데 특징이 있으며, 굴절율이 1.56 미만인 경우는 기재필름과의 굴절율 차가 커서 레인보우 현상이 심해지며, 굴절율을 높이기 위하여 고굴절 입자의 함량을 본 발명의 범위보다 높게 하여야 하므로, 필름 제조 시 코팅외관의 얼룩 발생이 심하며, 비용 상승으로 인해 상업성이 떨어지게 된다. 또한, 굴절율이 1.6을 초과하는 경우는 하드코팅층과의 굴절율 차가 커짐에 따라 광간섭 현상(Rainbow 현상)이 심해질 수 있다.
본 발명의 제 1 양태에서 프라이머 코팅층을 이루기 위한 상기 코팅조성물은 폴리에스테르수지, 웨팅제, 평균입경이 100 ~ 200nm인 실리카 및 고형분 함량이 5 ~ 40 중량%인 수분산된 무기 입자를 포함하는 수분산성 또는 수용성의 조성물인 것이 바람직하다.
보다 바람직하게는 상기 프라이머 코팅용 코팅조성물은 굴절율이 1.4 ~ 1.6인 폴리에스테르수지 5 ~ 30 중량%, 웨팅제 0.1 ~ 0.4 중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 0.5 중량% 및 고형분 함량이 5 ~ 40 중량%인 수분산된 무기 입자 0.5 ~ 30중량%를 포함하여 전체 고형분 함량이 2 ~ 10 중량%인 수분산성 또는 수용성의 조성물을 사용하는 것이 바람직하다.
상기 프라이머 코팅층을 형성하기 위한 코팅조성물의 도포 방법은 폴리에스테르 필름의 연신 공정 중에 표면에 도포하는 인라인 코팅(in line coating)에 코팅하여도 좋고, 필름 제조 후 오프라인 코팅(off line coating)을 하는 것도 가능하다. 양자를 병행하는 것도 가능하다.
바람직하게는 인라인 코팅을 하는 것이 제막과 동시에 도포가 되므로 제조비용이 절감되며, 코팅층의 두께를 연장 배율에 의해 변화시킬 수 있으므로 바람직하다.
본 발명의 제 1 양태는 필요에 따라 상기 프라이머 코팅층의 일면 또는 양면에 굴절율 1.50~1.54, 더욱 바람직하게는 1.51 ~ 1.53인 아크릴계 수지 코팅층을 더 포함할 수 있다. 또한, 상기 아크릴계 수지코팅층의 두께는 1 ~ 10㎛인 것이 바람직하다.
상기 아크릴계 수지코팅층은 하드코팅층을 형성하는 성분이라면 제한되지 않고 사용될 수 있으며, 구체적으로 상업화된 예를 들면, AIKA사 Z-711 제품 등을 사용할 수 있고, 이에 제한되는 것은 아니다.
본 발명은 상기 프라이머 코팅층 형성 시 본 발명의 굴절율 및 두께를 만족하도록 함으로써, 상기 아크릴계 수지 코팅층이 일면에 형성된 경우, 헤이즈가 1.0 이하, 전광선투과율이 91%이상이고, 상기 아크릴계 수지 코팅층이 양면에 형성된 경우, 헤이즈가 0.5%이하, 전광선투과율이 92% 이상인 물성을 만족할 수 있다.
이하는 본 발명의 제 1 양태의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
하기 실시예 및 비교예에 나타낸 물성을 측정하는 방법은 다음과 같다.
1) 전광선투과율 측정
전광선투과율측정기(Nippon Denshoku 300A)를 이용하여 전체 필름의 전광선투과율을 측정하였다.
2) 굴절율 측정
2-1)프라이머코팅용 폴리에스테르수지의 굴절율 측정
수분산된 폴리에스테르수지 조성물을 폴리카보네이트(polycarbonate) 필름에 도포 후 건조하고, 굴절율 측정기 ABBE 굴절계(ATAGO사, DR-M2, @550)을 이용하여 상온에서 측정하였다.
2-2) 무기물의 굴절율 측정
액상의 무기 입자를 굴절율이 1.52인 수계 Resin에 10~50 중량%까지 10중량 % 단위로 투입하여 폴리카보네이트(polycarbonate) 필름에 도포 후 건조하고, 굴절율 측정기 ABBE 굴절계(ATAGO사, DR-M2, @550)을 이용하여 상온에서 측정하였다.
측정결과를 Plot하여 입자함량과 굴절율을 비례관계로 보고, 무기 입자가 100%일 때의 굴절율을 예측하였다.
3) 레인보우 현상 측정-1 : 실시예 및 비교예에 따른 광학필름 제조 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 육안으로 레인보우가 발생하는지 여부를 확인하였다. 육안평가 시 암실에서 삼파장 램프 아래에서 평가를 하였다.
평가기준은 다음과 같다.
상 : 레인보우가 보이지 않으며, 균일한 색감을 보임
중 : 레인보우 현상이 연하게 보이며, 균일한 색감을 보임
하 : 레인보우가 강하게 보이며, 강한 색감을 보임
4) 레인보우 현상 측정-2 : 실시예 및 비교예에 따른 광학필름 제조 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 UV-Visible (CARY 5000)을 통해 가시광선 영역의 반사 Pattern을 측정하였다.
상 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 1%이하
중 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 3%이하
하 : 리플 진폭이 줄어드는 파장대가 500~600nm가 아니거나, 진폭이 줄어드는 파장이 보이지 않을 때
5) 하드코팅층과의 접착력 측정(ASTM B905)
실시예 및 비교예에 따른 광학필름 제조 후, 코팅 조성물이 코팅된 일면에 하드코팅 처리 후 상온에서의 접착력 및 고온 열수처리(100℃, 10min) 후 하드코팅층과 이접착층 간의 접착력을 평가하였다.
격자 내에 100%가 남아 있는 경우를 5점, 95%가 남아있는 경우를 4점, 95~85%가 남아있는 경우를 3점, 85~65%가 남아있는 경우를 2점, 65% 이하인 경우를 0점으로 하였다.
6) 건조도포두께 측정
필름의 전폭을 기계 방향의 수직방향(TD)으로 1m 간격으로 5 포인트(Point)를 지정하여 필름의 단면을 SEM(Hitachi S-4300)으로 측정하였으며, 5만배 확대하여 그 구간 내 30Point 측정 후 평균값을 계산하였다.
7) Particle Size 측정
Nikkiso社 UPA-UT151에 액상 시료를 1% 투입하여 측정하였으며, Average 값으로 표시하였다.
[실시예 1]
코팅 조성물(1)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 20 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 4 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.58이었다.
양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 코팅 조성물(1)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 도 2와 같이 양면에 프라이머 코팅층이 형성된 188㎛의 2축연신 필름을 제조하였다.
상기 프라이머 코팅층의 두께는 제 1 코팅층이 90nm, 제 2 코팅층이 90nm이었으며, 이들의 굴절율은 1.58이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 2]
코팅 조성물(2)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 17 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 4 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5 중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.59이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 80nm, 제 2 코팅층이 80nm이었으며, 이들의 굴절율은 1.59이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 3]
코팅 조성물(3)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 22 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 4 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 6 중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.57이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 104nm, 제 2 코팅층이 104nm이었으며, 이들의 굴절율은 1.57이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 4]
코팅 조성물(4)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 10 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 2.6 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 3중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.6이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 62nm, 제 2 코팅층이 62nm이었으며, 이들의 굴절율은 1.6이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 5]
일면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 실시예 1에서 제조된 코팅 조성물(1)을 바코팅(bar coating)방법으로 일면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 일면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 프라이머 코팅층의 두께는 92nm이었으며, 굴절율은 1.58이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 6]
일면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 실시예 2에서 제조된 코팅 조성물(2)을 바코팅(bar coating)방법으로 일면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 일면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 프라이머 코팅층의 두께는 85nm이었으며, 굴절율은 1.59이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 7]
코팅 조성물(5)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 20 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 65nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, CIK 社), ZRW E-15) 8 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.58이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 89nm, 제 2 코팅층이 89nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 8]
코팅 조성물(6)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 20 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 50nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 8 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.58이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 89nm, 제 2 코팅층이 89nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 9]
코팅 조성물(6)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 22 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 6 중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.56이었다.
상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 95nm, 제 2 코팅층이 95nm이었으며, 이들의 굴절율은 1.56이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 10]
실시예 1에서 제조된 코팅조성물(1)을 이용하여, 상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 50nm, 제 2 코팅층이 50nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 11]
실시예 1에서 제조된 코팅조성물(1)을 이용하여, 상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 70nm, 제 2 코팅층이 70nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 12]
실시예 1에서 제조된 코팅조성물(1)을 이용하여, 상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 120nm, 제 2 코팅층이 120nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[실시예 13]
실시예 1에서 제조된 코팅조성물(1)을 이용하여, 상기 실시예 1와 동일한 방법으로 양면코팅 폴리에스테르 필름을 제조하였으며, 프라이머 코팅층의 두께는 제 1 코팅층이 150nm, 제 2 코팅층이 150nm이었으며, 이들의 굴절율은 1.58이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[비교예 1]
코팅 조성물(7)의 제조
수성 아크릴계 바인더(굴절율 1.44) 8 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 5 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5중량%인 아크릴계 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.53이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[비교예 2]
코팅 조성물(8)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 6 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 1.6 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 2 중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.57이었다.
이렇게 얻어진 광학필름의 물성을 하기 표 1에 나타내었다.
[비교예 3]
코팅 조성물(9)의 제조
수성 폴리에스테르 바인더(굴절율 1.54) 20 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균 입경이 6nm이고, 굴절율이 2.1인 지르코니아졸(Zirconia Sol, 고형분함량 30 중량%, Soduim Citrate를 이용하여 표면처리) 8 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 6.5중량%인 폴리에스테르 코팅조성물을 제조하였다. 상기 조성물의 굴절율은 1.62이었다.
[표 1]
Figure PCTKR2012007839-appb-I000003
상기 표 1에서 보이는 바와 같이, 본 발명의 프라이머 코팅 조성물을 도포한 폴리에스테르 필름의 전광선투과율(TT)이 90.1 ~ 91.7%이며, 헤이즈가 0.73 ~ 1.74인 것을 알 수 있었다. 실시예 7에서와 같이 입자의 크기가 65㎛인 것을 사용하는 경우, 헤이즈가 다소 높아지는 것을 알 수 있었다.
[실시예 14 ~ 22]
상기 실시예 1 ~ 8에서 제조된 필름의 프라이머코팅층의 상부에 하드코팅층을 형성하였다.
이때 하드코팅층은 아크릴계수지(AIKA 社, Z-711)를 사용하였으며, 굴절율 및 두께를 하기 표 2와 같이 조절하였다.
