WO2021060752A1 - 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법 - Google Patents

우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2021060752A1
WO2021060752A1 PCT/KR2020/012351 KR2020012351W WO2021060752A1 WO 2021060752 A1 WO2021060752 A1 WO 2021060752A1 KR 2020012351 W KR2020012351 W KR 2020012351W WO 2021060752 A1 WO2021060752 A1 WO 2021060752A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
based film
formula
bis
Prior art date
Application number
PCT/KR2020/012351
Other languages
English (en)
French (fr)
Inventor
박효준
양종원
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200080938A external-priority patent/KR20210037514A/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP20867500.9A priority Critical patent/EP4036159A4/en
Priority to US17/760,759 priority patent/US20220340724A1/en
Priority to CN202080067256.8A priority patent/CN114466901A/zh
Priority to JP2022517476A priority patent/JP7366250B2/ja
Publication of WO2021060752A1 publication Critical patent/WO2021060752A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide-based film having excellent surface flatness and a method for producing the same, and to a polyimide-based film having low Kc and suppressing the occurrence of waviness, and a method for producing the same.
  • Polyimide (PI) resins have features such as high heat resistance, oxidation resistance, radiation resistance, low temperature characteristics, and chemical resistance, and are widely used in electronic products, semiconductors, automobiles, aircraft, and spacecraft. It is used not only as a transparent electrode film but also as a cover window for a display device.
  • Polyimide-based films made of polyimide-based resins having excellent mechanical properties, thermal properties, and optical properties are used in various flexible products, and studies are being conducted to use them as a substitute for glass. For example, studies are being conducted to use a polyimide-based film as a cover window or a protective material of a display device.
  • An embodiment of the present invention is to provide a polyimide (PI)-based film having excellent surface evenness.
  • Another embodiment of the present invention is to provide a polyimide (PI)-based film having a low Kc value, suppressing the occurrence of wave patterns, and having excellent surface flatness.
  • PI polyimide
  • Another embodiment of the present invention is to provide a method of manufacturing a polyimide (PI)-based film having excellent surface flatness.
  • Another embodiment of the present invention is to provide a method of manufacturing a polyimide (PI)-based film having a low Kc value by controlling the drying conditions.
  • PI polyimide
  • Another embodiment of the present invention is to provide a method of manufacturing a polyimide (PI)-based film in which the occurrence of a wave pattern is suppressed.
  • PI polyimide
  • Another embodiment of the present invention is to provide an electronic device including a polyimide (PI)-based film having excellent surface flatness by having a low Kc value.
  • PI polyimide
  • an embodiment of the present invention provides a polyimide-based film having a Kc value of 1.55 or less.
  • the Kc value is a curvature parameter measured for a waveness having a wavelength range of 1.0 to 3.0 mm by a phase stepped deflectometry (PSD).
  • PSD phase stepped deflectometry
  • the polyimide-based film may have a Kc value of 1.45 or less.
  • the polyimide film may have a Kc value of 1.10 to 1.45.
  • the polyimide film may be prepared from monomer components including dianhydride and diamine.
  • the dianhydride is 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), biphenyl tetracarboxylic dianhydride (BPDA), 4-(2,5- Dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (TDA), pyromellitic acid dianhydride (PMDA), benzophenone tetra Carboxylic dianhydride (BTDA), oxydiphthalic dianhydride (ODPA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), bis dicarboxyphenoxy diphenyl sulfide dianhydride (BDSDA), sulfonyl dip Talic anhydride (SO 2 DPA), isopropylideneiphenoxy bisphthalic anhydride (6HBDA), cyclobutanedianhydride (CB
  • the diamine is oxydianiline (ODA), p-phenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenedianiline (pMDA), m-methylenedianiline (mMDA), bisaminophenoxy Benzene (133APB), bis aminophenoxy benzene (134APB), bis amino phenoxy phenyl hexafluoropropane (4BDAF), bis aminophenyl hexafluoropropane (33-6F), bis aminophenyl hexafluoropropane (44- 6F), bis aminophenyl sulfone (4DDS), bis aminophenyl sulfone (3DDS), bis trifluoromethyl benzidine (TFDB), cyclohexanediamine (13CHD), cyclohexane diamine (14CHD), bis amino phenoxy phenylpropane ( 6HMDA), bis aminohydroxy phenyl hexa
  • the monomer components may further include a dicarbonyl compound.
  • the dicarbonyl compound may include at least one of an aromatic dicarbonyl compound and an aliphatic dicarbonyl compound.
  • the aromatic dicarbonyl compound may be represented by the following formula (1).
  • R 1 is a single bond, *-Ar-*, *-O-Ar-*, *-CAL-*, or *-O-CAL-*, and X 1 and X 2 are each independently hydrogen or hydrogen
  • X 3 represents hydrogen or a halogen element.
  • Ar represents a substituted or unsubstituted arylene group
  • CAL represents an alicyclic group (cycloaliphatic group).
  • the aromatic dicarbonyl compound is a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (5), a compound represented by the following formula (6), a compound represented by the following formula (7), the following formula: It may include at least one of the compound represented by 8 and the compounds represented by the following formula (9).
  • the aliphatic dicarbonyl compound may include at least one of a compound represented by the following formula (10), a compound represented by the following formula (11), a compound represented by the following formula (12), and a compound represented by the following formula (13).
  • the polyimide-based film may have a haze of 2.0 or less, an average optical transmittance of 87% or more at a wavelength of 380 to 780 nm, and a yellowness of 5 or less based on a thickness of 80 ⁇ m.
  • preparing a liquid resin composition using monomer components including dianhydride and diamine preparing a gel film using the liquid resin composition, and the A step of first drying the gel film at 50 to 150°C at a wind speed of 1.0 m/s or less for 2 to 20 minutes, and in the first drying step, the drying temperature is referred to as A° C., and the wind speed is When B m/s and the first drying time is T minutes, a method for producing a polyimide-based film satisfying the drying coefficient conditions according to the following equations 1 and 2 is provided.
  • the monomer components may further include a dicarbonyl compound.
  • the liquid resin composition may have a viscosity of 1000 to 250,000 cPs.
  • the manufacturing method of the polyimide film may further include a step of secondary drying the gel film at a wind speed of 1.0 to 5.0 m/s at 70 to 140°C after the first drying step.
  • the method of manufacturing the polyimide-based film may further include performing a first heat treatment for 1 minute to 1 hour at a temperature of 100 to 500°C for the gel film after the second drying.
  • the step of preparing the gel film may include casting the liquid resin composition on a support.
  • the step of preparing the liquid resin composition comprises preparing a first polymer solution by reacting the monomer components in the presence of a first solvent, adding a second solvent to the first polymer solution, filtering and drying the polymer solid content And dissolving the polymer solid content in a third solvent.
  • Another embodiment of the present invention provides a polyimide-based film manufactured by the above manufacturing method.
  • Another embodiment of the present invention provides an electronic device including the polyimide-based film.
  • a polyimide-based film having a low Kc value may be manufactured by controlling the drying conditions in the manufacturing process of the polyimide-based film.
  • the polyimide-based film according to an embodiment of the present invention has a low Kc value, and the generation of waveness is suppressed, so that it may have excellent surface flatness.
  • a polyimide-based film manufactured according to an embodiment of the present invention and having a low Kc value and excellent surface flatness has surface properties such as glass and can be used as a substitute for glass.
  • 1 is a schematic diagram of a method of projecting an image of a film.
  • 2 is an example of a projection image obtained by an image projection method.
  • FIG 3 is a projection image of a film according to an embodiment of the present invention.
  • 5 is a cross-sectional view illustrating surface roughness, waviness, and form.
  • spatially relative terms are one element or component as shown in the drawing. It can be used to easily describe the correlation between the and other devices or components. Spatially relative terms should be understood as terms including different directions of the device during use or operation in addition to the directions shown in the drawings. For example, if an element shown in the figure is turned over, an element described as “below” or “beneath” another element may be placed “above” another element. Accordingly, the exemplary term “below” may include both directions below and above. Likewise, the exemplary terms “above” or “above” may include both upward and downward directions.
  • temporal relationship for example, when a temporal predecessor relationship is described as'after','following','after','before', etc.,'right' or'direct' Unless the expression is used, it may also include cases that are not continuous.
  • first, second, etc. are used to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish one component from another component. Accordingly, the first component mentioned below may be a second component within the technical idea of the present invention.
  • the term “at least one” is to be understood as including all possible combinations from one or more related items.
  • the meaning of “at least one of the first item, the second item, and the third item” means that each of the first item, the second item, or the third item, as well as the first item, the second item, and the third item, It may mean a combination of all items that can be presented from more than one.
  • the polyimide-based film according to an embodiment of the present invention has a Kc value of 1.55 or less.
  • the Kc value is a curvature parameter measured in a wavelength range of 1.0 to 3.0 mm by a phase stepped deflectometry (PSD).
  • PSD phase stepped deflectometry
  • the Kc value represents the degree of waviness of the polyimide-based film according to an embodiment of the present invention.
  • the polyimide-based film according to an embodiment of the present invention may be prepared from monomer components including dianhydride and diamine.
  • monomer components may refer to all of a plurality of monomers used in the manufacture of a polyimide-based film.
  • the monomer components may be in a mixed state, or each of the monomers included in the monomer components may be sequentially mixed.
  • the dianhydride is, for example, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), biphenyl tetracarboxylic dian Hydride (BPDA), 4-(2,5-dioxotetra hydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (TDA), Pyromellitic acid dianhydride (PMDA), benzophenone tetracarboxylicdianhydride (BTDA), oxydiphthalic dianhydride (ODPA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), bisdicarboxyphenoxy Diphenyl sulfide dianhydride (BDSDA), sulfonyl diphthalic anhydride (SO 2 DPA), isopropylidene diphenoxy bisphthalic anhydride (6HBDA), cycl
  • Diamine is, for example, oxydianiline (ODA), p-phenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenedianiline (pMDA), m-methylenedianiline (mMDA), Bis aminophenoxy benzene (133APB), bis aminophenoxy benzene (134APB), bis amino phenoxy phenyl hexafluoropropane (4BDAF), bis aminophenyl hexafluoropropane (33-6F), bis aminophenyl hexafluoro Propane (44-6F), bis aminophenylsulfone (4DDS), bis aminophenylsulfone (3DDS), bis trifluoromethyl benzidine (TFDB), cyclohexanediamine (13CHD), cyclohexanediamine (14CHD), bis aminophenoxy Cy phenylpropane (6HMDA), bis aminohydroxy phenyl hexafluoropropan
  • the polyimide-based film prepared by a monomer containing dianhydride and diamine may be a polyimide-based film having an imide repeating unit.
  • the polyimide film according to the present invention is not limited thereto.
  • the monomer components may further include a dicarbonyl compound.
  • the polyimide-based film may have a polyamide-imide copolymer structure having an imide repeating unit and an amide repeating unit.
  • a film having a polyamide-imide copolymer structure has an imide repeating unit
  • a film having a polyamide-imide copolymer structure is also referred to as a polyimide-based film.
  • the polyimide-based film according to an embodiment of the present invention may be a polyimide film or a polyamide-imide film.
  • the dicarbonyl compound may include at least one of an aromatic dicarbonyl compound and an aliphatic dicarbonyl compound.
  • the aromatic dicarbonyl compound according to an embodiment of the present invention may be represented by the following formula (1).
  • R 1 is a single bond, *-Ar-*, *-O-Ar-*, *-CAL-*, or *-O-CAL-*, and X 1 and X 2 are each independently hydrogen , A hydroxy group (-OH) or a halogen element is represented, and X 3 is hydrogen or a halogen element.
  • “Ar” represents a substituted or unsubstituted arylene group
  • CAL may represent a cycloaliphatic group.
  • arylene group there is, for example, a phenylene group represented by the following formula (2).
  • an unsubstituted allylene group for example, a phenylene group represented by Chemical Formula 2.
  • substituted arylene group for example, there is a phenylene group in which hydrogen (H) of a benzene ring is substituted with a halogen element. More specifically, as a substituted arylene group, there is a chlorophenylene group in which hydrogen (H) of the benzene ring is substituted with chlorine (Cl).
  • At least one of X 1 and X 2 may be a halogen element, and the halogen element may be a chlorine (Cl) atom.
  • X 3 may be hydrogen (H) or chlorine (Cl).
  • the aromatic dicarbonyl compound according to an embodiment of the present invention is a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (5), a compound represented by the following formula (6), the following formula (7). It may include at least one of a compound represented by the following formula (8), a compound represented by the following formula (9).
  • the aromatic dicarbonyl compound is, for example, terephthaloyl chloride (TPC) (Chemical Formula 3), terephthalic acid (TPA) (Chemical Formula 4), isophthaloyl dichloride ( IPC) (Chemical Formula 5), 1,1'-biphenyl-4,4'-dicarbonyl dichloride (1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC) (Chemical Formula 6), 4, It may contain at least one of 4'-oxybisbenzoyl chloride (ODBC) (Chemical Formula 7) and 2-chloroterephthaloyl dichloride.
  • TPC terephthaloyl chloride
  • TPA terephthalic acid
  • IPC isophthaloyl dichloride
  • IPC isophthaloyl dichloride
  • 1,1'-biphenyl-4,4'-dicarbonyl dichloride 1,1'-biphenyl-4
  • alicyclic dicarbonyl compound as an aliphatic dicarbonyl compound according to an embodiment of the present invention.
  • the aliphatic dicarbonyl compound may include at least one of a compound represented by the following formula (10), a compound represented by the following formula (11), a compound represented by the following formula (12), and a compound represented by the following formula (13).
  • Compounds represented by the following formulas 10 to 13 may also be referred to as alicyclic compounds,
  • the above-described compounds may be used alone, or two or more may be mixed and used.
  • the polyimide-based film has a Kc value of 1.55 or less.
  • the Kc value is a curvature parameter measured for a waveness having a wavelength range of 1.0 to 3.0 mm formed on a polyimide-based film by a phase stepped deflectometry (PSD) method.
  • PSD phase stepped deflectometry
  • the Kc value represents the degree of waviness having a wavelength of 1.0 to 3.0 mm formed on a polyimide-based film.
  • Waveness is also referred to as wave shape or wave pattern curvature.
  • 5 is a cross-sectional view illustrating surface roughness, waviness, and form.
  • the surface roughness expressed by (B) is determined by the fine curvature that appears at the smallest interval on the surface of (A) of FIG. ), and the curvature of the surface at intervals greater than the interval of surface roughness (B) is the waveness expressed in (C), and it appears at intervals larger than the interval of waveness (C), and the macroscopic object
  • the external appearance is a form expressed by (D).
  • the surface roughness represented by (B) of FIG. 5 is when a virtual center line is set along a fine curve in the cross section represented by (A) of FIG. 5 and the virtual center line is straightened. , It expresses a fine curve drawn around an imaginary centerline spread out in a straight line.
  • the interval of fine curves may be about several ⁇ m to several tens of ⁇ m.
  • the waveness represented by (C) of FIG. 5 is a curvature of a surface that appears at intervals larger than the interval of surface roughness (B), expressed around an imaginary straight line.
  • the interval of the bends may be about several hundred ⁇ m to several cm.
  • the interval between the curves is referred to as "wavelength ⁇ ".
  • the waveness shown in (C) of FIG. 5 may have a wavelength ⁇ of about several hundreds ⁇ m to several cm.
  • the Kc value is a bending parameter measured for a waveness having a wavelength of 1.0 to 3.0 mm.
  • the Kc value according to an embodiment of the present invention and the degree of waveness in the range of a wavelength ( ⁇ ) of 1.0 to 3.0 mm formed on a polyide-based film are evaluated.
  • the optimal viewing distance of a person is about 30 to 40 cm
  • the human eye has a high resolution for curvatures having an interval of 1 to 3 mm at a viewing distance of about 30 to 40 cm. Accordingly, when a waveness, which is a curvature having a wavelength of 1 to 3 mm, is formed on the surface of the display device, such a waveness is very well recognized by the human eye. In addition, this waveness causes distortion of the screen.
  • the Kc value of the polyimide-based film by adjusting the Kc value of the polyimide-based film to 1.55 or less, it is possible to minimize the curvature visually recognized by the human eye.
  • the polyimide-based film according to an embodiment of the present invention is used as a cover window of a display device, curvature visually recognized by the user's eyes can be minimized, and screen distortion can be minimized.
  • the Kc value is measured by Optimap TM PSD of Rhopoint Instruments (UK).
  • the Optimap TM PSD of Rhopoint Instruments is used to measure the Kc value, and the Kc value is quantified by the program of Optimap TM PSD.
  • a curvature (K) and a profile of a surface to be measured are measured by a phase stepped deflectometry (PSD) method, and in this case, a periodic pattern of a sinusoidal wave is used.
  • PSD phase stepped deflectometry
  • a small Kc value of the polyimide-based film can be interpreted as a small change in curvature at each point on the surface of the polyimide-based film.
  • a small change in curvature can be interpreted as a small number of cyclically changing patterns such as a wave pattern, and therefore, when the Kc value is small, it can be said that the polyimide-based film is more flat than when the Kc value is large. .
  • the polyimide-based film has a Kc value of 1.55 or less.
  • the polyimide-based film has a Kc value of 1.55 or less, surface curvature such as waviness is small and excellent flatness is obtained.
  • screen distortion does not occur.