이렇게 얻어진 광학필름의 물성을 하기 표 2에 나타내었다.
[비교예 4 ~ 6]
상기 비교예 1 ~ 3에서 제조된 필름의 프라이머코팅층의 상부에 하드코팅층을 형성하였다.
이때 하드코팅층은 아크릴계수지(AIKA 社, KY-11)를 사용하였으며, 굴절율 및 두께를 하기 표 2와 같이 조절하였다.
이렇게 얻어진 광학필름의 물성을 하기 표 2에 나타내었다.
[표 2]
Figure PCTKR2012007839-appb-I000004
상기 표 2에서 보이는 바와 같이, 굴절율이 본 발명의 범위를 벗어나는 비교예 4(비교예 1)의 경우는 리플수렴이 300nm에서 나타났으며, 비교예 6(비교예 3)의 경우는 리플수렴이 800nm에서 나타나 광학특성이 저하되는 것을 알 수 있었으며, 레인보우 현상이 발생하는 것을 알 수 있었다. 또한, 프라이머 코팅층의 도포두께가 본 발명의 범위를 벗어나는 비교예 5(비교예 2)의 경우는 리플수렴이 300nm에서 나타나는 것을 알 수 있었다.
다음으로 본 발명의 제 2 양태에 대하여 설명한다.
본 발명자들은 프라이머층에 말단기인 이소시아네이트 관능기가 3개 이상이며, 말단이 블로킹되어 있는 수분산성 폴리우레탄 수지를 사용하여 코팅층을 형성하는 경우, 고온고습의 가혹조건에서 내습성이 향상되어 후가공시 프리즘필름 등 광학용 고분자 기재필름과의 접착성이 우수함을 확인하여 본 발명의 제 2양태를 완성하였다.
본 발명의 제 2 양태는 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하는 폴리우레탄코팅조성물(이하, ‘제 1 수분산 조성물’이라 함)에 관한 것이다.
또한 본 발명은 폴리에스테르 기재필름과, 상기 기재필름의 일면 또는 양면에 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하는 폴리우레탄코팅조성물이 도포되어 형성된 프라이머층을 포함하는 광학필름에 관한 것이다.
본 발명의 제 2 양태에서 상기 말단기는 일부 또는 전부가 무기산염기로 블로킹되어 있는 이소시아네이트기를 포함하여 수분산성이 우수하므로 바람직하다.
본 발명의 제 2 양태에서 상기 수분산성 폴리우레탄 수지는 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 이온성기를 블록킹하여 제조한 것을 사용하는 것이 바람직하다.
상기 수분산성 폴리우레탄 수지는 중량평균분자량이 10,000 ~ 20,000인 것을 사용하는 것이 바람직하다.
본 발명의 제 2 양태에서 상기 폴리우레탄코팅조성물은 상기 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 수분산성 폴리우레탄 바인더 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함한다.
본 발명의 제 2 양태에서 상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000 nm인 것을 사용한다.
본 발명의 제 2 양태에서 상기 프라이머 코팅층의 건조도포두께는 50 ~ 100 nm인 것이 바람직하다.
본 발명의 제 2 양태에 따른 광학필름은 하기 식 1에 의해 측정된 팽윤도(Swelling Ratio)가 35 ~ 100이고, 하기 식 2에 의해 측정된 겔분율(gel fraction)이 75 ~ 85이고, 유리전이온도가 60℃이상인 물성을 모두 만족한다. 상기 물성을 만족하는 범위에서 스웰링되지 않으므로 기재필름과 프라이머 코팅층 간의 우수한 접착력을 가지며, 이후 기능성층을 적층하는 후 공정과의 접착력이 우수한 물성을 나타낸다. 즉, 고온고습 환경에서도 접착력이 우수한 프라이머 코팅층을 형성할 수 있다.
[식 1]
팽윤도 = (방치 후 무게 - 초기무게)/초기무게 × 100
(상기 식에서, 방치 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후 측정한 무게를 의미한다.)
[식 2]
Gel fraction = (건조 후 무게 - 초기무게) × 100
(상기 식에서, 건조 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후, 상기 방치했던 도막을 120℃에서 3시간동안 건조한 후 측정한 무게를 의미한다.)
이하 본 발명의 제 2 양태에 대하여 보다 구체적으로 설명한다.
본 발명의 제 2 양태에서 사용되는 기재필름은 폴리에스테르필름, 보다 구체적으로는 폴리에틸렌테레프탈레이트 또는 폴리에틸렌나프탈레이트 필름을 사용하는 것이 광투과도가 우수하므로 바람직하며, 첨가제 또는 입자를 포함할 수 있다. 이러한 폴리에틸렌테레프탈레이트 필름은 연신된 필름을 사용하는 것이 바람직하며, 일축 또는 이축 연신된 필름을 사용할 수 있다. 상기 기재필름의 두께는 50 ~ 250㎛인 것을 사용할 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 제 2 양태에서 상기 프라이머층은 광학용 고분자 기재필름의 한 면 또는 양면에 형성되는 것으로서, 접착성이 우수하여 다른 기재와의 접착을 용이하게 하는 이접착성을 나타낸다.
상기 프라이머층은 수분산성 폴리우레탄 수지를 포함하는 폴리우레탄코팅조성물을 사용하는데 특징이 있다. 상기 수분산성 폴리우레탄 수지는 말단기인 이소시아네이트 관능기가 3개 이상이며, 상기 이소시아네이트기의 일부 또는 전부가 무기산염기로 블록킹되어 있으며, 보다 구체적으로는 설페이트와 같은 무기염으로 블로킹되어 있는 분지형폴리머와, 이소시아네이트 관능기가 2개이며 상기 이소시아네이트기의 일부 또는 전부가 무기산염기로 블록킹되어 있으며, 보다 구체적으로는 설페이트와 같은 무기염으로 블로킹되어 있는 선형폴리머를 포함한다.
상기 수분산성 폴리우레탄 수지는 선형폴리머 10 ~ 75 중량%와 분지형폴리머 25 ~ 90 중량%로 이루어진 것을 사용하는 것이 바람직하다. 분지형폴리머의 함량이 25 중량% 미만인 경우는 본 발명에서 목적으로 하는 팽윤도 및 겔분율을 만족할 수 없으며, 고온고습하에서의 접착성이 우수한 도막을 얻기 어렵다. 또한, 분지형폴리머의 함량이 90 중량%를 초과하는 경우는 과도한 겔화에 의해 점도가 급격히 상승하여 수분산 조성물을 제조하기 어렵고, 필름 표면에 코팅 시 표면에 크랙이 발생하는 등의 표면외관에 결점이 발생할 수 있다. 본 발명에서 상기 분지형 폴리머는 이소시아네이트 관능기가 3개 또는 3개 이상인 수지를 의미한다.
본 발명의 제 2 양태의 폴리우레탄코팅조성물은 상기 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 수분산성 폴리우레탄 바인더 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함한다.
본 발명의 제 2 양태에서 상기 수분산성 폴리우레탄 바인더는 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%가 되도록 사용하는 것이 도포두께를 조절하기에 바람직하며, 그 함량은 폴리우레탄코팅조성물 중 5 ~ 10 중량%를 사용하는 것이 바람직하다. 5 중량% 미만에서는 코팅성은 양호하나, 접착력 구현이 어려우며, 10 중량% 초과인 경우 접착력은 우수하나 코팅 외관 및 투명성 구현이 어려울 수 있다.
상기 수분산성 폴리우레탄 수지의 제조방법을 예를 들면, 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 황산염의 이온성기를 블록킹하여 제조한 것을 사용하는 것이 바람직하고, 이에 제한되는 것은 아니다.
또한, 중량평균분자량이 10,000 ~ 20,000인 범위에서 겔화되지 않으며, 수분산 가능하고 고온고습에서 물성이 우수한 도막을 얻을 수 있으므로 바람직하다.
상기 중량평균분자량은 GPC-MALS(Multi Angle Light Scattering) 시스템(Wyatt社)을 이용하여 측정할 수 있으며, MALS 시스템의 구성은 아래와 같다.
MALS 시스템 구성
- GPC; Water 1525 Binary HPLC Pump
- RI 검출기; Optilab rex
- MALS; Wyatt Dawn 8+
- Column; PLgel 5㎛ Mixed-C (7.5mmΦ×300mm)×2 (Polymer Laboratories)
- 이동상 : DMF(50mM LiCl)
- 유속 : 0.5mL/min
- 온도 : 50℃
- 인젝션 볼륨 : 0.5%, 500㎕
상기 폴리올은 폴리에스테르계폴리올 또는 폴리에테르계폴리올을 사용할 수 있으며, 바람직하게는 폴리에스테르계폴리올을 사용한다. 폴리에스테르계 폴리올로는 카르본산, 세바신산 또는 산무수물과 다가알코올의 반응으로부터 제조되는 폴리올이다. 이러한 폴리올의 종류에는 제한되지 않으며, 중량평균분자량이 600 ~ 3000인 폴리에스테르 폴리올을 사용하는 것이 좋다. 폴리에스테르계 폴리올로는 카르본산, 세바신산 또는 산무수물과 다가알코올의 반응으로부터 제조되는 폴리올 등이 있다. 이러한 폴리올의 종류에는 제한되지 않으며, 중량평균분자량이 600 ~ 3000인 폴리에스테르 폴리올을 사용하는 것이 좋다. 그 함량은 39 ~ 45 중량%를 사용하는 것이 바람직하다. 39 중량% 미만으로 사용하는 경우 분자량이 작아져, 프라이머층이 지나치게 딱딱하게 되며, 연신이 어려워 코팅 외관이 우수하지 못하며, 45 중량% 초과에서는 ILC 층이 지나치게 소프트(Soft) 하게 되어 블로킹성이 떨어질 수 있다.
상기 트리메틸올 프로판은 3관능기를 갖는 프리폴리머를 제조하기 위하여 사용되는 것으로, 0.3 ~ 1.2 중량%를 사용하는 것이 바람직하다. 0.3 중량% 미만으로 사용하는 경우는 가교밀도가 떨어지며, 안티블로킹성(Anti-Blocking)이 떨어질 수 있고, 1.2 중량%를 초과하여 사용하는 경우는 가교밀도가 지나치게 높아져 연신성이 나빠지게 되어 코팅 외관이 우수하지 못하며, 접착력이 나빠질 수 있다.
상기 이소시아네이트 화합물은 제한되지 않으나 바람직하게는 헥사메틸렌 디이소시아네이트를 사용하는 것이 바람직하다. 그 함량은 50 ~ 57 중량%를 사용하는 범위에서 3관능기를 갖는 프리폴리머를 제조할 수 있다.
상기 무기산염은 황산수소나트륨(Sodium Hydrogen Sulfate)을 사용하는 것이 바람직하며, 그 함량은 3 ~ 4 중량%를 사용하는 것이 바람직하다.
본 발명의 제 2 양태의 폴리우레탄코팅조성물은 광학용 고분자 기재필름 상의 코팅성 및 프라이머층 위에 내열성 가공을 용이하게 하기 위하여 실리콘계 웨팅제, 콜로이드 실리카 입자가 첨가제로써 더욱 사용될 수 있다.
실리콘계 웨팅제는 0.1 ~ 0.5 중량%를 사용하는 것이 바람직하며, 콜로이드 실리카 입자 0.1 ~ 0.5 중량%를 포함하는 것이 바람직하다. 또한, 상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000 nm인 것을 사용하는 것이 바람직하다.
본 발명의 제 2 양태에서 상기 프라이머층의 건조도포두께는 50 ~ 100 nm인 것이 바람직하다. 도포 방법은 폴리에스테르 필름의 연신 공정 중에 표면에 도포하는 인라인 코팅(in line coating)에 코팅하여도 좋고, 필름 제조 후 오프라인 코팅(off line coating)을 하는 것도 가능하다. 양자를 병행하는 것도 가능하다. 바람직하게는 인라인 코팅을 하는 것이 제막과 동시에 도포가 되므로 제조비용이 절감되며, 코팅층의 두께를 연장 배율에 의해 변화시킬 수 있으므로 바람직하다.
이하는 본 발명의 제 2 양태의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
물성은 다음의 측정방법으로 측정하였다.
1. 폴리우레탄 코팅조성물을 이용한 도막의 물성 측정
수분산성 폴리우레탄 바인더 15g을 지름 80mm, 높이 15mm 둥근 그릇에 넣고 65℃에서 72시간, 120℃에서 3시간 건조한다. 1g의 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하여 방치했던 도막을 꺼내어 Swelling Ratio를 측정한다. 방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록하여 Gel Fraction을 측정한다.
1) Swelling Ratio : 약 1g의 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하여 방치했던 도막을 꺼내어 무게를 기록한다.
Swelling Ratio = (방치 후 무게-초기 무게)/초기무게 *100
2) Gel Fraction : 방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록한다.
Gel Fraction = (건조 후 무게/초기 무게) *100
3) Tg 측정 : DSC (PerkinElmer DSC 7 이용) 기기 이용하여, 2nd Run mode 로 측정한다. 10~11mg의 건조 도막을 PerkinElmer DSC7을 이용하여 측정한다.
1st Run. = 0~200 ℃, 200℃/min, Holding Time - 3min // 200℃~-40℃, 200℃/min, Holding Time - 5min
2nd Run. = -40℃~200℃, 20℃/min 조건으로 측정한다.
2. 양면 코팅 폴리에스테르필름의 블로킹(Blocking) 평가방법
Heat Gradient(TOYOSEIKI)를 이용하여, 0.4MPa 압력조건에서 각 5단계 온도를 설정하여, 1분 누른 후, 1분 후 누른 판을 제거하여 그 정도를 확인한다. 각 정도의 차이는 도 5를 기준으로 평가하였다.
- 상습 평가 시 : 20~25℃에서 40~50RH%의 항온/항습실에서 실행한다.
- 가습 평가 시 : 필름에 초음파 가습기를 이용하여 100%RH 조건으로 실행한다.
[제조예 1]
수분산성 폴리우레탄 바인더(1)의 제조
이론상으로 분지형 폴리머의 함량이 25 중량%인 수분산 폴리우레탄을 제조하였다.
폴리올(Polyethyleneadipate Diol) 40중량%, 트리메틸올프로판(Trimethylol Propane) 0.3중량%, 헥사메틸렌 디이소시아네이트(Hexamethylene Diisocyanate) 56.7중량%를 반응 시켜 이소시아네이트 관능기를 말단기로 갖는 프리폴리머(Prepolymer)를 제조한 후, 이온성기로 황산수소나트륨(Sodium Hydrogen Sulfate) 3 중량%를 프리폴리머의 말단 관능기인 이소시아네이트와 반응 시켜 이온성기를 갖으며, 중량평균분자량이 10,700인 폴리우레탄(Polyurethane)을 제조하였다. 이와 같이 제조된 폴리우레탄 20중량%를 물 80중량%에 분산 시켜 고형분이 20 중량%인 수분산성 폴리우레탄 바인더(1)를 제조하였다.
[제조예 2]
수분산성 폴리우레탄 바인더(2)의 제조
이론상으로 분지형 폴리머의 함량이 50 중량%인 수분산 폴리우레탄을 제조하였다.
폴리올(Polyethyleneadipate Diol) 40중량%, 트리메틸올프로판(Trimethylol Propane) 0.6중량%, 헥사메틸렌 디이소시아네이트(Hexamethylene Diisocyanate) 55.9중량%를 반응시켜 이소시아네이트 관능기를 말단기로 갖는 프리폴리머(Prepolymer)를 제조한 후, 이온성기로 소듐 하이드로겐 설페이트(Sodium Hydrogen Sulfate) 3.5중량%를 프리폴리머의 말단 관능기인 이소시아네이트와 반응 시켜 이온성기를 갖으며, 중량평균분자량이 14,400인 폴리우레탄(Polyurethane)을 제조하였다. 이와 같이 제조된 폴리우레탄 20중량%를 물 80중량%에 분산 시켜 고형분이 20 중량%인 수분산성 폴리우레탄을 제조하였다.
[제조예 3]
수분산성 폴리우레탄 바인더(3)의 제조
이론상으로 분지형 폴리머의 함량이 90 중량%인 수분산 폴리우레탄을 제조하였다.
폴리올(Polyethyleneadipate Diol) 40중량%, 트리메틸올프로판(Trimethylol Propane) 1.2중량%, 헥사메틸렌 디이소시아네이트(Hexamethylene Diisocyanate) 54.8 중량%를 반응시켜 이소시아네이트 관능기를 말단기로 갖는 프리폴리머(Prepolymer)를 제조한 후, 이온성기로 소듐 하이드로겐 설페이트(Sodium Hydrogen Sulfate) 4.0중량%를 프리폴리머의 말단 관능기인 이소시아네이트와 반응 시켜 이온성기를 갖으며, 중량평균분자량이 19,000인 폴리우레탄(Polyurethane)을 제조하였다. 이와 같이 제조된 폴리우레탄 20중량%를 물 80중량%에 분산 시켜 고형분이 20 중량%인 수분산성 폴리우레탄을 제조하였다.
[실시예 23]