  • a polyimide-based film having a Kc value of 1.55 or less is used as a cover window of a display device, it can be said that a wave pattern is not recognized on the display screen by a user with ordinary eyesight.
  • the polyimide-based film may have a Kc value of 1.45 or less.
  • the Kc value of the polyimide-based film is 1.45 or less, it can be said that the polyimide-based film hardly generates waviness that can be recognized by the human eye.
  • the Kc value of the polyimide-based film may be adjusted in the range of 1.10 to 1.55. More specifically, according to an embodiment of the present invention, the polyimide-based film may have a Kc value of 1.10 to 1.45.
  • the Kc value can be measured by the following method.
  • Rhopoint's Optimap TM PSD
  • -Curvature mode K 1.0 to 3.0mm wavelength range
  • a polyimide film sample having a width of 15 cm x a length of 15 cm x thickness of 80 ⁇ m is used for Kc measurement (thickness deviation ⁇ 2%).
  • the polyimide-based film may have various thicknesses.
  • the polyimide-based film may have a thickness of, for example, 10 to 250 ⁇ m, and more specifically, may have a thickness of 10 to 100 ⁇ m.
  • the polyimide film of the present invention has excellent optical properties.
  • the polyimide-based film according to an embodiment of the present invention has a haze of 2.0% or less, an optical transmittance of 87% or more at a wavelength of 380 to 780 nm, and a yellow color of 5.0 or less based on a film thickness of 80 ⁇ m. You can have a degree. More specifically, according to an embodiment of the present invention, based on a thickness of 80 ⁇ m, the polyimide-based film may have a haze of 0.2 to 0.3%.
  • the polyimide-based film according to an embodiment of the present invention has a Kc value of 1.55 or less, and thus has excellent surface characteristics, and may have excellent optical characteristics. Accordingly, the polyimide film according to the present invention may be used as a cover window, a transparent protective film, a light diffusion plate, a liquid crystal alignment layer of a display device, may be used as a base film of a hard coating film, or a substrate of a flexible display. ) Can also be used.
  • polyimide-based film according to an embodiment of the present invention may be used, for example, as a substitute for glass.
  • the polyimide-based film In order for the polyimide-based film to replace glass, it is necessary that the polyimide-based film not only have excellent optical properties, but also have excellent surface properties. Conditions for excellent surface properties include, for example, uniform thickness, surface flatness, and low surface roughness. Here, the surface flatness includes the case where there is no or very few wrinkles or curvatures on the surface.
  • Distortion of the screen viewed through the polyimide film can be confirmed through an image projected on a flat surface when light is transmitted through the polyimide film in a dark environment, as shown in FIG. 1.
  • FIG. 1 is a schematic diagram of a method of projecting an image of a film
  • FIG. 2 is an illustration of a projection image 50 obtained by an image projecting method.
  • light 20 irradiated from a light source 10 passes through a projection target film 30 and is irradiated onto a flat surface 40 to form a projection image 50.
  • the projected image 50 transparent to the flat surface 50 is clean and there is no difference in shades in the image, it means that the projected film 30 is flat and there is no waveness or the like.
  • the projection target film 30 is not flat and image distortion may occur.
  • image distortion may occur on a screen displayed through the polyimide-based film.
  • Such a waveness may occur when a polyimide-based film is manufactured by casting.
  • a liquid resin composition formed by a polyimide resin is cast on a flat substrate and then dried to produce a polyimide film
  • the flatness of the polyimide film decreases during the drying process for solvent volatilization, resulting in a wave Varnish (waviness) may occur.
  • waveness may occur in the polyimide-based film depending on the intensity of the hot air and the application time of the hot air, thereby deteriorating the flatness of the polyimide-based film.
  • a polyimide-based film having a Kc value of 1.55 or less can be prepared by optimizing the drying conditions of the polyimide-based film.
  • a method of manufacturing a polyimide-based film according to an embodiment of the present invention includes preparing a liquid resin composition using monomer components including dianhydride and diamine, and molding the liquid resin composition to form a gel film. And first drying the gel film at 50 to 150° C. at a wind speed of 1.0 m/s or less for 2 to 20 minutes.
  • a liquid resin composition is prepared by using monomer components including dianhydride and diamine.
  • the monomer components may further include a dicarbonyl compound.
  • a first solvent may be used for solution polymerization of the monomer components. Specifically, the monomer components are reacted in the presence of the first solvent, so that a first polymer solution may be prepared.
  • An organic solvent may be used as the first solvent for solution polymerization.
  • first solvent for example, m-cresol, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone (NEP), dimethylformamide (DMF), diethylformamide (DEF), dimethylacetamide (DMAc), diethyl acetamide (DEAc), acetone, ethyl acetate, propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate , PGMEA) at least one solvent selected from among may be used.
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • DMF dimethylformamide
  • DEF diethylformamide
  • DMAc dimethylacetamide
  • DEAc diethyl acetamide
  • acetone ethyl acetate
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether
  • a low-boiling solvent such as tetrahydrofuran (THF) or chloroform, or a low-absorption solvent such as ⁇ -butyrolactone may be used as the first solvent.
  • the first solvent may be used alone or in combination of two or more depending on the purpose.
  • the first solvent may have a content of 50 to 95% by weight based on the total weight of the first polymer solution. More specifically, the first solvent may have a content of 70 to 90% by weight based on the total weight of the first polymer solution.
  • the molar amount of dianhydride and the molar amount of diamine may be adjusted to be equal to each other.
  • the mixed molar amount of the dianhydride and the dicarbonyl compound may be adjusted to be equal to the diamine molar amount.
  • the liquid resin composition can be said to be a liquid polyimide resin composition.
  • the step of preparing a liquid resin composition comprises preparing a first polymer solution by reacting monomer components in the presence of a first solvent, adding a second solvent to the first polymer solution, and , Filtering and drying to prepare a polymer solid, and dissolving the polymer solid in a third solvent.
  • a polyimide resin composition may be prepared by preparing a polyamic acid using monomer components including dianhydride and diamine, followed by thermal curing.
  • a chemical curing agent to the polyimide-based polymer solution of the polyamic acid, it is possible to form a polyimide-based film (film formation) in the form of a film immediately without proceeding with a filtration process using a second solvent.
  • the first polymer solution may include a polyamic acid solution.
  • the reaction temperature may be adjusted, for example, in the range of -10 to 80°C, and the reaction time may be adjusted to 2 to 48 hours.
  • the step of preparing the first polymer solution may be performed in an inert gas atmosphere such as argon or nitrogen.
  • the imidization process for the first polymer solution may proceed.
  • the polyamic acid included in the first polymer solution may be imidized.
  • a thermal imidation method for imidization, a thermal imidation method, a chemical imidization method, or a method in which a thermal imidization method and a compound imidization method are used in combination can be applied.
  • a chemical imidization method may be applied.
  • the chemical imidization method is a method of applying a dehydrating agent such as acetic anhydride and an imidization catalyst such as isoquinoline, ⁇ -picoline, pyridine or tertiary amine to the first polymer solution.
  • the thermal imidization method may also be used in combination with the chemical imidization method.
  • the dehydrating agent and the imidization catalyst are added to the first polymer solution and then heated at 20 to 180° C. for 1 to 12 hours to proceed with imidization.
  • the second solvent is used to obtain a solid content of the polyimide resin. Accordingly, a solvent that does not dissolve the polyamic acid contained in the first polymer solution may be used as the second solvent, and a polyimide polymer solid content may be precipitated due to a difference in solubility.
  • a solvent having a lower polarity than the first solvent may be used.
  • the second solvent for example, at least one selected from water, alcohols, ethers, and ketones may be used.
  • a second solvent of 5 to 20 times the weight of the polyamic acid contained in the first polymer solution may be used.
  • the conditions for drying after filtering the obtained polymer solid content are determined in consideration of the boiling points of the second solvent and the first solvent remaining in the polymer solid content.
  • the polymer solid content may be dried for 2 to 24 hours at a temperature of 50 to 150°C.
  • the liquid resin composition can also be referred to as a polyimide resin composition.
  • the third solvent may be the same as the first solvent.
  • a third solvent for example, m-cresol, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone (NEP), dimethylformamide (DMF), diethyl Formamide (DEF), dimethylacetamide (DMAc), diethyl acetamide (DEAc), acetone, ethyl acetate, propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (Propylene glycol monomethyl) ether Acetate, PGMEA) may be used.
  • the prepared liquid resin composition prepared as described above may have a viscosity of 100 to 300,000 cPs. If the viscosity of the liquid resin composition is less than 100 cPs, it may be difficult to cast the liquid resin composition to form a film, and due to the low molecular weight, it may be difficult to peel the film formed by casting from the casting substrate. I can. On the other hand, when the viscosity of the liquid resin composition exceeds 300,000 cPs, the pressure applied during the casting process increases due to the high viscosity, which may be disadvantageous in terms of the process.
  • the liquid resin composition may have a viscosity of 1,000 to 250,000 cPs.
  • the liquid resin composition has a viscosity of 1,000 to 250,000 cPs, it is easy to cast the liquid resin composition to form a film, and it is also easy to dry.
  • the viscosity of the liquid resin composition is 1000 cPs or more, there is no difficulty in casting the liquid resin composition to form a film, and the film formed by casting can be peeled from the casting substrate without difficulty.
  • the viscosity of the liquid resin composition is 250,000 cPs or less, the casting process may proceed without increasing the pressure for casting the liquid resin composition more than necessary.
  • the liquid resin composition may have a viscosity of 1000 to 30,000 cPs.
  • the content of solids contained in the liquid resin composition may be adjusted in the range of 5 to 30% by weight based on the total weight of the liquid resin composition.
  • the gel-like film is produced by the liquid resin composition.
  • the gel-like film can be said to be a gel-like uncured polyimide-based film.
  • a casting method may be applied to prepare a gel-like film.
  • the step of preparing a gel-like film includes casting a liquid resin composition on a support.
  • a gel-like film is produced by casting.
  • a glass plate, an aluminum substrate, a circulating stainless belt, a stainless drum, or a heat-resistant polymer film may be used as the support.
  • the film in a gel state refers to an uncured polyimide-based film in which curing has not been completed.
  • a gel-like film or an uncured polyimide-based film it is referred to as a gel-like film or an uncured polyimide-based film.
  • the gel film is first dried for 2 to 20 minutes at a wind speed of 1.0 m/s or less at 50 to 150°C.
  • the gel film prepared by casting may be first dried for 2 to 20 minutes at a temperature of 70 to 150° C. and a wind speed environment of 1.0 m/s or less.
  • the solvent contained in the gel film may not be properly dried, and thus, waviness may occur in the film.
  • the drying time may decrease, and as the wind speed decreases, the drying time may increase. At this time, the wind speed is adjusted in a range such that the Kc value of the polyimide film does not exceed 1.55.
  • the wind speed may be adjusted in the range of 0.2 m/s to 1.0 m/s.
  • the drying coefficient conditions according to the following equations 1 and 2 Drying conditions are adjusted so that this is satisfied.
  • the first drying is It may not work. If drying is not done properly in the first drying, most of the solvent will be removed in the subsequent second drying, etc. However, since the secondary drying is generally performed at a wind speed that is stronger than that of the primary drying, non-uniformity may occur in the polyimide-based film in the process of evaporating a large amount of solvent at a strong wind speed during the secondary drying.
  • drying is performed to remove the solvent contained in the gel film, and the Kc value of the polyimide-based film may be adjusted by optimizing the wind speed during drying.
  • the solvent is removed by applying wind to the gel film at a temperature, wind speed, and time suitable for the drying coefficient conditions according to Equations 1 and 2.
  • the wind speed in the first drying step is determined in consideration of the drying time and temperature. Wind speed is measured as follows.
  • a wind speed anemometer is mounted at a height of about 1cm above the support, and the direction of the airflow anemometer measurement tool is parallel to the surface of the support, and the wind speed is measured.
  • the wind speed in the first drying step may be maintained at 1.0 m/s or less, and depending on the temperature of the wind, the wind speed may be 0.8 m/s or less, or 0.5 m/s. It may be less than or equal to s.
  • the wind speed may be adjusted to 0.2 m/s or more in the first drying step.
  • the temperature may be maintained at 50 to 150°C, and if necessary, may be maintained in the range of 70 to 150°C.
  • drying is performed at a temperature of 50°C or higher to ensure drying efficiency, and drying is performed at a temperature of 150°C or lower to prevent sudden volatilization of the solvent.
  • primary drying may be performed in a temperature range of 70 to 150°C.
  • the residual solvent content ratio of the uncured polyimide film may be adjusted to 50% by weight or less. More specifically, after the first drying, the residual solvent content ratio of the uncured polyimide film may be adjusted to 40% by weight or less.
  • a step of second drying the gel film at a wind speed of 1.0 to 5.0 m/s at 70 to 140° C. may be performed.
  • the speed of the secondary drying may be excessively decreased.
  • the rate of secondary drying is excessively decreased, the efficiency of the process decreases, and the physical properties of the polyimide-based film may change due to an increase in drying time.
  • the gel-like film is dried and hardened to some extent by the first drying, there is little possibility that the surface properties of the gel-type film will be changed by the wind applied in the second drying step.
  • the wind speed of the secondary drying exceeds 5.0 m/s or the temperature exceeds 140° C.
  • wrinkles or bending may occur in the polyimide-based film due to high-temperature strong wind.
  • the waveness of the polyimide-based film increases, and the curvature parameter Kc may exceed 1.55.
  • the wind speed in the second drying step may be adjusted in the range of, for example, 1.5 to 5.0 m/s, and more specifically, the wind speed in the second drying step may be adjusted in the range of 1.6 to 3.0 m/s. Further, in the second drying step, the temperature may be adjusted in the range of 100 to 140°C.
  • the first heat treatment of the gel film may be performed after the second drying step.
  • the gel film may be heat-treated for 1 minute to 1 hour at a temperature of 100 to 500°C. By this heat treatment, the gel film is heat-cured to complete the polyimide-based film.
  • the first heat treatment step is also referred to as a heat curing step.
  • the first heat treatment step may be performed on the support or may be performed on a separate heat treatment support.
  • the gel film may be separated from the support, and then fixed to the support for the first heat treatment, and then the first heat treatment may be performed.
  • a pin-type frame or a clip-type frame may be used for supporting the gel-like film.
  • the content of the volatile component remaining in the polyimide-based film after the first heat treatment may be adjusted to be 5% by weight or less.
  • the secondary heat treatment may be performed while a certain tension is applied to the polyimide-based film subjected to the first heat treatment. Residual stress inside the polyimide film may be removed by the secondary heat treatment.
  • the coefficient of thermal expansion of the polyimide-based film may be reduced.
  • residual stress to shrink in the polyimide-based film may be generated to reduce thermal expansion, and the hysteresis of the thermal expansion coefficient may be reduced in the polyimide-based film.
  • the tension and temperature applied to the secondary heat treatment are correlated with each other. Therefore, the tension condition may vary depending on the temperature applied to the secondary heat treatment.
  • the secondary heat treatment may be performed at a temperature of 100 to 500° C. for 1 minute to 1 hour, and may be performed at a temperature of 250 to 350° C. for 2 to 15 minutes.
  • Another embodiment of the present invention provides a polyimide-based film manufactured according to the above-described manufacturing method.
  • the reactor temperature was lowered to 10°C and the temperature of the solution was again maintained at 8°C, and then 16.24g (0.08mol) of TPC, a dicarbonyl compound, was added and reacted at 25°C for 12 hours, resulting in a solid concentration of 12% by weight.
  • Phosphorus 1st polymer solution was obtained.
  • the first polymer solution may include polyamic acid. Therefore, the first polymer solution is also referred to as a polyamic acid solution.
  • the liquid resin composition is also referred to as a polyimide resin composition.
  • the polyimide resin composition is a polyamide-imide resin composition.
  • the obtained first polymer solution 3.16 g of pyridine and 4.04 g of acetic anhydride were added and stirred for 30 minutes, then stirred at 80° C. for 0.5 hours to cool to room temperature, and 10 L of methanol as a second solvent was added to precipitate a solid component. , The precipitated solid was filtered and pulverized, washed with 2 L of methanol, and dried at 100° C. for 6 hours in vacuum to obtain a powdery polyimide-based polymer solid. The obtained polyimide-based polymer solid was re-dissolved again with DMAc as a third solvent to prepare a liquid resin composition having a solid content of 12% by weight.
  • the liquid resin composition is also referred to as a polyimide resin composition.
  • the polyimide resin composition is a polyamide-imide resin composition.
  • the reactor temperature was lowered to 10°C and the temperature of the solution was again maintained at 8°C, and then 16.24g (0.08mol) of TPC, a dicarbonyl compound, was added and reacted at 25°C for 12 hours, resulting in a solid concentration of 12% by weight.
  • a phosphorus first polymer solution was obtained.
  • the liquid resin composition is also referred to as a polyimide resin composition.
  • the polyimide resin composition is a polyamide-imide resin composition.
  • the obtained first polymer solution 6.328 g of pyridine and 8.08 g of acetic anhydride were added and stirred for 30 minutes, then stirred at 80° C. for 1 hour to cool to room temperature, and 10 L of methanol as a second solvent was added to precipitate a solid content. , The precipitated solid was filtered and pulverized, washed again with 2L of methanol, and dried in vacuum at 100°C for 6 hours to obtain a powdery polyimide-based polymer solid. The obtained solid content of the polyimide polymer was re-dissolved in DMAc as a third solvent to prepare a liquid resin composition having a solid content of 20% by weight.
  • the liquid resin composition is also referred to as a polyimide resin composition.
  • the polyimide resin composition is a polyimide resin composition.
  • a polyimide resin composition which is a liquid resin composition prepared in Preparation Example 1, on a substrate to prepare a gel-like film (a gel-like uncured polyimide-based film), 80° C., 0.2 m
  • the first drying was performed at /s wind speed for 20 minutes, and the wind speed was raised to 1.6m/s, and the gel film was secondarily dried at 140° C. for 10 minutes.
  • the first heat treatment was performed for 1 hour while raising the temperature from 120°C to 280°C.
  • the gel-like film was cured by the first heat treatment to produce a polyimide-based film.
  • the produced polyimide-based film is a polyamide-imide film.
  • the polyimide-based film prepared by the first heat treatment was removed from the tenter frame and then subjected to secondary heat treatment at 280° C. for 5 minutes to remove residual stress in the film.
  • a polyimide-based film was prepared in the same manner as in Example 1, except that the primary drying conditions are shown in Table 1 below, and these were referred to as Examples 2 to 8.
  • the first heat treatment was performed for 1 hour while raising the temperature from 120°C to 280°C.
  • the gel-like film was cured by the first heat treatment to produce a polyimide-based film.
  • the produced polyimide-based film is a polyamide-imide film.
  • the thermally cured film was removed from the Tenter frame and further heat-treated at 280°C for 5 minutes to remove residual stress in the film.
  • the polyimide-based film prepared by the first heat treatment was removed from the tenter frame and then subjected to secondary heat treatment at 280° C. for 5 minutes to remove residual stress in the film.
  • a polyimide-based film was prepared in the same manner as in Example 9, except that the primary drying conditions are as shown in Table 1 below, and these were referred to as Examples 10 to 16.
  • a polyimide resin composition which is a liquid resin composition prepared in Preparation Example 3, on a substrate to prepare a gel-like film (a gel-like uncured polyimide-based film), 80° C., 0.2 m
  • the first drying was performed at /s wind speed for 20 minutes, and the wind speed was raised to 1.6m/s, and the gel film was secondarily dried at 140° C. for 10 minutes.
  • the first heat treatment was performed for 1 hour while raising the temperature from 120°C to 250°C.
  • the gel-like film was cured by the first heat treatment to produce a polyimide-based film.
  • the produced polyimide-based film is a polyamide-imide film.
  • the polyimide-based film prepared by the first heat treatment was removed from the tenter frame and then subjected to secondary heat treatment at 250° C. for 5 minutes to remove residual stress in the film.
  • a polyimide-based film was prepared in the same manner as in Example 17, except that the primary drying conditions are as shown in Table 1 below, and these were referred to as Examples 18 to 24.
  • a polyimide resin composition which is a liquid resin composition prepared in Preparation Example 4, on a substrate to prepare a gel-like film (gel-like uncured polyimide-based film), 80° C., 0.2 m
  • the first drying was performed at /s wind speed for 20 minutes, and the wind speed was raised to 1.6m/s, and the gel film was secondarily dried at 140° C. for 10 minutes.
  • the first heat treatment was performed for 1 hour while raising the temperature from 120°C to 280°C.
  • the gel-like film was cured by the first heat treatment to produce a polyimide-based film.
  • the produced polyimide film is a polyimide film.
  • the polyimide-based film prepared by the first heat treatment was removed from the tenter frame and then subjected to secondary heat treatment at 280° C. for 5 minutes to remove residual stress in the film.
  • a polyimide-based film was prepared in the same manner as in Example 25, except that the primary drying conditions are as shown in Table 1 below, and these were referred to as Examples 26 to 32.
  • a polyimide-based film was prepared in the same manner as in Example 1, except that the primary drying conditions are shown in Table 1 below, and these were referred to as Comparative Examples 1 to 5.
  • a polyimide-based film was prepared in the same manner as in Example 9, except that the primary drying conditions are shown in Table 1 below, and these were referred to as Comparative Examples 6 to 10.
  • a polyimide-based film was prepared in the same manner as in Example 17, except that the primary drying conditions are shown in Table 1 below, and these were referred to as Comparative Examples 11 to 15.
  • a polyimide-based film was prepared in the same manner as in Example 25, except that the primary drying conditions are as shown in Table 1 below, and these were referred to as Comparative Examples 16 to 20.
  • Example 1 Manufacturing Example 1 80 0.2 20 1.6 8 Example 2 Manufacturing Example 1 80 0.5 20 4 8 Example 3 Manufacturing Example 1 80 0.8 20 6.4 8 Example 4 Manufacturing Example 1 80 One 20 8 8 Example 5 Manufacturing Example 1 140 0.2 2.5 0.5 2.5 Example 6 Manufacturing Example 1 140 0.5 2.5 1.25 2.5 Example 7 Manufacturing Example 1 140 0.8 2.5 2 2.5 Example 8 Manufacturing Example 1 140 One 2.5 2.5 2.5 Example 9 Manufacturing Example 2 80 0.2 20 1.6 8 Example 10 Manufacturing Example 2 80 0.5 20 4 8 Example 11 Manufacturing Example 2 80 0.8 20 6.4 8 Example 12 Manufacturing Example 2 80 One 20 8 8 Example 13 Manufacturing Example 2 140 0.2 2.5 0.5 2.5 Example 14 Manufacturing Example 2 140 0.5 2.5 1.25 2.5 Example 15 Manufacturing Example 2 140 0.8 2.5 2 2.5 Example 16 Manufacturing Example 2 140 One 2.5 2.5 2.5 Example 17 Manufacturing Example 3 80 0.2 20 1.6 8 Example 18 Manufacturing
  • the thickness of the polyimide-based films prepared in Examples and Comparative Examples was measured.
  • the thickness deviation due to the device is less than ⁇ 0.5%.
  • the yellowness of the polyimide-based films prepared in Examples and Comparative Examples was measured according to ASTM E313 standard using a UV spectrometer (Cotica Minolta CM-3700d).
  • Haze Meter HM-150 was used to measure the haze of the polyimide-based films prepared in Examples and Comparative Examples.
  • Example 1 80 ⁇ 1.6 1.14 0.3 3.8 88.3
  • Example 2 80 ⁇ 1.6 1.324 0.3 3.7 88.4
  • Example 3 80 ⁇ 1.6 1.446 0.3 3.6 88.4
  • Example 4 80 ⁇ 1.6 1.512 0.3 3.6 88.3
  • Example 5 80 ⁇ 1.6 1.153 0.3 3.7 88.4
  • Example 6 80 ⁇ 1.6 1.311 0.3 3.8 88.3
  • Example 7 80 ⁇ 1.6 1.449 0.3 3.6 88.5
  • Example 8 80 ⁇ 1.6 1.536 0.3 3.7 88.4
  • Example 9 80 ⁇ 1.6 1.149 0.3 4.2 88.1
  • Example 10 80 ⁇ 1.6 1.334 0.3 4.1 88.2
  • Example 11 80 ⁇ 1.6 1.473 0.3 4.2 88.1
  • Example 12 80 ⁇ 1.6 1.529 0.3 4.3 88
  • Example 13 80 ⁇ 1.6 1.172 0.3 4.2 88
  • Example 14 80 ⁇ 1.6 1.365 0.3 4.3 88.1
  • Example 15 80 ⁇ 1.6 1.411 0.3 4.2 88.1
  • Example 16 80 ⁇ 1.6 1.5
  • the polyimide-based films according to Examples 1 to 32 according to the present invention have a Kc value of 1.55 or less.
  • the Kc value of the polyimide film is affected by the temperature, wind speed and drying time in the first drying step.
  • the polyimide-based film when the polyimide-based film is first dried at a relatively low temperature of 100° C. or less, it can be used for a relatively long time by various wind speeds within the range satisfying the drying coefficient conditions according to Equations 1 and 2. It can be seen that a low Kc value can be obtained only when the primary drying is performed.
  • the polyimide-based film when the polyimide-based film is first dried at a relatively high temperature exceeding 100°C, the first drying should be carried out over a relatively short period of time by various wind speeds within a range that satisfies the drying coefficient conditions according to Equations 1 and 2. It can be seen that it can have a low Kc value.
  • the polyimide-based film when the polyimide-based film is first dried at a relatively low temperature of 100°C or lower, the first drying is not sufficiently performed when the drying time is short, and a large amount of solvent volatilizes during the second drying. This may occur, and accordingly, it can be seen that the Kc value of the polyimide-based film increases and the flatness decreases.
  • the polyimide-based film is first dried at a relatively high temperature exceeding 100°C, excessive solvent volatilization may occur if the drying is long, and a wave pattern is generated on the polyimide-based film due to fine hot air. It can be seen that the Kc value increases and the flatness decreases.
  • FIG. 3 is a projection image of a film according to Example 1 of the present invention
  • FIG. 4 is a projection image of a film according to Comparative Example 15.
  • a polyimide-based film prepared according to an embodiment of the present invention and having a low Kc value of 1.55 or less has excellent surface flatness compared to a polyimide-based film prepared according to the comparative example. It can be confirmed that there is no or little unevenness such as a wave pattern.
  • the polyimide-based film according to an embodiment of the present invention can be applied to various electronic devices. Accordingly, another embodiment of the present invention provides an electronic device including the polyimide-based film according to the present invention.
  • the polyimide-based film according to the present invention may be applied, for example, as a cover window of an electronic device.

Abstract

본 발명은 폴리이미드계 필름 및 이의 제조방법에 관한 것으로, 보다 상세하게는, 1.55 이하의 낮은 Kc값을 가져 우수한 표면 평탄성을 가지며, 웨이브니스(waviness)의 발생이 억제된 폴리이미드계 필름 및 그 제조방법에 관한 것이다.

Description

우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
본 발명은 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법에 관한 것으로, 낮은 Kc를 가져 웨이브니스(waviness)의 발생이 억제된 폴리이미드계 필름 및 그 제조방법에 대한 것이다.
폴리이미드(PI)계 수지는 고내열성, 내산화성, 내방사선성, 저온 특성, 내약품성 등의 특징을 가지고 있어, 전자제품, 반도체, 자동차, 항공기, 우주선 등에 널리 사용되고 있으며, 광섬유, 표시장치, 투명전극필름뿐만 아니라 표시장치의 커버 윈도우로도 사용되고 있다.
최근 폴리이미드계 수지의 광학적 특성을 향상시키기 위한 연구들이 진행되어, 기계적 특성 및 열적 특성이 크게 저하되지 않으면서도 우수한 광학 특성을 갖는 폴리이미드계 수지들이 개발되고 있다.
우수한 기계적 특성, 열적 특성 및 광학적 특성을 갖는 폴리이미드계 수지에 의하여 제조된 폴리이미드계 필름은 다양한 플렉서블 제품에 사용되고 있으며, 유리에 대한 대체제로 사용하기 위한 연구들이 진행되고 있다. 예를 들어, 표시장치의 커버 윈도우 또는 보호 소재로 폴리이미드계 필름을 사용하기 위한 연구들이 진행되고 있다.
본 발명의 일 실시예는, 우수한 표면 평탄성(evenness)을 갖는 폴리이미드(PI)계 필름을 제공하고자 한다.
본 발명의 다른 일 실시예는, 낮은 Kc 값을 가져, 물결 무늬의 발생이 억제되고 우수한 표면 평탄성을 갖는 폴리이미드(PI)계 필름을 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 우수한 표면 평탄성을 갖는 폴리이미드(PI)계 필름을 제조하는 방법을 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 건조 조건을 제어하는 것에 의하여, 낮은 Kc 값을 갖는 폴리이미드(PI)계 필름을 제조하는 방법을 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 물결 무늬의 발생이 억제된 폴리이미드(PI)계 필름을 제조하는 방법을 제공하고자 한다.
본 발명의 또 다른 일 실시예는 낮은 Kc 값을 가져 우수한 표면 평탄성을 갖는, 폴리이미드(PI)계 필름을 포함하는 전자기기를 제공하고자 한다.
상기의 과제를 해결하기 위해, 본 발명의 일 실시예는, 1.55 이하의 Kc 값을 갖는 폴리이미드계 필름을 제공한다. 상기 Kc 값은, 위상 단계 변형 측정법(phase stepped deflectometry, PSD)에 의해, 1.0 내지 3.0 mm의 파장(wavelength) 범위를 갖는 웨이브니스(waviness)에 대하여 측정된 곡률 매개 변수이다.
상기 폴리이미드계 필름은 1.45 이하의 Kc값을 가질 수 있다.
상기 폴리이미드계 필름은 1.10 내지 1.45의 Kc값을 가질 수 있다.
상기 폴리이미드계 필름은 디안하이드라이드 및 디아민을 포함하는 모노머 성분들로부터 제조될 수 있다.
상기 디안하이드라이드는 2,2-비스(3,4- 디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 비페닐 테트라카르복실릭 디안하이드라이드 (BPDA), 4-(2,5-디옥소테트라 하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(PMDA), 벤조페논 테트라카르 복실릭디안하이드라이드 (BTDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 비스 디카르복시 페녹시 디페닐 설파이드 디안하이드라이드(BDSDA), 술포닐 디프탈릭 안하이드라이드(SO2DPA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드 (6HBDA), 사이클로부탄디안하이드라이드 (CBDA), 사이클로 펜탄디안하이드라이드(CPDA), 사이클로헥산디안하이드라이드 (CHDA) 및 비사이클로헥산디안하이드라이드 (HBPDA) 중에서 선택되는 적어도 하나를 포함할 수 있다.
상기 디아민은 옥시디아닐린(ODA), p-페닐렌디아민(pPDA), m-페닐렌디아민(mPDA), p-메틸렌디아닐린(pMDA), m-메틸렌디아닐린(mMDA), 비스 아미노페녹시 벤젠(133APB), 비스 아미노페녹시 벤젠(134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (4BDAF), 비스 아미노페닐 헥사플루오로프로판(33-6F), 비스 아미노페닐 헥사플루오로 프로판(44-6F), 비스 아미노페닐술폰(4DDS), 비스 아미노페닐술폰(3DDS), 비스 트리플루오로메틸 벤지딘(TFDB), 사이클로헥산디아민(13CHD), 사이클로헥산 디아민(14CHD), 비스 아미노 페녹시 페닐프로판(6HMDA), 비스 아미노하이드록시 페닐 헥사플로오 로프로판(DBOH), 비스 아미노 페녹시 디페닐 술폰(DBSDA), 비스 (4-아미노페닐)플루오렌(FDA) 및 비스(4-아미노-3플루오르페닐)플루오렌 (F-FDA) 중에서 선택되는 적어도 하나를 포함할 수 있다.
상기 모노머 성분들은 디카르보닐 화합물을 더 포함할 수 있다.
상기 디카르보닐 화합물은 방향족 디카르보닐 화합물 및 지방족 디카르보닐 화합물 중 적어도 하나를 포함할 수 있다.
상기 방향족 디카르보닐 화합물은 하기 화학식 1로 표현될 수 있다.
[화학식 1]
Figure PCTKR2020012351-appb-I000001
여기서, R1은 단일 결합, *-Ar-*, *-O-Ar-*, *-CAL-*, 또는 *-O-CAL-* 이고, X1과 X2는 각각 독립적으로 수소, 하이드록시기(OH) 또는 할로겐 원소를 나타내고, X3는 수소 또는 할로겐 원소를 나타낸다. 여기서, 상기"Ar"은 치환되거나 치환되지 않은 아릴렌기를 나타내고, 상기 CAL은 지환족기(cycloaliphatic group)를 나타낸다.
상기 방향족 디카르보닐 화합물은, 하기 화학식 3으로 표현되는 화합물, 하기 화학식 4로 표현되는 화합물, 하기 화학식 5로 표현되는 화합물, 하기 화학식 6으로 표현되는 화합물, 하기 화학식 7로 표현되는 화합물, 하기 화학식 8로 표현되는 화합물 및 하기 화학식 9로 표현되는 화합물들 중 적어도 하나를 포함할 수 있다.
[화학식 3]
Figure PCTKR2020012351-appb-I000002
[화학식 4]
Figure PCTKR2020012351-appb-I000003
[화학식 5]
Figure PCTKR2020012351-appb-I000004
[화학식 6]
Figure PCTKR2020012351-appb-I000005
[화학식 7]
Figure PCTKR2020012351-appb-I000006
[화학식 8]
Figure PCTKR2020012351-appb-I000007
[화학식 9]
Figure PCTKR2020012351-appb-I000008
상기 지방족 디카르보닐 화합물은 하기 화학식 10으로 표현되는 화합물, 하기 화학식 11로 표현되는 화합물, 하기 화학식 12로 표현되는 화합물 및 하기 화학식 13으로 표현되는 화합물 중 적어도 하나를 포함할 수 있다.
[화학식 10]
Figure PCTKR2020012351-appb-I000009
[화학식 11]
Figure PCTKR2020012351-appb-I000010
[화학식 12]
Figure PCTKR2020012351-appb-I000011
[화학식 13]
Figure PCTKR2020012351-appb-I000012
상기 폴리이미드계 필름은, 두께 80㎛를 기준으로, 2.0 이하의 헤이즈(Haze), 380 내지 780nm의 파장에서 87% 이상의 평균 광학 투과도 및 5 이하의 황색도를 가질 수 있다.