가교밀도가 우수한 폴리우레탄코팅조성물(1)의 제조
상기 제조예 1에서 제조된 수분산성 폴리우레탄 바인더 5 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 폴리우레탄코팅조성물(1)을 제조하였다.
양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 폴리우레탄코팅조성물(1)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리우레탄코팅층의 건조도포두께는 제 1 코팅층이 80nm, 제 2 코팅층이 80nm이었다.
[실시예 24]
가교밀도가 우수한 폴리우레탄코팅조성물(2)의 제조
상기 제조예 2에서 제조된 수분산성 폴리우레탄 바인더 5 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 폴리우레탄코팅조성물(2)을 제조하였다.
양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 폴리우레탄코팅조성물(2)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리우레탄코팅층의 건조도포두께는 제 1 코팅층이 80nm, 제 2 코팅층이 80nm이었다.
[실시예 25]
가교밀도가 우수한 폴리우레탄코팅조성물(3)의 제조
상기 제조예 3에서 제조된 수분산성 폴리우레탄 바인더 5 중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 폴리우레탄코팅조성물(3)을 제조하였다.
양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 폴리우레탄코팅조성물(3)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리우레탄코팅층의 건조도포두께는 제 1 코팅층이 80nm, 제 2 코팅층이 80nm이었다.
[비교예 7]
폴리우레탄 조성물의 제조
수성 폴리우레탄 바인더(Dai-ichi kogyo seiyaku사의 UREKO H-3, 고형분 20 중량%, 관능기 2개이고 중량평균분자량이 8,000인 수성폴리우레탄 바인더) 5중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm0인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 비교예 7 을 준비하였다.
이 조성물을 이용하여 상기 실시예 23과 동일한 방법으로 양면코팅 폴리에스테르필름을 제조하였다.
상기 제조예 1 ~ 3에서 제조된 수분산성 폴리우레탄 바인더 및 비교예 7의 수성 폴리우레탄 바인더의 물성을 측정하여 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2012007839-appb-I000005
상기 실시예 23 ~ 25 및 비교예 7에 따른 도막의 물성을 측정하여 하기 표 4 및 표 5에 나타내었다.
[표 4] 상습 조건에서 블로킹 정도 평가
Figure PCTKR2012007839-appb-I000006
[표 5] 가습 조건에서 블로킹 정도 평가
Figure PCTKR2012007839-appb-I000007
상기 표 4 및 표 5에서 보이는 바와 같이, 본 발명에 따른 실시예 23은 상습조건에서 100℃이상에서 블로킹이 저하되는 것을 확인하였으나, 실시예 24 및 실시예 25은 상습조건에서 120℃까지 블로킹성이 우수한 것을 알 수 있었다.
가습조건인 경우 본 발명에 따른 실시예 23 및 24는 80℃까지 블로킹성이 우수한 것을 알 수 있었으며, 실시예 25의 경우 110℃까지 블로킹성이 우수한 것을 알 수 있었다.
이러한 결과를 종합해 볼 때, 프라이머층에 사용된 수분산성 폴리우레탄 바인더의 말단기 개수를 조절함으로써 고온, 고습 조건에서 물성이 우수한 필름을 제조할 수 있음을 알 수 있었다.
이하는 본 발명의 제 3 양태에 대하여 구체적으로 설명한다.
본 발명의 제 3양태는 폴리에스테르코팅조성물 및 이를 이용한 폴리에스테르 필름에 관한 것이다.
보다 구체적으로 본 발명의 제 3양태는 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 방향족디카르복실산 1 ~ 10 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10몰%, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 디올화합물 30 ~ 60몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10 몰%를 중축합한 폴리에스테르수지를 포함하는 폴리에스테르코팅조성물(이하, '제 2 수분산 조성물'이라 함)에 관한 것이다.
[화학식 1]
Figure PCTKR2012007839-appb-I000008
[화학식 2]
Figure PCTKR2012007839-appb-I000009
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
본 발명자들은 폴리에스테르 기재필름과의 접착력이 우수하며, 간섭무늬가 제어된 프라이머층을 도입하기 위하여 연구한 결과, 기재필름인 폴리에스테르 필름과의 접착력을 높이기 위하여 같은 계열의 수지인 폴리에스테르 수지 에멀젼을 이용하고, 이때 간섭무늬를 제어하기 위하여 굴절율이 1.58이상인, 보다 바람직하게는 굴절율이 1.58 ~ 1.64인 폴릴에스테르 에먼젼을 제조하고자 하였다.
상기 굴절율을 만족시키기 위해 폴리에스테르수지 합성 시 카르복실산 성분 및 글리콜 성분으로 방향족구조를 갖는 화합물을 사용함으로써 굴절율을 높일 수 있음을 발견하였다. 구체적으로 상기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌을 첨가하여 합성하는 경우 굴절율이 높아짐을 확인하였다. 그러나, 상기의 방향족 화합물은 굴절율은 높일 수 있으나, 동시에 수지의 유리전이온도가 상승하게 되므로 수분산 에멀젼을 제조하여 필름제막 시 사용하는 경우, 필름의 연신 및 열처리 온도에서 충분히 열화되지 못해 필름 표면에 크랙이 발생하거나 도메인을 형성하여 백탁이 발생하는 것을 발견하였다.
따라서, 이러한 문제를 개선하기 위하여 연구한 결과 상기 화학식 2로 표시되는 트리글리세라이드 화합물을 첨가하여 합성하는 경우 브랜치(branch)구조를 형성하여 유리전이온도를 낮출 수 있음을 발견하였으며, 보다 바람직하게는 1 ~ 10 몰%로 사용하는 범위에서 굴절율이 1.58 ~ 1.64로 높으며, 유리전이온도가 40 ~ 60℃인 폴리에스테르수지를 합성할 수 있음을 발견하였으며, 이러한 폴리에스테르수지를 이용하여 프라이머 코팅층용 수분산 에멀젼을 제조하고, 이를 이용하여 폴리에스테르 필름 제조 시 프라이머 코팅층을 형성함으로써 광학적 특성이 우수한 폴리에스테르 필름을 제공할 수 있음을 발견하여 본 발명의 제 3양태를 완성하였다.
보다 구체적으로 본 발명의 제 3양태에서 상기 방향족 디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 술폰산염을 포함하는 방향족 디카르복실산은 소듐 2,5-디카르복시벤젠설포네이트(soduim 2,5 dicarboxy benzene sulfonate) 5-설폰 이소프탈산(5-sulfoisophtalic acid), 2-설폰 이소프탈산(2-sulfoisophtalic acid), 4-설폰 이소프탈산(4-sulfoisophtalic acid), 4-설폰 나프탈렌-2,6-디카르복실산(4-sulfo naphtalene-2,6-dicarboxylic acid) 에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 디올화합물은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또한, 본 발명의 제 3양태에서 상기 폴리에스테르수지는 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 물성을 만족할 수 있다.
본 발명의 제 3양태에서 상기 폴리에스테르코팅조성물은 상기 폴리에스테르수지와 물을 포함하여 고형분함량이 10 ~ 40 중량%인 수분산성 폴리에스테르 바인더를 포함할 수 있다.
보다 구체적으로 본 발명의 제 3양태에서 상기 폴리에스테르코팅조성물은 폴리에스테르수지와 물을 포함하여 고형분함량이 10 ~ 40 중량%인 수분산성 폴리에스테르 바인더 10 ~ 40 중량%, 웨팅제 0.1 ~ 0.5중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 1.0 중량%를 포함하여 전체 고형분함량이 2 ~ 10 중량%인 것이 바람직하다.
본 발명의 제 3양태의 수분산조성물은 필요에 따라 친수성 유기용매, 계면활성제를 더 포함할 수 있다.
또한, 본 발명의 제 3양태는 상기 수분산 조성물을 도포한 프라이머 코팅층을 포함하는 폴리에스테르 필름도 본 발명의 범위에 포함되며, 보다 구체적으로는 폴리에스테르 기재필름과, 이의 일면 또는 양면에 상기 폴리에스테르코팅조성물을 도포한 프라이머 코팅층을 포함하는 폴리에스테르 필름이다.
이하는 본 발명의 제 3양태의 각 구성에 대하여 보다 구체적으로 설명한다.
본 발명의 제 3양태에서 상기 수분산 조성물은 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 것이 바람직하다. 굴절율이 1.58 미만이거나 1.64를 초과하는 경우는 기재필름인 폴리에스테르필름과의 굴절율 차이가 많이 나므로 광간섭 현상(Rainbow 현상)이 발생할 수 있으므로 광학용 필름으로 사용하기에 적합하지 않다. 또한, 유리전이온도가 60℃를 초과하는 경우는 폴리에스테르 필름 제조 시 연신 및 열처리 공정에서 충분히 열화되지 않아 필름에 백탁이 발생할 수 있다.
상기 굴절율 및 유리전이온도를 만족하기 위한 본 발명의 폴리에스테르코팅조성물은 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%를 포함하는 산성분과, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10몰%, 디올화합물 30 ~ 60 몰%를 포함하는 글리콜성분을 중축합한 폴리에스테르수지를 포함한다.
[화학식 1]
Figure PCTKR2012007839-appb-I000010
[화학식 2]
Figure PCTKR2012007839-appb-I000011
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
본 발명의 제 3양태에서 상기 산성분에 있어서, 상기 2,6-나프탈렌디카르복실산은 디카르복실산 성분으로 하기 화학식 3에 나타낸 바와 같이 방향족 고리를 2개 함유함으로써 굴절율을 상승시킬 수 있으므로 바람직하게 사용된다.
[화학식 3]
Figure PCTKR2012007839-appb-I000012
상기 2,6-나프탈렌디카르복실산은 20 ~ 40몰%를 사용하는 것이 바람직하며, 20 몰% 미만으로 사용하는 경우는 폴리에스테르 수지에 높은 굴절율을 부여 하는 것이 어려우며, 40 몰%를 초과하여 사용하는 경우는 수분산하기 어려워질 수 있다.
또한, 상기 술폰산염을 포함하는 방향족 디카르복실산은 물에 대한 분산성 확보를 위해 사용되는 것으로, 제한되지는 않으나 바람직하게는 소듐 2,5-디카르복시벤젠설포네이트, 5-설폰 이소프탈산, 설폰 테레프탈산, 4-설폰 나프탈렌-2,6-디카르복실산 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 보다 바람직하게는 하기 화학식 4로 표시되는 소듐 2,5-디카르복시벤젠설포네이트를 사용한다. 1 ~ 10 몰%를 사용하는 것이 바람직하며, 1 몰% 미만으로 사용하는 경우는 수분산성이 저하될 수 있으며,10 몰%를 초과하여 사용하는 경우는 친수성이 강해진 나머지 취급성이 악화되거나 필름의 블록킹(Blocking)을 발생시킬 수 있다
[화학식 4]
Figure PCTKR2012007839-appb-I000013
또한, 상기 방향족디카르복실산은 2,6-나프탈렌디카르복실산 및 술폰산염을 포함하는 방향족 디카르복실산을 제외한 디카르복실산 성분을 의미하며, 제한되지 않으나 바람직하게는 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 1 ~ 10 몰%를 사용하는 것이 바람직하며 1 몰% 미만으로 사용하는 경우는 굴절율 상승이 어렵고, 10 몰%를 초과하여 사용하는 경우는 물에 대한 분산이 어렵고, 방향족 성분의 증가로 필름 제조 시 b치 상승과 접착력 저하가 발생할 수 있다.
본 발명의 제 3양태에서 상기 글리콜성분에 있어서, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌은 굴절율을 높이면서 높은 투명성을 나타내기 위하여 사용되는 것으로, 10 ~ 30 몰%를 사용하는 것이 바람직하며, 10 몰% 미만으로 사용하는 경우는 굴절율을 높이기가 어렵고, 30 몰%를 초과하여 사용하는 경우는 물에 대한 분산이 어렵다.
[화학식 1]
Figure PCTKR2012007839-appb-I000014
또한, 하기 화학식 2로 표시되는 트리글리세라이드 화합물은 굴절율 상승에 따라 유리전이온도가 상승하고 필름 표면에 코팅 후 연신 시 표면 크랙이 발생하거나 미용융으로 인한 도메인 형성을 개선하고, 균일한 코팅막과 굴절율을 나타내고 유리전이 온도를 낮추기 위하여 사용되는 것으로 긴체인(long chain)의 곁사슬(side branch)를 도입하는 역할을 한다. 1 ~ 10 몰%를 사용하는 것이 바람직하며, 1 몰% 미만으로 사용하는 경우는 충분히 Tg를 낮춰주지 못하고, 10 몰%를 초과하여 사용하는 경우는 굴절율 하락과 필름의 블록킹을 발생할 수 있다.
[화학식 2]
Figure PCTKR2012007839-appb-I000015
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
또한, 상기 디올화합물은 제한되는 것은 아니나 구체적으로 예를 들면, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 30 ~ 60 몰%를 사용하는 것이 바람직하며, 30몰% 미만으로 사용하는 경우는 에스테르화 반응이 충분히 이뤄지지 않고, 60몰%를 초과하여 사용하는 경우는 필름의 블록킹을 발생하고 내열성이 저하되고, 굴절율이 저하될 수 있다.
본 발명의 제 3양태의 상기 성분들을 중축한합 폴리에스테르 수지는 고유점도가 0.1 ~ 1.0, 보다 바람직하게는 0.1 ~ 1.6인 것이 바람직하다. 상기 범위에서 폴리에스테르수지를 물 또는 수계용매에 용해 또는 분산시켜 폴리에스테르 에멀젼을 제조할 수 있다.
본 발명의 제 3양태의 폴리에스테르 수지를 종래의 폴리에스테르수지 합성 방법에 따라 제조할 수 있으며, 예를 들면, 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%를 포함하는 산성분과, 비스[4(2-히드록시에톡시)페닐]플루오렌 10~ 30 몰%, 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60몰%를 포함하는 글리콜성분을 무용매 상태에서 혼합하여 반응기에 넣고, 가열하여 생성되는 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행한다. 이후 온도를 승온하는 것과 동시에 반응기내 압력을 감압하여 부생성물인 디올성분을 회수하면서 중축합 반응을 진행한다.
이때 중축합 반응을 촉진하는 촉매, 예를 들면 에스테르화 촉매, 에스테르 교환 촉매, 중축합 촉매 등을 사용할 수 있으며, 또한 여러 가지 첨가제 예를 들면, 안정제, 무기입자 등을 첨가할 수 있다.
본 발명의 제 3양태에서 프라이머 코팅층을 이루기 위한 상기 코팅조성물은 폴리에스테르수지, 웨팅제, 평균입경이 100 ~ 200nm인 실리카 및 고형분 함량이 5 ~ 40 중량%인 수분산된 무기 입자를 포함하는 수분산성 또는 수용성의 조성물인 것이 바람직하다.
보다 바람직하게는 본 발명의 제 3양태의 상기 폴리에스테르코팅조성물은 상기 폴리에스테르수지 10 ~ 40 중량%, 웨팅제 0.1 ~ 0.5중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 1.0 중량%를 포함하여 전체 고형분함량이 2 ~ 10 중량%이 되도록 제조하는 것이 바람직하다. 고형분 함량이 2 ~ 10 중량%인 범위에서 도포두께를 조절하기에 바람직하다.
상기 폴리에스테르코팅조성물은 필요에 따라 친수성 유기용매, 계면활성제를 더 포함하여 분산 안정성을 높일 수 있다.