본 발명의 다른 일 실시예는, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들을 이용하여 액상의 수지 조성물을 제조하는 단계, 상기 액상의 수지 조성물을 이용하여, 겔 상태의 필름을 제조하는 단계 및 상기 겔 상태의 필름을 50 내지 150℃에서 1.0 m/s 이하의 풍속으로 2 내지 20분 동안 1차 건조하는 단계를 포함하며, 상기 1차 건조하는 단계에서, 건조 온도를 A ℃ 라고 하고, 풍속을 B m/s 이라 하고, 1차 건조 시간을 T 분(minute)이라고 할 때, 다음 식 1 및 2에 따른 건조 계수 조건을 만족하는, 폴리이미드계 필름의 제조방법을 제공한다.
[식 1]
0.5 ≤ [(A-40) x B x T]/100 ≤ 10
[식 2]
2 ≤ [(A-40) x T]/100 ≤ 10
상기 모노머 성분들은 디카르보닐 화합물을 더 포함할 수 있다.
상기 액상의 수지 조성물은 1000 내지 250,000 cPs의 점도를 가질 수 있다.
상기 폴리이미드계 필름의 제조방법은, 상기 1차 건조하는 단계 후, 상기 겔 상태의 필름을 70 내지 140℃에서 1.0 내지 5.0 m/s의 풍속으로 2차 건조하는 단계를 더 포함할 수 있다.
상기 폴리이미드계 필름의 제조방법은, 상기 2차 건조하는 단계 후, 상기 겔 상태의 필름을 100 내지 500℃의 온도에서 1분 내지 1시간 동안 1차 열처리하는 단계를 더 포함할 수 있다.
상기 겔 상태의 필름을 제조하는 단계는, 상기 액상의 수지 조성물을 지지체 상에 캐스팅하는 단계를 포함할 수 있다.
상기 액상의 수지 조성물을 제조하는 단계는, 상기 모노머 성분들을 제1 용매의 존재 하에서 반응시켜 제1 중합체 용액을 제조하는 단계, 상기 제1 중합체 용액에 제2 용매를 투입하고 여과 및 건조하여 중합체 고형분을 제조하는 단계 및 상기 중합체 고형분을 제3 용매에 용해하는 단계를 포함할 수 있다.
본 발명의 또 다른 일 실시예는 상기 제조방법으로 제조된 폴리이미드계 필름을 제공한다.
본 발명의 또 다른 일 실시예는 상기의 폴리이미드계 필름을 포함하는 전자기기를 제공한다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름의 제조 과정에서 건조 조건이 제어됨으로써 낮은 Kc 값을 갖는 폴리이미드계 필름이 제조될 수 있다. 본 발명의 일 실시예에 따른 폴리이미드계 필름은 낮은 Kc 값을 가지며, 웨이브니스(waviness)의 발생이 억제되어 우수한 표면 평탄성을 가질 수 있다.
본 발명의 일 실시예에 따라 제조되어, 낮은 Kc 값 및 우수한 표면 평탄성을 갖는 폴리이미드계 필름은 유리와 같은 표면 특성을 가져 유리의 대체제로 사용될 수 있다.
도 1은 필름의 이미지 투영 방법에 대한 개략도이다.
도 2는 이미지 투영 방법에 의하여 얻어진 투영 이미지에 대한 예시이다.
도 3은 본 발명의 일 실시예에 따른 필름의 투영 이미지이다.
도 4는 비교예에 따른 필름의 투영 이미지이다.
도 5는 표면 조도(surface roughness), 웨이브니스(waviness) 및 형상(form)을 설명하는 단면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해 되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제 1 항목, 제 2 항목 및 제 3 항목 중에서 적어도 하나"의 의미는 제 1 항목, 제 2 항목 또는 제 3 항목 각각 뿐만 아니라 제 1 항목, 제 2 항목 및 제 3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
본 발명의 일 실시예에 따른 폴리이미드계 필름은 1.55 이하의 Kc 값을 갖는다. 여기서, Kc 값은 위상 단계 변형 측정법(phase stepped deflectometry, PSD)에 의해, 1.0 내지 3.0 mm의 파장(wavelength) 범위에서 측정된 곡률 매개 변수이다. Kc 값은 본 발명의 일 실시예에 따른 폴리이미드계 필름의 웨이브니스(waviness)의 정도를 나타낸다.
본 발명의 일 실시예에 따른 폴리이미드계 필름은 디안하이드라이드 및 디아민을 포함하는 모노머 성분들로부터 제조될 수 있다.
본 발명의 일 실시예에서, "모노머 성분들"은 폴리이미드계 필름의 제조에 사용되는 복수의 모노머 전체를 지칭할 수 있다. 모노머 성분들은 혼합된 상태일 수도 있고, 모노머 성분들에 포함된 각각의 모노머가 순차적으로 혼합될 수도 있다.
본 발명의 일 실시예에 따르면, 디안하이드라이드는, 예를 들어, 2,2-비스(3,4- 디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 비페닐 테트라카르복실릭 디안하이드라이드 (BPDA), 4-(2,5-디옥소테트라 하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(PMDA), 벤조페논 테트라카르 복실릭디안하이드라이드 (BTDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 비스 디카르복시 페녹시 디페닐 설파이드 디안하이드라이드(BDSDA), 술포닐 디프탈릭 안하이드라이드(SO2DPA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드 (6HBDA), 사이클로부탄디안하이드라이드 (CBDA), 사이클로 펜탄디안하이드라이드(CPDA), 사이클로헥산디안하이드라이드 (CHDA) 및 비사이클로헥산디안하이드라이드 (HBPDA) 중에서 선택되는 적어도 하나를 포함할 수 있다. 디안하이드라이드로, 상기 설명된 화합물들이 단독으로 사용될 수도 있고, 2 가지 이상의 화합물들이 혼합되어 사용될 수도 있다.
디아민은, 예를 들어, 옥시디아닐린(ODA), p-페닐렌디아민(pPDA), m-페닐렌디아민(mPDA), p-메틸렌디아닐린(pMDA), m-메틸렌디아닐린(mMDA), 비스 아미노페녹시 벤젠(133APB), 비스 아미노페녹시 벤젠(134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (4BDAF), 비스 아미노페닐 헥사플루오로프로판(33-6F), 비스 아미노페닐 헥사플루오로 프로판(44-6F), 비스 아미노페닐술폰(4DDS), 비스 아미노페닐술폰(3DDS), 비스 트리플루오로메틸 벤지딘(TFDB), 사이클로헥산디아민(13CHD), 사이클로헥산 디아민(14CHD), 비스 아미노 페녹시 페닐프로판(6HMDA), 비스 아미노하이드록시 페닐 헥사플로오 로프로판(DBOH), 비스 아미노 페녹시 디페닐 술폰(DBSDA), 비스 (4-아미노페닐)플루오렌(FDA) 및 비스(4-아미노-3플루오르페닐)플루오렌 (F-FDA) 중에서 선택되는 적어도 하나를 포함할 수 있다. 디아민으로, 상기 설명된 화합물들이 단독으로 사용될 수도 있고, 2가지 이상의 화합물들이 혼합되어 사용될 수도 있다.
디안하이드라이드 및 디아민을 포함하는 모노머에 의하여 제조되는 폴리이미드계 필름은 이미드 반복 단위를 갖는 폴리이미드계 필름이 될 수 있다. 그러나, 본 발명에 따른 폴리이미드계 필름이 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 모노머 성분들은 디카르보닐 화합물을 더 포함할 수 있다. 모노머 성분들이 디안하이드라이드 및 디아민에 더하여, 디카르보닐 화합물을 더 포함하는 경우, 폴리이미드계 필름은 이미드 반복단위와 아마이드 반복단위를 갖는 폴리아마이드-이미드 공중합체 구조를 가질 수 있다.
폴리아마이드-이미드 공중합체 구조를 가지는 필름은 이미드 반복 단위를 가지기 때문에, 본 발명의 일 실시예에서는 폴리아마이드-이미드 공중합체 구조를 가지는 필름 역시 폴리이미드계 필름이라고 한다. 따라서, 본 발명의 일 실시예에 따른 폴리이미드계 필름은 폴리이미드 필름일 수도 있고, 폴리아마이드-이미드 필름일 수도 있다.
본 발명의 일 실시예에 따르면, 디카르보닐 화합물은 방향족 디카르보닐 화합물 및 지방족 디카르보닐 화합물 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따른 방향족 디카르보닐 화합물은 하기 화학식 1로 표현될 수 있다.
[화학식 1]
Figure PCTKR2020012351-appb-I000013
화학식 1에서, R1은 단일 결합, *-Ar-*, *-O-Ar-*, *-CAL-*, 또는 *-O-CAL-* 이고, X1과 X2는 각각 독립적으로 수소, 하이드록시기(-OH) 또는 할로겐 원소를 나타내고, X3는 수소 또는 할로겐 원소를 나타낸다. 여기서, "Ar"은 치환되거나 치환되지 않은 아릴렌기를 나타내고, 상기 CAL은 지환족기(cycloaliphatic group)을 나타낼 수 있다.
아릴렌기로, 예를 들어, 하기 화학식 2로 표현되는 페닐렌기가 있다.
[화학식 2]
Figure PCTKR2020012351-appb-I000014
본 발명의 일 실시예에 따르면, 치환되지 않은 알릴렌기로, 예를 들어, 화학식 2로 표현되는 페닐렌기가 있다.
또한, 치환된 아릴렌기로, 예를 들어, 벤젠 고리의 수소(H)가 할로겐 원소로 치환된 페닐렌기가 있다. 보다 구체적으로, 치환된 아릴렌기로, 벤젠 고리의 수소(H)가 염소(Cl)로 치환된 클로로 페닐렌기가 있다.
화학식 1에서, X1 및 X2 중 적어도 하나는 할로겐 원소일 수 있으며, 할로겐 원소는 염소(Cl) 원자일 수 있다. 또한, X3는 수소(H) 또는 염소(Cl)일 수 있다.
본 발명의 일 실시예에 따른 방향족 디카르보닐 화합물은 하기 화학식 3으로 표현되는 화합물, 하기 화학식 4로 표현되는 화합물, 하기 화학식 5로 표현되는 화합물, 하기 화학식 6으로 표현되는 화합물, 하기 화학식 7로 표현되는 화합물, 하기 화학식 8로 표현되는 화합물 및 하기 화학식 9로 표현되는 화합물 중 적어도 하나를 포함할 수 있다.
[화학식 3]
Figure PCTKR2020012351-appb-I000015
[화학식 4]
Figure PCTKR2020012351-appb-I000016
[화학식 5]
Figure PCTKR2020012351-appb-I000017
[화학식 6]
Figure PCTKR2020012351-appb-I000018
[화학식 7]
Figure PCTKR2020012351-appb-I000019
[화학식 8]
Figure PCTKR2020012351-appb-I000020
[화학식 9]
Figure PCTKR2020012351-appb-I000021
본 발명의 일 실시예에 따르면, 방향족 디카르보닐 화합물은, 예를 들어, 테레프탈로일 클로라이드(TPC)(화학식 3), 테레프탈산(terephthalic acid, TPA)(화학식 4), 이소프탈로일 디클로라이드(IPC)(화학식 5), 1,1'-바이페닐-4,4'-디카르보닐 디클로라이드(1,1'-biphenyl-4,4'-dicarbonyl dichloride, BPDC)(화학식 6), 4,4'-옥시비스벤조일 클로라이드(4,4'-oxybisbenzoyl chloride, ODBC)(화학식 7) 및 2-클로로테레프탈로일디클로라이드(2-chloroterephthaloyl dichloride) 중 적어도 하나를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 지방족 디카르보닐 화합물로 지환족 디카르보닐 화합물이 있다. 지방족 디카르보닐 화합물은 하기 화학식 10으로 표현되는 화합물, 하기 화학식 11로 표현되는 화합물, 하기 화학식 12로 표현되는 화합물 및 하기 화학식 13으로 표현되는 화합물들 중 적어도 하나를 포함할 수 있다. 하기 화학식 10 내지 13으로 표현되는 화합물들을 지환족 화합물이라고 할 수도 있다,
[화학식 10]
Figure PCTKR2020012351-appb-I000022
[화학식 11]
Figure PCTKR2020012351-appb-I000023
[화학식 12]
Figure PCTKR2020012351-appb-I000024
[화학식 13]
Figure PCTKR2020012351-appb-I000025
본 발명의 일 실시예에 따르면, 디카르보닐 화합물로, 상기 설명된 화합물들이 단독으로 사용될 수도 있고, 2 가지 이상이 혼합되어 사용될 수도 있다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름은 1.55 이하의 Kc 값을 갖는다. Kc값은, 위상 단계 변형 측정법(phase stepped deflectometry; PSD)에 의해, 폴리이미드계 필름에 형성된 1.0 내지 3.0 mm의 파장(wavelength) 범위를 갖는 웨이브니스(waviness)에 대하여 측정된 곡률 매개 변수이다.
본 발명의 일 실시예에 따르면, Kc 값은 폴리이미드계 필름에 형성된 1.0 내지 3.0 mm의 파장을 갖는 웨이브니스(waviness)의 정도를 나타낸다.
웨이브니스(waviness)는, 파상도 또는 물결 무늬 굴곡이라고도 한다.
이하, 도 5를 참조하여, 웨이브니스(waviness)를 설명한다.
도 5는 표면 조도(surface roughness), 웨이브니스(waviness) 및 형상(form)을 설명하는 단면도이다.
도 5의 (A)와 같은 단면 프로파일을 갖는 물체가 있다고 할 때, 도 5의 (A)의 표면에서 가장 작은 간격으로 나타나는 미세한 굴곡에 의하여 결정되는 것이 (B)로 표현되는 표면 조도(surface roughness)이고, 표면 조도(B)의 간격보다 큰 간격으로 나타나는 표면의 굴곡이 (C)로 표현되는 웨이브니스(waviness)이고, 웨이브니스(waviness)(C)의 간격보다 큰 간격으로 나타나며 물체의 거시적인 겉보기 모습이 (D)로 표현되는 형상(form)이다.
구체적으로, 도 5의 (B)로 표현되는 표면 조도(surface roughness)는, 도 5의 (A)로 표시된 단면에서, 미세한 굴곡을 따라 가상의 중심선을 설정하고, 가상의 중심선을 일직선으로 폈을 때, 일직선으로 펴진 가상의 중심선을 중심으로 그려지는 미세한 굴곡을 표현한 것이다. 도 5의 (B)로 표현되는 표면 조도에서, 미세한 굴곡의 간격은 수 ㎛ 내지 수십 ㎛ 정도가 될 수 있다.
도 5의 (C)로 표현되는 웨이브니스(waviness)는, 표면 조도(B)의 간격보다 큰 간격으로 나타나는 표면의 굴곡을, 가상의 일직선을 중심으로 표현한 것이다. 도 5의 (C)로 표현되는 웨이브니스(waviness)에서, 굴곡의 간격은 수백 ㎛ 내지 수 cm 정도가 될 수 있다.
본 발명의 일 실시예에 따르면, 굴곡의 간격을 "파장(λ)"이라고 한다. 도 5의 (C)에 도시된 웨이브니스(waviness)는 수백 ㎛ 내지 수 cm 정도의 파장(λ)을 가질 수 있다.
본 발명의 일 실시예에 따르면, Kc값은 1.0 내지 3.0 mm의 파장(wavelength)을 갖는 웨이브니스(waviness)에 대하여 측정된 굴곡 매개 변수이다. 본 발명의 일 실시예에 따른 Kc값, 폴리이이드계 필름에 형성된 1.0 내지 3.0 mm의 파장(λ) 범위의 웨이브니스(waviness)의 정도를 평가한다.
일반적으로 사람의 최적 가시 거리는 30 내지 40cm 정도이며, 사람의 눈은 30 내지 40cm 정도의 가시거리에서 1 내지 3mm의 간격을 갖는 굴곡에 대해 높은 해상도를 가진다. 따라서, 표시장치의 표면에 1 내지 3mm의 파장을 갖는 굴곡인 웨이브니스(waviness)가 형성되어 있는 경우, 이러한 웨이브니스(waviness)는 사람의 눈에 매우 잘 시인된다. 또한, 이러한 웨이브니스(waviness)는 화면의 왜곡을 야기한다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름의 Kc 값을 1.55 이하로 조정함으로써, 사람의 눈에 의해 시인되는 굴곡을 최소화할 수 있다. 또한, 본 발명의 일 실시예에 따른 폴리이미드계 필름이 표시장치의 커버 윈도우로 사용되는 경우, 사용자의 눈에 시인되는 굴곡이 최소화될 수 있으며, 화면 왜곡을 최소화할 수 있다.
본 발명의 일 실시예에 따르면, Kc 값은 롬포인트社(Rhopoint Instruments, 영국)의 OptimapTM PSD에 의해 측정된다.
본 발명의 일 실시예에 따르면, Kc 값 측정을 위하여 롬포인트社(Rhopoint Instruments, 영국)의 OptimapTM PSD가 사용되며, OptimapTM PSD의 프로그램에 의하여 Kc 값이 수치화된다. 본 발명의 일 실시예에 따르면, 위상 단계 변형 측정법(Phase Stepped Deflectometry, PSD)에 의해 측정 대상 표면에 대한 곡률(K)과 프로파일이 측정되며, 이 때 사인파형의 주기적인 패턴을 사용된다.