친수성 유기용매로는 디옥산, 아세톤, 테트라하이드로퓨란, 메틸에틸케톤 등을 사용할 수 있으며, 계면활성제로는 음이온 계면활성제 또는 비이온 계면활성제를 사용하여 분산 안정성을 향상시킬 수 있다. 바람직하게는 0.1 ~ 5 중량%를 사용한다.
상기 프라이머 코팅층을 형성하기 위한 폴리에스테르코팅조성물의 도포 방법은 폴리에스테르 필름의 연신 공정 중에 표면에 도포하는 인라인 코팅(in line coating)에 코팅하여도 좋고, 필름 제조 후 오프라인 코팅(off line coating)을 하는 것도 가능하다. 양자를 병행하는 것도 가능하다.
바람직하게는 인라인 코팅을 하는 것이 제막과 동시에 도포가 되므로 제조비용이 절감되며, 코팅층의 두께를 연장 배율에 의해 변화시킬 수 있으므로 바람직하다.
본 발명의 제 3양태는 상기 폴리에스테르코팅조성물을 기재필름의 일면 또는 양면에 도포하여 프라이머 코팅층을 형성한 폴리에스테르필름도 본 발명의 범위에 포함되며, 본 발명의 제 3양태에서 사용되는 기재필름은 폴리에스테르필름, 보다 구체적으로는 폴리에틸렌테레프탈레이트 필름을 사용하는 것이 광투과도가 우수하므로 바람직하다. 이러한 폴리에틸렌테레프탈레이트 필름은 연신된 필름을 사용하는 것이 바람직하며, 일축 또는 이축 연신된 필름을 사용할 수 있다.
상기 기재필름의 두께는 25 ~ 188㎛인 것을 사용할 수 있으며, 이에 제한되는 것은 아니다.
이하는 본 발명의 제 3양태의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
하기 실시예 및 비교예에 나타낸 물성을 측정하는 방법은 다음과 같다.
1) 전광선투과율 측정
전광선투과율측정기(Nippon Denshoku 300A)를 이용하여 전체 필름의 전광선투과율을 측정하였다.
2) 굴절율 측정 : 조성물을 폴리카보네이트(polycarbonate) 필름에 도포 후 건조하고, 굴절율 측정기 ABBE 굴절계(ATAGO사, DR-M2, @550)을 이용하여 상온에서 측정하였다.
3) 레인보우 현상 측정-1 : 실시예 및 비교예에 따른 광학필름 제조 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 육안으로 레인보우가 발생하는지 여부를 확인하였다. 육안평가 시 암실에서 삼파장 램프 아래에서 평가를 하였다.
평가기준은 다음과 같다.
상 : 레인보우가 보이지 않으며, 균일한 색감을 보임
중 : 레인보우 현상이 연하게 보이며, 균일한 색감을 보임
하 : 레인보우가 강하게 보이며, 강한 색감을 보임
4) 레인보우 현상 측정-2 : 실시예 및 비교예에 따른 광학필름 제조 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 UV-Visible (CARY 5000)을 통해 가시광선 영역의 반사 Pattern을 측정하였다.
상 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 1%이하
중 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 3%이하
하 : 리플 진폭이 줄어드는 파장대가 500~600nm가 아니거나, 진폭이 줄어드는 파장이 보이지 않을 때
5) 코팅외관
코팅된 필름을 삼파장 램프 하에서 투과하여 봤을 때
투과된 빛이 투명하게 보이면 ◎, 불투명하게 보이면 백탁현상으로 판단함.
6) 유리전이 온도
DSC (PerkinElmer DSC 7 이용) 기기 이용하여, 2nd Run mode 로 측정한다.
10mg의 건조 도막을 PerkinElmer DSC7 을 이용하여 측정한다.
1st Run. = 0~200 ℃, 200℃/min, Holding Time 3min, 200℃~-40℃, 200℃/min, Holding Time 5min
2nd Run. = -40℃~200℃, 20℃/min.
7) 헤이즈
Nippon Denshoku社 NDH-5000으로 측정
가로 세로 5cm의 샘플을 필름 전폭에서 0.5m간격으로 10개 샘플링하여 측정 후 평균값을 나타내었다.
8) 건조도포두께 측정 : 폴리우레탄코팅 조성물이 코팅된 기재 필름의 전폭을 기계 방향의 수직방향(TD)으로 1m 간격으로 5 포인트(Point)를 지정하여 필름의 단면을 SEM(Hitachi S-4300)으로 측정하였으며, 5만배 확대하여 그 구간 내 30Point 측정 후 평균값을 계산하였다.
[실시예 26]
1) 폴리에스테르코팅조성물(1)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 20몰(13.3몰%), 트리글리세라이드(Triglyceride, KAO CORPORATION사의 제품(상품명85P)) 10몰(6.6몰%), 에틸렌글리콜 70몰(46.6몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.5 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.60이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(1)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(1)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[실시예 27]
1) 폴리에스테르코팅조성물(2)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 30몰(20몰%), 트리글리세라이드(Triglyceride, KAO CORPORATION사의 제품(상품명85P)) 10몰(6.6몰%), 에틸렌글리콜 60몰(40몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.6인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.62이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(2)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(2)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[실시예 28]
1) 폴리에스테르코팅조성물(3)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 10몰(6.66몰%), 트리글리세라이드(Triglyceride, KAO CORPORATION사의 제품(상품명85P)) 10몰(6.6몰%), 에틸렌글리콜 80몰(53.33몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.5 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.58이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(3)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(3)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[실시예 29]
2) 단면코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 코팅 조성물(1)을 바코팅(bar coating)방법으로 일면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 일면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[실시예 30]
2) 단면코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 코팅 조성물(2)을 바코팅(bar coating)방법으로 일면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 일면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[실시예 31]
2) 단면코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 코팅 조성물(3)을 바코팅(bar coating)방법으로 일면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 일면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[비교예 8]
1) 폴리에스테르코팅조성물(4)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 30몰(20몰%), 에틸렌글리콜 70몰(46.66몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.5 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.62이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(4)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(4)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[비교예 9]
1) 폴리에스테르코팅조성물(5)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 20몰(13.33몰%), 에틸렌글리콜 80몰(53.33몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.4 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.60이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(5)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(5)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
[비교예 10]
1) 폴리에스테르코팅조성물(6)의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 에틸렌글리콜과 1,4 부틸렌 글리콜을 1:1로 섞어 100몰(66.66몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.4 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 제조한 수성 폴리에스테르 바인더의 굴절율은 1.54이었다.
상기 수성 폴리에스테르 바인더 20중량%에 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 3시간 교반하여 전체 고형분의 함량이 5.5중량%인 프라이머 코팅조성물(6)을 제조하였다.
2) 양면코팅 폴리에스테르필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 프라이머 코팅조성물(6)을 바코팅(bar coating)방법으로 양면에 코팅한 후, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 폴리에스테르 프라이머 코팅층의 건조도포두께는 제 1 코팅층이 100nm, 제 2코팅층이 100nm이었다. 이렇게 얻어진 광학필름의 물성을 하기 표 6에 나타내었다.
제조된 필름의 물성을 측정하여 하기 표 6에 나타내었다.
[표 6]
Figure PCTKR2012007839-appb-I000016
상기 표 6에서 보이는 바와 같이, 본 발명에 의한 폴리에스테르 바인더 수지는 굴절율이 1.58 ~ 1.62로 높은 것을 알 수 있었으며, 유리전이온도는 43 ~ 55℃로 낮은 것을 알 수 있었다.
이에 따라 제조되는 필름의 투과율이 높고, 헤이즈가 낮은 것을 알 수 있었으며, 필름 제막 시 백탁 등의 발생 없이 외관이 우수하였고, 레인보우 현상이 발생하지 않아 광학필름으로 사용하기에 적합한 것을 알 수 있었다.
다음으로 본 발명의 제 4 양태에 대하여 구체적으로 설명한다.
본 발명의 제 4 양태는 제 1 수분산 조성물과, 제 2 수분산 조성물의 혼합물을 포함하는 수분산 조성물로,
상기 제 1 수분산 조성물은 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하고,
상기 제 2 수분산 조성물은 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60 몰%를 중축합한 폴리에스테르수지를 포함한다.
[화학식 1]
Figure PCTKR2012007839-appb-I000017
[화학식 2]
Figure PCTKR2012007839-appb-I000018
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 수분산 조성물은 상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함할 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물은 제 1 수분산 조성물 : 제 2 수분산 조성물이 1 : 9 ~ 5 : 5 중량비로 혼합된 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 1 수분산 조성물은 상기 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 1 수분산 조성물의 선형폴리머는 말단기의 일부 또는 전부가 무기산염기로 블로킹되어 있는 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 1 수분산 조성물의 수분산성 폴리우레탄 수지는 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 이온성기를 블록킹하여 제조한 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 수분산성 폴리우레탄 수지는 중량평균분자량이 10,000 ~ 20,000인 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 2 수분산 조성물은 상기 폴리에스테르수지와 물을 포함하여 고형분 함량이 10 ~ 40 중량%인 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 방향족디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 술폰산염을 포함하는 방향족 디카르복실산은 소듐 2,5-디카르복시벤젠설포네이트, 5-설폰 이소프탈산, 2-설폰 이소프탈산, 4-설폰 이소프탈산, 4-설폰 나프탈렌-2,6-디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 디올화합물은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 제 2 수분산 조성물의 폴리에스테르수지는 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000nm인 것일 수 있다.
또한 본 발명의 제 4 양태의 수분산 조성물에서, 상기 수분산 조성물은 굴절율이 1.57~1.62 일 수 있다.
또한 본 발명의 제 4 양태는 상기 수분산 조성물을 도포하여 형성된 프라이머 코팅층을 포함하는 광학필름도 본 발명의 범위에 포함된다.
본 발명의 제 4 양태의 광학필름에서, 상기 광학필름은 폴리에스테르 기재필름과 이의 일면 또는 양면에 상기 수분산 조성물을 도포하여 형성한 프라이머 코팅층을 포함할 수 있다.
또한 본 발명의 제 4 양태의 광학필름에서, 상기 프라이머 코팅층의 건조도포두께는 50 ~ 100 nm일 수 있다.
이하 본 발명의 제 4 양태에 대하여 보다 구체적으로 설명한다.
본 발명자들은 폴리에스테르 기재필름과의 접착력이 우수하며, 간섭무늬가 제어된 프라이머층을 도입하기 위하여 연구한 결과, 기재필름인 폴리에스테르 필름과의 접착력을 높이기 위하여 같은 계열의 수지인 폴리에스테르 수지 에멀젼을 이용하고, 이때 간섭무늬를 제어하기 위하여 굴절율이 1.57~1.62인 폴리에스테르 에멀젼을 제조하고자 하였다.
이 조성물에 접착력을 높이기 위해 프라이머층에 말단기인 이소시아네이트 관능기가 3개 이상이며, 말단이 금속이온으로 블로킹되어 있는 수분산성 폴리우레탄 수지를 사용하여 조성물을 형성하는 경우, 레인보우 특성도 우수하며, 고온고습의 가혹조건에서 내습성이 향상되어 후가공시 하드코팅 필름 등 광학용 고분자 기재필름과의 접착성이 우수함을 확인하여 본 발명의 제 4 양태를 완성하였다.
이하는 본 발명의 제 4 양태의 각 구성에 대하여 보다 구체적으로 설명한다.
본 발명의 제 4 양태는 굴절율을 조절하기 위한 제 1 수분산 조성물과, 고온고습의 가혹조건에서 내습성을 향상시켜 접착성이 우수하도록 하는 제 2 수분산 조성물의 혼합물을 포함하는 수분산 조성물에 관한 것이다.
보다 구체적으로 본 발명의 제 4 양태의 일 양태는 제 1 수분산 조성물과, 제 2 수분산 조성물의 혼합물을 포함하는 수분산 조성물로,
상기 제 1 수분산 조성물은 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하고,
상기 제 2 수분산 조성물은 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60 몰%를 중축합한 폴리에스테르수지를 포함한다.
[화학식 1]
Figure PCTKR2012007839-appb-I000019
[화학식 2]
Figure PCTKR2012007839-appb-I000020
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
더욱 구체적으로 본 발명의 제 4 양태의 일 양태에서, 상기 수분산 조성물은 광학용 고분자 기재필름 상의 코팅성 및 프라이머층 위에 내열성 가공을 용이하게 하기 위하여 실리콘계 웨팅제, 콜로이드 실리카 입자가 첨가제로써 더욱 사용될 수 있다.
더욱 구체적으로 본 발명의 제 4 양태의 일 양태에서, 상기 수분산 조성물은 상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함할 수 있다.
본 발명의 제 4 양태의 일 양태에서, 상기 수분산 조성물은 필요에 따라 친수성 유기용매, 계면활성제를 더 포함하여 분산 안정성을 높일 수 있다.
친수성 유기용매로는 디옥산, 아세톤, 테트라하이드로퓨란, 메틸에틸케톤 등을 사용할 수 있으며, 계면활성제로는 음이온 계면활성제 또는 비이온 계면활성제를 사용하여 분산 안정성을 향상시킬 수 있다. 바람직하게는 0.1 ~ 5 중량%를 사용한다.
또한, 본 발명의 제 4 양태의 일 양태에서, 상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물은 제 1 수분산 조성물 : 제 2 수분산 조성물을 1 : 9 ~ 5 : 5 중량비로 혼합하는 것이 바람직하다. 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 각각 사용하는 경우에 비하여, 이들을 혼합하여 사용하는 경우 접착성 및 굴절율 조절이 용이하고, 레인보우 현상 등의 광학적 특성이 개선되는 효과가 있다. 제 1 수분산 조성물의 혼합비율이 1 중량비 미만인 경우는 접착력의 향상 효과가 미미하고, 5 중량비를 초과하여 사용하는 경우는 레인보우 현상을 개선하는 효과가 감소될 수 있다.
상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물은 전체 수분산 조성물 중 5 ~ 10 중량%를 사용하는 것이 바람직하다. 5 중량% 미만에서는 코팅성은 양호하나, 접착력 구현이 어려우며, 10 중량% 초과인 경우 접착력은 우수하나 코팅 외관 및 투명성 구현이 어려울 수 있다.
상기 실리콘계 웨팅제는 0.1 ~ 0.5 중량%를 사용하는 것이 바람직하며,
상기 콜로이드 실리카 입자는 0.1 ~ 0.5 중량%를 포함하는 것이 바람직하다. 또한, 상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000 nm인 것을 사용하는 것이 바람직하다. 50 nm 미만인 경우는 안티블록킹제의 역할을 기대할 수 없으며, 1000 nm를 초과하는 경우는 헤이즈 상승 등으로 광학적 특성이 떨어질 수 있다.
본 발명의 제 4 양태의 일 양태에서, 상기 제 1 수분산 조성물은 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 것일 수 있다. 상기 선형폴리머는 선형 폴리우레탄 수지이고, 분지형폴리머는 분지형 폴리우레탄 수지를 의미한다.
상기 수분산성 폴리우레탄 수지는 말단기인 이소시아네이트 관능기가 3개 이상이며, 상기 이소시아네이트기의 일부 또는 전부가 무기산염기로 블록킹되어 있으며, 보다 구체적으로는 설페이트와 같은 무기염으로 블로킹되어 있는 분지형폴리머와, 이소시아네이트 관능기가 2개이며 상기 이소시아네이트기의 일부 또는 전부가 무기산염기로 블록킹되어 있으며, 보다 구체적으로는 설페이트와 같은 무기염으로 블로킹되어 있는 선형폴리머를 포함한다.
상기 수분산성 폴리우레탄 수지는 선형폴리머 10 ~ 75 중량%와 분지형폴리머 25 ~ 90 중량%로 이루어진 것을 사용하는 것이 바람직하다. 분지형폴리머의 함량이 25 중량% 미만인 경우는 팽윤도 및 겔분율을 만족할 수 없으며, 고온고습하에서의 접착성이 우수한 도막을 얻기 어렵다. 또한, 분지형폴리머의 함량이 90 중량%를 초과하는 경우는 과도한 겔화에 의해 점도가 급격히 상승하여 수분산 조성물을 제조하기 어렵고, 필름 표면에 코팅 시 표면에 크랙이 발생하는 등의 표면외관에 결점이 발생할 수 있다. 본 발명에서 상기 분지형 폴리머는 이소시아네이트 관능기가 3개 또는 3개 이상인 수지를 의미한다.
본 발명의 제 4 양태에서 상기 수분산성 폴리우레탄 바인더는 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%가 되도록 사용하는 것이 혼합이 용이하며, 기재필름에 도포 시 건조도막의 두께를 조절하기에 용이하다.
상기 수분산성 폴리우레탄 수지의 제조방법을 예를 들면, 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 황산염의 이온성기를 블록킹하여 제조할 수 있으며, 이에 제한되는 것은 아니다. 상기 제조방법으로 제조하는 경우, 선형 폴리우레탄 수지와 분지형 폴리우레탄 수지가 혼합된 수분산성 폴리우레탄 수지를 제조할 수 있으며, 선형폴리머 10 ~ 75 중량%와 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 제조할 수 있다.
상기 수분산성 폴리우레탄 수지는 중량평균분자량이 10,000 ~ 20,000인 범위에서 겔화되지 않으며, 수분산 가능하고 고온고습에서 물성이 우수한 도막을 얻을 수 있으므로 바람직하다.
상기 중량평균분자량은 GPC-MALS(Multi Angle Light Scattering) 시스템(Wyatt社)을 이용하여 측정할 수 있으며, MALS 시스템의 구성은 아래와 같다.
MALS 시스템 구성
- GPC; Water 1525 Binary HPLC Pump
- RI 검출기; Optilab rex
- MALS; Wyatt Dawn 8+
- Column; PLgel 5㎛ Mixed-C (7.5mmΦ×300mm)×2 (Polymer Laboratories)
- 이동상 : DMF(50mM LiCl)
- 유속 : 0.5mL/min
- 온도 : 50℃
- 인젝션 볼륨 : 0.5%, 500㎕
상기 폴리올은 폴리에스테르계폴리올 또는 폴리에테르계폴리올을 사용할 수 있으며, 바람직하게는 폴리에스테르계폴리올을 사용한다. 폴리에스테르계 폴리올로는 카르본산, 세바신산 또는 산무수물과 다가알코올의 반응으로부터 제조되는 폴리올 등이 있다. 이러한 폴리올의 종류에는 제한되지 않으며, 중량평균분자량이 600 ~ 3000인 폴리에스테르 폴리올을 사용하는 것이 좋다. 그 함량은 39 ~ 45 중량%를 사용하는 것이 바람직하다. 39 중량% 미만으로 사용하는 경우 분자량이 작아져, 프라이머층이 지나치게 딱딱하게 되며, 연신이 어려워 코팅 외관이 우수하지 못하며, 45 중량% 초과에서는 ILC 층이 지나치게 소프트(Soft) 하게 되어 블로킹성이 떨어질 수 있다.
상기 트리메틸올 프로판은 3관능기를 갖는 프리폴리머를 제조하기 위하여 사용되는 것으로, 0.3 ~ 1.2 중량%를 사용하는 것이 바람직하다. 0.3 중량% 미만으로 사용하는 경우는 가교밀도가 떨어지며, 안티블로킹성(Anti-Blocking)이 떨어질 수 있고, 1.2 중량%를 초과하여 사용하는 경우는 가교밀도가 지나치게 높아져 연신성이 나빠지게 되어 코팅 외관이 우수하지 못하며, 접착력이 나빠질 수 있다.
상기 이소시아네이트 화합물은 제한되지 않으나 바람직하게는 헥사메틸렌 디이소시아네이트를 사용하는 것이 바람직하다. 그 함량은 50 ~ 57 중량%를 사용하는 범위에서 3관능기를 갖는 프리폴리머를 제조할 수 있다.
상기 무기산염은 황산수소나트륨(Sodium Hydrogen Sulfate)을 사용하는 것이 바람직하며, 그 함량은 3 ~ 4 중량%를 사용하는 것이 바람직하다.
본 발명의 제 4 양태의 일 양태에서, 상기 제 2 수분산 조성물은 굴절율이 높으면서도 유리전이온도가 낮아 필름 제조 후 연신 시 필름 표면에 크랙, 도메인 발생이 없으며, 특히 레인보우 현상 등 광학적 특성을 발현하기 위하여 사용되는 것으로, 기재필름으로 폴리에스테르필름을 사용하는 경우, 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 것이 바람직하다. 굴절율이 상기 범위인 경우 기재필름인 폴리에스테르필름과의 굴절율 차이가 적어 광간섭 현상(Rainbow 현상)이 발생하지 않게 될 수 있다. 또한, 유리전이온도가 40 ~ 60℃인 범위에서 인라인 공정을 통해 폴리에스테르 필름 제조 시 연신 전 수분산 조성물을 도포하고, 연신 및 열처리 공정을 거칠때 충분히 열화되어 필름에 백탁이 발생하지 않을 수 있다.
상기 굴절율 및 유리전이온도를 만족하기 위하여 제 2 수분산 조성물은 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%를 포함하는 산성분과, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10몰%, 디올화합물 30 ~ 60 몰%를 포함하는 글리콜성분을 중축합한 폴리에스테르수지를 포함한다.
[화학식 1]
Figure PCTKR2012007839-appb-I000021
[화학식 2]
Figure PCTKR2012007839-appb-I000022
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
상기 방향족 디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 술폰산염을 포함하는 방향족 디카르복실산은 소듐 2,5-디카르복시벤젠설포네이트(soduim 2,5 dicarboxy benzene sulfonate) 5-설폰 이소프탈산(5-sulfoisophtalic acid), 2-설폰 이소프탈산(2-sulfoisophtalic acid), 4-설폰 이소프탈산(4-sulfoisophtalic acid), 4-설폰 나프탈렌-2,6-디카르복실산(4-sulfo naphtalene-2,6-dicarboxylic acid) 에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 디올화합물은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또한, 본 발명의 제 4 양태에서 상기 폴리에스테르수지는 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 물성을 만족할 수 있다.
본 발명의 제 4 양태에서 상기 제 2 수분산 조성물은 상기 폴리에스테르수지와 물을 포함하여 고형분함량이 10 ~ 40 중량%인 수분산성 폴리에스테르 바인더를 포함할 수 있다.
본 발명의 제 4 양태에서 상기 산성분에 있어서, 상기 2,6-나프탈렌디카르복실산은 디카르복실산 성분으로 하기 화학식 3에 나타낸 바와 같이 방향족 고리를 2개 함유함으로써 굴절율을 상승시킬 수 있으므로 바람직하게 사용된다.
[화학식 3]
Figure PCTKR2012007839-appb-I000023
상기 2,6-나프탈렌디카르복실산은 20 ~ 40몰%를 사용하는 것이 바람직하며, 20 몰% 미만으로 사용하는 경우는 폴리에스테르 수지에 높은 굴절율을 부여 하는 것이 어려우며, 40 몰%를 초과하여 사용하는 경우는 수분산하기 어려워질 수 있다.
또한, 상기 술폰산염을 포함하는 방향족 디카르복실산은 물에 대한 분산성 확보를 위해 사용되는 것으로, 제한되지는 않으나 바람직하게는 소듐 2,5-디카르복시벤젠설포네이트, 5-설폰 이소프탈산, 설폰 테레프탈산, 4-설폰 나프탈렌-2,6-디카르복실산 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 보다 바람직하게는 하기 화학식 4로 표시되는 소듐 2,5-디카르복시벤젠설포네이트를 사용한다. 1 ~ 10 몰%를 사용하는 것이 바람직하며, 1 몰% 미만으로 사용하는 경우는 수분산성이 저하될 수 있으며, 10 몰%를 초과하여 사용하는 경우는 친수성이 강해진 나머지 취급성이 악화되거나 필름의 블록킹(Blocking)을 발생시킬 수 있다
[화학식 4]
Figure PCTKR2012007839-appb-I000024
또한, 상기 방향족디카르복실산은 2,6-나프탈렌디카르복실산 및 술폰산염을 포함하는 방향족 디카르복실산을 제외한 디카르복실산 성분을 의미하며, 제한되지 않으나 바람직하게는 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 1 ~ 10 몰%를 사용하는 것이 바람직하며 1 몰% 미만으로 사용하는 경우는 굴절율 상승이 어렵고, 10 몰%를 초과하여 사용하는 경우는 물에 대한 분산이 어렵고, 방향족 성분의 증가로 필름 제조 시 b치 상승과 접착력 저하가 발생할 수 있다.
본 발명의 제 4 양태에서 상기 글리콜성분에 있어서, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌은 굴절율을 높이면서 높은 투명성을 나타내기 위하여 사용되는 것으로, 10 ~ 30 몰%를 사용하는 것이 바람직하며, 10 몰% 미만으로 사용하는 경우는 굴절율을 높이기가 어렵고, 30 몰%를 초과하여 사용하는 경우는 물에 대한 분산이 어렵다.
[화학식 1]
Figure PCTKR2012007839-appb-I000025
또한, 하기 화학식 2로 표시되는 트리글리세라이드 화합물은 굴절율 상승에 따라 유리전이온도가 상승하고 필름 표면에 코팅 후 연신 시 표면 크랙이 발생하거나 미용융으로 인한 도메인 형성을 개선하고, 균일한 코팅막과 굴절율을 나타내고 유리전이 온도를 낮추기 위하여 사용되는 것으로 긴체인(long chain)의 곁사슬(side branch)를 도입하는 역할을 한다. 1 ~ 10 몰%를 사용하는 것이 바람직하며, 1 몰% 미만으로 사용하는 경우는 충분히 Tg를 낮춰주지 못하고, 10 몰%를 초과하여 사용하는 경우는 굴절율 하락과 필름의 블록킹을 발생할 수 있다.
[화학식 2]
Figure PCTKR2012007839-appb-I000026
(상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
또한, 상기 디올화합물은 제한되는 것은 아니나 구체적으로 예를 들면, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B 등에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 30 ~ 60 몰%를 사용하는 것이 바람직하며, 30몰% 미만으로 사용하는 경우는 에스테르화 반응이 충분히 이뤄지지 않고, 60몰%를 초과하여 사용하는 경우는 필름의 블록킹을 발생하고 내열성이 저하되고, 굴절율이 저하될 수 있다.
본 발명의 제 4 양태의 상기 성분들을 중축합한 폴리에스테르 수지는 고유점도가 0.1 ~ 1.0, 보다 바람직하게는 0.1 ~ 1.6인 것이 바람직하다. 상기 범위에서 폴리에스테르수지를 물 또는 수계용매에 용해 또는 분산시켜 폴리에스테르 에멀젼을 제조할 수 있다.
본 발명의 제 4 양태의 폴리에스테르 수지를 종래의 폴리에스테르수지 합성 방법에 따라 제조할 수 있으며, 예를 들면, 2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%를 포함하는 산성분과, 비스[4(2-히드록시에톡시)페닐]플루오렌 10~ 30 몰%, 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60몰%를 포함하는 글리콜성분을 무용매 상태에서 혼합하여 반응기에 넣고, 가열하여 생성되는 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행한다. 이후 온도를 승온하는 것과 동시에 반응기내 압력을 감압하여 부생성물인 디올성분을 회수하면서 중축합 반응을 진행한다.