폴리이미드계 필름의 Kc 값이 작은 것은, 폴리이미드계 필름 표면의 각 지점에서 곡률의 변화가 작은 것으로 해석될 수 있다. 곡률의 변화가 작다는 것은, 물결 무늬와 같이 주기적으로 변하는 패턴이 적다는 것으로 해석될 수 있으며, 따라서, Kc 값이 작은 경우, Kc 값이 큰 경우보다 폴리이미드계 필름이 더 평탄하다고 할 수 있다.
본 발명의 일 실시예에 따르면 폴리이미드계 필름은 1.55 이하의 Kc값을 갖는다. 폴리이미드계 필름이 1.55 이하의 Kc값을 가지는 경우, 웨이브니스(waviness)와 같은 표면 굴곡이 적고, 우수한 평탄성을 가진다. 이러한 폴리이미드계 필름이 표시장치의 커버 윈도우로 사용되는 경우 화면 왜곡이 발생되지 않는다. 1.55 이하의 Kc값을 갖는 폴리이미드계 필름이 표시장치의 커버 윈도우로 사용되는 경우, 통상적인 시력을 가진 사용자에게는 의해 표시화면에서 물결 무늬가 인식되지 않는다고 할 수 있다.
폴리이미드계 필름의 Kc 값이 작아질수록 폴리이미드계 필름의 평탄성이 향상될 수 있다. 예를 들어, 본 발명의 다른 일 실시예에 따르면, 폴리이미드계 필름은 1.45 이하의 Kc값을 가질 수 있다. 폴리이미드계 필름의 Kc 값이 1.45 이하인 경우, 사람의 눈에 의하여 인식될 수 있는 웨이브니스(waviness)가 폴리이미드계 필름에 거의 발생되지 않는 상태라고 할 수 있다.
한편, Kc값이 1.10 이하인 폴리이미드계 필름을 제조하기 위해서는 건조 조건이 필요이상으로 까다로워져 제품의 생산성이 저하될 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름의 Kc값을 1.10 내지 1.55의 범위로 조정할 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름은 1.10 내지 1.45의 Kc값을 가질 수도 있다.
발명의 일 실시예에 따르면, Kc값은 아래의 방법으로 측정될 수 있다.
<Kc값 측정 방법>
- 측정 기기: Rhopoint社의 OptimapTM (PSD)
- 광학적 모드(Mode): Extradull
- 디스플레이 모드(Display Mode): Curvature Mode (X+Y Scan),
- 곡률모드 K: 1.0 내지 3.0mm 파장(wavelength) 범위
- 측정 방법: 암실에서 정반(surface plate) 상에 검정색 무광 페이퍼 시트를 배치하고, 그 위에 측정 대상 샘플을 반듯하게 거치 한 후, Kc 값을 10회 측정하고, 그 평균값을 해당 샘플의 Kc값으로 사용한다.
- 필름 샘플: 10㎛ 이상, 보다 구체적으로, 50㎛ 이상의 두께를 갖는 필름을 사용하며, 필름의 두께 편차가 ± 2% 이내인 것을 사용한다. 두께 편차를 벗어나는 경우 두께 편차로 인해 Kc값이 왜곡될 수 있다. 본 발명의 실시예에서는, Kc 측정을 위해 가로 15cm x 세로 15 cm x 두께 80㎛의 폴리이미드계 필름 샘플이 사용된다(두께 편차 ± 2%).
- 기타: 현미경으로 측정 시 50㎛ 이상의 이물이 0.005개/㎠ 이하
본 발명의 일 실시예에 따르면, 폴리이미드계 필름은 다양한 두께를 가질 수 있다. 폴리이미드계 필름은, 예를 들어 10 내지 250㎛의 두께를 가질 수 있으며, 보다 구체적으로, 10 내지 100㎛의 두께를 가질 수 있다.
또한, 본 발명의 폴리이미드계 필름은 우수한 광학적 특성을 갖는다. 예를 들어, 본 발명의 일 실시예에 따른 폴리이미드계 필름은, 필름 두께 80㎛을 기준으로, 2.0% 이하의 헤이즈(Haze), 380 내지 780nm 파장에서 87% 이상의 광학 투과도 및 5.0 이하의 황색도를 가질 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따르면, 두께 80㎛을 기준으로, 폴리이미드계 필름은 0.2 내지 0.3%의 헤이즈(Haze)를 가질 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 폴리이미드계 필름은 1.55 이하의 Kc 값을 가져 우수한 표면 특성을 가질 뿐 아니라, 우수한 광학적 특성을 가질 수 있다. 그에 따라, 본 발명에 따른 폴리이미드계 필름은 표시장치의 커버 윈도우, 투명 보호 필름, 광확산판, 액정 배향막으로 사용될 수 있으며, 하드코팅 필름의 기재필름으로 사용될 수도 있고, 플렉시블 디스플레이의 기판(substrate)으로 사용될 수도 있다.
또한, 본 발명의 일 실시예에 따른 폴리이미드계 필름은, 예를 들어, 유리의 대체제로 사용될 수 있다.
폴리이미드계 필름이 유리를 대체하기 위해서는, 폴리이미드계 필름이 우수한 광학적 특성을 가질 뿐만 아니라, 우수한 표면 특성을 가지는 것이 필요하다. 우수한 표면 특성의 조건으로, 예를 들어, 균일한 두께, 표면 평탄성, 낮은 표면 조도 등이 있다. 여기서, 표면 평탄성은 표면에 주름이나 굴곡이 없거나 매우 적은 경우를 포함한다.
폴리이미드계 필름의 표면 특성, 특히 표면의 균일성이 우수하지 못한 경우, 폴리이미드계 필름을 통과하는 빛이 왜곡될 수 있다. 그 결과, 폴리이미드계 필름을 통하여 보여지는 화면에 왜곡이 발생할 수 있다.
폴리이미드계 필름을 통하여 보여지는 화면에 대한 왜곡은, 도 1에 도시된 바와 같이, 어두운 환경에서 폴리이미드계 필름에 빛을 투과하였을 때, 평평한 표면에 투영된 이미지를 통하여 확인될 수 있다.
구체적으로, 도 1은 필름의 이미지 투영 방법에 대한 개략도이고, 도 2는 이미지 투영 방법에 의하여 얻어진 투영 이미지(50)에 대한 예시이다.
도 1을 참조하면, 광원(10)에서 조사된 광(20)이 투영 대상 필름(30)을 통과하여 평평한 표면(40)에 조사되어 투영 이미지(50)가 형성된다.
평평한 표면(50)에 투명된 투영 이미지(50)가 깨끗하고, 이미지에 음영의 차이가 없는 경우, 투영 대상 필름(30)이 평탄하고 웨이브니스(waviness) 등이 없다는 것을 의미한다. 반면, 도 2에 도시된 바와 같이, 투영된 이미지에 음영의 차이가 발생하는 경우, 투영 대상 필름(30)이 평탄하지 않고, 이미지 왜곡이 발생될 수 있음을 의미한다.
폴리이미드계 필름의 웨이브니스(waviness)가 큰 경우, 폴리이미드계 필름을 통하여 표시되는 화면에 이미지 왜곡이 생길 수 있다.
이러한 웨이브니스(waviness)는 캐스팅(casting)에 의하여 폴리이미드계 필름을 제조하는 경우 발생할 수 있다.
폴리이미드계 수지에 의하여 형성된 액상의 수지 조성물이 평평한 기재에 캐스팅(casting)된 후 건조되어 폴리이미드계 필름이 제조되는 경우, 용매 휘발을 위한 건조 과정에서 폴리이미드계 필름의 평탄성이 저하되어, 웨이브니스(waviness)가 발생될 수 있다. 예를 들어, 열풍에 의해 폴리이미드계 필름이 건조되는 과정에서, 열풍의 세기 및 열풍 인가 시간에 따라 폴리이미드계 필름에 웨이브니스(waviness)가 발생하여 폴리이미드계 필름의 평탄성이 저하될 수 있다.
캐스팅(casting)에 의해 형성된 겔 상태의 폴리이미드계 필름을 건조하기 위해 겔 상태의 폴리이미드계 필름에 인가되는 열풍의 풍속이 강할 경우, 열풍에 의해 겔 상태의 폴리이미드계 필름에 자국이 생길 수 있으며, 열풍의 온도가 과도하게 높은 경우, 용매의 급속한 휘발로 인하여 표면에 불균일한 부분이 생길 수 있다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름의 건조 조건을 최적화함으로써, 1.55 이하의 Kc값을 갖는 폴리이미드계 필름을 제조할 수 있다.
이하, 본 발명의 일 실시예에 따른 폴리이미드계 필름의 제조방법을 상세히 설명한다.
본 발명의 일 실시예에 따른 폴리이미드계 필름의 제조방법은, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들을 이용하여 액상의 수지 조성물을 제조하는 단계, 액상의 수지 조성물을 성형하여 겔 상태의 필름을 제조하는 단계 및 겔 상태의 필름을 50 내지 150℃에서 1.0 m/s 이하의 풍속으로 2 내지 20분 동안 1차 건조하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 먼저, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들에 의하여 액상의 수지 조성물이 제조된다. 모노머 성분들은 디카르보닐 화합물을 더 포함할 수 있다.
디안하이드라이드, 디아민 및 디카르보닐 화합물은 이미 설명되었으므로, 중복을 피하기 위하여 이들에 대한 상세한 설명은 생략된다.
모노머 성분들의 용액 중합을 위해 제1 용매가 사용될 수 있다. 구체적으로, 모노머 성분들이 제1 용매의 존재 하에서 반응되어, 제1 중합체 용액이 제조될 수 있다. 용액 중합을 위해 제1 용매로 유기 용매가 사용될 수 있다.
제1 용매의 종류에 특별한 제한이 있는 것은 아니다. 제1 용매로, 예를 들어, m-크레졸, N-메틸-2-피롤리돈(NMP), N-에틸-2-피롤리돈(NEP), 디메틸포름아미드 (DMF), 디에틸포름아미드(DEF), 디메틸아세트아미드(DMAc), 디에틸 아세트아미드(DEAc), 아세톤, 에틸아세테이트, 프로필렌글리콜모노에틸에테르(Propylene glycol monomethyl ether, PGME) 및 프로필렌글리콜모노메틸에테르아세테이트(Propylene glycol monomethyl ether Acetate, PGMEA) 중에서 선택된 적어도 하나의 용매가 사용될 수 있다. 이외에도, 테트라하이드로퓨란(THF), 클로로포름과 같은 저비점 용매 또는 γ-부티로락톤과 같은 저흡수성 용매가 제1 용매로 사용할 수도 있다. 제1 용매는 목적에 따라 단독 혹은 2종 이상이 혼합되어 사용될 수 있다.
제1 용매의 함량에 특별한 제한이 있는 것은 아니다. 제1 용매는 제1 중합체 용액 전체 중량 대비 50 내지 95 중량%의 함량을 가질 수 있다. 보다 구체적으로, 제1 용매는 제1 중합체 용액 전체 중량 대비 70 내지 90 중량%의 함량을 가질 수 있다.
모노머 성분들이 디카르보닐 화합물을 포함하지 않는 경우, 디안하이드라이드 몰량과 디아민 몰량이 서로 동일하도록 조정될 수 있다.
모노머 성분들이 디카르보닐 화합물을 포함하는 경우, 디안하이드라이드와 디카르보닐 화합물의 혼합 몰량은 디아민 몰량과 동일하도록 조정될 수 있다.
모노머 성분들을 이용하여 액상의 수지 조성물 제조하는 단계에 적용되는 방법에 특별한 제한이 있는 것은 아니다. 여기서, 액상의 수지 조성물은 액상의 폴리이미드계 수지 조성물이라고 할 수 있다.
본 발명의 일 실시예에 따르면, 액상의 수지 조성물을 제조하는 단계는, 모노머 성분들을 제1 용매의 존재 하에서 반응시켜 제1 중합체 용액을 제조하는 단계, 제1 중합체 용액에 제2 용매를 투입하고, 여과 및 건조하여 중합체 고형분을 제조하는 단계 및 중합체 고형분을 제3 용매에 용해하는 단계를 포함할 수 있다.
그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들을 이용하여 폴리아믹산을 제조한 후 열경화를 진행하여 폴리이미드계 수지 조성물을 제조할 수도 있다. 또한, 폴리아믹산을 폴리이미드계 중합체 용액에 화학 경화제를 첨가한 후, 제2 용매를 사용하는 여과 공정을 진행하지 않고 바로 필름 형태의 폴리이미드계 필름을 형성(제막)하는 것도 가능하다.
액상의 수지 조성물 제조를 위해, 먼저, 모노머 성분들이 중합되어 제1 중합체 용액이 제조된다. 제1 중합체 용액은 폴리아믹산 용액을 포함할 수 있다. 이 때, 반응 조건에 특별한 제한이 있는 것은 아니다. 반응 온도는, 예를 들어, -10 내지 80℃의 범위로 조정되고, 반응시간은 2 내지 48시간으로 조정될 수 있다. 제1 중합체 용액을 제조하는 단계는 아르곤 또는 질소 등과 같은 불활성 기체 분위기에서 실시될 수 있다.
다음, 제1 중합체 용액에 대한 이미드화 과정이 진행될 수 있다. 이 때, 제1 중합체 용액에 포함된 폴리아믹산이 이미드화될 수 있다.
이미드화를 위해, 열 이미드화법, 화학 이미드화법, 또는 열 이미드화법과 화합 이미드화법을 병용하는 방법이 적용될 수 있다.
본 발명의 일 실시예에 따르면, 화학 이미드화법이 적용될 수 있다. 화학 이미드화법은 제1 중합체 용액에 아세트산무수물 등과 같은 탈수제와 이소퀴놀린, β-피콜린, 피리딘 또는 3급 아민과 같은 이미드화 촉매를 적용시키는 방법이다.
화학 이미드화법에 열 이미드화법을 병용될 수도 있다.
열 이미드화법과 화학 이미드화법이 병용되는 경우, 제1 중합체 용액에 탈수제 및 이미드화 촉매를 투입하고 20 내지 180℃에서 1 내지 12시간동안 가열하여 이미화가 진행될 수 있다.
다음, 제1 중합체 용액에 제2 용매가 투입되고, 여과 및 건조되어 중합체 고형분이 제조된다.
본 발명의 일 실시예에 따르면, 제2 용매는 폴리이미드 수지의 고형분 획득하기 위해 사용된다. 따라서, 제2 용매로 제1 중합체 용액에 포함된 폴리아믹산을 용해하지 못하는 용매가 사용될 수 있으며, 용해도 차에 의해 폴리이미드계 중합체 고형분이 석출될 수 있다.
제2 용매로 제1 용매보다 극성이 낮은 용매가 사용될 수 있다. 제2 용매로, 예를 들어, 물, 알코올류, 에테르류 및 케톤류 중 선택된 1종 이상이 사용될 수 있다.
제2 용매의 함량에 대하여 특별한 제한이 있는 것은 아니다. 제1 중합체 용액에 포함된 폴리아믹산의 중량 대비 5 내지 20배 중량의 제2 용매가 사용될 수 있다.
수득된 중합체 고형분을 여과한 후 건조하는 조건은 제2 용매 및 중합체 고형분 내에 잔존하는 제1 용매의 비점을 고려하여 결정된다. 예를 들어, 중합체 고형분은 50 내지 150℃의 온도에서 2 내지 24시간 건조될 수 있다.
다음, 중합체 고형분이 제3 용매에 용해되어 액상의 수지 조성물이 제조된다. 액상의 수지 조성물을 폴리이미드계 수지 조성물이라고 할 수도 있다.
본 발명의 일 실시예에 따르면, 제3 용매는 제1 용매와 동일할 수 있다. 따라서, 제3 용매로, 예를 들어, m-크레졸, N-메틸-2-피롤리돈(NMP), N-에틸-2-피롤리돈(NEP), 디메틸포름아미드 (DMF), 디에틸포름아미드(DEF), 디메틸아세트아미드(DMAc), 디에틸 아세트아미드(DEAc), 아세톤, 에틸아세테이트, 프로필렌글리콜모노에틸에테르(Propylene glycol monomethyl ether, PGME) 및 프로필렌글리콜모노메틸에테르아세테이트(Propylene glycol monomethyl ether Acetate, PGMEA) 중에서 선택된 적어도 하나가 사용될 수 있다.
이와 같이 제조된 제조된 액상의 수지 조성물은 100 내지 300,000 cPs의 점도를 가질 수 있다. 액상의 수지 조성물의 점도가 100 cPs 미만인 경우, 액상의 수지 조성물을 캐스팅하여 필름 형태로 성형하는데 어려움이 발생할 수 있으며, 낮은 분자량으로 인해, 캐스팅에 의해 형성된 필름을 캐스팅 기재로부터 박리하는 데 어려움이 생길 수 있다. 반면, 액상의 수지 조성물의 점도가 300,000 cPs를 초과하는 경우, 높은 점도로 인하여 캐스팅 과정에 인가되는 압력이 증가하여 공정 측면에서 불리할 수 있다.