이때 중축합 반응을 촉진하는 촉매, 예를 들면 에스테르화 촉매, 에스테르 교환 촉매, 중축합 촉매 등을 사용할 수 있으며, 또한 여러 가지 첨가제 예를 들면, 안정제, 무기입자 등을 첨가할 수 있다.
본 발명의 제 4 양태의 일 양태에서, 상기 수분산조성물은 제 1 수분산조성물과 제 2 수분산조성물을 혼합한 혼합물의 굴절율이 1.57~1.62 일 수 있다. 굴절율이 상기 범위 내에서 폴리에스테르 기재필름에 도포 시 레인보우 개선효과 및 광학적 특성을 향상시킬 수 있다.
또한 본 발명의 제 4 양태의 또 다른 양태는 상기 수분산 조성물을 도포하여 형성된 프라이머 코팅층을 포함하는 광학필름에 관한 것이다.
본 발명의 제 4 양태의 일 양태에 따른 광학필름은 폴리에스테르 기재필름과 이의 일면 또는 양면에 상기 수분산 조성물을 도포하여 형성한 프라이머 코팅층을 포함할 수 있다. 상기 프라이머 코팅층의 건조도포두께는 50 ~ 100 nm일 수 있다.
본 발명의 제 4 양태의 일 양태에 따른 광학필름에서, 기재필름은 폴리에스테르필름, 보다 구체적으로는 폴리에틸렌테레프탈레이트 또는 폴리에틸렌나프탈레이트 필름을 사용하는 것이 광투과도가 우수하므로 바람직하며, 첨가제 또는 입자를 포함할 수 있다. 이러한 폴리에틸렌테레프탈레이트 필름은 연신된 필름을 사용하는 것이 바람직하며, 일축 또는 이축 연신된 필름을 사용할 수 있다. 상기 기재필름의 두께는 50 ~ 250㎛인 것을 사용할 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 제 4 양태의 일 양태에 따른 광학필름에서, 상기 프라이머층은 광학용 고분자 기재필름의 한 면 또는 양면에 형성되는 것으로서, 접착성이 우수하여 다른 기재와의 접착을 용이하게 하는 이접착성을 나타낸다.
본 발명의 제 4 양태의 일 양태에 따른 광학필름에서, 상기 프라이머층의 건조도포두께는 50 ~ 100 nm인 것이 바람직하다. 도포 방법은 폴리에스테르 필름의 연신 공정 중에 표면에 도포하는 인라인 코팅(in line coating)에 코팅하여도 좋고, 필름 제조 후 오프라인 코팅(off line coating)을 하는 것도 가능하다. 양자를 병행하는 것도 가능하다. 바람직하게는 인라인 코팅을 하는 것이 제막과 동시에 도포가 되므로 제조비용이 절감되며, 코팅층의 두께를 연장 배율에 의해 변화시킬 수 있으므로 바람직하다.
본 발명의 제 4 양태의 일 양태에 따른 광학필름에서, 프라이머 코팅층은 하기 식 1에 의해 측정된 팽윤도가 35 ~ 100이고, 하기 식 2에 의해 측정된 겔분율(gel fraction)이 75 ~ 85, 굴절율이 1.54~1.62 인 물성을 모두 만족할 수 있다.
[식 1]
팽윤도 = (방치 후 무게 - 초기무게)/초기무게 × 100
(상기 식에서, 방치 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후 측정한 무게를 의미한다.)
[식 2]
Gel fraction = (건조 후 무게 - 초기무게) × 100
(상기 식에서, 건조 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후, 상기 방치했던 도막을 120℃에서 3시간 동안 건조한 후 측정한 무게를 의미한다.)
이하는 본 발명의 제 4 양태의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
물성은 다음의 측정방법으로 측정하였다.
1. 도막의 물성 측정
제 1 수분산조성물과 제 2 수분산조성물의 혼합물 15g을 지름 80mm, 높이 15mm 둥근 그릇에 넣고 65℃에서 72시간, 120℃에서 3시간 건조한다. 1g의 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하여 방치했던 도막을 꺼내어 Swelling Ratio를 측정한다. 방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록하여 Gel Fraction을 측정한다.
1) Swelling Ratio : 약 1g의 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하여 방치했던 도막을 꺼내어 무게를 기록한다.
Swelling Ratio = (방치 후 무게-초기 무게)/초기무게 *100
2) Gel Fraction : 방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록한다.
Gel Fraction = (건조 후 무게/초기 무게) *100
3) Tg 측정 : DSC (PerkinElmer DSC 7 이용) 기기 이용하여, 2nd Run mode 로 측정한다. 10~11mg의 건조 도막을 PerkinElmer DSC7을 이용하여 측정한다.
1st Run. = 0~200 ℃, 200℃/min, Holding Time - 3min // 200℃~-40℃, 200℃/min, Holding Time - 5min
2nd Run. = -40℃~200℃, 20℃/min 조건으로 측정한다.
2. 굴절율 측정
제 1 수분산조성물과 제 2 수분산조성물의 혼합물을 폴리카보네이트(polycarbonate) 필름에 도포 후 건조하고, 굴절율 측정기 ABBE 굴절계(ATAGO사, DR-M2, @550)을 이용하여 상온에서 측정하였다.
3. 전광선투과율 측정
전광선투과율측정기(Nippon Denshoku社 NDH-5000)를 이용하여 전체 필름의 전광선투과율을 측정하였다.
가로 세로 5cm의 샘플을 필름 전폭에서 0.5m간격으로 10개 샘플링하여 측정 후 평균값을 나타내었다.
4. 레인보우 현상 측정-1
실시예 및 비교예에 따른 수분산조성물을 폴리에스테르 기재필름(188㎛의 폴리에틸렌테레프탈레이트 필름)의 일면에 200nm두께로 도포하여 광학필름을 제조한 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 육안으로 레인보우가 발생하는지 여부를 확인하였다. 육안평가 시 암실에서 삼파장 램프 아래에서 평가를 하였다.
평가기준은 다음과 같다.
상 : 레인보우가 보이지 않으며, 균일한 색감을 보임
중 : 레인보우 현상이 연하게 보이며, 균일한 색감을 보임
하 : 레인보우가 강하게 보이며, 강한 색감을 보임
5. 레인보우 현상 측정-2
실시예 및 비교예에 따른 수분산조성물을 폴리에스테르 기재필름(188㎛의 폴리에틸렌테레프탈레이트 필름)의 일면에 200nm 두께로 도포하여 광학필름을 제조한 후, 이의 일면에 하드코팅 처리(굴절율 1.52) 후 다른면을 검게 처리하여 UV-Visible (CARY 5000)을 통해 가시광선 영역의 반사 Pattern을 측정하였다.
상 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 1%이하
중 : 500~600nm에서 리플 진폭이 다른 파장대의 리플 진폭 대비 줄어들며, 리플 진폭 3%이하
하 : 리플 진폭이 줄어드는 파장대가 500~600nm가 아니거나, 진폭이 줄어드는 파장이 보이지 않을 때
6. 코팅외관
실시예 및 비교예에 따른 수분산조성물이 코팅된 필름을 삼파장 램프 하에서 투과하여 봤을 때,
투과된 빛이 투명하게 보이면 ◎, 불투명하게 보이면 백탁현상으로 판단함.
7. 접착력 평가(ASTM B905)
실시예 및 비교예에 따른 광학필름 제조 후, 코팅 조성물이 코팅된 일면에 하드코팅조성물을 도포한 후, 상온에서의 접착력을 Cross Hatch Cutter (YCC-230/1) 를 이용하여 1cm X 1cm 칸 안에 100칸의 칸을 그어 접착력 평가 Tape (nichban No.405)를 이용하여 3번 뜯는 평가를 진행한다. 고온 고습 평가시는 고온 열수처리(100℃, 10min) 후 위의 방법으로 하드코팅층과 이접착층 간의 접착력을 평가하였다.
8. 건조도포두께 측정
실시예 및 비교예에 따른 수분산조성물이 코팅된 기재 필름의 전폭을 기계 방향의 수직방향(TD)으로 1m 간격으로 5 포인트(Point)를 지정하여 필름의 단면을 SEM(Hitachi S-4300)으로 측정하였으며, 5만배 확대하여 그 구간 내 30Point 측정 후 평균값을 계산하였다.
9. 헤이즈
Nippon Denshoku社 NDH-5000으로 측정
가로 세로 5cm의 샘플을 필름 전폭에서 0.5m간격으로 10개 샘플링하여 측정 후 평균값을 나타내었다.
[제조예 4]
제 1 수분산 조성물의 제조
이론상으로 분지형 폴리머의 함량이 50 중량%인 수분산 폴리우레탄을 제조하였다.
폴리올(Polyethyleneadipate Diol) 40중량%, 트리메틸올프로판(Trimethylol Propane) 0.6중량%, 헥사메틸렌 디이소시아네이트(Hexamethylene Diisocyanate) 55.9중량%를 반응시켜 이소시아네이트 관능기를 말단기로 갖는 프리폴리머(Prepolymer)를 제조한 후, 이온성기로 소듐 하이드로겐 설페이트(Sodium Hydrogen Sulfate) 3.5중량%를 프리폴리머의 말단 관능기인 이소시아네이트와 반응 시켜 이온성기를 갖으며, 중량평균분자량이 14,400인 폴리우레탄(Polyurethane)을 제조하였다.
상기 제조된 폴리우레탄 20중량%를 물 80중량%에 분산 시켜 고형분이 20 중량%인 제 1 수분산 조성물을 제조하였다.
[제조예 5]
제 2 수분산 조성물의 제조
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 비스[4(2-히드록시에톡시)페닐]플루오렌(Bis[4(2-hydroxyethoxy)phenyl]fluorene) 20몰(13.3몰%), 트리글리세라이드(Triglyceride, KAO CORPORATION사의 제품(상품명85P)) 10몰(6.6몰%), 에틸렌글리콜 70몰(46.6몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온하는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 1.0 인 폴리에스테르수지를 제조하였다.
상기 제조된 폴리에스테르수지 20중량%에 물 80중량%를 넣고, 분산시켜 고형분 함량이 20 중량%인 제 2 수분산 조성물을 제조하였다.
[실시예 32]
1) 수분산조성물(1)의 제조 : 제 1 수분산 조성물과 제 2 수분산 조성물이 1 : 9 중량비로 혼합
상기 제조예 4에서 제조된 제 1 수분산 조성물 0.6 중량%, 제조예 5에서 제조된 제 2 수분산 조성물 5.4중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 수분산조성물(1)을 제조하였다.
이때, 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 1 : 9 중량비로 혼합하여 도막의 물성을 측정하였으며, 그 결과는 하기 표 7에 나타내었다.
2) 양면 코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 수분산조성물(1)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 수분산조성물(1)에 의한 프라이머 코팅층의 건조도포두께는 100nm 이었다.
제조된 광학필름의 물성을 측정하여 하기 표 8에 나타내었다.
[실시예 33]
1) 수분산조성물(2)의 제조 : 제 1 수분산 조성물과 제 2 수분산 조성물이 2 : 8 중량비로 혼합
상기 제조예 4에서 제조된 제 1 수분산 조성물 1.2 중량%, 제조예 5에서 제조된 제 2 수분산 조성물 4.8중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 수분산조성물(2)을 제조하였다.
이때, 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 2 : 8 중량비로 혼합하여 도막의 물성을 측정하였으며, 그 결과는 하기 표 7에 나타내었다.
2) 양면 코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 수분산조성물(2)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 수분산조성물(2)에 의한 프라이머 코팅층의 건조도포두께는 100nm 이었다.
제조된 광학필름의 물성을 측정하여 하기 표 8에 나타내었다.
[실시예 34]
1) 수분산조성물(3)의 제조 : 제 1 수분산 조성물과 제 2 수분산 조성물이 3 : 7 중량비로 혼합
상기 제조예 4에서 제조된 제 1 수분산 조성물 1.8 중량%, 제조예 5에서 제조된 제 2 수분산 조성물 4.2중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 수분산조성물(3)을 제조하였다.
이때, 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 3 : 7 중량비로 혼합하여 도막의 물성을 측정하였으며, 그 결과는 하기 표 7에 나타내었다.
2) 양면 코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 수분산조성물(3)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 수분산조성물(3)에 의한 프라이머 코팅층의 건조도포두께는 100nm 이었다.
제조된 광학필름의 물성을 측정하여 하기 표 8에 나타내었다.
[실시예 35]
1) 수분산조성물(4)의 제조 : 제 1 수분산 조성물과 제 2 수분산 조성물이 4 : 6 중량비로 혼합
상기 제조예 4에서 제조된 제 1 수분산 조성물 2.4 중량%, 제조예 5에서 제조된 제 2 수분산 조성물 3.6중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 수분산조성물(4)을 제조하였다.
이때, 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 4 : 6 중량비로 혼합하여 도막의 물성을 측정하였으며, 그 결과는 하기 표 7에 나타내었다.
2) 양면 코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 수분산조성물(4)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 수분산조성물(4)에 의한 프라이머 코팅층의 건조도포두께는 100nm 이었다.
제조된 광학필름의 물성을 측정하여 하기 표 8에 나타내었다.
[실시예 36]
1) 수분산조성물(5)의 제조 : 제 1 수분산 조성물과 제 2 수분산 조성물이 5 : 5 중량비로 혼합
상기 제조예 4에서 제조된 제 1 수분산 조성물 3.0 중량%, 제조예 5에서 제조된 제 2 수분산 조성물 3.0중량%, 실리콘계웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가한 후 2시간 교반 하여 수분산조성물(5)을 제조하였다.
이때, 상기 제 1 수분산 조성물과 제 2 수분산 조성물을 5 : 5 중량비로 혼합하여 도막의 물성을 측정하였으며, 그 결과는 하기 표 7에 나타내었다.
2) 양면 코팅 폴리에스테르 필름의 제조
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 2000㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 상기 수분산조성물(5)을 바코팅(bar coating)방법으로 양면에 코팅하고, 110 ~ 150℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후, 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10%이완시켜 열고정하여 양면에 코팅된 188㎛의 2축연신 필름을 제조하였다. 상기 수분산조성물(5)에 의한 프라이머 코팅층의 건조도포두께는 100nm 이었다.
제조된 광학필름의 물성을 측정하여 하기 표 8에 나타내었다.
[표 7]
Figure PCTKR2012007839-appb-I000027
상기 표에서 보이는 바와 같이, 본 발명의 실시예에 따른 수분산조성물을 이용하여 도막을 형성하는 경우, 굴절율이 1.57이상으로 굴절율이 높으면서 유리전이 온도가 48℃이하로 낮으며, 내습성이 우수함을 알 수 있었다.
[표 8]
Figure PCTKR2012007839-appb-I000028
상기 표에서 보이는 바와 같이, 본 발명의 실시예에 따른 수분산조성물을 이용하여 폴리에스테르 필름의 양면에 코팅층을 형성한 경우, 전광선투과율이 93%이상으로 우수하며, 헤이즈가 낮고, 코팅외관이 우수하며, 레인보우 현상이 개선되고, 접착력이 우수한 것을 확인하였다.