보다 구체적으로, 액상의 수지 조성물은 1,000 내지 250,000 cPs의 점도를 가질 수 있다. 액상의 수지 조성물이 1,000 내지 250,000 cPs의 점도를 가지는 경우, 액상의 수지 조성물을 캐스팅하여 필름 형태로 성형하기 용이하며, 건조 또한 용이하다. 예를 들어, 액상의 수지 조성물의 점도가 1000 cPs 이상인 경우, 액상의 수지 조성물을 캐스팅하여 필름 형태로 성형하는데 어려움이 없으며, 캐스팅에 의해 형성된 필름을 어려움 없이 캐스팅 기재로부터 박리할 수 있다. 또한, 액상의 수지 조성물의 점도가 250,000 cPs 이하인 경우, 액상의 수지 조성물을 캐스팅하기 위한 압력이 필요이상으로 증가되는 일 없이 캐스팅 공정이 진행될 수 있다.
본 발명의 일 실시예에 따르면, 액상의 수지 조성물은 1000 내지 30,000 cPs의 점도를 가질 수도 있다.
본 발명의 일 실시예에 따르면, 액상의 수지 조성물에 포함된 고형분의 함량은 액상의 수지 조성물 전체 중량에 대하여 5 내지 30 중량%의 범위로 조정될 수 있다.
다음, 액상의 수지 조성물에 의해 겔 상태의 필름이 제조된다. 겔 상태의 필름은 겔 상태의 미경화 폴리이미드계 필름이라고 할 수 있다.
겔 상태의 필름을 제조하기 위해 캐스팅 방법이 적용될 수 있다.
구체적으로, 본 발명의 일 실시예에 따르면, 겔 상태의 필름을 제조하는 단계는, 액상의 수지 조성물을 지지체 상에 캐스팅하는 단계를 포함한다.
캐스팅 방법에 특별한 제한이 있는 것은 아니며, 당업계에 알려진 캐스팅 방법이 적용될 수 있다. 캐스팅에 의해 겔 상태의 필름이 제조된다.
지지체로 유리판, 알루미늄 기판, 순환 스테인레스 벨트, 스테인레스 드럼, 또는 내열성 고분자 필름이 사용될 수 있다.
본 발명의 일 실시예에 따르면, 겔 상태의 필름은 경화가 완료되지 않은 미경화 폴리이미드계 필름을 의미한다. 본 발명의 일 실시예에 있어서, 부분적으로 경화가 이루어졌다고 하더라도, 경화가 완료되지 않은 상태라면 겔 상태의 필름 또는 미경화 폴리이미드계 필름이라 한다.
다음, 겔 상태의 필름은 50 내지 150℃에서 1.0 m/s 이하의 풍속으로 2 내지 20분 동안 1차 건조된다.
보다 구체적으로, 캐스팅에 의하여 제조된 겔 상태의 필름은 70 내지 150℃의 온도 및 1.0m/s 이하의 풍속 환경에서 2 내지 20분 동안 1차 건조될 수 있다.
1차 건조 시간이 20분을 초과하는 경우 공정 효율이 저하될 수 있고, 오랜 시간 열풍이 인가되는 경우 폴리이미드계 필름에 웨이브니스(waviness)가 형성될 수 있다.
또한, 1차 건조 시간이 2분 미만인 경우 겔 상태의 필름에 포함된 용매가 제대로 건조되지 않아 필름에 웨이브니스(waviness)가 발생될 수 있다.
본 발명의 일 실시예에 따르면, 1차 건조에 적용되는 풍속이 커질수록 건조 시간이 감소될 수 있고, 풍속이 작아지면 건조시간이 길어질 수 있다. 이 때, 풍속은 폴리이미드계 필름의 Kc값이 1.55를 초과하지 않도록 하는 범위로 조정된다.
예를 들어, 1차 건조하는 단계에서 풍속은 0.2 m/s 내지 1.0 m/s의 범위로 조정될 수 있다.
구체적으로, 1차 건조 단계에서, 건조 온도를 A ℃ 라고 하고, 풍속을 B m/s 이라 하고, 1차 건조 시간을 T 분(minute)이라고 할 때, 다음 식 1 및 2에 따른 건조 계수 조건이 만족되도록 건조 조건이 조정된다.
[식 1]
0.5 ≤ [(A-40) x B x T]/100 ≤ 10
[식 2]
2 ≤ [(A-40) x T]/100 ≤ 10
식 1의 "[(A-40) x B x T]/100"의 값이 0.5 미만이거나, 식 2의 "[(A-40) x T]/100"가 2 미만인 경우, 1차 건조가 제대로 이루어지지 않을 수 있다. 1차 건조에서 건조가 제대로 이루어지지 않은 경우, 이어지는 2차 건조 등에서 대부분의 용매가 제거될 것이다. 그런데, 일반적으로 2차 건조가 1차 건조보다 강한 풍속에서 이루어지기 때문에, 2차 건조시, 강한 풍속에서 많은 양의 용매가 증발하는 과정에서 폴리이미드계 필름에 불균일이 발생될 수 있다.
한편, 식 1의 "[(A-40) x B x T]/100"의 값이 10을 초과하거나, 식 2의 "[(A-40) x T]/100"가 10을 초과하는 경우, 고온의 열풍이 인가되거나 풍속이 큰 열풍이 인가될 수 있다. 고온의 열풍이 인가되거나 큰 풍속의 열풍이 인가되는 경우, 폴리이미드계 필름에 웨이브니스(waviness)와 같은 불균일이 발생될 수 있다.
본 발명의 일 실시예에 따르면, 겔 상태의 필름에 포함된 용매를 제거하기 위해 건조가 실시되며, 건조 시 풍속을 최적화함으로서 폴리이미드계 필름의 Kc값이 조정될 수 있다.
일반적으로 액상의 수지 조성물의 제조 과정에서 높은 비점의 용매가 사용되므로, 용매를 효율적으로 제거하기 위해서는 강한 풍속의 바람이 캐스팅된 겔 상태의 필름에 인가되어야 한다고 추측할 수 있을 것이다.
그런데, 용매가 완전히 제거되지 않은 1차 건조 단계에서 강한 풍속의 바람이 겔 상태의 필름에 인가되는 경우, 바람에 의해 겔 상태의 필름에 물결 무늬 등이 형성되고, 이러한 물결 무늬는 완성된 폴리이미드계 필름에 남게 된다. 그 결과 폴리이미드계 필름의 Kc 값이 높아질 수 있다. 이러한 Kc 증가를 방지하기 위해, 본 발명의 일 실시예에 따르면, 식 1 및 식 2에 따른 건조 계수 조건에 맞는 온도, 풍속 및 시간으로 바람을 겔 상태의 필름에 인가하여 용매를 제거한다.
특히, 겔 상태의 필름에 오랜 시간 동안 바람이 인가되는 경우, 바람에 의해 폴리이미드계 필름의 표면에 물결무늬 등이 형성되어 폴리이미드계 필름이 불균일해지고, 폴리이미드계 필름의 Kc 값이 높아진다.
따라서, 본 발명의 일 실시예 따르면 건조시간 및 온도를 고려하여 1차 건조 단계의 풍속이 정해진다. 풍속은 다음과 같이 측정된다.
<풍속 측정 방법>
측정 장비: TSI 5725 풍량 풍속계
측정 방법: 지지체 위 약 1cm 높이에 풍량 풍속계를 거치하고, 풍량 풍속계 측정구의 방향은 지지체면과 평행하게 하여 풍속이 측정된다. 1차 건조하는 단계에서 풍속이 1.0 m/s를 초과하는 경우, 폴리이미드계 필름에 웨이브니스(waviness)가 발생될 수 있으며, 웨이브니스(waviness)가 커질 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 1차 건조 단계에서의 풍속은 1.0 m/s 이하로 유지될 수 있고, 바람의 온도에 따라 풍속은 0.8 m/s 이하가 될 수도 있으며, 0.5 m/s 이하가 될 수도 있다.
그런데, 풍속이 0.2 m/s 미만인 되는 경우, 주변 공기의 대류 또는 압력의 변화의 변화에 의해 풍속이 영향을 받을 수 있기 때문에, 0.2 m/s 이하의 풍속을 유지하는 것이 어려우며, 풍속의 제어가 용이하지 않다. 그 결과, 균일한 품질의 제품을 생산하는 데 한계가 생길 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 1차 건조하는 단계에서 풍속을 0.2 m/s 이상으로 조정할 수 있다.
또한, 1차 건조 단계에서 온도는 50 내지 150℃로 유지될 수 있으며, 필요에 따라, 70 내지 150℃의 범위로 유지될 수도 있다.
일반적으로 온도가 상승하면 건조 효율이 증가한다. 반면, 1차 건조시의 온도가 증가하여 건조 온도가 용매의 비점에 가까워지는 경우, 용매의 갑작스런 휘발에 의해 폴리이미드계 필름의 표면에 기포가 발생될 수 있고 굴곡이 발생될 수도 있어, 폴리이미드계 필름의 표면 균일성이 저하된다.
따라서, 1차 건조 단계에서 건조 효율 확보를 위해 온도가 50℃ 이상의 온도에서 건조가 진행되며, 용매의 갑작스런 휘발을 방지하기 위해 150℃ 이하의 온도에서 건조가 진행된다. 건조 효율 향상을 위해, 70 내지 150℃의 온도 범위에서 1차 건조가 진행될 수도 있다.
본 발명의 일 실시예에 따르면, 1차 건조 후, 미경화 폴리이미이드 필름(겔 상태의 필름)의 잔존 용매 함량비는 50 중량% 이하로 조정될 수 있다. 보다 구체적으로, 1차 건조 후, 미경화 폴리이미이드 필름의 잔존 용매 함량비는 40 중량% 이하로 조정될 수 있다.
본 발명의 일 실시예에 따르면, 1차 건조하는 단계 후, 겔 상태의 필름을 70 내지 140℃에서 1.0 내지 5.0 m/s의 풍속으로 2차 건조하는 단계가 실시될 수 있다. 2차 건조의 풍속이 1.0 m/s 미만이거나, 온도가 70℃ 미만인 경우, 2차 건조의 속도가 지나치게 저하될 수 있다. 2차 건조의 속도가 지나치게 저하되는 경우, 공정의 효율이 저하되며, 건조 시간의 증가로 인해 폴리이미드계 필름의 물성이 변할 수 있다.
1차 건조에 의하여, 겔 상태의 필름이 어느 정도 건조되고 굳어지기 때문에, 2차 건조 단계에서 인가되는 바람에 의하여 겔 타입의 필름의 표면 특성이 변화될 가능성이 적다. 그러나, 2차 건조의 풍속이 5.0 m/s를 초과하거나, 온도가 140℃를 초과하는 경우, 고온의 강한 바람으로 폴리이미드계 필름에 주름이 발생하거나 굴곡이 발생할 수 있다. 폴리이미드계 필름에 주름이나 굴곡이 발생하는 경우, 폴리이미드계 필름의 웨이브니스(waviness)가 증가하여 곡률 매개 변수 Kc가 1.55를 초과할 수 있다. 한편, 2차 건조 단계에서 풍속은, 예를 들어, 1.5 내지 5.0 m/s의 범위로 조정될 수 있고, 보다 구체적으로 2차 건조 단계에서 풍속이 1.6 내지 3.0 m/s의 범위로 조정될 수도 있다. 또한, 2차 건조 단계에서 온도는 100 내지 140℃의 범위로 조정될 수도 있다.
본 발명의 일 실시예에 따르면, 2차 건조하는 단계 후 겔 상태의 필름을 1차 열처리하는 단계가 실시될 수 있다.
1차 열처리하는 단계에서, 공지의 열경화 공정이 적용될 수 있다. 예를 들어, 겔 상태의 필름이 100 내지 500℃의 온도에서 1분 내지 1시간 동안 열처리될 수 있다. 이러한 열처리에 의하여 겔 상태의 필름이 열경화되어 폴리이미드계 필름이 완성될 수 있다. 1차 열처리 단계를 열경화 단계라고도 한다.
1차 열처리 단계는 지지체에서 이루어질 수도 있고, 별도의 열처리 지지대에서 이루어질 수도 있다. 예를 들어, 2차 건조 후, 겔 상태의 필름이 지지체로부터 분리된 후, 1차 열처리를 위한 지지대에 고정된 후 1차 열처리가 진행될 수 있다. 겔 상태의 필름의 지지를 위하여 핀타입의 프레임 또는 클립형의 프레임이 사용될 수 있다.
본 발명의 일 실시예에 따르면, 1차 열처리 후 폴리이미드계 필름에 잔존하는 휘발 성분의 함량은 5 중량% 이하가 되도록 조정될 수 있다.
본 발명의 일 실시예에 따르면, 1차 열처리된 폴리이미드계 필름에 일정한 장력이 인가된 상태에서 2차 열처리가 진행될 수 있다. 2차 열처리에 의하여 폴리이미드계 필름 내부의 잔류응력이 제거될 수 있다.
2차 열처리가 실시되는 경우, 폴리이미드계 필름의 열팽창계수가 감소될 수 있다. 예를 들어, 2차 열처리에 의해 폴리이미드계 필름 내에 수축하려는 잔류응력이 생겨 열팽창이 감소될 수 있고, 폴리이미드계 필름에서 열팽창계수의 이력 현상이 감소될 수 있다.
2차 열처리에 인가되는 장력과 온도는 서로 상관관계를 가진다. 따라서, 2차 열처리에 인가되는 온도에 따라 장력 조건이 달라질 수 있다.
2차 열처리는 100 내지 500℃의 온도에서 1분 내지 1시간 동안 이루어질 수 있으며, 250 내지 350℃의 온도에서 2 내지 15분간 이루어질 수도 있다.
본 발명의 다른 일 실시예는 상기 설명된 제조방법에 따라 제조된 폴리이미드계 필름을 제공한다.
이하, 구체적인 제조예 및 실시예를 참조하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 하기의 제조예 또는 실시예에 의하여 한정되는 것은 아니다.
<제조예 1>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서, 제1 용매인 N,N-디메틸아세트아미드 (DMAc) 419.1g을 채운 후, 반응기의 온도를 25℃로 맞춘 후, 디아민인 TFDB 32.023g(0.10mol)을 용해하고 이 용액을 25℃로 유지하였다. 여기에, 디안하이드라이드인 6FDA 8.885g (0.02mol)을 투입 후 교반하여 용해 및 반응시켰다. 반응기 온도를 10℃로 내리고, 다시 용액의 온도를 8℃로 유지한 후, 디카르보닐 화합물인 TPC 16.24g(0.08mol)을 첨가하였으며, 25℃에서 12시간 반응하여 고형분의 농도가 12중량%인 제1 중합체 용액 얻었다. 제1 중합체 용액은 폴리아믹산을 포함할 수 있다. 따라서, 제1 중합체 용액을 폴리아믹산 용액이라고도 한다.
얻어진 제1 중합체 용액에 피리딘 1.58g, 아세틱 안하이드라이드 2.02g을 투입하여 30분 교반 후, 다시 80℃에서 0.5시간 교반하여 상온으로 식히고, 제2 용매인 메탄올 10L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하고 분쇄한 후, 다시 2L의 메탄올로 세정한 후 100℃에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합체 고형분을 얻었다. 얻어진 폴리이미드계 중합체 고형분을 다시 제3 용매인 DMAc로 재용해하여 고형분 함량이 12 중량%인 액상의 수지 조성물을 제조하였다. 액상의 수지 조성물을 폴리이미드계 수지 조성물이라고도 한다. 여기서, 폴리이미드계 수지 조성물은 폴리아미드-이미드 수지 조성물이다.
<제조예 2>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 제1 용매인 N,N-디메틸아세트아미드 (DMAc) 432.4g을 채운 후, 반응기의 온도를 25℃로 맞춘 후 디아민인 TFDB 32.023g(0.10mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에, 디안하이드라이드인 BPDA 5.884g (0.02mol)을 투입하고 2시간동안 교반하였다. 다시 디안하이드라이드인 6FDA 8.885g(0.02mol)을 투입 후 일정 시간 동안 교반하여 용해 및 반응시켰다. 반응기 온도를 10℃로 내리고, 다시 용액의 온도를 8℃로 유지한 후, 디카르보닐 화합물인 TPC 12.18g(0.06mol)을 첨가하였으며, 25℃에서 12시간 반응하여 고형분의 농도가 12중량%인 제1 중합체 용액을 얻었다.
얻어진 제1 중합체 용액에 피리딘 3.16g, 아세틱 안하이드라이드 4.04g을 투입하여 30분 교반 후, 다시 80℃에서 0.5시간 교반하여 상온으로 식히고, 제2 용매인 메탄올 10L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하여 분쇄한 후, 다시 2L의 메탄올로 세정한 후 100℃에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합체 고형분을 얻었다. 얻어진 폴리이미드계 중합체 고형분을 다시 제3 용매인 DMAc로 재용해하여 고형분 함량이 12 중량%인 액상의 수지 조성물을 제조하였다. 액상의 수지 조성물을 폴리이미드계 수지 조성물이라고도 한다. 여기서, 폴리이미드계 수지 조성물은 폴리아미드-이미드 수지 조성물이다.
<제조예 3>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서, 제1 용매인 N,N-디메틸아세트아미드 (DMAc) 400.9g을 채운 후, 반응기의 온도를 25℃로 맞춘 후, 디아민인 TFDB 32.023g(0.10mol)을 용해하여 이 용액을 25℃로 유하였다. 여기에, 디안하이드라이드인 CBDA 1.961g (0.01mol)을 투입하고 2시간동안 교반하였다. 다시 디안하이드라이드인 6FDA 4.443g(0.01mol)을 투입 후 일정 시간 동안 교반하여 용해 및 반응시켰다. 반응기 온도를 10℃로 내리고, 다시 용액의 온도를 8℃로 유지한 후, 디카르보닐 화합물인 TPC 16.24g(0.08mol)을 첨가하였으며, 25℃에서 12시간 반응하여 고형분의 농도가 12중량%인 제1 중합체 용액을 얻었다.
얻어진 제1 중합체 용액에 피리딘 1.58g, 아세틱 안하이드라이드 2.02g을 투입하여 30분 교반 후, 다시 80℃에서 0.5시간 교반하여 상온으로 식히고, 제2 용매인 메탄올 10L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하여 분쇄한 후, 다시 2L의 메탄올로 세정한 후 100℃에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합체 고형분을 얻었다. 얻어진 폴리이미드계 중합체 고형분을 다시 제3 용매인 DMAc로 재용해하여 고형분 함량이 12 중량%인 액상의 수지 조성물을 제조하였다. 액상의 수지 조성물을 폴리이미드계 수지 조성물이라고도 한다. 여기서, 폴리이미드계 수지 조성물은 폴리아미드-이미드 수지 조성물이다.
<제조예 4>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서, 제1 용매인 N,N-디메틸아세트아미드 (DMAc) 587.5g을 채운 후, 반응기의 온도를 25℃로 맞춘 후, 디아민인 TFDB 640.046g(0.20mol)을 용해하여 이 용액을 25℃로 유하였다. 여기에, 디안하이드라이드인 BPDA 11.77g (0.04mol)을 투입하고 2시간동안 교반하였다. 다시 디안하이드라이드인 6FDA 71.8(0.16mol)을 투입 후 일정 시간 동안 교반하여 용해 및 반응시켰다. 25℃에서 12시간 반응하여 고형분의 농도가 20중량%인 제1 중합체 용액을 얻었다.
얻어진 제1 중합체 용액에 피리딘 6.328g, 아세틱 안하이드라이드 8.08g을 투입하여 30분 교반 후, 다시 80℃에서 1시간 교반하여 상온으로 식히고, 제2 용매인 메탄올 10L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하여 분쇄한 후, 다시 2L의 메탄올로 세정한 후 100℃에서 진공으로 6시간 건조하여 분말 상태의의 폴리이미드계 중합체 고형분을 얻었다. 얻어딘 폴리이미드계 중합체 고형분을 다시 제3 용매인 DMAc로 재용해하여 고형분 함량이 20 중량%인 액상의 수지 조성물을 제조하였다. 액상의 수지 조성물을 폴리이미드계 수지 조성물이라고도 한다. 여기서, 폴리이미드계 수지 조성물은 폴리이미드 수지 조성물이다.
<실시예 1>
제조예 1에서 제조된 액상의 수지 조성물인 폴리이미드계 수지 조성물을 기재 상에 캐스팅(casting)하여 겔 상태의 필름(겔 상태의 미경화 폴리이미드계 필름)를 제조한 후, 80℃, 0.2m/s 풍속에서 20분간 1차 건조 하고, 다시 풍속을 1.6m/s로 올려 140℃에서 10분간 겔 상태의 필름을 2차 건조하였다.
겔 상태의 필름을 핀 형태(Pin type)의 텐터(Tenter)에 거치 한 후, 온도를 120℃에서 280℃까지 승온하면서 1시간 동안 1차 열처리 하였다. 1차 열처리에 의해 겔 상태의 필름이 경화되어 폴리이미드계 필름이 제조되었다. 제조된 폴리이미드계 필름은 폴리아미드-이미드 필름이다.
1차 열처리에 의하여 제조된 폴리이미드계 필름을 텐터 프레임(Tenter frame)에서 제거하고 다시 280℃에서 5분간 2차 열처리하여 필름 내 잔류 응력을 제거하였다.
<실시예 2 내지 8>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 실시예 2 내지 8이라 하였다.
<실시예 9>
제조예 2에서 제조된 액상의 수지 조성물인 폴리이미드계 수지 조성물을 기재 상에 캐스팅(casting)하여 겔 상태의 필름을 제조한 후, 80℃, 0.2m/s 풍속에서 20분간 1차 건조하고, 다시 풍속을 1.6m/s로 올려 140℃에서 10분간 겔 상태의 필름을 2차 건조하였다.
겔 상태의 필름을 핀 형태(Pin type)의 텐터(Tenter)에 거치 한 후, 온도를 120℃에서 280℃까지 승온하면서 1시간 동안 1차 열처리 하였다. 1차 열처리에 의해 겔 상태의 필름이 경화되어 폴리이미드계 필름이 제조되었다. 제조된 폴리이미드계 필름은 폴리아미드-이미드 필름이다.
열경화가 끝난 필름을 Tenter frame에서 제거하고 다시 280℃에서 5분간 추가 열처리하여 필름내 잔류 응력을 제거 하였다.
1차 열처리에 의하여 제조된 폴리이미드계 필름을 텐터 프레임(Tenter frame)에서 제거하고 다시 280℃에서 5분간 2차 열처리하여 필름 내 잔류 응력을 제거하였다.
<실시예 10 내지 16>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 9와 동일한 방법으로 폴리이미드계 필름을 제조하여, 이들을 실시예 10 내지 16이라 하였다.
<실시예 17>
제조예 3에서 제조된 액상의 수지 조성물인 폴리이미드계 수지 조성물을 기재 상에 캐스팅(casting)하여 겔 상태의 필름(겔 상태의 미경화 폴리이미드계 필름)를 제조한 후, 80℃, 0.2m/s 풍속에서 20분간 1차 건조 하고, 다시 풍속을 1.6m/s로 올려 140℃에서 10분간 겔 상태의 필름을 2차 건조하였다.
겔 상태의 필름을 핀 형태(Pin type)의 텐터(Tenter)에 거치 한 후, 온도를 120℃에서 250℃까지 승온하면서 1시간 동안 1차 열처리 하였다. 1차 열처리에 의해 겔 상태의 필름이 경화되어 폴리이미드계 필름이 제조되었다. 제조된 폴리이미드계 필름은 폴리아미드-이미드 필름이다.
1차 열처리에 의하여 제조된 폴리이미드계 필름을 텐터 프레임(Tenter frame)에서 제거하고 다시 250℃에서 5분간 2차 열처리하여 필름 내 잔류 응력을 제거하였다.
<실시예 18 내지 24>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 17과 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 실시예 18 내지 24라 하였다.
<실시예 25>
제조예 4에서 제조된 액상의 수지 조성물인 폴리이미드계 수지 조성물을 기재 상에 캐스팅(casting)하여 겔 상태의 필름(겔 상태의 미경화 폴리이미드계 필름)를 제조한 후, 80℃, 0.2m/s 풍속에서 20분간 1차 건조 하고, 다시 풍속을 1.6m/s로 올려 140℃에서 10분간 겔 상태의 필름을 2차 건조하였다.
겔 상태의 필름을 핀 형태(Pin type)의 텐터(Tenter)에 거치 한 후, 온도를 120℃에서 280℃까지 승온하면서 1시간 동안 1차 열처리 하였다. 1차 열처리에 의해 겔 상태의 필름이 경화되어 폴리이미드계 필름이 제조되었다. 제조된 폴리이미드계 필름은 폴리이미드 필름이다.
1차 열처리에 의하여 제조된 폴리이미드계 필름을 텐터 프레임(Tenter frame)에서 제거하고 다시 280℃에서 5분간 2차 열처리하여 필름 내 잔류 응력을 제거하였다.
<실시예 26 내지 32>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 25와 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 실시예 26 내지 32라 하였다.
<비교예 1 내지 5>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 1과 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 비교예 1 내지 5라 하였다.
<비교예 6 내지 10>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 9와 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 비교예 6 내지 10이라 하였다.
<비교예 11 내지 15>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 17과 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 비교예 11 내지 15라 하였다.
<비교예 16 내지 20>
1차 건조 조건을 아래 표 1과 같이 하는 것을 제외하고, 실시예 25와 동일한 방법으로 폴리이미드계 필름을 제조하여 이들을 비교예 16 내지 20이라 하였다.
실시예 1 내지 32 및 비교예 1 내지 20의 1차 건조 조건에 기초하여, 식 1의 "[(A-40) x B x T]/100" 및 식 2의 "[(A-40) x T]/100"을 계산하여 표 1에 표시하였다.
구분 폴리이미드계 수지 조성물 1차 건조 조건 (A-40) x B x T /100 (A-40) x T /100
온도(℃) [A] 풍속(m/s) [B] 시간(min) [T]
실시예 1 제조예1 80 0.2 20 1.6 8
실시예 2 제조예1 80 0.5 20 4 8
실시예 3 제조예1 80 0.8 20 6.4 8
실시예 4 제조예1 80 1 20 8 8
실시예 5 제조예1 140 0.2 2.5 0.5 2.5
실시예 6 제조예1 140 0.5 2.5 1.25 2.5
실시예 7 제조예1 140 0.8 2.5 2 2.5
실시예 8 제조예1 140 1 2.5 2.5 2.5
실시예 9 제조예2 80 0.2 20 1.6 8
실시예 10 제조예2 80 0.5 20 4 8
실시예 11 제조예2 80 0.8 20 6.4 8
실시예 12 제조예2 80 1 20 8 8
실시예 13 제조예2 140 0.2 2.5 0.5 2.5
실시예 14 제조예2 140 0.5 2.5 1.25 2.5
실시예 15 제조예2 140 0.8 2.5 2 2.5
실시예 16 제조예2 140 1 2.5 2.5 2.5
실시예 17 제조예3 80 0.2 20 1.6 8
실시예 18 제조예3 80 0.5 20 4 8
실시예 19 제조예3 80 0.8 20 6.4 8
실시예 20 제조예3 80 1 20 8 8
실시예 21 제조예3 140 0.2 2.5 0.5 2.5
실시예 22 제조예3 140 0.5 2.5 1.25 2.5
실시예 23 제조예3 140 0.8 2.5 2 2.5
실시예 24 제조예3 140 1 2.5 2.5 2.5
실시예 25 제조예4 80 0.2 20 1.6 8
실시예 26 제조예4 80 0.5 20 4 8
실시예 27 제조예4 80 0.8 20 6.4 8
실시예 28 제조예4 80 1 20 8 8
실시예 29 제조예4 140 0.2 2.5 0.5 2.5
실시예 30 제조예4 140 0.5 2.5 1.25 2.5
실시예 31 제조예4 140 0.8 2.5 2 2.5
실시예 32 제조예4 140 1 2.5 2.5 2.5
비교예 1 제조예1 80 0.2 2.5 0.2 1
비교예 2 제조예1 140 0.2 1.5 0.3 1.5
비교예 3 제조예1 80 1 2.5 1 1
비교예 4 제조예1 140 1 1.5 1.5 1.5
비교예 5 제조예1 140 1.6 20 32 20
비교예 6 제조예2 80 0.2 2.5 0.2 1
비교예 7 제조예2 140 0.2 1.5 0.3 1.5
비교예 8 제조예2 80 1 2.5 1 1
비교예 9 제조예2 140 1 1.5 1.5 1.5
비교예 10 제조예2 140 1.6 20 32 20
비교예 11 제조예3 80 0.2 2.5 0.2 1
비교예 12 제조예3 140 0.2 1.5 0.3 1.5
비교예 13 제조예3 80 1 2.5 1 1
비교예 14 제조예3 140 1 1.5 1.5 1.5
비교예 15 제조예3 140 1.6 20 32 20
비교예 16 제조예4 80 0.2 2.5 0.2 1
비교예 17 제조예4 140 0.2 1.5 0.3 1.5
비교예 18 제조예4 80 1 2.5 1 1
비교예 19 제조예4 140 1 1.5 1.5 1.5
비교예 20 제조예4 140 1.6 20 32 20
<물성 측정 방법>
실시예 1 내지 32 및 비교예 1 내지 20에서 제조된 폴리이미드계 필름에 대하여 다음의 방법으로 물성을 측정하고, 그 결과를 표 2에 개시하였다.
(1) 필름의 두께 측정
Anritsu Electronic Micrometer를 이용하여, 실시예 및 비교예에서 제조된 폴리이미드계 필름의 두께를 측정하였다. 장치에 기인하는 두께 편차는 ±0.5% 이하이다.
(2) 광학 투과도
실시예 및 비교예에서 제조된 폴리이미드계 필름에 대하여, UV분광계(코티카 미놀타 CM-3700d)를 이용하여 380 내지 780nm 파장의 범위 에서 평균 광학 투과도를 측정하였다. 폴리이미드계 필름의 두께는 표 1과 같다.
(3) 황색도 (Yellow Index, Y.I.)
UV분광계(코티카 미놀타 CM-3700d)를 이용하여 ASTM E313규격에 따라, 실시예 및 비교예에서 제조된 폴리이미드계 필름의 황색도를 측정하였다.
(4) 헤이즈
Haze Meter HM-150을 이용하여, 실시예 및 비교예에서 제조된 폴리이미드계 필름의 Haze를 측정하였다.
(5) Kc값 측정
- 측정 기기: Rhopoint社의 OptimapTM
- 광학적 모드(Mode): Extradull로 설정
- 디스플레이 모드(Display Mode): Curvature Mode (X+Y Scan)
- 곡률모드 K에서 1.0 내지 3.0 mm의 파장(wavelength) 범위 설정(Kc)
- 측정 방법: 암실에서 정반(surface plate) 상에 검정색 무광 페이퍼 시트를 배치하고, 그 위에 측정 대상 샘플을 반듯하게 거치 한 후, 상기 설정된 모드에 따라 Kc 값을 상기의 10회에 측정하고, 그 평균값을 해당 샘플의 Kc값으로 사용한다.
- 필름 샘플: 가로 15cm x 세로 15 cm x 두께 80㎛(두께 편차 ± 2%)의 폴리이미드계 필름(실시예 1 내지 32 및 비교예 1 내지 20)
- 기타: 현미경으로 측정 시 50㎛ 이상의 이물이 0.005개/㎠ 이하
두께 (㎛) Kc 헤이즈 황색도 광투과도(%)
실시예 1 80±1.6 1.14 0.3 3.8 88.3
실시예 2 80±1.6 1.324 0.3 3.7 88.4
실시예 3 80±1.6 1.446 0.3 3.6 88.4
실시예 4 80±1.6 1.512 0.3 3.6 88.3
실시예 5 80±1.6 1.153 0.3 3.7 88.4
실시예 6 80±1.6 1.311 0.3 3.8 88.3
실시예 7 80±1.6 1.449 0.3 3.6 88.5
실시예 8 80±1.6 1.536 0.3 3.7 88.4
실시예 9 80±1.6 1.149 0.3 4.2 88.1
실시예 10 80±1.6 1.334 0.3 4.1 88.2
실시예 11 80±1.6 1.473 0.3 4.2 88.1
실시예 12 80±1.6 1.529 0.3 4.3 88
실시예 13 80±1.6 1.172 0.3 4.2 88
실시예 14 80±1.6 1.365 0.3 4.3 88.1
실시예 15 80±1.6 1.411 0.3 4.2 88.1
실시예 16 80±1.6 1.543 0.3 4.3 88
실시예 17 80±1.6 1.213 0.3 4.8 87.7
실시예 18 80±1.6 1.397 0.3 4.7 87.7
실시예 19 80±1.6 1.476 0.3 4.7 87.8
실시예 20 80±1.6 1.544 0.3 4.8 87.7
실시예 21 80±1.6 1.194 0.3 4.7 87.8
실시예 22 80±1.6 1.399 0.3 4.8 87.8
실시예 23 80±1.6 1.487 0.3 4.8 87.8
실시예 24 80±1.6 1.541 0.2 4.9 87.8
실시예 25 80±1.6 1.121 0.2 1.8 90.2
실시예 26 80±1.6 1.291 0.2 1.9 90.1
실시예 27 80±1.6 1.334 0.2 1.7 90.2
실시예 28 80±1.6 1.492 0.2 1.8 90.1
실시예 29 80±1.6 1.117 0.2 1.7 90.2
실시예 30 80±1.6 1.204 0.2 1.6 90.2
실시예 31 80±1.6 1.401 0.2 1.7 90.1
실시예 32 80±1.6 1.493 0.2 1.8 90
비교예 1 80±1.6 1.593 0.3 3.7 88.4
비교예 2 80±1.6 1.556 0.3 3.8 88.3
비교예 3 80±1.6 1.623 0.3 3.7 88.3
비교예 4 80±1.6 1.601 0.3 3.9 88.3
비교예 5 80±1.6 1.723 0.3 3.9 88.3
비교예 6 80±1.6 1.578 0.3 4.2 88.1
비교예 7 80±1.6 1.596 0.3 4.3 88.1
비교예 8 80±1.6 1.598 0.3 4.2 88.2
비교예 9 80±1.6 1.593 0.3 4.3 88
비교예 10 80±1.6 1.706 0.3 4.3 88
비교예 11 80±1.6 1.586 0.3 4.8 87.7
비교예 12 80±1.6 1.581 0.3 4.8 87.8
비교예 13 80±1.6 1.6 0.3 4.7 87.7
비교예 14 80±1.6 1.604 0.3 4.8 87.8
비교예 15 80±1.6 1.736 0.3 4.9 87.7
비교예 16 80±1.6 1.554 0.2 1.8 90.1
비교예 17 80±1.6 1.555 0.2 1.9 90
비교예 18 80±1.6 1.561 0.2 1.7 90.2
비교예 19 80±1.6 1.554 0.2 1.9 90
비교예 20 80±1.6 1.701 0.2 1.9 90
표 2를 참조하면, 본 발명에 따른 실시예 1 내지 32에 따른 폴리이미드계 필름은 1.55 이하의 Kc값을 가지는 것을 확인할 수 있다. 폴리이미드계 필름의 Kc 값은 1차 건조 단계에서의 온도, 풍속 및 건조시간에 영향을 받는다.