Claims (25)

  1. 폴리에스테르 기재필름과, 이의 일면 또는 양면에 굴절율이 1.4 ~ 1.6인 폴리에스테르 수지와 굴절율이 1.8 ~ 2.2인 무기입자를 포함하여 전체 굴절율이 1.56 ~ 1.6인 코팅조성물을 도포한 프라이머 코팅층을 포함하며, 상기 프라이머 코팅층의 건조도포두께가 50 ~ 150nm인 광학필름.
  2. 제 1항에 있어서,
    상기 무기입자는 평균입경이 1 ~ 50nm인 광학필름.
  3. 제 2항에 있어서,
    상기 무기입자는 표면 개질된 지르코니아인 광학필름.
  4. 제 3항에 있어서,
    상기 표면 개질된 지르코니아는 표면에 아실기 또는 알킬레이트기를 가지며, 카운터 이온으로 Na+가 사용된 광학필름.
  5. 제 1항에 있어서,
    상기 코팅조성물은 굴절율이 1.4 ~ 1.6인 폴리에스테르수지 5 ~ 30 중량%, 웨팅제 0.1 ~ 0.4 중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 0.5 중량% 및 고형분 함량이 5 ~ 40 중량%인 수분산된 무기 입자 0.5 ~ 30중량%를 포함하여 전체 고형분 함량이 2 ~ 10 중량%인 광학필름.
  6. 제 1항 내지 제 5항에서 선택되는 어느 한 항에 있어서,
    상기 프라이머 코팅층의 일면 또는 양면에 굴절율 1.51 ~ 1.53인 아크릴계 수지 코팅층을 더 포함하는 광학필름.
  7. 제 6항에 있어서,
    상기 아크릴계 수지코팅층의 건조도포두께는 1 ~ 10㎛인 광학필름.
  8. 제 7항에 있어서,
    상기 아크릴계 수지 코팅층이 일면에 형성된 경우, 헤이즈가 1.0 이하, 전광선투과율이 91%이상이고, 상기 아크릴계 수지 코팅층이 양면에 형성된 경우, 헤이즈가 0.5%이하, 전광선투과율이 92% 이상인 광학필름.
  9. 말단기가 2개인 선형폴리머 10 ~ 75 중량%와 말단기가 3개 이상인 분지형폴리머 25 ~ 90 중량%로 이루어진 수분산성 폴리우레탄 수지를 포함하는 제 1 수분산 조성물,
    2,6-나프탈렌디카르복실산 20 ~ 40 몰%, 술폰산염을 포함하는 방향족 디카르복실산 1 ~ 10 몰%, 방향족디카르복실산 1 ~ 10 몰%, 하기 화학식 1의 비스[4(2-히드록시에톡시)페닐]플루오렌 10 ~ 30 몰%, 하기 화학식 2로 표시되는 트리글리세라이드 화합물 1 ~ 10 몰%, 디올화합물 30 ~ 60 몰%를 중축합한 폴리에스테르수지를 포함하는 제 2 수분산 조성물, 또는
    [화학식 1]
    Figure PCTKR2012007839-appb-I000029
    [화학식 2]
    Figure PCTKR2012007839-appb-I000030
    (상기 화학식 2에서, R1 내지 R3는 각각 독립적으로, 수소, 불포화 탄화수소를 포함하거나 포함하지 않는 (C1~C30)알킬에서 선택된다.)
    상기 제 1 수분산 조성물과, 제 2 수분산 조성물을 혼합한 제 3 수분산 조성물에서 선택되는 프라이머 코팅용 수분산 조성물.
  10. 제 9항에 있어서,
    상기 수분산성 폴리우레탄 수지의 말단기는 일부 또는 전부가 무기산염기로 블로킹되어 있는 수분산 조성물.
  11. 제 10항에 있어서,
    상기 수분산성 폴리우레탄 수지는 폴리올 39 ~ 45중량%, 트리메틸올 프로판 0.3 ~ 1.2 중량% 및 이소시아네이트화합물 50 ~ 57 중량%를 반응시켜 이소시아네이트를 말단기로 갖는 프리폴리머를 제조한 후, 무기산염을 3 ~ 4 중량%를 반응시켜 이소시아네이트 말단에 이온성기를 블록킹히여 제조된 것인 수분산 조성물.
  12. 제 11항에 있어서,
    상기 수분산성 폴리우레탄 수지는 중량평균분자량이 10,000 ~ 20,000인 수분산 조성물.
  13. 제 9항에 있어서,
    상기 제 1 수분산 조성물은 상기 수분산성 폴리우레탄 수지와 물을 포함하여 고형분 함량이 10 ~ 30 중량%인 수분산성 폴리우레탄 바인더 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함하는 것인 수분산 조성물.
  14. 제 13항에 있어서,
    상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000nm인 수분산 조성물.
  15. 제 9항에 있어서,
    상기 방향족디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산, 1,2-나프탈렌 디카르복실산, 1,4-나프탈렌 디카르복실산, 1,5-나프탈렌 디카르복실산, 1,3-사이클로 펜탄 디카르복실산, 1,4-사이클로 헥산 디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 술폰산염을 포함하는 방향족 디카르복실산은 소듐 2,5-디카르복시벤젠설포네이트, 5-설폰 이소프탈산, 2-설폰 이소프탈산, 4-설폰 이소프탈산, 4-설폰 나프탈렌-2,6-디카르복실산에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 디올화합물은 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌 글리콜, 테트라에틸렌글리콜, 펜타에틸렌글리콜, 헥사에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 1,3-프로판 디올, 1,3-부탄 디올, 프로판 디올, 비스페놀 A, 비스페놀 B에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 수분산 조성물.
  16. 제 9항에 있어서,
    상기 폴리에스테르수지는 굴절율이 1.58 ~ 1.64이고, 유리전이온도가 40 ~ 60℃인 수분산 조성물.
  17. 제 9항에 있어서,
    상기 제 2 수분산 조성물은 상기 폴리에스테르수지와 물을 포함하여 고형분함량이 10 ~ 40 중량%인 수분산성 폴리에스테르 바인더 10 ~ 40 중량%, 웨팅제 0.1 ~ 0.5중량%, 평균입경이 100 ~ 200nm인 실리카 0.1 ~ 1.0 중량%를 포함하여 전체 고형분함량이 2 ~ 10 중량%인 수분산 조성물.
  18. 제 9항에 있어서,
    상기 제 2 수분산 조성물은 친수성 유기용매, 계면활성제를 더 포함하는 수분산 조성물.
  19. 제 9항에 있어서,
    상기 제 3 수분산 조성물은 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물 5 ~ 10 중량%, 실리콘계 웨팅제 0.1 ~ 0.5 중량%, 콜로이드 실리카 입자 0.1 ~ 0.5 중량% 및 잔량의 물을 포함하는 것인 수분산 조성물.
  20. 제 19항에 있어서,
    상기 제 1 수분산 조성물과 제 2 수분산 조성물의 혼합물은 제 1 수분산 조성물 : 제 2 수분산 조성물이 1 : 9 ~ 5 : 5 중량비로 혼합된 것인 수분산 조성물.
  21. 제 19항에 있어서,
    상기 콜로이드 실리카 입자는 평균입경이 50 ~ 1000nm인 수분산 조성물.
  22. 제 9항에 있어서,
    상기 제 3 수분산 조성물은 굴절율이 1.57~1.62 인 수분산 조성물.
  23. 제 9항 내지 제 22항에서 선택되는 어느 한 항의 수분산 조성물을 도포하여 형성된 프라이머 코팅층을 포함하는 광학필름.
  24. 제 23항에 있어서,
    상기 프라이머 코팅층의 건조도포두께는 50 ~ 100 nm인 광학필름.
  25. 제 24항에 있어서,
    상기 프라이머 코팅층은 하기 식 1에 의해 측정된 팽윤도가 35 ~ 100이고, 하기 식 2에 의해 측정된 겔분율(gel fraction)이 75 ~ 85이고, 유리전이온도가 60℃이상인 물성을 모두 만족하는 광학필름.
    [식 1]
    팽윤도 = (방치 후 무게 - 초기무게)/초기무게 × 100
    (상기 식에서, 방치 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후 측정한 무게를 의미한다.)
    [식 2]
    Gel fraction = (건조 후 무게 - 초기무게) × 100
    (상기 식에서, 건조 후 무게는 약 1g의 건조도막을 증류수 50g에 담근 후 70℃에서 24시간 방치 후, 상기 방치했던 도막을 120℃에서 3시간동안 건조한 후 측정한 무게를 의미한다.)
PCT/KR2012/007839 2011-09-30 2012-09-27 수분산 조성물 및 이를 이용한 광학필름 WO2013048156A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014533207A JP5864760B2 (ja) 2011-09-30 2012-09-27 水分散組成物およびこれを用いた光学フィルム
CN201280048254.XA CN103842854B (zh) 2011-09-30 2012-09-27 水分散组合物以及使用该水分散组合物的光学膜