표 1 및 표 2를 참조하면, 100℃ 이하의 비교적 저온에서 폴리이미드계 필름이 1차 건조되는 경우, 식 1과 식 2에 따른 건조 계수 조건을 만족하는 범위 내에서 다양한 풍속에 의해 비교적 장시간에 걸쳐 1차 건조가 이루어져야 낮은 Kc 값을 가질 수 있음을 알 수 있다. 또한, 100℃를 초과하는 비교적 고온에서 폴리이미드계 필름이 1차 건조되는 경우, 식 1과 식 2에 따른 건조 계수 조건을 만족하는 범위 내에서 다양한 풍속에 의해 비교적 단시간에 걸쳐 1차 건조가 이루어져야 낮은 Kc 값을 가질 수 있음을 알 수 있다.
반면, 100℃ 이하의 비교적 저온에서 폴리이미드계 필름이 1차 건조되는 경우, 건조 시간이 짧은 경우 1차 건조가 충분히 이루어지지 않고, 2차 건조시에 많은 양의 용매가 휘발하는 등의 문제가 발생할 수 있으며, 그에 따라 폴리이미드계 필름의 Kc 값이 높아지고 평탄도가 저하된다는 것을 알 수 있다. 또한, 100℃를 초과하는 비교적 고온에서 폴리이미드계 필름이 1차 건조되는 경우, 건조 길면 과도한 용매 휘발이 발생할 수 있고, 고운 열풍에 의해 폴리이미드계 필름에 물결 무늬가 생겨, 폴리이미드계 필름의 Kc 값이 높아지고 평탄도가 저하된다는 것을 알 수 있다.
도 3은 본 발명의 실시예 1에 따른 필름의 투영 이미지이고, 도 4는 비교예 15에 따른 필름의 투영 이미지이다. 도 3 및 도 4를 참조하면, 본 발명의 실시예에 따라 제조되어 1.55 이하의 낮은 Kc 값을 갖는 폴리이미드계 필름은, 비교예에 따라 제조된 폴리이미드계 필름과 비교하여, 우수한 표면 평탄성을 가지며, 물결무늬와 같은 불균일이 없거나 적다는 것을 확인할 수 있다.
본 발명의 실시예에 따른 폴리이미드계 필름은 다양한 전자기기에 적용될 수 있다. 따라서, 본 발명의 다른 일 실시예는 본 발명에 따른 폴리이미드계 필름을 포함하는 전자기기를 제공한다. 본 발명에 따른 폴리이미드계 필름은, 예를 들어, 전자기기의 커버 윈도우로 적용될 수 있다.
[부호의 설명]
10: 광원, 20: 광, 30: 투영 대상 필름, 40: 평평한 표면, 50: 투영 이미지

Claims (22)

1.55 이하의 Kc 값을 갖는 폴리이미드계 필름:
상기 Kc 값은 위상 단계 변형 측정법(phase stepped deflectometry, PSD)에 의해, 상기 폴리이미드계 필름에 형성된 1.0 내지 3.0 mm의 파장(wavelength) 범위를 갖는 웨이브니스(waviness)에 대하여 측정된 곡률 매개 변수이다.
제1항에 있어서, 1.45 이하의 Kc값을 갖는 폴리이미드계 필름.
제1항에 있어서, 1.10 내지 1.45의 Kc값을 갖는 폴리이미드계 필름.
제1항에 있어서, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들로부터 제조되는 폴리이미드계 필름.
제4항에 있어서, 상기 디안하이드라이드는 2,2-비스(3,4- 디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 비페닐 테트라카르복실릭 디안하이드라이드 (BPDA), 4-(2,5-디옥소테트라 하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(PMDA), 벤조페논 테트라카르 복실릭디안하이드라이드 (BTDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 비스 디카르복시 페녹시 디페닐 설파이드 디안하이드라이드(BDSDA), 술포닐 디프탈릭 안하이드라이드(SO2DPA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드 (6HBDA), 사이클로부탄디안하이드라이드 (CBDA), 사이클로펜탄디안하이드라이드(CPDA), 사이클로헥산디안하이드라이드 (CHDA) 및 비사이클로헥산디안하이드라이드 (HBPDA) 중에서 선택되는 적어도 하나를 포함하는 폴리이미드계 필름.
제4항에 있어서, 상기 디아민은 옥시디아닐린(ODA), p-페닐렌디아민(pPDA), m-페닐렌디아민(mPDA), p-메틸렌디아닐린(pMDA), m-메틸렌디아닐린(mMDA), 비스 아미노페녹시 벤젠(133APB), 비스 아미노페녹시 벤젠(134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (4BDAF), 비스 아미노페닐 헥사플루오로프로판(33-6F), 비스 아미노페닐 헥사플루오로 프로판(44-6F), 비스 아미노페닐술폰(4DDS), 비스 아미노페닐술폰(3DDS), 비스 트리플루오로메틸 벤지딘(TFDB), 사이클로헥산디아민(13CHD), 사이클로헥산 디아민(14CHD), 비스 아미노 페녹시 페닐프로판(6HMDA), 비스 아미노하이드록시 페닐 헥사플로오 로프로판(DBOH), 비스 아미노 페녹시 디페닐 술폰(DBSDA), 비스 (4-아미노페닐)플루오렌(FDA) 및 비스(4-아미노-3플루오르페닐)플루오렌 (F-FDA) 중에서 선택되는 적어도 하나를 포함하는 폴리이미드계 필름.
제4항에 있어서, 상기 모노머 성분들은 디카르보닐 화합물을 더 포함하는 폴리이미드계 필름.
제7항에 있어서, 상기 디카르보닐 화합물은 방향족 디카르보닐 화합물 및 지방족 디카르보닐 화합물 중 적어도 하나를 포함하는, 폴리이미드계 필름.
제8항에 있어서, 상기 방향족 디카르보닐 화합물은 하기 화학식 1로 표현되는, 폴리이미드계 필름.
[화학식 1]
Figure PCTKR2020012351-appb-I000026
여기서, R1은 단일 결합, *-Ar-*, *-O-Ar-*, *-CAL-*, 또는 *-O-CAL-* 이고,
X1과 X2는 각각 독립적으로 수소, 하이드록시기(OH) 또는 할로겐 원소를 나타내고, X3는 수소 또는 할로겐 원소를 나타내고,
상기"Ar"은 치환되거나 치환되지 않은 아릴렌기를 나타내고, 상기 CAL은 지환족기(cycloaliphatic group)를 나타낸다.
제8항에 있어서, 상기 방향족 디카르보닐 화합물은 하기 화학식 3으로 표현되는 화합물, 하기 화학식 4로 표현되는 화합물, 하기 화학식 5로 표현되는 화합물, 하기 화학식 6으로 표현되는 화합물, 하기 화학식 7로 표현되는 화합물, 하기 화학식 8로 표현되는 화합물 및 하기 화학식 9로 표현되는 화합물 중 적어도 하나를 포함하는, 폴리이미드계 필름.
[화학식 3]
Figure PCTKR2020012351-appb-I000027
[화학식 4]
Figure PCTKR2020012351-appb-I000028
[화학식 5]
Figure PCTKR2020012351-appb-I000029
[화학식 6]
Figure PCTKR2020012351-appb-I000030
[화학식 7]
Figure PCTKR2020012351-appb-I000031
[화학식 8]
Figure PCTKR2020012351-appb-I000032
[화학식 9]
Figure PCTKR2020012351-appb-I000033
제8항에 있어서, 상기 지방족 디카르보닐 화합물은 하기 화학식 10으로 표현되는 화합물, 하기 화학식 11로 표현되는 화합물, 하기 화학식 12로 표현되는 화합물 및 하기 화학식 13으로 표현되는 화합물 중 적어도 하나를 포함하는, 폴리이미드계 필름.
[화학식 10]
Figure PCTKR2020012351-appb-I000034
[화학식 11]
Figure PCTKR2020012351-appb-I000035
[화학식 12]
Figure PCTKR2020012351-appb-I000036
[화학식 13]
Figure PCTKR2020012351-appb-I000037
제1항에 있어서, 두께 80㎛를 기준으로,
2.0 이하의 헤이즈(Haze);
380 내지 780nm의 파장에서 87% 이상의 평균 광학 투과도; 및
5.0 이하의 황색도;
를 갖는 폴리이미드계 필름.
디안하이드라이드 및 디아민을 포함하는 모노머 성분들을 이용하여 액상의 수지 조성물을 제조하는 단계;
상기 액상의 수지 조성물을 이용하여, 겔 상태의 필름을 제조하는 단계; 및
상기 겔 상태의 필름을 50 내지 150℃의 온도에서 1.0 m/s 이하의 풍속으로 2 내지 20분 동안 1차 건조하는 단계;를 포함하며,
상기 1차 건조하는 단계에서, 건조 온도를 A ℃ 라고 하고, 풍속을 B m/s 이라 하고, 1차 건조 시간을 T 분(minute)이라고 할 때, 다음 식 1 및 2에 따른 건조 계수 조건을 만족하는, 폴리이미드계 필름의 제조방법.
[식 1]
0.5 ≤ [(A-40) x B x T]/100 ≤ 10
[식 2]
2 ≤ [(A-40) x T]/100 ≤ 10
제13항에 있어서, 상기 모노머 성분들은 디카르보닐 화합물을 더 포함하는, 폴리이미드계 필름의 제조방법.
제13항에 있어서, 상기 액상의 수지 조성물은 1000 내지 250,000 cPs의 점도를 갖는, 폴리이미드계 필름의 제조방법.
제13항에 있어서,
상기 1차 건조하는 단계에서 상기 풍속은 0.2 m/s 이상인, 폴리이미드계 필름의 제조방법.
제13항에 있어서,
상기 1차 건조하는 단계 후, 상기 겔 상태의 필름을 70 내지 140℃에서 1.0 내지 5.0 m/s의 풍속으로 2차 건조하는 단계를 더 포함하는, 폴리이미드계 필름의 제조방법.
제17항에 있어서,
상기 2차 건조하는 단계 후, 상기 겔 상태의 필름을 100 내지 500℃의 온도에서 1분 내지 1시간 동안 1차 열처리하는 단계를 더 포함하는 폴리이미드계 필름의 제조방법.
제13항에 있어서, 상기 겔 상태의 필름을 제조하는 단계는,
상기 액상의 수지 조성물을 지지체 상에 캐스팅하는 단계를 포함하는, 폴리이미드계 필름의 제조방법.
제13항에 있어서, 상기 액상의 수지 조성물을 제조하는 단계는,
상기 모노머 성분들을 제1 용매의 존재 하에서 반응시켜, 제1 중합체 용액을 제조하는 단계;
상기 제1 중합체 용액에 제2 용매를 투입하고, 여과 및 건조하여 중합체 고형분을 제조하는 단계; 및
상기 중합체 고형분을 제3 용매에 용해하는 단계;
를 포함하는, 폴리이미드계 필름의 제조방법.
제13항 내지 제20항 중 어느 한 항에 따른 제조방법으로 제조된 폴리이미드계 필름.
제1항 내지 제12항 중 어느 한 항에 따른 폴리이미드계 필름을 포함하는 전자기기.
PCT/KR2020/012351 2019-09-27 2020-09-14 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법 WO2021060752A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20867500.9A EP4036159A4 (en) 2019-09-27 2020-09-14 POLYIMIDE BASED FILM HAVING EXCELLENT FLATNESS AND METHOD FOR PRODUCING THE SAME
US17/760,759 US20220340724A1 (en) 2019-09-27 2020-09-14 Polyimide-based film having excellent surface evenness and method for producing same
CN202080067256.8A CN114466901A (zh) 2019-09-27 2020-09-14 具有优异的表面平整度的聚酰亚胺类薄膜及其制造方法
JP2022517476A JP7366250B2 (ja) 2019-09-27 2020-09-14 優れた表面平坦性を有するポリイミド系フィルム及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0119681 2019-09-27
KR20190119681 2019-09-27
KR10-2020-0080938 2020-07-01
KR1020200080938A KR20210037514A (ko) 2019-09-27 2020-07-01 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021060752A1 true WO2021060752A1 (ko) 2021-04-01

Family

ID=75166729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012351 WO2021060752A1 (ko) 2019-09-27 2020-09-14 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20220340724A1 (ko)
EP (1) EP4036159A4 (ko)
JP (1) JP7366250B2 (ko)
KR (2) KR20230004380A (ko)
CN (1) CN114466901A (ko)
WO (1) WO2021060752A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4137538A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162635A (ja) * 1999-12-13 2001-06-19 Du Pont Toray Co Ltd ポリイミドフィルム及びその製造方法
JP2006143839A (ja) * 2004-11-18 2006-06-08 Toyobo Co Ltd ポリイミドフィルムおよびその製造方法
KR101229161B1 (ko) * 2011-06-30 2013-02-01 에스케이씨코오롱피아이 주식회사 폴리이미드 필름 제조방법
US20130323485A1 (en) * 2011-03-01 2013-12-05 Toyobo Co., Ltd. Stretched polyamide film
KR101756714B1 (ko) * 2016-11-02 2017-07-12 에스케이씨 주식회사 내절성이 향상된 무색 투명한 폴리아마이드-이미드 필름
KR20180134772A (ko) * 2017-06-09 2018-12-19 삼성전자주식회사 폴리이미드 또는 폴리(아미드-이미드) 코폴리머 필름, 상기 필름을 포함하는 표시 장치, 상기 필름을 제조하는 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004046068A (ja) * 2002-01-23 2004-02-12 Nitto Denko Corp 複屈折層の製造方法、および前記複屈折層を含む光学フィルム
JP4929596B2 (ja) * 2005-01-18 2012-05-09 東洋紡績株式会社 ポリイミドフィルムとその製造方法
JP2008259983A (ja) * 2007-04-13 2008-10-30 Nitto Denko Corp 乾燥複合半透膜の製造方法
JP5955603B2 (ja) * 2012-03-28 2016-07-20 東レ・デュポン株式会社 ポリイミドフィルム及びポリイミドフィルムの製造方法
KR101482707B1 (ko) * 2013-02-27 2015-01-14 한국과학기술원 디스플레이 기판 및 커버 윈도우용 유리섬유직물이 함침된 무색투명 폴리이미드 필름의 표면 평탄화 방법
KR101994059B1 (ko) * 2014-07-17 2019-06-27 아사히 가세이 가부시키가이샤 수지 전구체 및 그것을 함유하는 수지 조성물, 폴리이미드 수지막, 수지 필름 및 그 제조 방법
JP6900152B2 (ja) * 2016-04-07 2021-07-07 株式会社カネカ ガラス代替材料用のフィルム
JP6494844B1 (ja) * 2017-10-31 2019-04-03 住友化学株式会社 樹脂フィルムの製造方法および微小キズが少ない樹脂フィルム
KR102233984B1 (ko) * 2018-01-09 2021-03-29 주식회사 엘지화학 폴리아미드이미드 수지 필름

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162635A (ja) * 1999-12-13 2001-06-19 Du Pont Toray Co Ltd ポリイミドフィルム及びその製造方法
JP2006143839A (ja) * 2004-11-18 2006-06-08 Toyobo Co Ltd ポリイミドフィルムおよびその製造方法
US20130323485A1 (en) * 2011-03-01 2013-12-05 Toyobo Co., Ltd. Stretched polyamide film
KR101229161B1 (ko) * 2011-06-30 2013-02-01 에스케이씨코오롱피아이 주식회사 폴리이미드 필름 제조방법
KR101756714B1 (ko) * 2016-11-02 2017-07-12 에스케이씨 주식회사 내절성이 향상된 무색 투명한 폴리아마이드-이미드 필름
KR20180134772A (ko) * 2017-06-09 2018-12-19 삼성전자주식회사 폴리이미드 또는 폴리(아미드-이미드) 코폴리머 필름, 상기 필름을 포함하는 표시 장치, 상기 필름을 제조하는 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4137538A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same

Also Published As

Publication number Publication date
JP2022548708A (ja) 2022-11-21
EP4036159A1 (en) 2022-08-03
KR20230002203A (ko) 2023-01-05
US20220340724A1 (en) 2022-10-27
KR20230004380A (ko) 2023-01-06
EP4036159A4 (en) 2023-11-01
CN114466901A (zh) 2022-05-10
JP7366250B2 (ja) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2014168402A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
EP2553001A2 (en) Polyimide film
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2014104557A1 (ko) 낮은 열팽창 계수를 갖는 신규한 폴리아미드이미드
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2019103274A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2018147606A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020159193A1 (ko) 폴리이미드 전구체 조성물 및 이로부터 제조된 폴리이미드 필름, 디스플레이 장치용 기판, 및 광학 장치
WO2015182925A1 (ko) 신규 디아민 합성 및 이를 이용한 액정 배향제
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020867500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020867500

Country of ref document: EP

Effective date: 20220428