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2011-0099878 2011-09-30
KR10-2011-0100026 2011-09-30
KR10-2011-0100075 2011-09-30
KR1020110100026A KR101557938B1 (ko) 2011-09-30 2011-09-30 고굴절 프라이머 조성물 및 이를 이용한 폴리에스테르 필름
KR1020110100075A KR101656267B1 (ko) 2011-09-30 2011-09-30 광학필름
KR20110099878 2011-09-30
KR1020120070530A KR101923938B1 (ko) 2012-06-29 2012-06-29 수분산 조성물 및 이를 이용한 광학필름
KR10-2012-0070530 2012-06-29
KR1020120106469A KR101945844B1 (ko) 2011-09-30 2012-09-25 광학용 폴리에스테르 필름
KR10-2012-0106469 2012-09-25

Publications (3)

Publication Number Publication Date
WO2013048156A2 WO2013048156A2 (ko) 2013-04-04
WO2013048156A9 true WO2013048156A9 (ko) 2013-05-23
WO2013048156A3 WO2013048156A3 (ko) 2013-07-04

Family

ID=47996634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007839 WO2013048156A2 (ko) 2011-09-30 2012-09-27 수분산 조성물 및 이를 이용한 광학필름

Country Status (1)

Country Link
WO (1) WO2013048156A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389346B1 (ko) * 2013-04-30 2014-05-07 주식회사 엘지화학 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판
KR102115519B1 (ko) * 2013-09-30 2020-05-26 코오롱인더스트리 주식회사 광학필름
KR102220972B1 (ko) * 2014-06-30 2021-02-25 코오롱인더스트리 주식회사 폴리에스테르 필름 및 이를 이용한 투명전극 필름
CN109130349B (zh) * 2018-06-07 2020-07-17 浙江欣麟新材料技术有限公司 一种高清无彩虹防刮pc材质保护膜及其制备方法
CN113088165A (zh) * 2021-03-30 2021-07-09 安徽国风塑业股份有限公司 一种在线涂布水性底涂层涂料和含底涂层的聚酯薄膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670613B1 (ko) * 2005-02-25 2007-01-17 에스케이씨 주식회사 광특성이 우수한 폴리에스터 필름
JP4174739B2 (ja) * 2006-10-30 2008-11-05 東洋紡績株式会社 ハードコートフィルム、光学機能性フィルム、およびそれを得るための密着性改質基材フィルム
CN102076498B (zh) * 2008-04-30 2014-12-17 东洋纺织株式会社 粘接性改性基材膜和硬涂膜
KR101100382B1 (ko) * 2009-01-05 2011-12-30 도레이첨단소재 주식회사 향상된 휘도를 가진 광학용 폴리에스테르 적층필름
KR101171827B1 (ko) * 2009-07-28 2012-08-14 도레이첨단소재 주식회사 반사방지층을 포함하는 광학용 폴리에스테르계 이접착 필름
KR101149538B1 (ko) * 2010-10-20 2012-05-25 도레이첨단소재 주식회사 굴절율 조절이 용이한 프라이머층을 갖는 광학용 폴리에스테르 필름

Also Published As

Publication number Publication date
WO2013048156A3 (ko) 2013-07-04
WO2013048156A2 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2013048156A9 (ko) 수분산 조성물 및 이를 이용한 광학필름
WO2021241931A1 (ko) 생분해성 폴리에스테르 수지 조성물, 부직포 및 필름, 및 이의 제조방법
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2011122842A2 (en) Polyimide film
WO2013069870A1 (ko) 광경화형 점착제 조성물, 이를 포함하는 광학 점착제 필름, 이를 포함하는 디스플레이 장치 및 이를 이용한 모듈 조립 방법
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2023018307A1 (ko) 수지 및 이의 제조방법, 수지 조성물 및 성형품
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018124585A1 (ko) 폴리에스테르 수지, 및 이의 제조방법 및 이를 이용한 공중합 폴리에스테르 필름의 제조방법
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2018128381A1 (ko) 광결정 구조체 및 이를 포함하는 위조 방지용 색변환 필름
WO2023033596A1 (ko) 수지, 이의 제조방법, 수지 조성물 및 성형품
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2019160355A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2022071675A1 (ko) 폴리아마이드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치
WO2021118143A1 (ko) 고분자 수지 조성물, 및 이를 이용한 고분자 필름 및 수지 적층체
WO2023068594A1 (ko) 생분해성 폴리에스테르 수지, 및 이를 포함하는 생분해성 폴리에스테르 필름 및 적층체
WO2023229214A1 (ko) 생분해성 폴리에스테르 수지 조성물 및 이를 포함하는 생분해성 성형품
WO2023229215A1 (ko) 생분해성 폴리에스테르 수지 조성물, 이를 포함하는 생분해성 폴리에스테르 필름 및 이를 포함하는 생분해성 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835649

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2014533207

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct app. not ent. europ. phase

Ref document number: 12835649

Country of ref document: EP

Kind code of ref document: A2